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Abstract In this paper, we introduce and investigate the q-analogues of Barnes
numbers and polynomials. The main purpose of this paper is to establish Fourier
expansion of these q-Barnes polynomials and from this study we connect q-Barnes
numbers to values of Dirichlet-Hurwitz L-function evaluating at non-negative pos-
itive integers.

1. Introduction and preliminaries

Throughout this paper we use the following notation: N = {0, 1, ...} set of natu-
rals numbers. Let q ∈ R and x a variable, the q-Bernoulli polynomials Bn(x; q) are
defined by the generating function

t

qet − 1
ext =

∞∑
n=0

Bn(x; q)
tn

n!
, (q = 1, |t| < 2π), (q 6= 1, |t| < |log(−q)|). (1)

The q-Bernoulli numbers Bn(q) are given by Bn(q) := Bn(0; q). These polynomials
were introduced by Apostol, see [1, 13] . These polynomials are a natural exten-
sion of the classical Bernoulli polynomials : Bn(x) = Bn(x; 1) , see [12] . They
have many applications in mathematics. Recently, first author proves their most
important property Fourier expansion which is given by

qxBn(x; q) =
−n!

(2πi)n

∗∑
k∈Z

e2πikx(
k − log(q)

2πi

)n , (2)

for q ∈ C\{0} and , for 0 < x < 1 if n = 1, 0 ≤ x ≤ 1 if n ≥ 2. Here

∗∑
k∈Z

=
∑

k∈Z\{0}

if q = 1 and

∗∑
k∈Z

=
∑
k∈Z

if q 6= 1. See [2, 3, 13]. This identity is the foundation of

the theory of q-Bernoulli polynomials and their relations to special values of the
Riemann zeta function and Dirichlet L-functions.

Let us define the Barnes and the q-Barnes polynomials and numbers. Let N

positive integer and
→
aN = (a1, ..., aN ), where a1, ..., aN are complex with strictly
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positive real part. The Barnes polynomials and numbers are given by

tN

N∏
j=1

(
eajt − 1

)ext =

∞∑
n=0

Bn(x|→aN )
tn

n!
, |t| < min

(
2π

a1
, · · · , 2π

aN

)
, see [5, 6, 8, 9, 14, 15, 17] .

The main interest of these numbers is that they give the values at non negative

integers of Dirichlet L-series: if L(s, χ) =

∞∑
n=1

χ(n)

ns
(Re(s) > 1) is the L-series

attached to χ of conductor f , then we have the formula in [4]

∗∑
m1,...,mN

am1−1
1 ...amN−1

N L(m1, χ)...L(mN , χ) =

(2πi)n(−1)N

n!

χ(−1)Gχ
f

f∑
t=1

χ̄(t)Bn

(
t

f
| →aN

)
, (3)

where

∗∑
m1,...,mN

=
∑

m1+..+mN=n,m1,...,mN≥0

(−1)m1=...=(−1)mN =χ(−1)

.

Note that in case N = 1, a1 = 1, the numbers in the right side of the equality
(13) correspond to the generalized Bernoulli numbers Bm,χ which are defined by
the generating function

f∑
a=1

χ(a)
t

eft − 1
eat =

∞∑
n=0

Bn,χ
tn

n!
, | t |< 2π

f
. (4)

From the equation (3) we have , for n ≥ 0 , the well-known formula

L(−n, χ) = −Bn+1,χ

n+ 1
, see [4, 18] . (5)

LetN positive integer ,
→
aN = (a1, ..., aN ), where a1, ..., aN are complex with strictly

positive real part and let q ∈ C, | q |< 1. We introduce and investigate the following

q-Barnes polynomials Bn,q(x|
→
aN ) defined by

tN

N∏
j=1

(
qeajt − 1

)ext =

∞∑
n=0

Bn,q(x|
→
aN )

tn

n!
, |t+ log(q)| < min

(
2π

a1
, · · · , 2π

aN

)
. (6)

and Bn,q(
→
aN ) = Bn,q(0|

→
aN ) are the so called q-Barnes numbers.

This paper can now be summarized as a generalization of these facts to the q-
Barnes polynomials and numbers. More precisely, the main purpose of this paper
is to prove the extension of the properties (2) and ( 3) to q-Barnes numbers and
polynomials.
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2. Statement and proof of main results

For λ ∈ C\{0} and q ∈ C, we can write

tN

N∏
j=1

(
qeλajt − 1

)eλxt = λ−N
(λt)N

N∏
j=1

(
qeaj(λt) − 1

)ex(λt). (7)

Their Taylor expansions are given as follows

∞∑
n=0

Bn,q(λx|λ
→
aN )

tn

n!
= λ−N

∞∑
n=0

Bn,q(x|
→
aN )

λntn

n!
. (8)

Then, by comparing the coefficients of both sides of the equation (8), we obtain the
homogeneity equation

Proposition 1 (Homogeneity). For any a1, ..., aN are complex with strictly positive
real part and λ ∈ C\{0}, we have

Bn,q(λx | λ
→
aN ) = λn−NBn,q(x |

→
aN ), (n ≥ 1). (9)

Now we state our main results.

Theorem 2. Let a1, ...aN are complex with strictly positive real part. Then

Bn,q(x |
→
aN )

n!
=

∑
m1+..+mN=n

m1,··· ,mN≥0

am1−1
1 ...amN−1

N

Bm1(X; q)

m1!
...
BmN (X; q)

mN !
. (10)

where X = x
AN

and AN = a1 + ...+ aN .

Proof of Theorem 2:

Writing X = x
AN

where AN = a1 + ...+ aN . We have

tN

N∏
j=1

(
qeajt − 1

)ext =
1

a1...aN

N∏
i=1

aite
X(ait)

qeait − 1

Then we get

tN

N∏
j=1

(
qeajt − 1

)ext =

∞∑
n=0

( ∑
m1+···+mN=n

am1−1
1 · · · amN−1

N

Bm1
(X; q)

m1!
· · · BmN (X; q)

mN !

)
tn. (11)

In other way

tN

N∏
j=1

(
qeajt − 1

)ext =

∞∑
n=0

Bn,q
n!

(x|→aN )tn. (12)
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By comparing the right sides of the equations (11) and (11) we obtain

Bn,q(x |
→
aN )

n!
=

∑
m1+..+mN=n

am1−1
1 ...amN−1

N

Bm1
(X; q)

m1!
...
BmN (X; q)

mN !
, (n ∈ N).

This yields our theorem. �

Theorem 3 (Fourier expansion). Let a1, ..., aN are complex with strictly positive
real part and set AN = a1 + ...+aN and X = x

AN
. Then for any n ≥ 1 and |X| < 1

we have

qxBn,q(x |
→
aN ) =

(−1)Nn!
(2πi)n

∗∑
m1+..+mN=n

am1−1
1 ...amN−1

N

∗∗∑
k1,...,kN∈Z

e ((k1 + ...+ kN )X)(
k1 − log(q)

2πi

)m1

...
(
kN − log(q)

2πi

)mN .
Here

∗∗∑
k1,...,kN∈Z

means that k1, ..., kN ∈ Z\{ log(q)2πi } and, in the non-absolutely con-

vergent case mi = 1, for any 1 ≤ i ≤ N, the sum

∗∗∑
ki∈Z

to be interpreted as a Cauchy

principal value for each i, and

∗∑
m1+..+mN=n

means that m1, ...,mN ∈ N with the

usual convention the sum

′∑
ki∈Z\{0}

e (kiX) = −1 if mi = 0.

Proof of Theorem 3:

Using the equation (2) and Theorem 2, we can write

qx
Bn,q(x|

→
aN )

n!

=

∗∑
m1+···+mN=n

am1−1
1 · · · amN−1

N

m1! · · ·mN !

(−1)Nm1! · · ·mN !

(2πi)m1+···+mN

∗∗∑
k1,··· ,kN∈Z

e ((k1 + · · ·+ kN )X)(
k1 − log(q)

2πi

)m1

· · ·
(
kN − log(q)

2πi

)mN ,

= (−1)N

(2πi)n

∗∑
m1+···+mN=n

am1−1
1 · · · amN−1

N

∗∗∑
k1,··· ,kN∈Z

e ((k1 + · · ·+ kN )X)(
k1 − log(q)

2πi

)m1

· · ·
(
kN − log(q)

2πi

)mN .
This gives the theorem. �
Let f an integer ≥ 2 and χ a Dirichlet character modulo f . As usual we define the
L-series by

L(s, x, χ) =
∑

k∈Z,k 6=−x

χ(k)

(x+ k)s
, <(s) > 1.

In this L-series we relax the summation over all k ∈ Z, k 6= −x. But it’s easy to
see that is related to the classical Dirichlet L-series where the summation is over
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k ∈ N, k 6= −x.
We recall the definition of the Gauss sum associated to the character χ is

Gχ =

f∑
t=1

χ(t)e(
t

f
).

By homogeneity Proposition 1, without loss of generality we can assume for the
following theorems that: a1 + · · ·+ aN = 1.

Theorem 4 (Values of L-function at non-negative integers). Let f ≥ 2 be a natural
number, a1, ...aN with real part strictly positive real and a1 + ...+aN = 1 , χ a non
trivial Dirichlet character modulo f ≥ 2. Then we have∑

m1+...+mN=n

m1,...,mN≥0

am1−1
1 ...amN−1

N L(m1, α, χ)...L(mN , α, χ) =

(2πi)n(−1)N

n!

χ(−1)Gχ
f

f∑
t=1

χ̄(t)q
t
f Bn,q

(
t

f
| →aN

)
, (13)

where α = log(q)
2πi , with the usual convention L(0, χ) = −1

2 .

Proof of Theorem 4:

Using Theorem 3, we have

f∑
t=1

χ̄(t)q
t
f Bn

(
t

f
|→aN

)

= (−1)Nn!
(2πi)n

∗∑
m1+..+mN=n

am1−1
1 ...amN−1

N

∗∗∑
k1,...,kN∈Z

1(
k1 − log(q)

2πi

)m1

...
(
kN − log(q)

2πi

)mN
f∑
t=1

χ̄(t)e

(
(k1 + ...+ kN )

t

f

)
.

Since
f∑
t=1

χ̄(t)e

(
k
t

f

)
= χ(k)Gχ̄

we have

f∑
t=1

χ̄(t)q
t
f Bn

(
t

f
|→aN

)

= (−1)Nn!
(2πi)n Gχ̄

∗∑
m1+..+mN=n

am1−1
1 ...amN−1

N

∗∗∑
k1,...,kN∈Z

χ(k1 + ...+ kN )(
k1 − log(q)

2πi

)m1

...
(
kN − log(q)

2πi

)mN .

= (−1)Nn!
(2πi)n Gχ̄

∗∑
m1+..+mN=n

am1−1
1 ...amN−1

N

′∑
k1,...,kN∈Z\{0}

χ(k1)(
k1 − log(q)

2πi

)m1
· · · χ(kN )(

kN − log(q)
2πi

)mN
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While
′∑

k∈Z\{0}

χ(ki)(
k1 − log(q)

2πi

)mi = L(mi, α, χ), where α =
log(q)

2πi
.

Therefore, we arrive at

f∑
t=1

χ̄(t)q
t
f Bn

(
t

f
|→aN

)
=

(−1)N (n!)

(2πi)n
Gχ̄

∑
m1+..+mN=n

m1,...,mN≥0

am1−1
1 ...amN−1

N

N∏
i=1

L(mi, α, χ)

= 2N (−1)N (n!)
(2πi)n Gχ̄

∑
m1+..+mN=n

χ(−1)=(−1)mi,m1,...,mN≥0

am1−1
1 ...amN−1

N L(m1, χ)...L(mN , χ).

Using the relation
Gχ̄ = χ(−1)q/Gχ,

see [18] chap.4 p.29-37), we obtain the following formula∑
m1+...+mN=n

m1,...,mN≥0

am1−1
1 ...amN−1

N L(m1, α, χ)...L(mN , α, χ) =

(2πi)n(−1)N

n!
χ(−1)Gχ

f

f∑
t=1

χ̄(t)q
t
f Bn,q

(
t

f
| →aN

)
.

Hence, we obtain our desired theorem. �

Remark 1.

(1) Taking q = 1 we recover the main results of Bayad and Kim in [4].
(2) If we take N = 1 and q = 1 we obtain results of Bayad [2, 3].
(3) In case N = 1, q = a1 = 1 the Theorem 4 and functional equation of

L-series gives us the main property on the values of Dirchlet L-series (5).
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