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Abstract

We introduce newg-Euler polynomials and numbers. Some identities about them are presented. In particular,
we give a relation among two kinds gfEuler polynomials, from which an Euler polynomial version of Kaneko-
Momiyama relations among Bernoulli numbers is given.
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1. Introduction

The Euler numberg, (n=0,1,2,...) are defined by the generating function

The first few values arBg = 1,E; = -1/2,E, = 0, E3 = 1/4, and it holds thaEy = 0 (k = 1,2, 3,...). The Euler
polynomialsEn(X) (n=0,1,2,...) are defined by the generating series

264 & t"
=y En({) .

eé+1 |
The first few values are
Eo(X) = 1,
1
Ex(x) = X-x
3 1
E = 3 _ 2 .
3(X) X 2x + 2
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In this present paper, we introduce nepEuler polynomials and numbers. We will givganalogues for the
following formulae involving the ordinary Euler polynomials:

(-1)"En(-X) + En(x) = 2X",
0 ) (B = 20 3 (Emat».

k=0 k=0

1" mf (m: 1)(n + K+ DEnuk() + (=1)° ni (” “|: 1)(m + K+ DEm(¥) = 0.

k=0 k=0

The last identity is an Euler polynomial version of Kaneko-Momiyama relations among Bernoulli numbers ([6],
[8], [10]). We also establish a relation between sums of products ofj-&uler polynomials. It should be noted
that Simsek [9] found formulae for sums of products of ordingiuler polynomials.

2. Preliminaries

2.1. Notation
Leta € C. Theg-shifted factorialsare defined by

n-1
(@do=1 @qn=]]-ad) (n=12.).
k=0

If |gl < 1, then we define

(@) = lim (@) = [ [(L-ad).
k=0

We also denote

[Xlqg = 11__?; xeC,
[nlg! = (g_q’_q;')‘n, neN,
|
|
[ il,-? i L = ﬁ nig,...,imeN.
2.2. g-Exponential functions
Theg-exponential functionare given by
- 2
&) = ZO oH
and o
e1(2) = nZ:;) T

It is easy to see thah[;+! = q‘(g)[n]q!. Hence

© B2
q
er1(2 = E Mgl

n=0

See [3], [5] for related topics. As is well known,

1
&2 = @-aza.’ €12 =(-(1-9z09.,-

This yieldseq(2)eq1(-2) = 1.



2.3. g-Euler polynomials and numbers
Definition 2.1. We define two kinds of|-Euler polynomials€E,(x, q) andF,(x, ™) (n=0,1,2,...) by

28q(xt) t
SOl " g;a“”ﬁﬂi

Zeq—(Xt) — Z Fn(x’q
n=0

eqfl (t) +1

We callE,(x, g) (resp.Fn(x, g 1)) thefirst (resp.secondl g-Euler polynomialsin particular, we calE(0, q) (resp.
Fn(0, g1)) thefirst (resp.second g-Euler numbers

Example 2.2.
BEo(xa) = 1,
Eixa) = X3,
2 2
Ex(x.q) = Xz—ﬁx—% &,
_ [3]q 2 [2]q [Blq\. 1 [Blql2q  [3lq
Es(x ) = —X +( )X_E_ = h
FO(X» q_l) = 1,
Fixa® = x-3,
-1y 2 [2]01 q [2]q
FZ(X’q ) = X _7X_§+T’
Proposition 2.3 (-Recurrence formula). For any n> 1, we have
1 n-1
En(x0) = E.Z[ ] Ei(x q),
1 n-1
Fa(xa™) = X'-3 m Fix, g Ha(?).
i=o L' g

Proof. As for the first identity, we make use of

(Z En( Oy ](eq(t)+1) 2e4(xt).

We deduce from this identity
% . n n tn
- Ei(x,0) + En(X =) 2X ,
Z)(ZoH vl O')][nl' 2 g

which yields the result. We get the second result in the similar way. |
As g — 1, one has a recurrence formula for the ordinary Euler polynomials:

n—

En(X) = X" - Z( )E.(x) (n>1).

=0



2.4. g-Derivative and g-integral
Theg-derivativeof a functionf is given by

f(x) - f(aX
(1-g)x

wherex andgx should be in the domain df. If f is differentiable on an open sktthen for allx € 1,

Dqf(X) := (x#0,q#1),

lim Dy f(x) = /(3.

Besides, for alh € N,

Dg(X") = [n]gx"™,
Do, @)n = —[n]q(Xq On-1.
Dgs(X@n = —[Nlg(X Dn-1,

Xn anl
Dyl——]| = ———.
4wm) [n - 1]q!
From the last identity, for instance, we hedgey(X) = e4(X).
Our g-Euler polynomials form §-Appell sequences”:

Proposition 2.4 (@-Derivative formula). For any n> 0, we have

DgEn+1(x,0)
DgFns1(X, q_l)

[N+ 1]4En(X, ),
[+ 1qFn(x. a7

Proof. Since

S o 2eg(xt) O t
; DqgEn(x, Q)m = m = ;[n]qEn—l(Xa Q)m,

we have the first identity. The second identity can be obtained similarly. |
As g — 1, we have the identities of Appell sequences of the ordinary Euler polynomials:

& Enad = (0+ DEAX).

For the product of two functions andg, the following formula holds:
Dqo(f-9)(x) = 9(Xx)Dg(X) + f(aX)Dqg(x)
f(X)Dqg(xX) + 9(aX)Dq f (X).

We next treat the composition d{x) andg(x). Wheng(x) = —x, the following chain rule for the-derivative is
valid:

Dq(f 0 9)(X) = Dqf (9(X))Dgg(X).

which will be used in the proofs of Theorems 3.5 and 3.9. However, in general, the rule above does not hold. If we
modify the definition of the composition of two functions, then a new chain rule fog-herivative is gained. We
refer to Gessel [3] for this topic.

Theg-Jackson integrafrom 0O toa is defined by

fo f(X)dgx = (1—q)aZf(aq“)Q“
n=0

provided the infinite sums converge absolutely. Ghtackson integral in the generic intervallp] is given by

j;b f(X)dgx = fob f(X)dgx — foa f(X)dgx.

Dy fo f(t)dgt = F(X).

For any functionf we have



Proposition 2.5 @-Integral formula). For any n> 0,

X En1(% 0) — Ens1(8, Q)
E t, d t = ’
fa n( Q) q [n+ 1]q

X _ Fre1(% 0™ — Frua(a,g7b)
Fot,gDdt = —™2 .
L n( q ) q [n+ 1]q

This result follows frong-derivative formula. Ag| — 1, we have integral formula for the classical Euler polyno-
mials:

fx En(dt = M.

n+1

2.5. g-Binomial formula
Letq € C, and take twa-commuting variableg andy which satisfy the relation
Xy =qlyx

Let Cy[x,y] be the complex associative algebra with 1 generater &ydy. Then the following identity is valid
in the algebraCq[x, yl:

(X+y)" = Z [E] Xy K, neN,
q

k=0
or alternatively,

n
(xX+y)" = Z [n} yEx K, neN.
k=0 K qt

For details, we refer to [1], [2].

2.6. g-Exponential identity

Let x, y be theg-commuting variables satisfying the relatisp= qtyx. Let C4[[x, Y]] be the complex associa-
tive algebra with 1 of formal power series
PIPILG

m=0 n=0
with arbitrary complex caicientsan,. One knows in [1], [2] that ifCq[[ %, Y]], we have the following identity

&q(X+Y) = eg(X)eq(y)-

Proposition 2.6 @-Addition formula). For any n> 0, we have

n
n —
et = Y [il Eccay
k=0 q
n
Focrna = [0 Foeaty
k=0 q
Particularly, it follows that
: n |
En(y’ q) = Z|:k:| Ek(o’ q)yn k7
k=0 q
n
_ n _ |
P = [l F.aty
k=0 q

Proof. The first identity follows from

2eq((x+y)t) _ 2e4(xt)
) +1  et)+1

One can easily prove the remaining identities. ]

eq(YD.



As g — 1, we have the classical formula:
n

Ena(x+Y) = Z( ey

Particularly, it holds that

En(y) = Z (E)Eky”"-

k=0
At the end of this section, we give a list of limit gfanalogues.

(Iqi£n>1 e = Li_rﬁeq_l(z) =€

Iim[n]q = n,
Ll_rg[n]q = nl,
im|" = ("
g-1 k q - k)
lim n _ n _n
q—>1 il?".7im q B il’.."im - il!"'im!,
limEn(x,q) = limFn(xq?) = En(x).
g-1 -1

3. Main results

3.1. Sums of products
Theorem 3.1 (Sums of products).Let m be a given positive integer. Then for any 0,

SONDY [ i, n.,im] Fiu(-x. 0™ - Fi(-x a7

ig+--tim=n a q
-2 1y2(7)

1+ 9 1(X? ) .. Ek (X q)x *(k +...+k,)
:1 cey ka'I k q
Ky +---kn=n 1

In particular, if m= 1, then
(-1)"Fa(=%.0™") + En(x,q) = 2X".

If m= 2, then
1 ) [7] FexaFxay
q

i=0
n

=[] g ma-a ). [{] et caey [0
L' L' q T Lq
Proof. In view of gy(t)eq+(-t) = 1, we have
1 _1 1
ei(-)+1 T g)+1

Hence fom > 1,

2eq((=X)(=t)\" _ 2e9(xt) \"
( e () + 1 ) i (Ze“(“) e+ 1) |
The left hand side of the identity is

Z(_l)n Z |:|1 " i ] Fil(_x?qil)"'l:im(_x’q
s yeuoslm

i1+ Him=n q [ ]q-




The right hand side becomes

S (e = ae

ISR

n=0 k1+---+km_n[

n

n k'+1,., K t
kl»u«’km :L Ekl(Xaq) EkJ(X,q)XJ X [n]q!'

As q — 1in the formula of Theorem 3.1, we have

Theorem 3.2. Let m be a given positive integer. Then for any 0,

oY (il,.h.,im)E“(‘X)”'Eim(‘x)

Ky+-Km=n

Especially in the cases m 1, 2, the following results hold:
(1) For any n> 0, we have—1)"E,(-X) + En(X) = 2X".
(2) Forany k> 1, Ex = 0.

(3) For any n> 0,

(—1)nzn](?)|zi(_x)|zn_i( Zn(;( )E,(X)En i(X) - 42( )E(x)x” |, o2y

i—0 i=

(4) If n is an odd positive integer, then

Zn:( )E,En i = 2Eq.

=0

3.2. g-Symmetry
Theorem 3.3 ¢-Symmetry 1). For any mn € N, we have

(—1)”"2[ } Eni( )G ™ = (- 1)2[2] F(=% 074)ql)-0). (1)
k=0 at

k=0

Proof. Let x, y be twog-commuting variables witky = g~yx. We compute the generating functions

BN S —Km+mn__ " Xm yn
Ly = D33 Y] Etwar A
RW,XY) = ZZ(—l)“ZH ETD OO IR
m=0 n=0 k=0 [ ] []
wherew is a commuting variable witlk andy.
_ NNyt |m Y X"
Ly = D3 Y] Etwar o
_ ShN _ S —kn yn Xk Xm_k
- %Z)( 1" g B 0 e i
- i i i En+k(W’ q) (_X)k Lﬂ

T

o

>

T

o
—
Y
Qo
—

>

=
Qo
=
=
Qo

1l
—_—
T

Il
o

k i—k
E(x )Z I

2wy %) )
- eq(y_x)+1eCI( X)'



YN S Ly XMy aly
RW.xY) = ég(—l)gm(—w,ql)[m]q! el 0K
:oooooo_Hk _71Xmiyj
;;;o( D Fmndw. )[m]q! [Klg! [i]g!
_ (Y oy X ()X
= [mzog Frmek(-W. q 1)@ K ]eq(—y)
_ 2ey(-W(y - x))
BT e R
Hence it follows that
2eq(W(y — X))
RW, X, y)eqy) = e (x—y)+ 1
_ 2wy -X)
= —eq(y_x)+1eq(y—><)
= LW, X y)e(y).
which providesR(w, x,y) = L(w, X,y). Therefore we can complete the proof. O

Asqg— 1in (1) of Theorem 3.3, we have a symmetric relation for the ordinary Euler polynomials:
Theorem 3.4. For any mn € N, we have

(—1)f“i0 (Wm0 =203 (1) B0

k= k=0
It is known that this result follows from Theorem 7.4 in Gessel [4].

Theorem 3.5 @-Symmetry 2). For any mn € N, we have
m+1

VDY

k=0

m+1

k| [N+ K+ LgEnu(x, g)gmD-()+1

q

n+1

DY

k=0

n+1

| Ime ks g Frux g Hd ™D = 0. (2)

qfl

Proof. Applying g-derivative formula to the identity (1) in Theorem 3.3 replangd by m+1, n+1, respectively,
we have the result. m|
Asq — 1in (2) of Theorem 3.5, we have another symmetric formula for the ordinary Euler polynomials:

Theorem 3.6. For any mn € N, we have

m+1 n+1
(-1)" ;0 (ml': 1) (N+ K+ 1)Enu(x) + (-1)" kZO (” ¥ 1) (M+ K+ L)Emk(~X) = O. @3)

This can be regarded as an Euler polynomial version of Kaneko-Momiyama formulae for Bernoulli numbers. To
be precise, pun = nandx = 0 in (3). Then we have an analogue of Kaneko’s formula:

Theorem 3.7. For any ne N,

n+1
1
> (”le )(n + K+ 1)Enw = 0.
k=0

Putx = 0in (3). Then we have an analogue of Momiyama’s formula:
Theorem 3.8. For any mn € N, we have

m+1 n+1
(—1)'“; (m; 1) (N+ K+ 1)En + (—1)" é (” . 1) (M+ K+ 1)y = 0.



Usingg-integral formula to (1) in Theorem 3.3, we have

Theorem 3.9 ¢-Symmetry 3). Foranymne Nandab € R,

(1) Zml [m] En+kr1(a, @) — Enksa(b, 0) q_kn_(g)+mn
q

ik [n+k+1]q

+ -y

[ Eo et fat b0 mey g
k=0 L gt

k [m+k+1]q
Asq— 1, we get

Theorem 3.10.Foranymne Nandab € R,

m 4 m En+k+1(a) - En+k+1(b) n - n Em+k+1(_a) - Em+k+1(_b) _
1) Z(k) n+k+1 D Z(k) m+k+1 =0

k=0 k=0
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