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1. Introduction

Let C]0, 1] denote the set of continuous function on [0, 1]. In [2], Bernstein introduced
the following well known linear positive operator:

1=Er(E) (Jen-or-

n

(1)

( )Bkn, for f € C0,1].

k=0

Here B,,(f | x) is called the Bernstein operator of order n for f. The Bernstein polynomials
of degree n is defined by

By (z) = (Z)gck(l —x)" 7 forn,k € Z,,x € [0,1]. (2)

For example, By 1(x) = 1-x, By 1(z) = x, By 2(7) = (1—2)?, By 2(x) = 2x(1—1), By o(x) =
22, Bos(z) = (1 — )3, By 3(z) = 32(1 — x)?, Bas(x) = 32%(1 — ), B 3(x) = 23, - - ,(see
[1-3, 8-12)).

Many researchers have studied the Bernstein polynomials in the area of approximation
theory(see [1-15]). As well known equation, the Laguerre differential equation is given by

zy” + (1 —2z)y +ny =0, (see [7,16]). (3)

From (3), the Laguerre polynomials are defined by the solutions of (3). That is, Laguerre
polynomials are given by
e’ d"
Lp(z)= ———
(z) n! dzn

By (4) and Leibniz formula, we get

(e7"a™). (4)

L,(x)= Z (l>(— = ik , (see [1,7,16]). (5)

From (4) and (5), we note that
1
Lo(z) =1,L1(z) =1 -z, and L,41(z) = ?((Qn +1—x)L,(z) — nlp_1(z)).
n
In the viewpoint of (4), the generalized Laguerre polynomials are considered as follows:
e” d"

e = I (@), (6)

Note that L (x) = Lnp(x). By (6), we can derive the following formula for the
generalized Laguerre polynomials:

i n .’bl
LP ()= < i k)(l)l“, (see [1,7,16]). (7)

n—1
1=0



2
For example, L™ (z) = 1, L (2) = 14k — 2, L () = @+ k) 1+ k) — 2+ k)z+ % .

Throughout this paper, we assume that ¢ € C with |¢| < 1. The g-number is defined
by

[z], = , (see [1-15]).

Note that limg_,1[z]q = .
Recently, g-Bernstein polynomials of degree n are defined by

n

Batela) = ()

)[x]’;[l —a]}F, where n, k € Zy = NU {0}, (sce [8]). (8)
From (8), we note that the reflection symmetric property is given by
1
Bin(z|q) = Bnogn(l -z | 5)’ (see [9]). (9)

In this paper we consider g-Laguerre polynomials related to ¢g-Bernstein polynomials. From
these g-Laguerre polynomials, we give some identities between ¢-Bernstein polynomials
and ¢-Laguerre polynomials.

2. g-Laguerre polynomials and g-Bernstein polynomials

Let us consider the g-Laguerre polynomials in the viewpoint of the g-extension of (5).
For ¢ € C with |g| < 1, we define the ¢-Laguerre polynomials as follows:

B []qt

e 1—1t
1—t

=3 Lpg(a)t™. (10)
n=0

From (10), we can derive the following equation.
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By comparing the coefficients on the both sides of (10) and (11), we obtain the following
proposition.



Proposition 1. For n € Z, we have

As an analogue of (6), we consider the generalized g-Laguerre polynomials which are
given by

[z]qt
e 1—t el
(1 — )kt~ > L@, (12)

n=0
For the left side of (12), we have

o0 l

e 1—t 1 [z], ¢
(1—F1 (1 =)kt ;Fl}lT (1—t)

(B (B ()

m=0

By comparing the coefficients on the both sides of (12) and (13), we obtain the following
proposition.

Proposition 2. For n,k € Z,, we have
n l
k) () — n+k\, 7l
rf =3 (1))

The ¢g-Laguerre polynomials also aries in quantum mechanics in the radial part of the
solution of the Schrodinger equation for one-electron atom:

— i <m +n7§ - l)tM> (i L@(%)ﬁ) (14)
_ i :O <n+s_§ 1> Ll,;!(x)> "




By comparing the coefficients on the both sides of (12) and (14), we obtain the following
corollary.

Corollary 3. For n € Z and k € N, we have

" n+k—-1-1\1
L;’fg(x)zz( o )l!Ll)q(x).

=0

For example, L§) (z) = 1, L") (2) = 14+ k— [a]g, LS (2) = 2+ k) (1+k) — (2+k)[a], +

By (11), we get

(1) z 1_:6]% (7})=i(—1>l[x}g—l[1—x]g(7)mffl- (15)

1=0
From (8), (9) and (15), we can derive the following equation.
n ]lfn n [ ]l n

Ln%(lfx):Z(flﬁBn_l,n(xm)[m;, = (- >Bm<1—x|5>xl, . (16)

1=0 ’ 1=0

Therefore, we obtain the following proposition.

Proposition 4. For n € Z, we have

!
1—x|PL, 4 ZBlnx|q ] ),WherezG[O,l].
! 1=0

From Proposition 2, we have

n n T I+k
it = v (1)

=0
n n+k [I]é+k .- 1
zg(_l)l(zm) TR l(u_x]:;l) (17)
" 1 1
— lzo(—l)lBl_‘_k,n_,_k(x | q) W ik

By (9) and (17), we obtain the following theorem.



Theorem 5. For n,k € Z,, we have

0\
Bt~ L)) = 3 Brorate | o) L)

=0

—ZBn Ltk ( 1—$\*)M-

For example, [x]’;Lgﬁ; (z) = Brx(z | q) = [z]}. So, L(()IZ (z) =1.
For n =1, we have

([zlg — 1)

)51 — 2] L) (2 ZBerk k(] @)=

% =0
= B+k(% | ¢) + Biyk,+x(@ | @)([2]g — 1)
=(1+ k)[z]l;[l — x]; - [x}é““[l — 1.

1
Th;ls, L") (x) = 1+ k — [a],, by the same method L) () = (2+ k) (1 + k) — (2 + k)[z], +
[=]7

R
By (8), we get

1= aly Bunes(e | ) + el Bucsna(o | o) = ()l = ol * = Buale o). (19

From (18), we note that

Biiknik(@ | q) = [1 —x]1 Biygn—14x(x | @) + [2]¢Bisk—1,n46—1(2 | ). (19)

1
q

Thus, by (17) and (19), we have

n 1) z]y — 1)
[1—x]%ZBl+k,nf1+k(iﬂ|Q)([L}% ZBH’“ Lntk— 1(x|q)(”T1)

=0 =0 (20)

n . — 1
ZBHk nik (T | Q)(Hq%-

Therefore, by Theorem 5 and (20), we obtain the following theorem.
Theorem 6. For n,k € Z and z € [0, 1], we have

(1= als L, g (@) + (], Ly (@) = alf[1 - ]} L) (a).



From (8) and (9), we note that

n

Binla|0) =z()() 1l

By Theorem 5 and (21), we get

n n+k .
zk[1 — z]? LK) — v n+k )il ([#]y = 1)
1~ a3 L) ) g(;(w)( e m)l .

!
Therefore, we obtain the following theorem

Theorem 7. For n, k € Z,, we have

b1 — a3 L) lz ( nlfk (l ! k) (” N ’“) <—1>i—l—k[m]g> oy
=0 \i=lt

il
By (8), we get

(" - Z : 1) ([1 [_x];]1> Bi—1n(2 | q)
B (n_Z : 1) ([1 [LT]Z];) (;ﬁ 1) [alg 'L —aly ™ (22)
n!

= WG el I

1" = Bra(z | )
From (22) and Theorem 5, we can derive the following equation

n 1-— I]l
n _ n—I0l+1 [ 1
[1— l’];l[x]s 1L£ﬁ;($) = Z <l+k> Biti—1n+k(z | Q)(—l)l T
1=0
~ 1 z), — 1)
(k)3 () Brsscrmnste |08 it - eyl
=0 ’
" 1 z], — 1) _ e (e
b+ )Y (1) Breacanate |0l o a2V @),
=0 ’
Therefore, we obtain the following theorem

Theorem 8. For n € Zy,k € N and z € [0, 1], we have
ntlp k=17 (k
1l B B @) +

[2]5 7 1 — 2]t L%’“q Y(x)

E Biyk—1nvk(r ] @) ([2]g — 1)l

=(n+k+1) : :
; ( I+ k > I
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