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Abstract. We introduce Dedekind sums of new type defined over finite fields.
These are similar to higher dimensional Dedekind sums of Zagier. The main result
is the reciprocity law for them.
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1 Introduction

Let c > 0, a be relatively prime rational integers. The classical Dedekind sums is defined as

s(a, c) =
1

4c

c−1∑
k=1

cot

(
πk

c

)
cot

(
πka

c

)
.

It satisfies a famous relation called thereciprocity law, i.e., for relatively prime positive integers
a, c,

s(a, c) + s(c, a) =
a2 + c2 + 1− 3ac

12ac
.

We refer to Rademacher-Grosswald [6] for its proofs. One knows a higher generalization for
Dedekind sums due to Zagier [7]. Letp be a positive integer, anda1, . . . , an integers prime to
p. We assume thatn is odd. Zagier defines a higher dimensional Dedekind sum as follows:

d(a1, . . . , an−1; p) := (−1)(n−1)/21

p

p−1∑
k=1

cot

(
πka1
p

)
· · · cot

(
πkan−1

p

)
.
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For pairwise coprime positive integersa1, . . . , an−1 (n odd), this sum satisfies the reciprocity
law

n∑
j=1

d(a1, . . . , aj−1, aj+1, . . . , an; aj) = 1− ln(a1, . . . , an)

a1 · · · an
,

whereln(a1, . . . , an) is the polynomial ina1, . . . , an defined as the coefficient oftn in the power
series expansion of

n∏
j=1

ajt

tanh(ajt)
=

n∏
j=1

(
1 +

1

3
a2j t

2 − 1

45
a4j t

4 +
2

945
a6j t

6 − · · ·
)
.

It should be noted that Beck [1] generalized Zagier’s higher dimensional Dedekind sum.
It is known thatπ cotπz has the following expression:

π cotπz =
1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
. (1)

In finite fields, we have periodic functions that have analogous expressions to (1). From this
point of view, in [3], [4] and [5], we introduced Dedekind sums in finite fields, and established
reciprocity laws for them. These sums are like Apostol-Dedekind sums defined by

sn(a, c) =
c−1∑
k=1

k

c
Bn

(
ka

c

)
,

whereBn(x) denotes thenth Bernoulli function. In [4], we posed a question: can we define
higher dimensional Dedekind sums defined over finite fields as Zagier did in [7]?

The goal of our paper is to introduce new kinds of Dedekind sums defined over finite fields.
Our Dedekind sums are similar to higher dimensional Dedekind sums. As the main theorem,
we establish the reciprocity law for them.

Notation.∑′
= the sum over non-vanishing elements∏′
= the product over non-vanishing elements

2 Lattices

We recall some facts about lattices and periodic polynomials. We refer to Gekeler [2] for details.
ForK = Fq, the finite field withq elements,K denotes a fixed algebraic closure ofK. LetΛ

be a subset inK. We callΛ a lattice if it is a linearK-subspace inK of finite dimension. For
such a latticeΛ, define the product

eΛ(z) = z
∏
λ∈Λ

′ (
1− z

λ

)
.

The mapeΛ : K → K satisfies the following properties:
• eΛ is K-linear andΛ-periodic.
• If dimK Λ = r, theneΛ(z) has the form

eΛ(z) =
r∑

i=0

αi(Λ)z
qi ,
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whereα0(Λ) = 1, αr(Λ) ̸= 0.
• eΛ(z) has simple zeros at the points ofΛ and no other zeros.
• deΛ(z)/dz = e′Λ(z) = 1. Hence we have

1

eΛ(z)
=

e′Λ(z)

eΛ(z)
=
∑
λ∈Λ

1

z − λ
.

For a positive integerk,

Ek(Λ) =
∑
λ∈Λ

′
λ−k

is called theEisenstein series of weightk for Λ. We use the conventionE0(Λ) = −1. The
functionz/eΛ(z) has the following expression as a formal series:

z

eΛ(z)
= −

∞∑
k=0

Ek(Λ)z
k.

3 Higher dimensional Dedekind sums

Let Λ be a lattice. We introduce Dedekind sums forΛ. LetK(Λ) denote the field generated by
Λ overK and assumen ≥ 2. We pick upa1, . . . , an ∈ K \ {0} satisfying

ai
an

̸∈ K(Λ) if i ̸= n.

Definition 3.1 We define

sΛ(a1, . . . , an−1; an) = (−1)n−1 1

an

∑
λ∈Λ

′
eΛ

(
a1λ

an

)−1

· · · eΛ
(
an−1λ

an

)−1

.

Remark 3.2 In casen = 2, q = 2, our Dedekind sum coincides with one of Dedekind sums
defined in [4], [5].

The Dedekind sumsΛ(a1, . . . , an−1; an) has similar properties to those of Zagier’s Dedekind
sum. More precisely we have:

Proposition 3.3 (i) sΛ(a1, . . . , an−1; an) only depends onai + anK,
(ii) sΛ(a1, . . . , an−1; an) is symmetric in then− 1 argumentsa1, . . . , an−1,
(iii) sΛ(ζa1, . . . , an−1; an) = ζ−1sΛ(a1, . . . , an−1; an) for anyζ ∈ K \ {0},
(iv) sΛ(ζa1, . . . , ζan−1; an) = sΛ(a1, . . . , an−1; an) for anyζ ∈ K \ {0},
(v) The Dedekind sumsΛ(a1, . . . , an−1; an) is rational i.e.,sΛ(a1, . . . , an−1; an) ∈ K(Λ)(a1, ..., an).

Proof. The proof of the properties (i)—(iv) is trivial, so that we omit it.
Now we prove the rationality of the sumsΛ(a1, . . . , an−1; an): we recall from Section 2 that

if dimK Λ = r, theneΛ(z) has the form

eΛ(z) =
r∑

i=0

αi(Λ)z
qi .

It is easy to see that the coefficientsαi(Λ), 0 ≤ i ≤ r, are elements ofK(Λ). Therefore, for

any0 ≤ i ≤ r we haveeΛ
(

aiλ
an

)
∈ K(Λ)(ai, an). This yields the property

sΛ(a1, . . . , an−1; an) ∈ K(Λ)(a1, ...an).

�
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Remark 3.4 We present an easy case here. This example will be much more developed in
section 4. LetΛ = K = Fq, n = 2, q = 2. Supposea1

a2
∈ Fq2 \ Fq. Then a1

a2
is a primitive

element ofFq2 and a1
a2

− aq1
aq2

= a1
a2

+
aq1
aq2

∈ Fq \ {0}. Therefore

sK(a1; a2) =
1

a2

(
a1
a2

− aq1
aq2

) ∈ Fq(a2) ∩ Fq(a1, a2).

But if we take a primitive elementa2 of Fq4 anda1 = ta2 with t a primitive element ofFq2 , it
is obvious to see thatFq(a2) ∩ Fq(a1, a2) = Fq(a1, a2) = Fq4 . This example shows us that,
in general, for the definition field of the Dedekind sumsΛ(a1, . . . , an−1; an) we must take
K(Λ)(a1, ...an).

Remark 3.5 As is well known, Zagier’s Dedekind sumd(a1, . . . , an−1; p) satisfies

d(xa1, . . . , xan−1; p) = d(a1, . . . , an−1; p)

for any integerx prime top. In our situation, if we supposeΛΛ ⊂ Λ, that is,Λ is a finite field,
then

sΛ(xa1, . . . , xan−1; an) = sΛ(a1, . . . , an−1; an)

for anyx ∈ Λ \ {0}. Moreover,sΛ(a1, . . . , an−1; an) only depends onai + anΛ.

We now state the reciprocity law for our Dedekind sums.

Theorem 3.6 For a1, . . . , an ∈ K \ {0} such that

ai
aj

̸∈ K(Λ) if i ̸= j

holds, we have
n∑

i=1

sΛ(a1, . . . , ai−1, ai+1, . . . , an; ai) =
∑

i1+···+in=n−1
i1,...,in≥0

ai11 · · · ainn
a1 · · · an

Ei1(Λ) · · ·Ein(Λ).

4 Example

LetΛ be a fixed lattice. Firstly, we give the value of the sum of Dedekind sums for smalln.

sΛ(a1; a2) + sΛ(a2; a1) = −
(

1

a1
+

1

a2

)
E1(Λ),

sΛ(a1, a2; a3) + sΛ(a1, a3; a2) + sΛ(a2, a3; a1)

=
a21 + a22 + a23

a1a2a3
E2(Λ)−

a1a2 + a2a3 + a3a1
a1a2a3

E1(Λ)
2,

sΛ(a1, a2, a3; a4) + sΛ(a1, a2, a4; a3) + sΛ(a1, a3, a4; a2) + sΛ(a2, a3, a4; a1)

= −a31 + a32 + a33 + a34
a1a2a3a4

E3(Λ)

+
a21a2 + a21a3 + a21a4 + a1a

2
2 + a22a3 + a22a4

a1a2a3a4
E1(Λ)E2(Λ)

+
a1a

2
3 + a2a

2
3 + a23a4 + a1a

2
4 + a2a

2
4 + a3a

2
4

a1a2a3a4
E1(Λ)E2(Λ)

−a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4
a1a2a3a4

E1(Λ)
3.
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We next consider the special caseΛ = K = Fq. TheneK(z) = z − zq. Since

z

eK(z)
=

∞∑
k=0

zk(q−1),

En(K) is −1 (resp.0) if q − 1 dividesn− 1 (resp. otherwise). One can see

sK(a1, . . . , an−1; an) =

 (−1)n 1
an

n−1∏
i=1

(
ai
an

− aqi
aqn

)−1

(q − 1|n− 1)

0 (q − 1 ̸ |n− 1)

.

Case 1.q = 2.

sK(a1; a2) + sK(a2; a1) =
1

a1
+

1

a2
,

sK(a1, a2; a3) + sK(a1, a3; a2) + sK(a2, a3; a1) =
a21 + a22 + a23 + a1a2 + a2a3 + a3a1

a1a2a3
,

sK(a1, a2, a3; a4) + sK(a1, a2, a4; a3) + sK(a1, a3, a4; a2) + sK(a2, a3, a4; a1)

=
1

a1a2a3a4

(
a31 + a32 + a33 + a34 + a21a2 + a21a3 + a21a4 + a1a

2
2 + a22a3 + a22a4 + a1a

2
3

+a2a
2
3 + a23a4 + a1a

2
4 + a2a

2
4 + a3a

2
4 + a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4

)
.

Case 2.q = 3.

sK(a1; a2) + sK(a2; a1) = 0,

sK(a1, a2; a3) + sK(a1, a3; a2) + sK(a2, a3; a1) = −a21 + a22 + a23
a1a2a3

,

sK(a1, a2, a3; a4) + sK(a1, a2, a4; a3) + sK(a1, a3, a4; a2) + sK(a2, a3, a4; a1) = 0.

Case 3. q ≥ 3, q > n ≥ 2.

n∑
i=1

sΛ(a1, . . . , ai−1, ai+1, . . . , an; ai) = 0.

n = q.
n∑

i=1

sΛ(a1, . . . , ai−1, ai+1, . . . , an; ai) = (−1)q
aq−1
1 + · · ·+ aq−1

n

a1 · · · an
.

5 Proof of Theorem 3.6

Let us consider the rational functionF (z) = eΛ(a1z)
−1 · · · eΛ(anz)−1. By assumption on

a1, . . . , an, we havea−1
i Λ ∩ a−1

j Λ = {0} if i ̸= j. This implies thatF (z) has a simple pole at

any nonzero element of
n∪

i=1

a−1
i Λ. For any nonzero elementλ ∈ Λ, we have

Resλ/ai(F (z)dz) = Resλ/ai(eΛ(aiz)
−1dz)

∏
j ̸=i

eΛ

(
ajλ

ai

)−1

.
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SinceeΛ(aiz)−1 = a−1
i

∑
λ∈Λ

(z − λ/ai)
−1,

Resλ/ai(eΛ(aiz)
−1dz) = 1/ai.

Hence

Resλ/ai(F (z)dz) =
1

ai

∏
j ̸=i

eΛ

(
ajλ

ai

)−1

.

To compute the left hand side of Theorem 3.6, we make use of Residue Theorem. It should
be noted that thougheΛ(z) isΛ-periodic, eacheΛ(aiz) is not. From thisF (z) is notΛ-periodic.
Our rational functionF (z) has the form

F (z) =
1

G(z)

where
G(z) = eΛ(a1z) · · · eΛ(anz),

which is a polynomial inz with degree equal ton#Λ (> 1). To obtain our desired theorem 3.6
we need the following elementary lemma.

Lemma 5.1 LetG(z) be a polynomial, over a fieldL, of degree> 1, andR the set of all roots
ofG(z). Then we have ∑

a∈R

Resa

(
1

G(z)
dz

)
= 0.

Proof of lemma.The partial fraction decomposition of1/G(z) can be expressed as

1

G(z)
=
∑
a∈R

ord(a)∑
n=1

Ca, n

(z − a)n
.

Then for anya ∈ R, we have Resa(1/G(z)) = Ca,1. In other hand, it is easy to see that1/G(z)
can be rewritten as follows

1

G(z)
=

(∑
a∈R

Ca,1

)
zm−1

G(z)
+

a polynomial in z with degree less thanm− 1

G(z)

wherem is the degree of the polynomialG(z). Hence,

1 =

(∑
a∈R

Ca,1

)
zm−1 + a polynomial in z with degree less thanm− 1.

But the degreem of the polynomialG(z) is > 1, thus we can easily by identification obtain
that

∑
a∈R

Ca,1 = 0. �
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The set of all poles ofF (z) is
n∪

i=1

a−1
i Λ. By the above Lemma, we have

(−1)n−1

n∑
i=1

sΛ(a1, . . . , ai−1, ai+1, . . . , an; ai) + Res0(F (z)dz)

=
n∑

i=1

∑
λ∈Λ

′
Resλ/ai(F (z)dz) + Res0(F (z)dz) = 0.

Since
aiz

eΛ(aiz)
= −

∞∑
k=0

Ek(Λ)a
k
i z

k,

we have the expression

F (z) =
(−1)n

a1 · · · anzn
n∏

i=1

(
∞∑
k=0

Ek(Λ)a
k
i z

k

)
.

Hence

Res0(F (z)dz) =
(−1)n

a1 · · · an

∑
i1+···+in=n−1

ai11 · · · ainn Ei1(Λ) · · ·Ein(Λ).

This completes the proof.

6 Concluding remark

Finally, we would like to make the following remark.
The classical Dedekind sumd(a1, . . . , an−1; p) can be defined for any integern ≥ 2. How-

ever, forn even the sum is zero, so thatn is assumed to be odd in general. The same thing
holds in our setting, that is to say,sΛ(a1, . . . , an−1; an) can be defined for any integern ≥ 2. If
CharFq ̸= 2 and2|n, then our sum is equal to zero because

(−1)n−1sΛ(a1, . . . , an−1; an) = sΛ(a1, . . . , an−1; an)

by Proposition 3.3 (ii), (iii), (iv). Moreover, it may be possible to impose the condition aboutn
according toΛ. For instance, as seen in Section 4,sK(a1, . . . , an−1; an) is zero ifq − 1 is not a
factor ofn− 1. Hence we can impose the assumption thatq − 1 dividesn− 1.
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Research (No. 20540026), Japan Society for the Promotion of Science.
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