
IDENTITIES ON q-HYPERGEOMETRIC BERNOULLI NUMBERS

AND POLYNOMIALS

ABDELMEJID BAYAD AND YOSHINORI HAMAHATA

Abstract. In this paper, we introduce new q-hypergeometric Bernoulli polynomials
and numbers. Some basic and important identities about them are presented. In

particular, we give a relation among two kinds of q-hypergeometric Bernoulli poly-
nomials, from which a Bernoulli polynomial version of Kaneko-Momiyama relations
among Bernoulli numbers is obtained.
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1. Introduction and main results

Throughout this paper we fix q ∈ C, which is different from the roots of unity. We
recall some usual notions and notations used in q-theory (see [1], [2], [6]).

1.1. Notation and preliminaries. Let a ∈ C. The q-shifted factorials are defined by

(a, q)0 = 1, (a, q)n =

n−1∏
k=0

(1− aqk) (n = 1, 2, . . .).

If |q| < 1, then we define

(a, q)∞ = lim
n→∞

(a, q)n =
∞∏
k=0

(1− aqk).
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We also denote

[x]q =
1− qx

1− q
, x ∈ C,

[n]q! =
(q, q)n
(1− q)n

, n ∈ N,[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
, k, n ∈ N,[

n
i1, · · · , im

]
q

=
[n]q!

[i1]q! · · · [im]q!
, n, i1, . . . , im ∈ N.

The q-exponential functions are given by

eq(z) :=

∞∑
n=0

zn

[n]q!

and

eq−1(z) :=
∞∑

n=0

zn

[n]q−1 !
.

It is easy to see that [n]q−1 ! = q−(
n
2)[n]q!. Hence

eq−1(z) =
∞∑

n=0

q(
n
2)zn

[n]q!
.

See [3], [5] for related topics. By q-binomial theorem [2], we have

eq(z) =
1

((1− q)z, q)∞
, eq−1(z) = (−(1− q)z, q)∞ .

This yields eq(z)eq−1(−z) = 1.

1.2. The q-derivative and q-integral. The q-derivative of a function f is given by

Dqf(x) :=
f(x)− f(qx)

(1− q)x
(x ̸= 0, q ̸= 1),

where x and qx should be in the domain of f . If f is differentiable on an open set I,
then for all x ∈ I,

lim
q→1

Dqf(x) = f ′(x).

Besides, for all n ∈ N,

Dq(x
n) = [n]qx

n−1,

Dq(x, q)n = −[n]q(xq, q)n−1,

Dq−1(x, q)n = −[n]q(x, q)n−1,

Dq

(
xn

[n]q!

)
=

xn−1

[n− 1]q!
.

From the last identity, for instance, we have Dqeq(z) = eq(z). For the product of two
functions f and g, the following formula holds:

Dq(f · g)(x) = g(x)Dq(x) + f(qx)Dqg(x)

= f(x)Dqg(x) + g(qx)Dqf(x).
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We next treat the composition of f(x) and g(x). When g(x) = −x, the following chain
rule for the q-derivative is valid:

Dq(f ◦ g)(x) = Dqf(g(x))Dqg(x),

which will be used in the proofs of Theorems 1.6 and 1.7. However, in general, the rule
above does not hold. If we modify the definition of the composition of two functions,
then a new chain rule for the q-derivative is gained. We refer to Gessel [3] for this topic.

The q-Jackson integrals from 0 to a is defined by∫ a

0

f(x)dqx := (1− q)a

∞∑
n=0

f(aqn)qn

provided the infinite sums converge absolutely. The q-Jackson integral in the generic
interval [a, b] is given by∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx.

For any function f we have

Dq

∫ x

0

f(t)dqt = f(x).

1.3. q-Hypergeometric Bernoulli polynomials and numbers. Let q ∈ C, |q| < 1.
We define two different q-hypergeometric Bernoulli polynomials Bn(x, q), Cn(x, q

−1) in
the variable x by

teq(xt)

eq(t)− 1
=

∞∑
n=0

Bn(x, q)
tn

[n]q!
,(1.1)

teq(xt)

eq−1(t)− 1
=

∞∑
n=0

Cn(x, q
−1)

tn

[n]q!
.(1.2)

We call Bn(0, q) (resp. Cn(0, q
−1)) the first (resp. second) q-hypergeometric Bernoulli

numbers, respectively.

1.4. The q-binomial formula. Let q ∈ C, and take two q-commuting variables x and
y which satisfy the relation

xy = q−1yx.

Let Cq[x, y] be the complex associative algebra with 1 generated by x and y. Then the
following identity is valid in the algebra Cq[x, y]:

(x+ y)n =
n∑

k=0

[
n
k

]
q

xkyn−k, n ∈ N,

or alternatively,

(x+ y)n =
n∑

k=0

[
n
k

]
q−1

ykxn−k, n ∈ N.

For details, we refer to [1], [2].
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1.5. The q-exponential identity. Let Cq[[x, y]] be the complex associative algebra
with 1 of formal power series

∞∑
m=0

∞∑
n=0

am,nx
nyn

with arbitrary complex coefficients am,n. One knows in [1], [2] that in Cq[[x, y]], we have
the following identity

eq(x+ y) = eq(x)eq(y).

We can easily verify the following identities:

lim
q→1

eq(z) = lim
q→1

eq−1(z) = ez,

lim
q→1

[n]q = n,

lim
q→1

[n]q! = n!,

lim
q→1

[
n
k

]
q

=

(
n

k

)
,

lim
q→1

[
n

i1, · · · , im

]
q

=

(
n

i1, · · · , im

)
:=

n!

i1! · · · im!
,

lim
q→1

Bn(x, q) = lim
q→1

Cn(x, q
−1) = Bn(x),

where Bn(x) is the n-th classical Bernoulli polynomial defined by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

1.6. Purpose and main results. In this paper we deal with very interesting identities
satisfied by our q-hypergeometric Bernoulli numbers and polynomials. We state our
results.

Theorem 1.1 (Sums of products). Let m be a positive integer. For any n ≥ m, we have

(−1)n
∑

i1+···+im=n

[
n

i1, · · · , im

]
q

Ci1(−x, q−1) · · ·Cim(−x, q−1)

=
m∑
j=0

(
m

j

) ∑
k1+···+km
=n−m+j

[
n

k1, . . . , km

]
q

Bk1(x, q) · · ·Bkm(x, q)xm−(k1+···+kj).

In particular, if m = 1, then

(−1)nCn(−x, q−1) = Bn(x, q) + [n]qx
n−1.

If m = 2, then

(−1)n
n∑

i=0

[
n
i

]
q

Ci(−x, q−1)Cn−i(−x, q−1)

=
n∑

i=0

[
n
i

]
q

Bi(x, q)Bn−i(x, q) + 2
n−1∑
i=0

[
n
i

]
q

Bi(x, q)x
n−1−i +

(
n−2∑
i=0

[
n
i

]
q

)
xn.

As q → 1 in the above theorem, we have
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Theorem 1.2. If n ≥ m, then

(−1)n
∑

i1+···+im=n

(
n

i1, . . . , im

)
Bi1(−x) · · ·Bim(−x)

=

m∑
j=0

(
m

j

) ∑
k1+···+km
=n−m+j

(
n

k1, . . . , km

)
Bk1(x) · · ·Bkm(x)xm−(k1+···+km).

Putting x = 0 and m = 2, we get Euler’s identity:

Theorem 1.3. For any odd integer n ≥ 2,
n∑

i=0

(
n

i

)
BiBn−i = −nBn−1.

Theorem 1.4 (q-Derivative formula). We have

DqB0(x, q) = DqC0(x, q
−1) = 0,

DqBn+1(x, q) = [n+ 1]qBn(x, q), (n ≥ 0)

DqCn+1(x, q
−1) = [n+ 1]qCn(x, q

−1).

Theorem 1.5 (q-Addition formula). Let x, y be two q-commuting variables which satisfy
xy = q−1yx. Then for any nonnegative integer n, we have

Bn(x+ y, q) =

n∑
k=0

[
n
k

]
q

Bk(x, q)y
n−k.

In particular,

Bn(y, q) =
n∑

k=0

[
n
k

]
q

Bk(0, q)y
n−k.

Theorem 1.6 (q-Integral formula). For all nonnegative integers n,∫ x

a

Bn(t, q)dqt =
Bn+1(x, q)−Bn+1(a, q)

[n+ 1]q
.

Theorem 1.7 (q-Symmetry). For any n,m ∈ N, we have

(1.3) (−1)n
n∑

k=0

[
n
k

]
q

Bm+k(x, q)q
−km =

(−1)m
m∑

k=0

[
n
k

]
q

Cn+k(−x, q−1)q(
m−k

2 )−mn.

By q-differentiation, we obtain

Theorem 1.8 (q-Recurrence formula 1). For n,m ∈ N,

(−1)n
n+1∑
k=0

[
n+ 1
k

]
q

[m+ k + 1]qBm+k(x, q)q
−k(m+1)

+ (−1)m
m+1∑
k=0

[
m+ 1

k

]
q

[n+ k + 1]qCn+k(−x, q−1)q(
m+1−k

2 )−(m+1)(n+1) = 0.
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As an application, as q → 1, we get from Theorem 1.5 and Theorem 1.6 the results

Theorem 1.9.

(−1)n
n∑

k=0

(
n

k

)
Bn+k(x) = (−1)m

m∑
k=0

(
m

k

)
Bn+k(−x),

(−1)n
n+1∑
k=0

(
n+ 1

k

)
(m+k+1)Bm+k(x)+(−1)m

m+1∑
k=0

(
m+ 1

k

)
(n+k+1)Bn+k(−x) = 0.

The second identity is a polynomial version of Kaneko-Momiyama’s formulae [4], [7],
[8] on Bernoulli numbers. Indeed, to obtain Kaneko’s formula, we set m = n and x = 0:

Theorem 1.10.
n+1∑
k=0

(
n+ 1

k

)
(n+ k + 1)Bn+k = 0.

For Momiyama’s formula, put x = 0:

Theorem 1.11.

(−1)n
n+1∑
k=0

(
n+ 1

k

)
(m+ k + 1)Bm+k + (−1)m

m+1∑
k=0

(
m+ 1

k

)
(n+ k + 1)Bn+k = 0.

Now, by q-integration, we derive

Theorem 1.12 (q-Recurrence formula 2). For any n,m ∈ N, a, b ∈ R,

(−1)n
n∑

k=0

[
n
k

]
q

Bm+k+1(a, q)−Bm+k+1(b, q)

[m+ k + 1]q
q−km

+ (−1)m
m∑

k=0

[
m
k

]
q

Cn+k+1(−a, q−1)− Cn+k+1(−b, q−1)

[n+ k + 1]q
q(

m−k
2 )−mn = 0.

2. Proofs of main results

Proof of Theorem 1.1:
Using eq(t)eq−1(−t) = 1, we have

−t

eq−1(−t)− 1
= t+

t

eq(t)− 1
.

From this identity,(
teq(xt) +

teq(xt)

eq(t)− 1

)m

=

(
−t

eq−1(−t)− 1
· eq ((−x)(−t))

)m

.

The right hand side is equal to

∞∑
n=0

∑
i1+···+im=n

[
n

i1, . . . , im

]
Ci1(−x, q−1) · · ·Cim(−x, q−1)

tn

[n]q!
,
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while the left hand side is

m∑
j=0

(
m

j

)(
teq(xt)

eq(t)− 1

)j

tm−jeq(xt)
m−j

=
m∑
j=0

(
m

j

) ∞∑
n=m−j

∑
i1+···+im
=n−m+j

[
n

i1, . . . , im

]
Bi1(x, q) · · ·Bim(x, q)xm−(i1+···+im) tn

[n]q!
.

This completes the proof of the theorem. 2

Proof of Theorem 1.4:
Operating Dq, the q-derivative with respect to variable x, on

teq(xt)

eq(t)− 1
=

∞∑
n=0

Bn(x, q)
tn

[n]q!
,

we obtain
t2eq(xt)

eq(t)− 1
=

∞∑
n=0

DqBn(x, q)
tn

[n]q!
.

From this, we have

DqB0(x, q) = 0,

DqBn+1(x, q) = [n+ 1]qBn(x, q), n ∈ N.

Similarly we obtain

DqC0(x, q
−1) = 0,

DqCn+1(x, q
−1) = [n+ 1]qCn(x, q

−1), n ∈ N.

Thus this proves the theorem. 2

Proof of Theorem 1.5:
Let x, y be two q-commuting variables satisfying xy = q−1yx. We have

t

eq(t)− 1
eq((x+ y)t) =

t

eq(t)− 1
eq(xt)eq(yt),

where t is a variable commuting with x and y. If wt = tw, then

eq(wt) =
∞∑

n=0

wntn

[n]q
.

Hence
∞∑

n=0

Bn(x+ y, q)
tn

[n]q!
=

( ∞∑
m=0

Bm(x, q)
tm

[m]q!

)( ∞∑
k=0

yktk

[k]q!

)
,

which yields the first identity.
For z = xt1 (t1 ∈ C), we have zy = q−1yz. Then

Bn(z + y, q) =
n∑

k=0

[
n
k

]
q

Bk(z, q)y
n−k.

As t1 → 0, we get the second identity. 2
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Proof of Theorem 1.6:
By Theorem 1.2,

∫ x

a

Bn(t, q)dqt =

∫ x

a

DqBn+1(t, q)

[n+ 1]q
dqt.

This yields the result. 2

Proof of Theorem 1.7:
For two q-commuting variables x, y satisfying xy = q−1yx, we now consider the generating
functions for q-hypergeometric Bernoulli polynomials:

L(w, x, y) :=

∞∑
m=0

∞∑
n=0

(−1)m
n∑

k=0

[
n
k

]
q

Bm+k(w, q)q
m(n−k) xm

[m]q!

yn

[n]q!
,

R(w, x, y) :=
∞∑

m=0

∞∑
n=0

(−1)n
m∑

k=0

[
m
k

]
q−1

Cn+k(−w, q−1)qkn−(
n+k

2 ) xm

[m]q−1 !

yn

[n]q−1 !
,

where w is a commuting variable with x and y. We calculate them:

L(w, x, y) =
∞∑

m=0

∞∑
n=0

n∑
k=0

[
n
k

]
q

Bm+k(w, q)
yn−k(−x)myk

[m]q![n]q!

=

∞∑
m=0

∞∑
k=0

Bm+k(w, q)

n∑
k=0

yn−k

[n− k]q!

(−x)m

[m]q!

yk

[k]q!

= eq(y)
∞∑

m=0

∞∑
k=0

Bm+k(w, q)
(−x)m

[m]q!

yk

[k]q!

= eq(y)
∞∑
j=0

Bj(w, q)

j∑
k=0

(−x)j−k

[j − k]q!

yk

[k]q!

= eq(y)

∞∑
j=0

Bj(w, q)
(y − x)j

[j]q!

= eq(y) ·
y − x

eq(y − x)− 1
· eq(w(y − x)).
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R(w, x, y) =
∞∑

n=0

∞∑
k=0

Cn+k(−w, q−1)qkn−(
n+k

2 )
m∑

k=0

xm−k

[m− k]q−1 !

xk

[k]q−1 !

(−y)n

[n]q−1 !

= eq−1(x)
∞∑

n=0

∞∑
k=0

Cn+k(−w, q−1)q−(
n+k

2 )qkn
xk

[k]q−1 !

(−y)n

[n]q−1 !

= eq−1(x)
∞∑

n=0

∞∑
k=0

Cn+k(−w, q−1)q−(
n+k

2 ) (−y)n

[n]q−1 !

xk

[k]q−1 !

= eq−1(x)
∞∑
j=0

Cj(−w, q−1)q−(
j
2)

j∑
k=0

(−y)j−k

[j − k]q−1 !

xk

[k]q−1 !

= eq−1(x)

∞∑
j=0

Cj(−w, q−1)q−(
j
2) (x− y)j

[j]q−1 !

= eq−1(x)
∞∑
j=0

Cj(−w, q−1)
(x− y)j

[j]q!

= eq−1(x) · x− y

eq−1(x− y)− 1
· eq(−w(x− y)).

Using eq(z)eq−1(−z) = eq(−z)eq−1(z) = 1, we obtain L(w, x, y) = R(w, x, y). From this,

(−1)m
n∑

k=0

[
n
k

]
q

Bm+k(w, q)q
m(n−k) 1

[m]q![n]q!

= (−1)n
m∑

k=0

[
m
k

]
q−1

Cn+k(−w, q−1)qkn−(
n+k

2 ) 1

[m]q−1 ![n]q−1 !
.

Using

[m]q−1 ! = q−(
m
2 )[m]q!,[

m
k

]
q−1

= q−(
m
2 )+(

k
2)+(

m−k
2 )
[

m
k

]
q

,

we get our identity. 2

Proof of Theorem 1.8:
Applying the q-differentiation by x to the identity (1.3). We obtain from Theorem 1.4
our theorem. 2

Proof of Theorem 1.12:
Applying the q-integration by x to the identity (1.3). We obtain from Theorem 1.6 our
theorem.

2
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