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Abstract. We introduce new kinds of Dedekind sums in function fields.
Our Dedekind sums are very similar to ordinary Dedekind sums and
to higher dimensional ones in the classical case. The reciprocity law,
rationality and characterization of the Dedekind sums are discussed.
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1. Introduction

Given relatively prime rational integers c > 0 and a, the classical Dedekind
sums is defined as

s(a, c) =
1

4c

c−1∑
k=1

cot

(
πk

c

)
cot

(
πka

c

)
.

It satisfies a famous relation called the reciprocity law

s(a, c) + s(c, a) =
a2 + c2 + 1− 3ac

12ac
(a > 0).
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See Rademacher-Grosswald [8] for details. A generalization of Dedekind
sums to higher dimensions was presented by Zagier [9]. Let p be a positive
integer, and a1, . . . , an−1 be integers prime to p. We assume that n is odd.
Zagier defines a higher dimensional Dedekind sum as follows:

d(p; a1, . . . , an−1) := (−1)(n−1)/21

p

p−1∑
k=1

cot

(
πka1
p

)
· · · cot

(
πkan−1

p

)
.

For pairwise coprime positive integers a1, . . . , an (n odd), this sum satisfies
the reciprocity law

n∑
j=1

d(aj; a1, . . . , aj−1, aj+1, . . . , an) = 1− ln(a1, . . . , an)

a1 · · · an
,

where ln(a1, . . . , an) is the polynomial in a1, . . . , an defined as the coefficient
of tn in the power series expansion of

n∏
j=1

ajt

tanh(ajt)
=

n∏
j=1

(
1 +

1

3
a2j t

2 − 1

45
a4j t

4 +
2

945
a6j t

6 − · · ·
)
.

We note that Beck [1] generalized Zagier’s Dedekind sum.
It is known that π cotπz can be expressed as follows:

(1.1) π cotπz =
1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
.

In function fields, we have periodic functions that have expressions anal-
ogous to (1.1). Based on this, Okada [7] introduced Dedekind sums in
rational function fields, and established reciprocity laws for them. For each
A-lattice, we can define Dedekind sums, which yield a generalization of those
of Okada. See [6] for details. It should be noted that we have Dedekind
sums over finite fields ([5], [6]). These are like Apostol-Dedekind sums given
by

sn(a, c) =
c−1∑
k=1

k

c
Bn

(
ka

c

)
,

where Bn(x) denotes the nth Bernoulli function.
The goal of our paper is to introduce new kinds of Dedekind sums defined

over rational function fields. Our Dedekind sums are very similar to ordinary
Dedekind sums and to Zagier’s higher dimensional Dedekind sums [9]. As
the main theorem, we establish the reciprocity law for our Dedekind sums.
The rationality and characterization of Dedekind sums are also discussed.

Notation.∑′ : the sum over non-vanishing elements
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Fq : the finite field with q elements
A = Fq[T ] : the ring of polynomials in an indeterminate T
K = Fq(T ) : the quotient field of A
| | : the normalized absolute value on K such that |T | = q
K∞ : the completion of K with respect to | |
K∞ : a fixed algebraic extension of K∞
C : the completion of K∞

2. A-lattices

In this section, we give an overview of A-lattices and related periodic
functions. For details, see Goss [4]. A rank r A-lattice Λ in C is a finitely
generated A-submodule of rank r in C that is discrete in the topology of C.
For such an A-lattice Λ, define the Euler product

eΛ(z) = z
∏
λ∈Λ

′ (
1− z

λ

)
.

The product converges uniformly on bounded sets in C, and defines a map
eΛ : C → C. The map eΛ has the following properties:

• eΛ is entire in the rigid analytic sense, and surjective;
• eΛ is Fq-linear and Λ-periodic;
• eΛ has simple zeros at the points of Λ, and no other zeros;
• deΛ(z)/dz = e′Λ(z) = 1. Hence we have

1

eΛ(z)
=

e′Λ(z)

eΛ(z)
=
∑
λ∈Λ

1

z − λ
.

Let ϕ be the Drinfeld module corresponding to Λ. For any a ∈ A \ {0},
we denote by ϕ[a] := {x ∈ C | ϕa(x) = 0} the A/aA-module of a-division
points. It is known that Λ/aΛ is isomorphic to ϕ[a] by λ+ aΛ 7→ eΛ(λ/a).
Put

Ek(ϕ[a]) :=
∑
x∈ϕ[a]

′ 1

xk
=

∑
λ∈Λ/aΛ

′ 1

eΛ
(
λ
a

)k
for each positive integer k, and we use the convention E0(ϕ[a]) = −1. We
adopt the convention that

∑
λ∈Λ/aΛ

′ is zero when Λ/aΛ = {0}. Then we
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have

az

ϕa(z)
=

ϕ′
a(z)

ϕa(z)
z

=
∑

λ∈Λ/aΛ

z

z − eΛ(
λ
a
)

= 1−
∑

λ∈Λ/aΛ

′
z

eΛ(λ/a)

1− z
eΛ(λ/a)

= −
∞∑
k=0

Ek(ϕ[a])z
k.(2.1)

If a ∈ Fq \{0}, then Ek(ϕ[a]) = 0 for any positive integer k, and az/ϕa(z) =
1.

3. Higher dimensional Dedekind sums

Let Λ be an A-lattice. We introduce Dedekind sums for Λ. Assume n ≥ 2.
Let a1, a2, . . . , an−1 ∈ A \ {0} be prime to an ∈ A \ {0}. In other words, if
i ̸= n, then Aai + Aan = A. Then

Definition 3.1. The higher dimensional Dedekind sum is defined as

sΛ(an; a1, . . . , an−1) = (−1)n−1 1

an

∑
λ∈Λ/anΛ

′
eΛ

(
a1λ

an

)−1

· · · eΛ
(
an−1λ

an

)−1

.

Remark 3.2. (i) When Λ/aΛ = {0},
∑

λ∈Λ/aΛ
′ is zero.

(ii) In the cases (n, q) = (2, 2), (3, 3), our Dedekind sum coincides with
one of Dedekind sums introduced in [6]. In particular, if Λ = L is the A-
lattice corresponding to the Carlitz module, then this Dedekind sum is as
defined in Okada [7].

The Dedekind sum sΛ(an; a1, . . . , an−1) has similar properties to those of
Zagier’s Dedekind sum:

Proposition 3.3. (i) sΛ(an; a1, . . . , an−1) only depends on ai + anA,
(ii) sΛ(an; a1, . . . , an−1) is symmetric in a1, . . . , an−1,
(iii) sΛ(an; ζa1, . . . , an−1) = ζ−1sΛ(an; a1, . . . , an−1) for any ζ ∈ Fq \ {0},
(iv) sΛ(an; ba1, . . . , ban−1) = sΛ(an; a1, . . . , an−1) for any b ∈ A prime to

an.

The proof is trivial, so we omit it.

Remark 3.4. By Proposition 3.3 (ii), (iii), and (iv), we have

(−1)n−1sΛ(an; a1, . . . , an−1) = sΛ(an; a1, . . . , an−1).
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Hence, if CharFq ̸= 2 and 2|n, then the sum is equal to zero. Therefore in
the case CharFq ̸= 2, we may suppose in advance that n is odd.

We now state the reciprocity law for our higher dimensional Dedekind
sums.

Theorem 3.5 (Reciprocity law). Choose a1, . . . , an ∈ A\{0}. If a1, . . . , an
are coprime, then we have

(3.1)
n∑

i=1

sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an)

=
1

a1 · · · an

∑
i1+···+in=n−1
i1≥0,...,in≥0

Ei1(ϕ[a1]) · · ·Ein(ϕ[an]).

Remark 3.6. We note that for a1 = · · · = an−1 = 1, an ∈ A \ {0}, we have

sΛ(an;

n−1︷ ︸︸ ︷
1, . . . , 1) =

(−1)n−1

an
En−1(ϕ[an]).

Let a, c be the coprime elements of A\{0}, and let Λ denote an A-lattice
in C. The inhomogeneous Dedekind sum sΛ(a, c) is defined as

sΛ(a, c) = sΛ(c; a, 1) =
1

c

∑
λ∈Λ/cΛ

′
eΛ

(
aλ

c

)−1

eΛ

(
λ

c

)−1

.

The Dedekind sum sΛ(a, c) has the following reciprocity law:

Theorem 3.7 (Reciprocity law). If a, c are coprime, then we have

(3.2) sΛ(a, c) + sΛ(c, a) =
E2(ϕ[a]) + E2(ϕ[c])− E1(ϕ[a])E1(ϕ[c])

ac
.

4. Example

We compute Dedekind sums for special cases. To do this, let us prepare
some results.

4.1. Power sums of a-division points. We recall the Newton formula
for the power sums of the zeros of a given polynomial.

Proposition 4.1 (The Newton formula cf. [2], [3]). Let

f(X) = Xn + c1X
n−1 + · · ·+ cn−1X + cn

be a polynomial over a field L, and α1, . . . , αn be the roots of f(X). For
each non-negative integer k, put

Tk = αk
1 + · · ·+ αk

n.
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Then it holds that

Tk + c1Tk−1 + · · ·+ ck−1T1 + kck = 0 (k ≤ n),

Tk + c1Tk−1 + · · ·+ cn−1Tk−n+1 + cnTk−n = 0 (k ≥ n).

Proposition 4.2. Let ϕ be a Drinfeld module, and a be a fixed element in
A \ {0}. If

ϕa(z) =
m∑
i=0

li(a)z
qi ,

then

Ek(ϕ[a]) =

{
l1(a)
a

(k = q − 1)
0 (k = 1, . . . , q − 2 if q > 2)

.

Proof. The set {1/x | x ∈ ϕ[a] \ {0}} is the roots of

a−1ϕa(z
−1)zq

m

=
m∑
i=0

a−1li(a)z
qm−qi .

Applying the Newton formula to this polynomial, we have

Eq−1(ϕ[a]) + (q − 1)
l1(a)

a
= 0, Ek(ϕ[a]) = 0 (k = 1, . . . , q − 2).

2

4.2. Higher dimensional Dedekind sums. Let Λ be an A-lattice, and
ϕ be the corresponding Drinfeld module.

We give explicit formulas for certain higher dimensional Dedekind sums.

Proposition 4.3. If a, b ∈ A \ {0} are coprime, then

sΛ(b;
n−1︷ ︸︸ ︷

a, . . . , a) =
(−1)n−1

b
En−1(ϕ[b])

=

{
(−1)n−1l1(b)

b2
(n = q)

0 (n = 1, . . . , q − 1)
.

Proof.

sΛ(b;
n−1︷ ︸︸ ︷

a, . . . , a) = sΛ(b;

n−1︷ ︸︸ ︷
1, . . . , 1) (by Proposition 3.3 (iv))

=
(−1)n−1

b
En−1(ϕ[b]) (by definition of En−1(ϕ[b]))

=

{
(−1)n−1l1(b)

b2
(n = q)

0 (n = 1, . . . , q − 1)
(by Proposition 4.2).

2

As a corollary to Theorem 3.5, we have
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Proposition 4.4. Let a1, . . . , aq ∈ A \ {0}. If a1, . . . , aq are coprime, then
we have

q∑
i=1

sΛ(ai; a1, . . . , ai−1, ai+1, . . . , aq) =
(−1)q−1

a1 · · · aq

(
l1(a1)

a1
+ · · ·+ l1(aq)

aq

)
.

Proof. By Theorem 3.5 and Proposition 4.2, the left-hand side of the iden-
tity is written as

(−1)q−1

a1 · · · aq
(Eq−1(ϕ[a1]) + · · ·+ Eq−1(ϕ[aq])) ,

which yields the right-hand side by Proposition 4.2. 2

We supply a few examples of the reciprocity law for higher dimensional
Dedekind sums.

Case 1. q = 2.

sΛ(a1; a2) + sΛ(a2; a1) =
1

a1a2

(
l1(a1)

a1
+

l1(a2)

a2

)
.

Case 2. q = 3.

sΛ(a1; a2) + sΛ(a2; a1) = 0,

sΛ(a3; a1, a2) + sΛ(a2; a1, a3) + sΛ(a1; a2, a3)

=
1

a1a2a3

(
l1(a1)

a1
+

l1(a2)

a2
+

l1(a3)

a3

)
.(4.1)

Case 3. 3 ≤ q, 2 ≤ n < q.
n∑

i=1

sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an) = 0.

Let L be the A-lattice corresponding to the Carlitz module ρ defined by
ρT (z) = Tz + zq. As is mentioned in Goss [4],

(4.2) l1(a) = (aq − a)/(T q − T ).

Then (4.2) yields the following specialized examples, which are those given
by Okada in [7].

Case 1. q = 2.

sL(a1; a2) + sL(a2; a1) =
a1 + a2

a1a2(T 2 − T )
.

Case 2. q = 3.

sL(a1; a2) + sL(a2; a1) = 0,

sL(a3; a1, a2) + sL(a2; a1, a3) + sL(a1; a2, a3) =
a21 + a22 + a23

a1a2a3(T 3 − T )
.(4.3)
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Case 3. 3 ≤ q, 2 ≤ n < q.
n∑

i=1

sL(ai; a1, . . . , ai−1, ai+1, . . . , an) = 0.

4.3. Inhomogeneous Dedekind sums. Let a, c be the coprime elements
of A \ {0}, and Λ be an A-lattice.

In the case q = 3, by (4.1), we have

sΛ(a, c) + sΛ(c, a) =
1

ac

(
l1(a)

a
+

l1(c)

c

)
.

Moreover assuming that Λ is the A-lattice L associated with the Carlitz
module, by (4.3), we obtain

sL(a, c) + sL(c, a) =
a2 + c2 + 1

ac(T 3 − T )
.

5. Proofs of the theorems

Proof of Theorem 3.5.
Let ϕ be the Drinfeld module corresponding to Λ. Let us consider the

rational function

F (z) =
1

ϕa1(z) · · ·ϕan(z)
.

By assumption on a1, . . . , an, we have ϕ[ai] ∩ ϕ[aj] = {0} if i ̸= j. This
implies that

∪n
i=1 ϕ[ai] = {0} or F (z) has a simple pole at any non-zero

element of
∪n

i=1 ϕ[ai]. When ai is not a unit, for any non-zero element c ∈
ϕ[ai], there exists a unique element λ+ aiΛ ∈ Λ/aiΛ such that x = eΛ(λ/ai).
Then we have

Resx(F (z)dz) = Resx

(
dz

ϕai(z)

)∏
j ̸=i

1

ϕaj(x)

=
1

ai

∏
j ̸=i

eΛ

(
ajλ

ai

)−1

.

This contributes sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an). When ai is a unit, ϕ[ai] =
0. Hence sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an) does not appear in the right-hand
side of (3.1). In other words, it is zero. To compute the left-hand side of
Theorem 3.5, we need the following lemma.

Lemma 5.1. Let G(z) be a polynomial over a field L of degree > 1, and R
be the set of all roots of G(z). Then we have∑

a∈R

Resa

(
1

G(z)
dz

)
= 0.
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Proof. The partial fraction decomposition of 1/G(z) can be expressed as

∑
a∈R

ord(a)∑
n=1

Ca,n

(z − a)n
,

where ord(a) is the order of a, and Ca,n the coefficient of (z − a)−n. Then
for any a ∈ R, we have Resa(1/G(z)) = Ca,1. It is easy to see that 1/G(z)
can be rewritten as follows.

1

G(z)
=

(∑
a∈R Ca,1

)
zm−1

G(z)
+
a polynomial in z with degree less than m− 1

G(z)
,

where m is the degree of the polynomial G(z). Hence,

1 =

(∑
a∈R

Ca,1

)
zm−1 + a polynomial in z with degree less than m− 1.

However since m− 1 > 0, we can easily obtain
∑

a∈R Ca,1 = 0. 2

The set of all poles of F (z) is
∪n

i=1 ϕ[ai]. By the above lemma, we have

(−1)n−1

n∑
i=1

sΛ(ai; a1, . . . , ai−1, ai+1, . . . , an) + Res0(F (z)dz)

=
n∑

i=1

∑
λ∈Λ/aiΛ

′
ReseΛ(λ/ai)(F (z)dz) + Res0(F (z)dz) = 0.

By (2.1), it follows that

Res0(F (z)dz) =
(−1)n

a1 · · · an

∑
i1+···+in=n−1

Ei1(ϕ[a1]) · · ·Ein(ϕ[an]).

This completes the proof.

Proof of Theorem 3.7.
By the reciprocity law (3.1),

(5.1)

sΛ(c; a, 1) + sΛ(1; a, c) + sΛ(a; c, 1) =
1

ac

∑
i+j+k=2

Ei(ϕ[a])Ej(ϕ[c])Ek(ϕ[1]).

Since sΛ(1; a, c) = 0, E0(ϕ[a]) = E0(ϕ[c]) = E0(ϕ[1]) = −1 and E1(ϕ[1]) =
E2(ϕ[1]) = 0, (5.1) yields the reciprocity law (3.2).
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6. Rationality

In this section we suppose that the Drinfeld module ϕ associated with Λ
is defined over K.

Proposition 6.1. The higher dimensional Dedekind sum sΛ(an; a1, . . . , an−1)
is rational, that is, sΛ(an; a1, . . . , an−1) ∈ K. In particular, the inhomoge-
neous Dedekind sum sΛ(a, c) is rational.

Proof. We know that each eΛ(λ/an) is a root of ϕan(z) defined over K,
and eΛ(aiλ/an) = ϕai(eΛ(λ/an)) for each i. Hence sΛ(an; a1, . . . , an−1) is
rewritten as

(6.1) sΛ(an; a1, . . . , an−1) = (−1)n−1 1

an

∑
x∈ϕ[an]

′ 1

ϕa1(x) · · ·ϕan−1(x)
.

It is invariant under the action of all elements of Gal(K(ϕ[an])/K). The
proposition follows from it. 2

Remark 6.2. If ϕT (z) is given by

ϕT (z) = Tz + l1(T )z
q + · · ·+ lr(T )z

qr ,

then ϕa1(z), . . . , ϕan(z) ∈ K(l1(T ), . . . , lr(T ))[z]. By (6.1), it is easy to verify

sΛ(an; a1, . . . , an−1) ∈ K(l1(T ), . . . , lr(T )).

However, sΛ(an; a1, . . . , an−1) is not always rational. For instance, when
l1(T ) ̸∈ K, by Proposition 4.3

sΛ(T ;

q−1︷ ︸︸ ︷
1, . . . , 1) =

(−1)q−1l1(T )

T 2
̸∈ K.

7. Characterization of lower dimensional Dedekind sums

As mentioned in Proposition 3.3 and Theorem 3.5, the higher dimensional
Dedekind sum sΛ(an; a1, . . . , an−1) has the following properties:

(1) sΛ(an; a1, . . . , an−1) only depends on ai + anA,
(2) sΛ(an; a1, . . . , an−1) is symmetric in a1, . . . , an−1,
(3) sΛ(an; ζa1, . . . , an−1) = ζ−1sΛ(an; a1, . . . , an−1) for any ζ ∈ Fq \ {0},
(4) sΛ(an; ba1, . . . , ban−1) = sΛ(an; a1, . . . , an−1) for any b ∈ A prime to

an,
(5) the reciprocity law.

The following is an analog of the result of Zagier’s higher dimensional
Dedekind sums.

Proposition 7.1. (i) The one dimensional Dedekind sum sΛ(b; a) is
determined by the conditions (1)—(5).
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(ii) The two dimensional Dedekind sum sΛ(c; a, b) is determined by the
conditions (1)—(5).

Proof. (ii) By (4), we have the form sΛ(c; a, 1) for a certain b′ ∈ A with
b′b ≡ 1(mod an). One can suppose deg a < deg c by (1). The reciprocity
law (5) guarantees interchanging of the role of a and c. Using the Euclidean
algorithm, finally, we have the form sΛ(1; a, 1) = 0.

(i) The proof is similar to the case (ii). 2
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