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In this paper we introduce elliptic Bernoulli functions and numbers, which are related to
special Jacobi forms of two variables, and study their properties .
More importantly, we state and prove elliptic analogues to the following important theorems:

i) The Dedekind reciprocity Law for Dedekind classical sums, here we introduce enhanced
Multiple elliptic Dedekind sums and study their reciprocity law.

ii) The Congruence of Clausen-von-Staudt and Kummer for Bernoulli numbers, here we state
and prove it for elliptic Bernoulli numbers.

iii) We obtain Damerell’s type result concerning the algebraicity of the special values of the
Hecke L-function related to our Jacobi forms.

iv) As a corollary, we connect these elliptic Bernoulli numbers ( explicitly computed ) to the
special values of Hecke L-functions of imaginary quadratic number field and associated to
some Grossencharacter.
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1 Introduction

It is well known that the Jacobi forms in one variable are a cross between elliptic functions and
modular forms in one variable. They have several applications in differents areas in mathemat-
ics, especially in number theory and arithmetical geometry [28].

In this paper, we will study some Jacobi forms in two variables. These forms are arises to
Galois module structure of rings of integers of numbers fields [44], construction of classgoups
annihilators [12] and stark’s units [10], and periods theory [53].

Now, the reasons for being still interested in these forms are multiple. First for all we precise
their analytical properties ( meromorphy, ellipticity, modularity, functional equation, Laurent
expansion, Fourier g-expansion, Eisenstein-Kronecker expansion, distributions formulas) of our
Jacobi forms which are of arithmetical nature. The second ground for studying Jacobi forms of



two variables is the following: they define elliptic Bernoulli functions ( comes from Coefficients
of Laurent expansion of our Jacobi forms, we will state and prove their essential properties:
symmetry, periodicity, Raabe’s formulas, modular properties). The special values of these el-
liptic Bernoulli functions give elliptic Bernoulli numbers which are studied in this paper. The
third important reason for studying our Jacobi forms, elliptic Bernoulli functions and Bernoulli
numbers: we will establish the elliptic analogues of Von-Staudt Clausen theorem and Kum-
mer congruence for elliptic Bernoulli numbers; we computed special values of Hecke L-functions
associated to certain Grossencharacter of type (m,n) € N? and expressed them using elliptic
Bernoulli numbers. The fourth important reason is the study of the “Enhanced” multiple elliptic
analogues of Dedekind sums which are defined here by two different ways: the first one in terms
of our Jacobi forms in two variables and the second by using elliptic Bernoulli functions.

Basically, the Bernoulli polynomials B, (x) are defined by the following identity in the ring

Q[z][[2]]-

tel® . By(z)
1.0.1 = t".
( ) et —1 T;) n!

Thus, Bo(z) =1, Bi(z) =z — %, Ba(z) =2? —z + %,...
By, := B,(0) is the n-th Bernoulli number. Let {z} be a fractional part of the real number z.
Then the Bernoulli functions B, (z) are defined by

B 0, Iftn=1,z€Z
n() =1 B,({x}) Otherwise
Equivalently,
> Bn(z),  te* t
(1.0.2) Dt =+ 0w
n=0
where LI 0
Sop=1 U7
0 { 0 Otherwise

is the Kronecker delta function.

In the next section, we introduce an elliptic analogue of these Bernoulli functions B, (z).
Our elliptic Bernoulli functions are defined as coefficients of the Laurent expansion of the Jacobi
forms in two variables D (z; ).

More precisely, this paper is organized as follows.
In the second section we introduce and study modular Jacobi forms of two variables Dy (z; p)
and deduce the properties of elliptic Bernoulli functions.
In section three we connected our Jacobi form to Eisenstein series and we study first and second
elliptic Bernoulli functions in details.
In section four we define, in two equivalent ways, the elliptic Multiple Dedekind sums in terms of
singular values of Dy (z;¢) and also in terms of singular values of our elliptic Bernoulli functions.



We will precise the relationship between these two points of view. Our main result on Multiple
elliptic Dedekind sums recover and unify all known results concerning reciprocity laws ( and
also gives a generalization of them) proved by Zagier [51], Beck [13], Rademacher [41], Ito[30],
Sczech [42].

In section five we prove algebraicity and Damerell type result for our Jacobi forms and elliptic
Bernoulli numbers.

In sections six and seven we would like to establish the analogues of Clausen-von Staudt and
Kummer Congruences for singular values of our elliptic Bernoulli functions. The singular values
of our elliptic Bernoulli functions are called the “elliptic Bernoulli numbers”. Our result recov-
ers and generalizes the Congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz
numbers proved by Katz [32].

Section eight contains the study of Hecke L-functions associated to our elliptic Bernoulli func-
tions. The main purpose of this section is to interpolate the values at non negative integers of
these L-functions by using The theory of our elliptic Bernoulli functions. As an application,
special values of some Hecke L-function will be expressed by elliptic Bernoulli numbers. We
deduce new Damerell’s type result.

2 Presentation and study of Jacobi forms of two variables: Dy (z; )

2.1 Notations and definitions.

For 7 € H = {z € C: Im(z) > 0} the upper half plane, we consider the following Jacobi’s Theta
function

6u() = e (500 5P+t )+ )

nel

Or by Jacobi Triple product formula

0r(2) = iqy/® (e(z/2) — e(=2/2)) [T (1 = a}) (1 = gfe(2)) (1 — gfe(~2))

Where

We shall use the following notation

@ =17 + 92, (p1,p2) € R%,Vp € C,

because {7,1} is an R-basis of C.
Now, for each complex lattice L, we fix {w1,ws} an Z-oriented basis of L i.e

Im <°’1> >0, L = Zw; + Zews.
w2
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We define the following R-alternating bilinear form
2o —zp Zp —2p

Wiwz — wiws 2i|wo|2Im (ﬂ)
w2

EL(Z7 90) =

which is the symplectic form on C associated to the oriented complex lattice L. Note that for
two complex lattices L C A we have

Ex=[A: LEL

where [A : L] indicates the number of elements of A/L.
Here for ¢ € C, we can write

@ = prw1 + awa, (1, p2) € R2.

Now, we can associate to L a Jacobi form of two variables

_ wi
where 7 = ”

2.2 Properties of D(z; ).

We regroup in the following the main interesting properties of Dy (z; ). These properties show
that our Jacobi form Dy (z;¢) is of arithmetical nature. Their proofs are omitted here. For
proofs see [5, 8, 9]. Only the properties xiii) , xiv) and xv) are new, we will prove them.

Theorem 2.2.1 (Jacobi forms)
i) Dy, is meromorphic in the first variable z, and only real analytic on the second variable p.
i1) Dy, is homogenous of degre —1
Dyp(Az;Ap) = A" Dy (25 0),VA € C\{0}.
In particular, we have the following symmetry

Dp(—z;—p) = —=Dr(z;¢).

i11) (Periodicity of Dr(z;¢)):

Dir(z;¢0+p) = Dr(z;9)
{ Di(z+ pi9) = e(Er(p, @) Dilzig) P EF

Where Er(u,v) = %%’r:(f;i



iv) (Functional Equation): Dr(z;9)e(—EL(z,¢)) = Dr(p;2).

v) (Modularity): Dy, is a Jacobi modular form for SLy(Z), with index 0 and weight 1 i.e

i i a b
Dozer | = Dy (z;¢), Lo(Z
CTIZ<CT+d’CT+d) (et + d)D, (2 w)V<c d)eS 2(Z)

where
D;(z;9):=Dp (z;9), Ly =Z7 +Z,7 € H.

-
vi) For any D = Zni(ai) principal divisor modulo L. there exists an L-elliptic function
i=1
having D as divisor, which is equal to

gD(Z; L) = H DL(Z; —a,;)’”

a; &L

up to multiplicative constant,

- Weiestrass p/-function:

or(z)=-2 [ Dulzt),

fell/I\{0}
vii) (Twisted square root):

Dr(z,¢)Dr(z,—¢) = p1(2) — pr(p), where pr(z) = 21—2 + Z [(2_100)2 _ 1] _
o

viii) (Infinite Product) : L = Zw; + Zwa, 7 = 2.

1
2

N (1—qp)’ (1 - qT”qzw> (1 - q?cz;%)
w21 (1 grgz ) <1 - q?(ﬁ) (1-aras) (1 - ng—,}>
wo wo w w9

ir) Laurent expansion of Dy /(z,y)
We have

Dy(z30) = > dy(p3 Zr + Z)24!
k>0
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with
do(p; ZT +Z) = 1.

For allk > 1, and ¢ = o17 + @2, (p1,02) € R%, we let {¢} = {p1}7 + {p2} and denoted
by {1}, {p2} the fractional parts of the real numbers z1,z3. Then, we have

k!

(2.2.3) G

di(o; 21 +7) =

By ({4/31}) + k{@l}k_lq{q{w} +EY (({901} —m)F! B OL ({1} +m)F! W)

where B;(X) is the j-th Bernoulli Polynomial.
These coefficients di(p; L) satisfy the following recursive formula

do(p; L) = 3di(p,L)? — Spr(p),
2n—1
don(p3 L) = B0 G (L) — 1 37 (=1)di(p; L)dan—i(3 L),
(2.2.4) —
1
where Ga, (L) = Z W,Vn > 2,
weL\{o}

Gan(L) are the classical Fisenstein series. Here L = Zt + Z.

z) (Cusp at co) For each z,¢ € C\Z1 + Z, we have

(2.2.5)
7T<cot(7r{<p}) + cot(ﬁ{z}))e—zm[zll{m} If  (z1,01) € 72
lim Dy (z,¢) = 7r<cot(7r{<p}) _ ~)6_2i7r[21]{902} If p1€Z,2¢7
Im(7)—00 7T<COt(7T{Z}) _ 7j> ein{gm}zz—Qiﬂ'[zﬂ{tpz} If 2 € Z, o1 g 7
0 If z21¢2,0¢7

Here we denote by {z} = {z1}7 + {22} and [z] = [z1]T + [22], where {z1}, {22} are the
fractional parts of real numbers z1, zo ( resp. [z1], [22] integer parts of real numbers z1, z2).

In the case z € R\Z and ¢ € C\Z1 + Z we obtain

. 2mie(z 2mie
(2.2.6) Im(lgrioo Dr(z,¢) = e(z() {_(pib + e({gpl(}{)@_})l 00, {1}



zi) For all p € C\ZT + Z, we have

Im(7)—o0

Bi({e )& Otheruise

zii) (Fourier g-expansion)

meot(m 1 =1,01 € Z,
b d. ((p; ZT+Z) _ { (m{e}) foi=1¢,

Im( £ )
T w2/ Tz 2nTp
Dp(z;0) = —q=2"7 cot( ) + cot( ) +4 sin (2d— ——) qr
( ) Wy w2 Wa Wa ; dz|n: d wWao
ziii) Kronecker doubles series I: One has the following identity
Dz o) = < e(—EL(w,9))
(2.2.7) L(z¢) = Z T
welL
where ZS@: is the Eisenstein summation equal to
(e) m=M m=N
Z = Mlj{[rgoo Z Z Where w = mwy + nws.
weL —M m=—N
ziv) Kronecker doubles series II: we have the identity
(2.2.8) Dr.(z¢) =
6( 2@Im(7' |Z+w‘ _ELT(w QO)) € ( ZzImT ’SO—FM‘ ELT(W,Z))
2 Sy e (B, (29) Y

weL, prw

zv) “Eisenstein-Kronecker series of Weight m =Bernoulli Functions
We set

B0, 1) = =25 dy(p, ).

(2mi)ym ™"
We have (o)
— w)"
%9) = > Bulp, L)~——2"""
30 m/!
with ©
! . S(EL((U, 90))
_ — Ifm=>1
Bm(Sm L) — (2mi) ; wm
w#0
1 If m=20



zvi) (Coefficients of Laurent expansion at cusp oo )
For ¢ = 17 + 2 € C\Z7 + Z, we have

Equivalently,

. = _ [ 2cot(n{p}) Ifm=1and {p:1} =0
lm B (cp, T+ Z) N { 2Bm({gal}) Otherwise 1

Im(1)—00

zvii) ( Distribution Formulas for Dy (z;¢)) :
For L, A complex lattices such that : L C A, [A: L] =1. We have:

> Dp(lzp+t) = Dz )
teA/L

zviii) ( Inverse Distribution Formulas for Dy (z;¢)) :
Let L, A et A’ complex lattices and | positive integer such that:

[A:Lj=[N:Ll=letANAN =L.

L'=1L

=l

L

We have the following inverse distribution formulas
1 z
Di(z¢) = 7 _Z DA(? 7 +1).

Proof of the property wxiii) of Theorem 2.2.1:

We want to prove the equalities 2.2.7 and 2.2.8. We begin with the first one

(e)
Dy(zip) = Y B,

zZ+w



(e)
Where Z is the Eisenstein summation equal to

w€eL
(e) m=M m=N
Z = M,1]{/H—1>oo Z Z , Where w = mwi + nws.
weL m=—M m=—N
(e)
6(—EL(OJ, QD))

The functions z — Dr(z;¢) and Fy, : z — Z
weL

n are meromorphic functions with
z+w

only simple poles in w € L. Moreover,

Dr(z+ p; ) = e(EL(p, ¢))Dr(2; )
{F@(z+p) = e(EL(p, p))Fy(2) Vpe L.

and finally, they have the same residue at z = w,w € L :

Res(F¢(z)dz, z = w) = Res(DL(z; p)dz, z = w) = G(EL(W, 80)>

Now, we can conclude in two differents ways:

Firstly, we consider the quotient function z — DFl‘jp(,(Zi,)O). It is meromorphic, periodic with periods
the lattice L and modulo L it has only one pole ( a simple one) at z = —p. Then, from Li-

ouville’s Theorem, the functions z — Dy (2; ) and F,(z) are proportional. But, we know that
they have the same residue at z = w,w € L. Thus we get our desired equality 2.2.7.

Secondly, we can consider the difference function z — F,(z) — Dr(2; ¢) which is meromorphic,
periodic with set of periods containing the lattice L and modulo L it has priori a pole at z = 0.
But, we know that the functions Fi, and z — Dr(2; ) have the same residue at z = w,w € L.
Then, the function difference z — F,(2) — Dr(2;¢) is holomorphic on whole complex plan.
Then, using again Liouville’s Theorem we get our equality 2.2.7.

Proof of the property xiv) of Theorem 2.2.1:

Here, we prove the equality 2.2.8:

Dy (z;5¢) =

— s le + - Br,(w,2))
Y+ w

e (~smigle + ol - Fr.(w,9))

5 — B X

weLr w€L,
We set

e (~zmle + @ ~ Br(@.9)) — s le + Wl - Br, (@,2))

F(Z7(:0) = Z Z+w te (ELT(Z7(:0)) Z (

w
UJELT UJGLT SO +

This function has the following properties:

10



i) We remark that the form E . takes integer values on L, then after a simple calculation
one derives that

F(z+p,p) = e(EL(p, 0))F (2, ¢);Yp € L.

ii) We claim that the function z — F(z,¢) is meromorphic. We prove that

OF
5(27 SO) =0.

Precisely,

e = Y e (gl ol B o)) - 3 e (~gm o off — Br o+ 9.2))

weL‘r WGLT

But the function e( Mm ]z\ ) = exp (—I

transform associated to the symplectic form Ep, is defined ( for any f in the Schwarz space
on C) by the formula

m’ET) |z[2> is Fourier self-dual. The Fourier

/ f(@)e (BL(z2)) dp ()

where dup(z) is the Haar measure on C normalized by the condition / dpp(z) = 1.
C/L

By Poisson summation formula the distribution d;, = Z 0w ( 0y is the Dirac function) is

weL
Fourier self-dual. Furthermore, the translation by = goes under Fourier transform to the

multiplication by e (—Er(.,x)). Then, we obtain

Y fwHn)e(—Erlw+m,y) = flw+yle(—EL(w,z))

w€eL w€eL

Now, we take f(z) = exp (—Im’ET) |z|2>. Then

OF

Then, the functions z — F(z,¢) and z — Dy_(z;¢) are meromorphic with only simple poles
in w € L. Moreover,

{ Dr(z + p; ) = e(EL(p, ) DL(2;¢)

F(z+pg) = e(Er(p @) Fzp)  PEL

and finally,

Res (F(z, p)dz,z = w) = Res (DL(Z; p)dz, z = w) = e(EL(w, @))

The desired equality 2.2.8 follows.

11



Proof of the property xv) of Theorem 2.2.1:

To prove this property we use the result 2.2.7. But, we need the Laurent expansion of
z — ZJ%U For w € L\{0} we have

z+w_z ( )

For our convenance we use —w instead w. Then,

D —,4_2 ZM Lm—1

m>1 \ weL

w0
Then, we obtain
— m! ) e(Fr(w,p))
Bn(p: L) = ~ (v ; S Ym>1, and Bo(p, L) = 1.
w0

Example 2.2.2 ( Jacobi forms of weight 2) :
For complex parameter of the non zero 2-division point , p € %L/L\{G} , we have the following
Jacobi form of weight 2

1 1 (27T2>2k+ B2k+2 m2k+1qm ok
D(z:=)==+2 A +1
(3)=2+ kzo(%ﬂ)! Hidt 2 1+qm |~

27TZ 2k+2 BQk+2(1/2) q2m+1 + qm—‘r%
DT( Z + Z (m + 1/2)2k+1 . Z2k+1
1 1 9 2k+2 B 1 2 1 +1 _ , m+1
D (= T+ )= 142 (2m1) ' 2k+2(1/2) n Z 2k+1q q ; 2k
z = (2k +1)! 4k +4 (1+ gm+1/2)

In the following theorem we precise the most important properties of elliptic Bernoulli numbers
and functions.

Theorem 2.2.3 (Elliptic Bernoulli functions)
i) (Homogeneity) For each m € N*, d,,,(p, L;) is homogenous of degre —m i.e

Ao (A, AL) = X\ dp, (10, L), YA € C\{O}.

12



i)
it) (Modularity): We let dp,(p,T) = dm(p, Lr).
Then, dm(p,T) is a modular form for SLo(Z), with index 0 and weight m i.e

P artb) mo o a b
dm (cr+d’c¢+d> = (et +d) dm(go,r),v<c d) € SLy(Z).

In other way,

+b ar +b
b .
+ ( 901+atp2)7c7_+d

aT
i ((dsol _ cpn) ) — (o7 + d)" (17 + 27,

ct+d

b
A (Ccl d> S SLQ(Z), (gol,(pg) S R2.

iv) (Periodicity ):

(2.2.9) dn(p +p;7) = dm(p;7),Vp € ZT + Z

v) (Symmetry):
dm (=3 7) = (1) dm (5 7)

vi)
vii) ( Distribution Formula for d,,(¢, L):
For L, A lattices such that : L C A, [A: L] =1, we have:

> dm(e+ L) = [A: LV dp (3 A),m > 1
teA/L

viii) ( Inverse Distribution Formula for d,,(¢, L)):
Let L, A et A’ complex lattices and | a postive integer such that:

[A:Lj=[N:Ll=letANAN =L.

L/

o~

L

S

N



We have the following inverse distribution formula

1
dn(piL) =7 D du(F +5A),
teA'/L

which comes from the homogeneity and direct distribution properties of dp,(p,L).

jwl?
> dn(tL) = (1- =) En(0,L),¥m > 2
teA/L\{0} v

3 Jacobi forms Dj(z;¢) and Eisenstein series E,(z, L)

In the following we will connect, in severals ways, Jacobi forms Dy (z;¢), Eisenstein series
E,(z, L), Elliptic Bernoulli numbers d,,(y, L) and values of E,,(z, L).

3.1 Connection between D (z; ) and Eisenstein series

In the following we state our second main result, giving the relationship between Eisenstein
series Ey,(z, L), our Jacobi form Dy, (z,¢) and their coefficients d,(p, L).
We recall here the definition of Eisenstein series

(3.1.10) En(2,L) = lm. w2y w42 m =1,
S—
weL

the sum being over w € L'if z ¢ L an w € L\{—=z} if z € L.

The following proposition, containing standard distribution formulas satisfied by Eisenstein
series, is proved in an almost identical manner in Weil [49], its proof is omitted here.
Proposition 3.1.1 Let w € C\{0} such that: wL C L. Then

i)

t 1
> En (”,L) = W"Ey (2, L) = Ba <Z L>
w W w

teL/wL

FEquivalently,

> E, (ZL) = (W"—1)E, (0,L)

teL/wI\{0}

Now, we can state the connection between Dy (z;p), their special values and Eisenstein series
E,(z,L).

14



Theorem 3.1.2
i) Let w € C\{0}, ¢ € C\L such that: wL C L and wp € L. Then
1 z
Dy(z, ) = — (—E t@ )E (7 t,L),
L(z, ) > e L(t,op) ) By (= +

w
teXL/L

In other way,

teL/wL
i)
-1 "
dn(p: L) = o Z e EL(t,wgo)>En (w,L> ;Vn > 3
telL/L
FEquivalently
d L)—*lz Bt o)) En (L0) 0 >3
n 907 7 € L( 7@)) n ;7 9 n =z
teL/wL
iti) (Inversion Formula): For all ¢ € C\L we have
wn—l
En(g; L) = — 5 Z e(EL(t,wcp))dn (t,L)
telL/L

iv) (Recursion formula) Let f be a positive integer, ¢ primitive parameter of order f. Then

bl =5 Y e(Bute)oh (F)

teL/fL\{0}
_ 2
bty =T S e(But)on(5) - B 0.0)
teL/fL\{0}
o= 7 e(EL@,so))m(;)Eg(;,L)
teL/fL\{0}

and for k > 4 we have

— A Dk (k=) di1a(p, L) =6 > > (p+1)(g+D)e(BL(t, ) Epyo (t L) Eyyo (t L>+

I I
pta=k=2tcL/fL
p=1,g21

12k —1) Y e(EL(t, (p))ggL (;) By <;L>

teL/fL

15



Proof of theorem 3.1.2:
We prove the Recursion formula. We consider the function

s—on(5) e (7)

= {2 —

U0 ) Crmreyon e
o 1
A ((z—p)2 P2>

p=t (mod f)

Then the expression

Fiz = % <€(EL(p,s0))_e(EL(p,s0))>

2 2
o=t (moa )\ (2P P

f2e(EL(t,¢)) <m <Zf_t> L (;))
F(z) = f2e(EL(t,9)) (m (Z J: t) oo (j”))

we use the relation for p; Weierstrass function:

o1,(2) = 6pr(2)> — 30E4(0, L)

is equal to

Then

Then applying this relation to gy, ( ) yields

2
fle(~Ep(t.9) F'(z) = 6 (f% (—Ew(t.9) F(2) + o1 (;)) ~30E,(0, 1)

On the other hand we take into account the Laurent expansion

Z fk+2 e(EL(t,¢))Epya <Jtc L> 2

k>1
We get
Fle(—Ey(t,p) 3 EE ?,Z(f “ D Bt 0)) B <; L) 2
>2
2
(f2 (~Eu(t. o) 3 Sgel Bult ) Biss (; L) * ot (;)) ~ 308,(0, L)
k>1
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We compare the coefficients of zF of both sides to get the following recursion formula for

Eisenstein series Fj (%, L):

(k+1)k(k —1)Ejpo GL) =6 Y  (+1D(g+1)Ep GL) Egio <t L) +

3
pta=k—2 f
p=2l,g21

e on () (19

Finally we multiply the above quantity by e(EL(t, gp)) and make the summation Z of both

teL/fL
sides to get our desired recursive formula for d(p, L).

3.2 Weierstrass functions and Eisenstein Series E;(z, L).

We state the following proposition whose proof is omitted here. For more details you can see
[42] p.526 and [21] p.188 proposition 1.5.

Proposition 3.2.1

i)
-1 IfzelL
EO(ZaL) =
0 Otherwise
El(va) = C(Z7L) - n(zaL)
where -
n(z, L) = Go(L)z + @Z.
ii1)

EQ(Z,L) = pL(Z) + GQ(L)

En(2,D) = o D(2),vn > 3

3.3 First and second Elliptic Bernoulli functions d;(z, L) and E;(z,L),i = 1,2.

In this subsection we study the first and second Elliptic Bernoulli functions and write them
in terms of Eisenstein series.As application, Elliptic Dedekind-Sczech reciprocity Law will be
derived from our Multiple Dedekind Sums.
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We recall from Lang [38] p.248, that

IO LS S e(=2)¢™  e(z)q"
(3.3.11) C(Z’,L) =2+ 6(2)—1 +2 mZ;l <1_6(_z)qm 1—6(2’ qm>

Where 1y = n(1, L), m = n(r, L) and note that
n(z, L) =n(z17 + 22, L) = z1n(7, L) + 22n(1, L)
Then
n(z, L) = z1m + zam2, where z = 217 + 22, (21, 22) € R2.
On the other hand -
n(z,L) = Ga(L)z + M?.

From these equalities and Legendre relation, we obtain

n(z, L) = Go(L)(z17 + 22) +

D
n(z L) =z (Gz(L)T + aZTL)T'> 2 <G2(L) b )

Then, by identification, we have

m = GQ(L)T + a(TrL)f',
n2 = Ga(L) + (TrL)

The result of the following theorem will be used, in section 4.4 , to give a new and elementary
proof of the reciprocity Theorem 4.4.1 of Sczech.

Theorem 3.3.1 For all z ¢ L we have
i)

1
Ei(z, L) = 27iBy(z1) + i + m‘e(Z; i - 2wy

1 (e )

In an identical way,

Ei(2,L) = 2miB (21) + 2m’e(z§zj - 2mi Y <1

iii)



Proof :  The property i) comes from the equality (3.3.11). The property ii) is a consequence
of the equality (2.2.3). Again, from the formula (2.2.3) and the periodicity property (2.2.9) we
obtain

= 2miB (2 m’ﬂ - e(=2)¢"  e(x)g™
k) =2mi ) + 2 e(z) -1 . n; (1 —e(=2)gm  1—e(z qm)

Hence
dl(zv L) = E1<Z, L)

Finally, the property iii) comes from the properties ii) and (2.2.4).

4 “Enhanced” multiple elliptic Dedekind Sums and their
applications

The purpose of our study here is not so much a rederivation of old theorems but rather to show
a common thread and give a natural generalisation of them to elliptic situation.

These Multiple elliptic Dedekind sums generalize and unify various arithmetic sums
introduced by Dedekind, Rademacher, Apostol, Carlitz, Zagier, Berndt, Meyer, Sczech, and
Dieter. We prove reciprocity laws which are elliptic analogues to The Dedekind reciprocity law
satisfied by the classical Dedekind sums [5]. Moreover, from the main result of this section (
Multiple elliptic Dedekind reciprocity law) we generalize, recover and unify all classical and ellip-
tic known reciprocity laws on Dedekind-Apostol-Rademacher-Beck-Dieter-Berndt-Sczech-Zagier
and others sums [1, 8, 9, 13, 23, 22, 41, 42, 51].

Generalized Dedekind sums appear in various areas such as analytic and algebraic number theory,
topology, algebraic and combinatorial geometry, and algorithmic complexity. See [2, 26, 27, 28]

Our theory of enhanced Multiple elliptic Dedekind sums developped here can be explored
to study the Eisenstein Cohomology of groups as SLa(Ok ), GL,(Ok), where K is an algebraic
number field, see [42, 50] and is also closely related to the study elliptic genera, the index the-
orem of Atiyah-Singer associated to complex manifold [20] and to Meyer’s, Euler’s and Maslov
cocycles [42, 33, 4].

4.1 Statement of multiple elliptic Dedekind reciprocity Laws

Let ay,...,an,a},...,a, be elements in N*, the a; being pairwise coprime and the a] being
also pairwise coprime , mi,...,mp,T1,...,7n €N, z1,..., 2y, 2],..., 2, € Cand @1, -,y be
complex variables. A usual # means that we omit the term z.
We let , .
a, - a
/ /
Zp = —xh + op—ET b = —t) + tp—LT,
ag ag
— . ——d o
Mk = (ml,...,mk,...,mn),Rk = (rl,...,rk,...,rn),
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Zk):(zl,...,ék,...,zn),_;;:(gpl,...,gbk,...,cpn),
E;:(al,...,(lk,...,an),@:(a’l,...,dk,...,a;).
and finally
L=[r1]=Z7+7Z, Li= [Z:’:T, 1}

We define the multiple elliptic Dedekind Sums

d(AL, A, Zi o My, Ry, 7) o=

(—1)™rmy! ai" e (mitry) (2t 0
Tl II 5] > e(Bu bor II b (6= -2

. r ~ . a aq
k 1#k<n 77 ) fery/alL 1<j#k<n k J

Notice that the case
— —
My = R, = (0,...,0)

corresponds to
—_— 7 = — — =
d(AlmA;w Zka(bk?MkkaaT) =

1 - Pk ) 2k + Uk N7
£ () (s

tkELk/aﬁcL 1<j#k<n

this quantity is also called elliptic multiple Dedekind sums studied in [5, 8, 10].
For arbitrary values of m , }Tk) we get here multiple elliptic Apostol-Dedekind-Rademacher

version of all considered so-called (in literature) “Apostol, Dedekind, Rademacher and others”
sums.

We now formulate the corresponding reciprocity Law for these sums

Theorem 4.1.1 (Elliptic reciprocity law in terms of Jacobi forms)
For all j,k,1 < j # k < n, we assume that

!0 !0 ! /
(ajzy — agwy, ajry, — apw;) € Laj + Layg X La; + Lay,

and
n
> ¢iEl
j=1
Then
" —_— T = — — =
> d(Ag, Als Zy, Ok, M, Ry, 7) = 0
k=1 R0
1t ATt Frn=my,
. . o - n—1
The summation is over R = (11, ..., Tk, ..., Tn) € N1
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Theorem 4.1.2 i) For all j,k,1 < j # k <n, we assume that
(ajry — apry, djry, — apay) & Laj + Zay, x Zaj + Lay,

and

Then

it) (Complement Formula) We assume only that

n
Y ;=0
j=1

zn:i Z H Dy, <9037 jtk> = —Res H Dy, (ajz;%> dz: 2 =
@ aj k aj

/
k=1 "F { e Ly /a} L\{0} 1<j#k<n 1j<n

We will establish in the following that the theorem 4.1.2 contains and generalized the Sczech’s
result [Scz], in other hand it recovers the Hall-Wilson-Zagier result [HWZ].

Proof of theorem 4.1.2 :
This theorem 4.1.2 comes from theorem 4.1.1. In fact, we consider only the case when

my=---=my,=~0
and we obtain our theorem 4.1.2 with using the functional equation of the Jacobi form:
Dp(z¢) = e(EL(2,¢))DL(p; 2)
and the condition

n
> p=0. O
j=1

In the following we define an other elliptic analogue of the generalized Dedekind Sums in
terms of the elliptic analogous of the Classical Bernoulli functions, as follows:

We recall that
= Z dm(gﬁ, L)Zm_la

m2=0
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and
- m!

Bm(go, L) = - dm(907 L)

By, (¢, L) are our elliptic Bernoulli functions.
Hence

~ ~ . . —1
Ok, 2k + _ 25+t 2mi)" i\
DLj (;a;- a;C _Zj> = ZB,.j(a;- CL;C —Zj,Lj) | 7]

a; 730 T aj;
Furthermore,
~ ~ T'—l
k4 %kt N _ 2k + tr 1 i\
Il o, (5?@9 @ ~4) = e Bry (e = = o)y (20
1<j#k<n 7 k Ry>0 1<i#k<n k I J

Where ]?;; = (r1y.eeyFpyenn, ) € NPTL

We now introduce the second main object of this section, the multiple elliptic Dedekind sums
in terms of elliptic Bernoulli functions:

— 1 — 2k + Ek
S(AkaAkaRkaZk”—) = G,T g H Brj(G; o —Zj,Lj)
k fpeLy/a) L 1<j#k<n k

Theorem 4.1.3 (Elliptic reciprocity law in terms of Elliptic Bernoulli functions) For
all 1, k, 1 < j # k < n, we assume that

! ! ! ! / /
(ajrp — apxj, ajry, — apx}) € Zaj + Lay, X Za; + Lay,

and
n
> 9 =0
=1
Then
n -— 7 = 5 . ro—1
Z S(Ak, k,Rk,Zk;T) H 27T24pj J —0
IS L 1 B A , a;
1 — J n J
k=1 L ENn—1 1<j#k<n
. . o < n—1
The summation is over Ry = (11,...,Tk,...,Tn) €N

Proof of Theorem 4.1.3: .
Remark that generating function of the second multiple elliptic Dedekind sum S (1?];7 s Riey Zp; 7)
is exactly equal to

1 1 Ok 2K+t
= ] DL,<-a. s

-1 7 j R j
(2mi)™ U | Ghn a; aj,
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After using the functional equation satisfied by Jacobi form

Di(z,¢) = e(EL(2,¢)) DL(p, 2)

we obtain

2k + g zk+tk ©;
[T oo (s —n) =e (= & w5t o2
J k

a
1<j£k<n 1<j#k<n J
2 + tk i
[T oo, (ot e
J I o A
1<j#k<n k J
Hence
zE + 1k 2+t Pj
J / _ / J
) e ) Il IR -HER ) P B pi MU
1<j£k<n k 1<<n 1<5<n k J
P 2z + U Pj
!/ . )
(Putoz) TT o (4255 2
1<j#k<n k J

Now, we use the fact that:
>_¢i=0and By (2,9) = 1 BL(2,¢)
— j

we conclude that

bj. 1%k + i, ¥j
H DL < 1. Zj) =e€ ELj(Zj, 7])
' aj, 1 a;

1<j#k<n <U<n

. _|_{ ©;
e(ELk(tk,%,’j)) 11 DL( o _Zj§a;>

1<j#k<n

Finally

—_ 7 = = . -
Z S(Ak, ;ﬁ,Rk,Zk;T) H 27T2(pj T3 1:
T1'fk'Tn' Qj

—
Rjenn—1

1 — = = — —
We Z EL Z]’ d(Ak’A;gaZkvqbkaMk = (07-”70)77—)
1<G<n

We conclude, up a multiplicative non zero constant, that the first multiple elliptic Dedekind
—
sums in terms of Jacobi forms corresponding to M = (0,...,0) is the generating function of the

second one in terms of elliptic Bernoulli functions. Then theorem 4.1.3 is equivalent to theorem
4.1.2. g
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4.2 Application 1: Enhanced classical sums of “ Dedekind-Apostol-Rademacher-
Beck-Berndt-Dieter-Zagier”

In order to state the first corollary of our main theorems of this section, we denote by
cot™) the m’th derivative of the cotangent function and let al,...,a, € Ny my,...,m, € N,
Z1,...,2, € C. We will study the following sums( the Enhanced Dedekind cotangent
sums):

/ / /
al a2 DY an n /
mi|mg - M 1 . k+x . ,
¢ ! 2 "= TTES E H <COt}(m7) s (a} y L_ ac;) — 60,m; cot(Mi) 1 <%>>
"L‘ :E DY x a bl a
1 2 d ay k mod a1 j=2 1 J
P1r | Y2 o Pn

and the sum is taken over all k mod a} for which the summand is not singular.Our notation
of this sum is similar of Beck’s notation in [13]. Indeed, our “Enhanced” Dedekind cotangent
sums include the so-called “Dedekind cotangent sums” introduced by Beck [13], and various
generalized Dedekind sums introduced by Rademacher [22, 41], Apostol [1], Carlitz [17], Zagier
[51], Berndt [14], Meyer [39, 40], Sczech [42], and Dieter [19].

In the following, we state the strongest theorem concerning classical reciprocity law

Theorem 4.2.1 (Generalisation of Beck’s result)
For all j,k,1 < j # k <n, we assume that

alxy, — apx’; & Lal; + Lay,
and p1,- -+, pn are real numbers such that:

ﬂ¢Z7\V/]€{1,,}
a;

Then
/ / / /
—_ ak al . ak} an
n e gt gl —

Z(—l)m’“mk' Z aj ay, In | Mk |maitl oomp e e mp

' AN / ! / /

k=1 Useonslggreesln >0 ll' lk‘ l”' T Ty fﬁ Ly

Ao A+ Hln=my, p1 V2 . o - ©On

( sm(wi%)
— aj
) ey =L L ralimg =0
Hsin (WSO])
a;

0 otherwise.

Theorem 4.2.2 (Division points)
Let ay,---,a, = 2 be nonnegative integers pairwise coprime, whith n = 1 and @1, ---,p, real
numbers such that:

n

E ¢j€Zandﬁ¢Z,Vj:1,-~~,n.
Py

=1 !
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We obtain

Equivalently
imp; s | Z ij

n ar—1 n rifi [Ja] as —
ST ) " =
a; ‘<(Pj>

n
k=1 tp=1j=1 J#k sin | m—
H aj
Jj=1
Remark 4.2.3 In particular, for % = %, we get
J

n ag— 1 n n-1 ) )

Z Z H a] o) { —(=1) 2 ifnis odd,

1 th=1 j—1 0 otherwise.

More generally, for % =p= %, (k, N) =1, we have

Z H 727rup mk] _ Sin(ﬂ-ngp) eiw(nfl)ap‘
< sin(mp)

Then, theorem 4.2.2 can be seen as an extension of Berndt and Dieter result, theorem 2.1
[15], for complex valued functions.

Question:

i) Can you extend the theorem 2.1 [15] of Berndt-Dieter to complex valued func-
tions? I think that is possible.

ii) If it is, can you give application in terms of signature theory of complex man-
ifolds?

Proof of theorem 4.2.1 :
In order to prove our theorem 4.1.1, in section 4.5, we considered the auxillary function

F(z, , H mJ)(az—zJ,iJ)

J

Where



/
— = a
A= ((al...,an);(a/l,...,a;)),M: (my,....,myu), ® = (01,...,0n), 2k = —x%—kxka—ZT.
Here, we introduce the function
n

f(z, 6), , Z, M) = H (cot(mj) T (a;-z — 37;) — 60,m, cot(mi) <%>>

a
j=1 J

This function f comes essentially from the limit of F(z, 3,AM ) when Im(7) — oo, (for
more details we can refer to the property xi) of theorem 2.2.1).
Now, like in the proof of our theorem 4.1.1, in section 4.5, we apply the residue theorem to this
function f(z, 6}, Z, M) We integrate f along the simple rectangular path

vy=lx+iy,x—iy,x+1—dy,x+ 1+ iy, z+iyl,
where x and y are chosen such that v does not pass through any pole of f, and all poles z, of f
have imaginary part [Im(z,)| < y. By the periodicity of the cotangent function, the contributions

of the two vertical segments of vy cancel each other. By definition of the cotangent function,

lim cot(z £ iy) = Fi ,

Yy—00

and therefore also
lim cot™ (z +iy) =0

Yy—00

for m > 0. Hence if any of the m; > 0,
[ #6820 ds=0.
v

If all m; = 0, we obtain

Lf(z, T, A, M) d- :Jf[l <z - cot(ﬂg)) - f[ <—i - cot(w@?)> .

a
j=1 J

This can be rewritten as follows
. ¥i
(Z aj)
=t )
n .
H sinm <%>
j=1 4

0 otherwise.

if all m; = 0,

1 N _ (—1)”71
%Af(z,é,,A,M) dz =
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or, by means of the residue theorem,we obtain

,

(N~
1 s (]_Zl aj)
SN ) ———7— ifallm; =0,
(4.2.12) WZRGS (f(z, D, A,M)dz,zp> — (-1 H . <<Pj> J

. sinm | =~
9 . 7]

7=1

0 otherwise.

Here the sum ranges over all poles z, inside 7. It remains to compute their residues. By
assumption, f has only simple poles. We will compute the residue at z, = kz,zl, k € 7Z, the
other residues being completely equivalent. We use the Laurent expansion of the cotangent

1 < k4 21
5

maj al

-1
(4.2.13) cotm (ahz — 21) = > + analytic part |,

and, more generally,

—1)™my! k+ 2z —(mit1) .
£ 1 (a2 — 1) =6 g o (1) Z - lytic part .
co T (alz zl) 0,m; CO T ” (ral )i+t z P + analytic par

The other cotangents are analytic at this pole: for j > 1,

(4.2.14) cot™) 7 (a2 — z;) — 8o,m, cot™) 7 (?) =
J
A L
Z (Tra]')] <Cot(mj+lj)7-r <al.k+21 _Zj) —50m.+l.COt(mj+lj)7T (SO]>> (Z— k+21) ’ .
L 7o al B a; ay
>0 7 ! ’ !
Hence

Res <f(z,$,z,ﬂ)dz,z: k+21> =

/
ay

d
(—1)™my!
o 2
Tay 1,nlg20  j=1
ll+.4.+ld:m1

1l
- k .
l]~' <cot(mj+lf) T <a; :,Zl — Zj) — 00,m;+1; cot(Mitli) <(’0J)> .
j: 1

aj

Since ~ has horizontal width 1, we have a poles of the form *+2L inside v, where k runs through
gl 1 b o, s g

a complete set of residues modulo a. This gives, by definition of the generalized Dedekind
cotangent sum,

!
ay

Z Res <f(zv$7z,ﬁ)dz,z _ k+21> _

k mod af

all a’2 e .. a/

n
112 1l
Ligymmy Y Gl | o me bl e
° / / /
T o o l2' ...... ln' i Ty e e x,
lot+...4+...+ln=m1 901 (p2 . e e ()On
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The other residues are computed in the same way, and give with (4.2.12) the statement:

/ / 9 /
/\ ak al . o ak e an
n rh g 1 ln 3
m e SR R ) mp|mi+l - mp+ly - mp+i,
(1) my,! LS ¢ / / L /
| PSP S I | N Ce
k=1 Useonslgreesln =0 Ih! lk‘ In! Ly, Ty fﬁ Ly
Ao At tln=my p1 2 - Ok ... ©On
4 n
) Z P
S —
— Qaj
)y L ifallmg, =0
Hsimr <%>
s
=1 ¢
0 otherwise.
O

To deduce the following result of Beck 4.2.4, from our theorem 4.2.1, we simply take the
following values

. Hence

Corollary 4.2.4 (Beck’s original result)
Under the same hypothesis of theorem 4.2.1, we have

— ak al a/k an
o ai gl ghn ; — l
D (=)™ my! > ! k g mg | mitly e mg Al e My iy
k=1 Hoer Tl 20 SN S k . . /k\a n .
Ao+ =my, 1= 71 o = 72 TS 7’6 oy = %
n—1 3
) (=)= ifallmi =0 and n odd
0 otherwise.

Proof of theorem 4.2.2 (Division points) :

To prove this theorem 4.2.2 we need some preliminaries. Let z = 217+ 29 € C and 21, 22 € R,
we denote by {z} = {z1}7+ {22} and [z] = [21]7 + [22], with {z1}, {22} the fractional parts of the
real numbers z1, z9 ( resp. [21], [22] integer parts of real numbers 21, z3). For each z, ¢ € C\Z7+Z,
using the property x) in theorem 2.2.1, we obtain

W(cot(rr{go}) + cot(w{z}))e_%“[zl]{‘m} If  (z1,01) € Z2

lim D (z¢) = 7 (cot(m{ip}) — i) 2intarltea) I p1€Zngl
Im(7)—00 W(COt(ﬂ'{Z}) _ Z) e2im{p1}za—2im[z1]{¢2} ¥ sweZ,o g7
0 It z21¢Z,p1 €7
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From the periodicity of D,(z, ), iii) in theorem 2.2.1, we obtain

m

m 8 m
DY 2+ p o) = WDL(Z + ) = e(EL(p, 9)) DY J(z10),¥peL

For the rest of this proof we assume that ¢ € R\Z, then

(4.2.15) lim D™ (z, ) =

Im(7)—00

amtl (5 meot™ (m{p}) + cot(™ (77{2})) “Zimlalieal If {2} =0
70, (cot(m{ip}) — i) e Hinlea) If {21} # 0

Lemma 4.2.5 We assume p; € R\Z,Vj =1,---,n and let

!/ /
ay,

zk:—xk+mk Ttk——tk—i—tk ()étk<a/§,0<75;€<a§~C
ag ag

Then, we have

Im(7)—00 L 7

. t ; o
(4.2.16) lim DY) <a;.z’“+, k. ‘Pﬂ> _ omyril
Clk (I]

s i s L4t i
00,m; +r; (cot(mﬁ”ﬂ)(ﬂi—;) - cot(mﬂ”ﬂ)(w(a;x’“cT’“ - xé)))e( - [aj x’“;:k - xj] %) If {%’% —zj} =0

00,m+r; (COt(?T%) — i)e(— {aj% - wj} %) If {ajszttk —zj} #0

Now, for the rest of the proof we take z; = 0,Vj = 1,---,n. Then

. 7 .
(4.2.17) lim Démj""”) <a; 2k ‘|,' ko, 4,0]> _myry

Im(7)—00 J ay, 7 a;

(50’mj+rjcot(mj+’“j)(7r%) — cot(mj”j)(w(a’»ﬁ — a:;))) If t, =0

J o a,
00,mj+r; (cot(w%) — i)e(— [ajé—’;] i—;) If t,, #0
Hence,
n—l+ Z (mj +75)
(4.2.18) lim H D) m]*”f Zk +t RO & 1<j#k<n o
Im(7)—00 a% 7 a;

1<j#k<n
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H <5o,mj+,njcot » i l‘j))) Ift, =0
1<j#£k<n i k
[T domr, (ot ) —i)e(- {aj—] S"J) If ty # 0
1<j#k<n @ ak
Then
. . 7 .
(42.19) lim > (ELk(% sOk)) 11 plmitr)) ( ;Zk—il- k zj;%> —
Im(7)—00 giﬁz“}ﬂ Q. \<GAh<n aj a;
St S%
n—1+ E (mj—H"j)
r 1<i#h<n «
aj,—1 ' N +t/
> II (50,mj+rjcot(mf+ff>(7rﬁ)—cot<mf+ff>( a2k —;p;)))
t =0 1<jAk<n aj aj,
+
ap—1 o ; o
aj, Z e(——tk> H 80,mj+r; (cot(waj) — z)e(— [aja—k] aj)
tx=0 1<j4k<n
Finally
n—1+ Z (mj +rj)
H .
(4220) I (hgn d(/Tk)? 2727@7@7@77) =TT ISi7ksn X
mi(7)—00
agv_l SO l,/ +t/
> I (50,mj+rj00t(mj+’"j)(7r—7)—cot(mﬁrj)(ﬂ(a; BTk
(—1)™ a"s # =0 1<j#k<n aj ay
g el H ol +
k 1<j#£k<n 7 ap—1 o |
aj, Z (_7tk) H 00,m+r (COt(ﬂ'aj) - i)€<_ [ajCTIJ —
tp=0 1< #£k<n
and Z = my, then
1<]7ék<n
—_— T = — — =
o d(Ay, Ay, Zk, g, My, Ry, )
(4.2.21) lim - : -
Im(7)—00 ﬂn— +Zlgg<n mj

(mj+rj)(7rﬁ) _
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!
ap—1

. /
Z H (507m].+rj cot(mﬁ’"f)(w%) — cot™itT) (w(d,
(—=1)™kmy! a;”f t, =0 1<j#k<n J
o T I1 ol +
k 1<j#k<n 77 ag—1 0
aj, Z <——tk> H 80,mj+r; (COt(WcT]-) -
tp=0 U7 Ghkgn J
This gives the limit
(—1)”71 - 7 = T o =
(4222) Z Z d(AkaAk7Zk7¢kaMkaRk‘aT) =
n—14 Z m; Im () —oo ] R 6}
T 1<jsn 4Ty + Arp=my,
n AL}

7!
k=1 70 @y, 1<j#k<n )
r1+...+fk+/ +rn7mk
a—1 / /
T+t ©;j
i+r; 1k k / + J
Z H (cot(mf TJ)(Tr(ajT —25)) = 60,m;+r; cot(™i TJ)(T[';))
t, =0 1<j#k<n k J
_l’_

ap—1

a, Y TI 607mj+7“j<i_60t(ﬂ-ij)) 11 e<_[aj:;}(§j)

tx=0 1<j#k<n 1<j<n
Now, we can give a final formulation
n m AN
> ooy Sl
a/ mk—l-l ,r]'
— —— — k i :
k=1 Rk:Z 0 1<j#k<n
T1+"'+7‘k+ +7"n7’m]€
al—1
k / /
s T, +t ;
> I (Cot(mﬁrra)(w(agu — ) = Gomy i, cot(mﬁm)(ﬂﬁ))
] a Qa;
th, =0 1<j#k<n k J
Qj— 1 —Wiﬁ

S| | IT (- [a]ak}soj) if all my, = 0

)
- =0 1<j£k<n SIN ( aj) 1<j<n
0 Otherwise
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Or equivalently,

7
. ak al a
n

1l 7 U 1 ln S
I L LIt e R LIS T e
' / /
k=1 [T P ) bl gt -l Tk 1 f@
Uttt Hp=my, ®1 P2 Pk
. Pg
ap—1 T
e J 195 .
o T s T e([w ] 2) anme=o
Pi j
_ t=0 1<j£k<n SI (TF J) i<

0 Otherwise .

Now, from theorem 4.2.1 we deduce the statement of theorem 4.2.2:

. Pj
1 iTp; Sin ™ af

ap— Iy - i
33 H( >[J%}He : o

e T = — .
. ©j n

sm— .
k=1 tx=1 j=1 J#k | | sin (w%>
Py

j=1 J

4.3 Application 2: Enhanced sums of “ Dedekind-Rademacher-Hall-Wilson-
Zagier” in terms of Bernoulli functions.

Let n € N be an arbitrary integer > 3 and 1 < k < n.

Our second “Enhanced” Multiple elliptic Dedekind-Rademacher sums are

T n G— ]. Zk+tk
S(AkvAZ,-’R/ﬂZva) = G,T Z H / / ZJ7L])
k feLy/al L 1<j#k<n

The generating function of these sums is exactly equal to
- = = 1 1 Y 2kt tk
VAL, 2, Py T) = e X — D [0 ——— — %
ks 21y Ph; T) @2ri)yn1 Z H Ly (aj aj al. J
tp€Ly/a) L1<j#k<n

Theorem 4.1.3 gives us the reciprocity laws for these ““Enhanced” Multiple elliptic Dedekind-

Rademacher sums. It can be stated in terms of the generating function as follows (Under the
hypothesis of theorem 4.1.3)

S (AL AL Zy, BysT) = 0
k=1

Where ¢4, - -+, @, are non-zero variables and 1 + --- + ¢, = 0.
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Let me now state the classical version of our Theorem 4.1.3. More precisely, when Im(7) — oo
from our result Theorem 4.1.3 we will obtain a formula ( generalizing a formula of Hall-Wilson-
Zagier in [23] for n = 3) which is the Multiple version of Dedekind reciprocity laws in terms of
classical Bernoulli functions.

The classical multiple Dedekind sums are defined by the expression

S(Ar, Xi akZ:I Il B ( Tl xj)

=0 1<j£k<n Ok

Now, we consider the generating function of these sums

5% T
.y ST (=)

ril sy, a;
R N T A

—
Rjpenn—1
Now, we state our main result of this subsection

Theorem 4.3.1 For all j, k,1 < j # k < n, we assume that
n
asxy — apx’; & Zay + Zay, and Zgoj =0

=1
Then

(4.3.23)

n e (ﬂ{%‘ Tk “f‘j})
—_— = . aj ag
E €5L4k7}(k72ﬂlquf § : : : Chni[tk) I]: : Pj

k=1 k=1 0<t<a I(t,k)U{k e( )‘1
I(tk#% JEI(tk)V{k} a;

TY; 1 TY; yx +t
H cot <aj> — o Z: H <cot <aj) — cotm (aj a% — T

X

jeI(t,k) k t1=0 jer(tk)
Equivalently,
(4.3.24)
i —_ = —> 1 e%{ajz’;:t—xj}
S(Ag, Xy, Pr) = Z 3 Card () I ——x
k=1 k=1 0<t<ay JI(tk)U{k} e —1

I(t,k)#0

ak—l

11 “’th( >_Z 11 (Coth( J)—l—zcotW(jxkaZt, xQ))

jel(tk) U =0 GEI(t,k)

Where t
I(tak)={1<j#k<n:{ajxka+ —a:j}:o}.
k
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Proof of theorem 4.3.1:

From the equality (2.2.6) we quote

(4.3.25)

~ Pif, Tutt _ . i (_ /{Z?ﬁft/_ /‘)
o (gt Bl ) ),

—_— . == + x4+t

] / ] I Tttt

Im(7)—oc0 aj @ e (%) —1 e (_(a;% - x;)) _p odat e}
J k

Then we deduce a cotangent version of the theorem 4.1.2

(4.3.26)
n 1 aﬁc—l ap—1 e (%{ajz;;:t — xj}> 2mie (—((I; x%l—,:t’ — $;))
O I Bl | [ e ¢ vy WA B
k=1 "k =0 t=0 j#k el e (—(d} o ) Kk

Now, we set

Rt =]
7k

we can reformulate this result in terms of Bernoulli functions, from the equality (1.0.2) we deduce

(4.3.27)
" 11 el
; -;Z:ﬁ Rik'ai;ﬂ #=0 t=0 j#£k
(Brj ({ ]x’ft — :c]}) + ( 2%00‘571 (a;.m%lzt/ — xé)) 51,7»]507 Jz,Z:t_$]}> (2%;%)% ' =0
Then
(4.3.28)
ah—1g,—1
Y _1>la1;€ > (Brj (0) + <21iCOt7T (a;- I;“a—;; 2 - :E;) + ;) 51,rj>

oy +t 2mi; "
BT]. <{aj k - .7}]}> < SDJ) =0
. a a;
JE1(t,k)U{k}

Now, we distinguish two cases for our summation over I(t,k) = () or 61,, = 1 and I(t, k) # 0 or
61, = 0. We remark that the case I(t,k) =) or d1,, = 1 gives us our quantity
n

—_— = —
Z G(Akv Xk’7 27TZ(I)k)
k=1
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that corresponds to the first member of our equality 4.3.23) and the rest corresponds to the
second member of (4.3.23).
Hence, we obtain our desired theorem 4.3.1. [

In particular, we have the following corollaries

Corollary 4.3.2 (Generic case)
For all j,k,1 < j # k < n, we assume that

n
asxy — apx’; & Lay + ZLay, and Zgoj =0

j=1
Indeed, if we assume that
—
X eRA+7"
Then
- 1 TP - TP
—_ = e ' J .
ZG(Ak,Xk, 2midy) = Gy H cot <a~> —Im H <cot <a~) + z)
k=1 1<j#£k<n J j=1 J
Equivalently,
a2l Ul wiy L P B wi\
ZG(A;C,X;C,(I)k) = 5o H coth <2a‘) o H (coth <2a-) + 1) H <coth (2(1‘) 1)
k=1 1<j#k<n J j=1 J j=1 J

Where A = (al,--~,an),y = (21, ", xp)
Proof of the corollary 4.3.2:
It’s comes from the following fact

X €eRA + 7" < 3 aunique 0 < t, < ay — 1 such that I(tg, k) =A{1,---,n}\{k}

Then for 0 < ¢t # t < ap — 1 we have I(t,k) = (). The corollary 4.3.2 comes from the theorem
4.3.1. O
Now, for n = 3 we can formulate our Theorem 4.3.1 as follows

Corollary 4.3.3 (Hall-Wilson-Zagier: n = 3) Let a1, a2, a3 be three positive integers which
—

no common factor, A = (a1, az,as3),xr1,xe,xs three real numbers, and 1,2, ps three variables

with sum zero. Then

=

3 a 3
ZG(A_)k’)?k,EC): - If XzG'RA+Z
k=1 0 otherwise.

Where A = (al,ag,ag),y = (z1, z2,3)

Proof of the corollary 4.3.3:
Since n = 3 then 0 < cardI(t, k) < 2. If cardI (¢, k) = 2,¥1 < k < 3 then X € RA +Z3 ( remark
that ¢ is unique for each k). Hence we use the result of corollary 4.3.2 to obtain the first part of
the corollary 4.3.3.

Otherwise, we take the real part of the two members of the equality (4.3.24) of the theorem
4.3.1 to obtain the rest of our desired corollary 4.3.3. [J
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4.4 Application 3: Dedekind-Sczech reciprocity result.

In this section we give a new and elementary proof of the reciprocity Theorem 4.4.1 of Sczech.
Our proof is clearly different to Sczech one.

We recall here Sczech’s result [42].

For a,c € Op, :=={z € C: 2L C L}, we define

1 t at
D(a,c) := E Y B (C;L> Ey (c;L>
teL/cL

Theorem 4.4.1 (R.Sczech). For a,c € Op\{0} pairwise coprime. Then

1
D(a,c) + D(e,a) = 2iE3(0; L) Im <“ Loy ) |
C

a ac

In the following, we attempt to deduce the result of Sczech above from our general Dedekind
Multiple elliptic reciprocity Laws satisfied by elliptic Multiple Dedekind Sums. We reformulate
a weak version of our reciprocity Law in Theorem 4.1.2 for Three variables ¢, 2 and 3.

Theorem 4.4.2 For 1,2, p3 Three variables, a1, a9, a3 € Or, pairwise coprime such that:

o1+ @2 + 3 =0.

Then, we have

1 ast ast 1 ait ast
— Z Dy, <@,2> Dy, <<p3,3> +— Z Dy, <¢1,1> Dy, <<p373>+
al as ai as aj a9 a1 ag az ag

teL/cL teL/cL
1 t t
— Z Dp (901701> Dy, <w7a2> =
as feLjeL ai’ as as’ as
di(g,L)di(2,L) (5, L)di(2,L) di(&,L)di(2,L)
_ as as + al as + al a2
ai a2 as

_ dQ(%vL)al n dZ(%aL)a2 . dQ(%vL)GS
a2as3 aias a1as

Proof of Theorem 4.4.2: We consider the function
F(z)= H Dy, ajz )
: AN
1<5<3

This function is meromorphic, and periodic with periods the Lattice L, because ¢1+@s+@3 = 0,
and have poles ( modulo L) at z = a%_, t € L/a;L all its poles have a simple multiplicity except
at z = 0 modulo L which is of order 3. Then, by residue Theorem, we obtain

| |
> D JL P (i) = | TL 2 () ose
j J

k=1 "* feLy/ap L\ {0} 1<Ak<3 1</ <3
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Now, we use the Laurent expansion of the form

DL<Z7 ()0) = Z dk((pv L)Zk_l

k>0
with
do(p, L) = 1,
we obtain
; 1 1
Res | [ Do (ajz; ‘Pﬂ> dzz=0| = —d (‘”L) s (W,L>+dl (w,L> d (9”3L> +
1<<3 aj al a9 as a9 al as

1

ca(Zr)a(2r) s Mo (2] 2 (2ir) (D)

as ay as asas al aias an alas as
which is the desired theorem 4.4.2.

As a consequence of our Theorem 4.4.2 we obtain the result of Sczech 4.4.1.
In fact, in the folllowing we prove the implication: Theorem 4.4.2 — Theorem 4.4.1.

Proof of theorem 4.4.2 = Theorem 4.4.1:

Without loss of generality we can assume

Y1
P2

<1

1) Let us compute the constant term of the quantity

3! dz

dl(%?L)dl(%7L) dl(@aL)dl(%’L) dl(%ll’L)dl(WQ’L)
+ +

A(p1, 92, 03) =
al a2 as

We use the following Lemma
Lemma 4.4.3 We have

(D) = 2 — Go(L)s —

. @2 — Gy(L)22 + o(23).

The lemma comes from the proposition 3.2.1, theorem 3.3.1 (d1(z, L) = E1(z, L)) and the
power series of ((z, L) at the origin,

(L) =2 = 3 Gon(L)22"H.

z
n>2
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2)

®1

Using ¢3 = —¢1 — 2 and < 1, we can get the Laurent expansions

P2
Y2 _ _14e
2 1+ 2+,
1 —__a
a 2t

Then we obtain, from these equalities and lemma 4.4.3, that the constant coefficient of

dl(%v L)dl(%a L)

ai

< 9, 9 >G2(L)

aijas  aid

is equal to

and the constant coefficient of

is equal to

and the constant coefficient of

is zero.
Hence, the constant term of

A1, 02, 93)

<d2 R B )GQ(L)

a1a3  aidz @203

is equal to

Secondly, we compute the constant term of the quantity

d2(&, L)ay N d2(£2, L)as N d2 (£, L)as

a2a3 a1a3 a1az

B(p1, 2, 3) =
to do that we use the following lemma

Lemma 4.4.4 We have

do(z, L) = —Go(L) — a&)j n “f&(f) 22+ o(2).
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3)

The lemma comes from the proposition 3.2.1, theorem 3.1.2 and the power series of p(z, L)
at the origin,

1
o(z, L) = S+ Z(2n + 1)Gopsa(L) 2.

n>1

Then, the constant term of B(¢1, @2, p3) is equal to

GQ(L)< L a?’)

as20as3 ajas a1ag
Finally, the constant term in the Laurent expansion of

_A(sola Y2, @3) - B(Splv ©2, @3)

is equal to

ai a2 as a2 as al
G (L) + + e —
azaz aiaz aia2 @13 ajaz2  a203

that is the constant term of Laurent expansion of the right member of the equality in
Theorem 4.4.2.

Now we compute the constant term of Laurent expansion of the left member of the equality
in Theorem 4.4.2:

In the following we compute successively the constant terms of laurent expansions of the
expressions

and

To do that we use the Laurent expansion of The Jacobi form

Dr(z;0) = Y di(ep, L)2" " do(, L) = 1,
k>0

©1

®2

¢ _
Dy <90_2a2> =2 4 <a2t,L> + 224, <a2t,L> ..
az ai P2 ai a2 ay

N
Dy, <“0_3“3> =5 g <a3t,L> + P4, <a‘°’t,L> 4.
as a1 ©3 ai as ai
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and

t t t t I i t
Dy (W ”) Dy <“03 “3> =d, (%L) dy <“2L> 4 2% 82, <a3L> n
az ai a3 ai al al ©2$3 ©2 ai

1: t 1e t 1: t
Ed1 ((127 L)+CL2s0_3d2 <a37 L>+so_2agd2 <a2, L>+ powers series in terms of 1 and s.
¥3 P2 as az ¢3 ai

Then, for fixed t €€ L/cL, the constant term of Laurent expansion of

1 t t
7DL (90_27 a2> DL <80_3) a3)
aq a2’ a asz ai

is equal to

t t t t 110 1 t
DL (So_la al) DL (gp_37 a3> = dl (0/37[/) dl <al?L> + 193 + ﬂdl <CL37L> +
ayp ag a3 az a2 a2 P1L3 ®1 a2

1 t 1 t 1 t
Edl (al,L>—|—a1¢_3d2 <a37 L>+901a3d2 <a1’ L>+ power series in terms of ¢1 and o.
¥3 a2 ©1as a2

Then, the constant term in the Laurent expansion of

is equal to
ast at al ast
dl D L dl N L) - — d2 N L
a2 az aza3 a2
Finally,
¢ _
Dy, <<,0_1’(11> _— +dy <alt,L> + @dg <a1t,L> + ...
ap  az $1 a2 ay as
. _
Dy <“0_3,a3> =B 44 <a3t,L> + 224, <a3t,L> .
as a2 ©3 as as a2
and

t t t t 11G¢
Dy, <80_1, al) Dy, <<€2’a2) =d <a17L> dq <aQ,L> +a%
ayp as a2 as as a3 P1p2



a: ast as ait
—dy <2,L> +—2dy <I,L> + powers series in terms of ¢ and s.
1 as Y2 as

Then, the constant term in the Laurent expansion of

is equal to
t t
d <CL17L> dy <a?’L>
as as

Now from our calculation 1), 2), 3) and Theorem 3.3.1, we obtain

1 a;t a a a a ar a:
Yo ¥ I B e (e R 6,
i1 073 fEL/aiL\{O}léj;ﬁkéi% 473 as20as ajas ai1ag a20as ajas aypag
as ast as ast al ast

— E dQ (,L) + — E d2 (GI,L> + a2 73 E d2 <a,2’L>

aiasg _ a1a9 _ as _
teL/a1 L\{0} teL/a1 L\{0} teL/az L\{0}

Now using the distribution formula
t c
Y (C,L> — G(0) (1 - g) Ve € O\{0}.
teL/cL\{0}
Then, we obtain

1 it
>~ 1 =& <%;L)=G2(L)I< e “3>
. a; _ . <3 a; asas ajas ai1an

i=1 " TeL/a; L\{0} 1<j#k !

where I(z) =z — Z.
This result is an Homogenization of the Theorem 4.4.1. In particular, for a; = a,a2 = c,a3 =1,
we get our implication : Theorem 4.4.2 —> Theorem 4.4.1. [

4.5 Proof of Theorems 4.1.1 and 4.1.3

We consider the function

j=n
3 A _ (mj) [ 1 . Pj
F(Z, P, A,M) = 1_[1DLj] (ajz—zj,aj>
J:

Where
A= ((al...,an);(all,... a )),M:(ml,...,mn),

r'n

/

= / ay
O = (o1,...,0n), 2 = —T +xka—7'.
k

We assume that:
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n
)Y ¢pieL=2r+1Z,
=1

ii) (a o — alxy, aimy — aj:zri) ¢ < al, ]>Z x (ai,a;)Z

The function
— —
F:z— F(z,®,A4,M)

has the following properties
i) F' is meromorphic, has poles on

zi 9
Z:ﬁ—af +;Z (tzv z)EZ

7 %
this pole has order equal to m; + 1.
ii) F'is periodic with periods containing the lattice L i.e

Flz+p, ® A M)=F(z,®,4,M),Vpe L

this comes from
ELi(p7 30)) DLi(Z’ 90)

&
=e (Z—jEL(p, w)) Dr,(z,¢)

Then, Vp € L

Fletpn@ A0 = e(EL@,z%)) P @, A0,
=1
= F(z,®,4,M),

because Z w; €L
i=1

Then, using Liouville residue theorem for an elliptic function with periods containing lattice
L, we obtain

n
. t ts
Z Z Res<F(z,3,_A),M)dz;z:Zf7;7'+1>:O
a, a a;
(t5,th)en? g t
0<t;<ay, 0< th<al
It remains to compute their residues. The function
F:z— F(z,a,z,ﬂ)

has poles at z = % — —T + L (ti,t;) € 7Z? with order m; + 1.
We will compute the res&due at 2 — —7‘ —|— L (t;,t)) € Z?, the other residues being completely

equivalent. We use the Laurent expansmn of the Jacobi form
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—1)"kmy!
D(Lmk) <a§€z — 2 90’“) = (1) K -7 + analytic part.
k a, o M1 ( k

y Zk+tk)
A

- ’
where tj, = —t], —I—th—iT,O <ty < ag,0< t), <a
and, more generally,

1T v
(m;) ©j @ " (mj+rj) 2k + U K2 2+t
DLj] < a;2 — Zj; . ) = Z 7'rj! ‘DLj] J (CL; az, - Zj,; z— CLk,

r; 20 J
Hence
z t
Res <F(Z,8,A7M)d2a = kjt k> -
ag,
AN g
=k ) (=1 Fmy! aj " mytry) (g 2kt tk N2
(ELk(tk’k:)>/mk+1 > 11 p P T\ G T
ak T1heees Thoseos =0 1<]7£k<n J° k J

r1+.4.+f‘k+...+rn:mk

Let us give some details on this fact. We begin with the change of variable z — z + i—’;, ty € Ly.
Then, we obtain

Res <F(2,3,Z,M)dz;z: Z’i}%) = Res (F(z+ i—z,g,z,ﬁ)dz;z: Z—i;) =

k

- ) t :
Res D(Ln}:k) (a;cz—l—tk—zk;f—:) H D(LTJ) <a z—l—a/a—k— ~;?> dz;z = Z—jﬂ =
1<j#k<n k J

. i .
(ELk (f, 22 )) Res D(erk) (a’;qz — Zk; %’j) H DE—ZZ]) (a z+ a/—k — zj; ('0]> dz;z = Z—ic
1<j£k<n T aj, aj Qg

Now, we know that

—1)"emy,!
Démk) <a§€z — 2 90"1’) = ()™ —7 + analytic part.
k ag al mg+1 (Z . Zk-l-tk) k
aj,
and
t ; t
D (a2 = X i) (w2l 2 (s 2R
aj 30 ! ag a; ak

Hence,

Res (F(z,g, Z,M)dz; z = Z’V(j,f’“) (=1) ™k my! (ELk ({]w %:))

miy.+1
k ay,"k

AN g
4" ymytry) (2Kt L P
X ——D;" a; — zj;—
ril L 7 al I,
T1seees Thosens rn =0 1<];£k:<n J k J
r1+..4+fk+.4.+rn:mk
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After using the functional equation satisfied by the Jacobi form

DL('Z? ()0) =e (EL(za (,0)) DL((:D’ Z)

we obtain

— — d —_1)ym | 2k + fk ; ~
Res (F(z, D, A,M)dz; z = z’“ﬂ?f’“) = a,)m:ﬂk X e Z ELj(a; T %) e (ELk (ts f—:))
g 1<#k<n k J

/'Tj

a - f
i pmgtry) (il 2k Ttk .
<YL e (Bt

N N e CL]
T seees Floyeres rn=0 1<];£k;<n
T1+~-<+’7‘k+-<-+Tn:mk

Now, we use the following :
py
EL(2,0) = T EL(2,¢)
aj
and the fact that:

n
Y owiel
j=1

we conclude that

Res <F(z,@,z,ﬁ)d2;z = Z’“;;f’“> = "t o | Z ELj(zj,%)
J

a’ mp+1
k -
1<jgn
AR

Q' . s
i pnmgtr) (i 2kt Uk 4
<X I S (Bt

a
Pl T 20 1K 2k<n J k
it Pt Frn=my

The other residues are computed in the same way.
Finally, we have

©i
el - Z ELj(ZﬁCTJJ')

1<j<n
n mp | a/ L] g
(*1) my! j (mj+r;) (Y5 s 2k + g
—_— E E | | D7 = al — 2z
a et ril ki a;’ 7 d] /
k=1 k 0<tp<ap—1 ogt;ga;—l T1oeeesThsersTn 20 1<j#k<n J k
- ag f r1+.4.+'i‘k+4.4+rn:mk
te=tp F Tty
=0

this gives our statement

n

a" — 7 = — = —
Z(_l)mkmk‘ Z H 7;7" d(Aka ;c?Zk7¢k7Mk + Rva) =
k=1 ]—%Z>W 1<j#£k<n 7

'r1+...+7‘k+...+rn:mk
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5  Algebraicity and Damerell’s type result for Jacobi forms
D, (z;¢) and elliptic Bernoulli numbers B,,(y; 7).

5.1 Algebraicity of Jacobi forms D.(z; )
We fix a Weierstrass Model

y? =423 — go(Q)x — g3(Q),

(E, dw) Ada@=d, ¥ p* ke{23),
Y pEQ,p#0
do = 60, d3 = 140

for an elliptic curve E, where () is the complex Lattice which is formed by the complex periods
of (E , d—"”) .

y
We note F' = Q (g2(€2), ¢3(€2)) the definition field of the Weierstrass Model (E, deg) . For any
o € Aut(C/F) we consider
p— plol
application of: C/Q — C/Q via the action of o over the coordinates (Pq(p), P, (p)) the image
of the point p € C/Q in Weierstrass Model (E, df) .

Let L D Q be a complex Lattice with finite index. We associate to L the Jacobi form
Dp(z,¢):

w2

() )

Dp(z¢) = —e
“ or (&) 0 (£)
where L = Zwy + Zwz, 7 = £ € H, ¢ = p1w1 + paws, (¢1, p2) € R2.

We have the following properties of Dy, (z; ) :
Proposition 5.1.1 Let p be an integer > 1.

i) The fonction z — Dq (z;p) is defined over the field F(E[p]), extension of the field F
obtained by adjonction of the coordinates of the p-torsion points of E.

ii) For all 0 € Aut(C/F), we have
Dy (59) = Die (701)

i11) In particular, the function z — Dy (z;¢) is defined over F (¢ (mod L),L/S). Where
F(p (mod L),L/R) is the smallest subextension of F(E|[p|)/F such that :
the point ¢ modulo L and the subgroup L/ are defined.
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5.2  Algebraicity of elliptic Bernoulli numbers B,,(¢; 7).

Let i be the eta Dedekind function defined by:
Forr e H

1 .
nr) = [[Q-q).¢r ="
n>1

The main result of this subsection is the following
Theorem 5.2.1 Let 7 belonging to an imaginary quadratic field with Im(t) > 0. For positive

integers f, k with k > 3 and @ complex parameter of a primitive f-division point i.e ¢ complex
parameter of f-division of order f in C/Zt + Z. Then

f* B3 7)
n(r)*
s an algebraic integer.

For this result we give two differents proofs. In these proofs we use the g-expansion
principle and the complex multiplication theory.
For N a positive integer we define

P(N) = {MGSLQ(Z):M:<(1) ?) (modN)}

Ift M= (CCL b) we define the function

d

ar +b
ct+d

M :H —H,M(T) =
Definition 5.2.2 By a modular function of level N, we mean a function f defined on H such
that:
i) f is meromorphic on H
i) foM = f,¥YM € T'(N)

i11) VM € SLy(Z),3B > 0 such that for all w € H with Im(w) > B, we have

2miw

foM(w) = Z ang™, Ny € Z,a,C, and q% =e N .
n>No

This expansion is called the Fourier expansion or q-expansion of foM and the a, are called
their coefficients.

As usual we denote the absolute modular invariant by j(w). We state the following propositions
whose proofs are omitted here.
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Proposition 5.2.3 (g-expansion principle):
a) Let f be a modular function of level one, with Fourier expansion given by

f(w) = Z anq

n>Nop

z|s

i) If all the a,, are contained in a subfield K of C, then f belongs to K(j) i.e f is a rational
function of j with coefficients in K.

it) If f is holomorphic on H and all the a,, are contained in some additive subgroup A of C,
then f belongs to Alj] i.e f is a polynomial function of j with coefficients in A.

b) Let f be a modular function of level N on 'H. Suppose further that for each M € SLy(7Z), the
Fourier Coefficients of foM are contained in some additive subgroup A of C. Then f is integral
over Alj].

We know that every elliptic curve with complex multiplication is defined over an algebraic
extension of Q. Precisely, if the complex Lattice L’ admits a complex multiplier w, then it is of
the form oL, where L is a Lattice contained in K = Q(w) be an imgainary quadratic field.
Next, we recall the main result concerning the integrality of j.

Proposition 5.2.4 Let L a complex Lattice with complex multiplier w, take {1,7} a basis for
Ok, K = Q(w) imaginary quadratic field, with Im(t) > 0. Then

3
o) - 12100

s algebraic over Q, where
3 2 . 2\ 12
A(OK) = A(L7) = 92(0)* = 27g5(0x)? = (2min(7)?)

Remark that ¢, = €™ is a real number ( because T is a quadratic imaginary complex). Then
n(7) is a real number.
We have
A(Og) = +0'% & = 2x|n(1) %

Then g2(00k) and g3(wOK) are algebraic over Q.

Indeed, if L is a Lattice contained in K. As it is commensurable with Ok, WL is commensurable
with @O . Then for all m > 2, gn(wOk) is algebraic over Q, see [49] pp.38-39. Then , by the
homogeneity of gm, for all m > 2

gm(OK)

) is algebraic over Q.
w m

Theorem 5.2.5 Let K a quadratic imaginary number field and L a complex lattice in K. Then,
we have for m > 2

gm(OK) and Em(aa OK)

@2771 om

are algebraic over Q, for all o € QL\ L.
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First Proof of theorem 5.2.1:
We use the following distribution formulas:

> (Ez <];L> —EQ(O,L)) =0,

feL/NL\{0}

More generally, for any w € C\{0} such that: wL C L, we have

" 0 If n odd
) Z ) (En (w’L> - En(oaL)> = {w(w”_l — ©)E,(0,L) Otherwise
teL/wL\{0}

Or equivalently,

Z B t A 0 If n is odd
_ M\ W) T (W =1)E,(0,L) Otherwise
fel/wI)\{0}

Now, we take in particular w = N, Then for 1 < k < N2, we have by induction on N:

k
3 EN(;;,L> e@[En(o,L),n>4.

feL/NL\{0}

We obtain a linear system, 1 < k < N2, we deduce that:
En (4, L) are integral over the ring Q[E, (0, L), n > 4] for all ¢ € L/NL\{0}.
We know, that for L = ©Ox and N > 2 | ¢,(wOk) is algebraic over Q. Then Ey (%,L) is
algebraic over Q. Hence,

En (x,0k)

oN

is algebraic over Q.
From theorem 3.1.2 we get, that for f € C\{0},

- =,
/ teL/fL !
or equivalently
Py D) =~ S (Bt o) B (LL), w2
A2 - (27TZ)k L\, k f’ ) = 4.
teL/fL

Now, our theorem 5.2.1 comes from theorem 5.2.5. [J
Second Proof of theorem 5.2.1:
By the g-expansion principle, we claim that
_ pBile L =77+ 2)
n(r)%
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is holomorphic modular function for I'(12f).
We prove this fact, we know that

at +b at +b
—b .
CT+d+( S01+G’Q02)7C7_+d

ar+b _

B,, <(d<p1 — cp2) > = (et +d)" B (17 + p2;7),

and

b
V(CCL d) ESLQ(Z),(¢1,@2)€R2

where (4 p.¢.q is a root of unity and

Caped =1,V (a Z) € I (12).

fh By, L=Z7+17)
n(r)2*
ring generated by Fourier coefficients of g-expansion of this function. Explicitely, we know that

Then by the g-expansion principle 7 — is algebraic over A[j] where A =

FBilp, L = Zr+Z) = f*Brlen)+(-1)* 1k Y e S mF I (sign(m))e (”W) g7

mm f
Osur<f mo=v 2(;2d )
Then -
AczleT].
An other point of view, we can deduce this formula by using the following Hecke result
!/
t 11 (=2mi)* w1 [Nt mn

B(pr=zrez) =t X pmery X o7 (F)(F

n=tz (mod f)

Then, for ¢ = 17 + @2, (91, p2) € R?, we have

1 1 (—2mi)* w1 (M2 mn
By (o, L = ZT+Z)_5O{%}Z i F T oD > e )

nez mn>0
m=¢1 (mod f)

Note that ,
Z 1 :{(1+( 1))<(k) If o3 =0
“ (o2 +n)F | Clp2, k) + (=1)"C(—p2,k) TEO< 2 <1
Using this result of Hecke and the following formula
f*Bi(p, L) = B Z )Ek<t L), Vk > 2
( teL/fL r
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Again, we deduce

PBo D) = PRl -0 Y elButtp) S mb i sign(me (") o
0<pw<f mmg >0
mo=v (mod f)

Then, by complex multiplication theory ( proposition 5.2.4) we deduce that

SFBi(g;7)
n ()

is an algebraic integer. [J

6 The Congruence of Clausen-von Staudt for elliptic Bernoulli
functions

In the degnerate case “ cups at 00”, we obtain the Bernoulli numbers. In the case of L = Zi+Z (
case of the lemniscatic curve y? = 423 — 4z, w = %’”), we obtain a generalization of the so-called
Hurwitz numbers. Our elliptic Bernoulli numbers can be regarded as a generalization of the
so-called Bernoulli-Hurwitz stutied by Katz [32].

The main purpose of this section is to settle the theorem of von staudt-Clausen for elliptic
Bernoulli numbers By (¢, ZT + Z) in the case 7 is imaginary quadratic and ¢ is the rational

parameter of torsion point on the elliptic curve C/Z71 + Z.

We begin this section by an overview of the classical Von Staudt Clausen congruence and
introducing the Weber functions. Indeed , we establish a recursion formula satisfied by Eisen-
stein series. These functions are particulary well suited to question of analogous von Staudt
clausen congruence type. Another fondamental step in our study, to obtain the main result of
this section, is principally based on the systematic use of the results of Hasse [24] and Herglotz
[25]. In particular, we obtain arithmetic information for so-called singular values of Bernoulli
ellitpic functions and Eisenstein series, that is to say when the lattice L admits complex multi-
plications.

Throught this section K denotes a quadratic imaginary field.

Let us make an overview of Von Staudt Clausen congruence for ordinary Bernoulli numbers.
For now, let n be an even positive integer. An elementary property of Bernoulli numbers is the
following discovered independently by T. Clausen [18] and K. G. C. von Staudt [46] in 1840.
The von Staudt-Clausen theorem states that

e The structure of the denominator of B, is given by

1
(6.0.29) By+ > -€L
p71|np

Equivalently
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(6.0.30) denominator of (B,,) = H p.

p—l’n
Sometimes the theorem is stated in this alternative form:

For an even integer k£ > 2 and any prime p the product pBy, is p-integral, that is, pBj is a
rational number ¢/s such that p does not divide s. Moreover:

(6.0.31) pB, = { =1 (mod p) if (p — 1) divides k

0 (mod p) if (p — 1) does not divide k.
6.1 Weber’s functions and Eisenstein series.

Let L = Zwy + Zws complex lattice i.e 7 = :‘j—; € H.

We define the Weber function hr(z) by

—2735%911(2) if drg < —4

hi(z) = § 2312850 ()2 i dg = -4

—2936%§)L(2)3 if dxg=-3

Let j, 2,73 be functions as in Weber [48] by

( 3
j= 2633 !JZ((LL)) ,
A(L) = g2(L)* — 27g3(L)? = (2mi) (7)™,

(6.1.32) o = ] = 2239%(;)7

s = /j— 1728 = 283320

Let K be an imaginary quadratic number field. We let dx denote the discriminant of K

and fix a non-zero fractional Og-ideal L. Let { be an integral ideal in K and f be the smallest
positive integer divisible by f. Let wi,ws be a basis of the ideal L with Im (:}’—;) > 0. Thus

K=Q(r), 7= Z—;, j(7) is algebraic integer.

We put

t
hy == hp, <f> yt=tiwy + taws, 0 < 1,2 < f.

Then it is known, by Hasse [24], that these f-division values of hy(z) are algebraic numbers
whose denominators are at most divisible by prime factors of f.
Now, we state the following result about singular values of Eisenstein series
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Theorem 6.1.1 Vt € L/fL\{0}, we have

k-0 (32) = Y Awdton (5) 6 (Ji)bgg(L)C

2a+3b+4c=k,
a,b,c20

with Agp(t) € Q(&f), & is a primitive root of unity, in particular the numerator of Agp(t) is
an integer in Q(&y) and the denominator of Aqyp c(t) is at most powers of 2.

Proof :  'We proced by induction on k.
We examine the cases: k = 4,5:

(4—1)E, <; L) = 61 <;>2 - %gz(L)

oo () - () )

Then the Theorem holds for k = 4, 5.
Now assume that the Theorem holds for k¥ < n + 1. Then by recursive formula for Fj (%, L),

we have

(k + 1) Ej 1o (; L> —6 WZ_;Q 0 ?klj)fi;(llj(_k 1+) Ve <;L> Egpo <;L> +

p=1,q21

12<(: . 11;;(5—11)) oL <;> b (;L>

Hence

(k+1)!Ep s ( ) =6 Z G+ 1) Eps <;,L> (g + 1) Eqi0 (;,L) +

p+q=k—2
p=1,q>1

1206~ i () B (5.2).

Then by induction we get the Theorem. [J

6.2 Statement and proof of elliptic Von-Staudt Clausen Congruence.

We state our elliptic analogue of the von-Staudt Clausen congruence. Let 7 belong to an
imaginary quadratic field K with Im(7) > 0. In this subsection we set L = Z7 + Z.
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Theorem 6.2.1 (Even index)

Let § be an integral ideal in K # Q(i), Q(v/—3) and f be the smallest positive integer divisible by
f. Then for ¢ a complex parameter of a primitive f-division point of C/Z1 + Z and for k > 3,
we have

B iT
f2k 2k(804k ) - CQ]C + D2k

n(r)
where o
Yoy gY Ap(wr,w)?-T .
Cop = (I 57 DL i)
—1|2k p
P
pprime=5

b
Doy =2k Y e(Brlt,e) Y, Aavgb,c(t)(—1)a22b+20—2k30—%30*%50*%?(—h§+37§7§ht—27§7§).

(EL/TIA(O) s

k=6w+2u+3v,0<u<20<v <1, P(j) € Z[j]
and Ap(wi,ws2) denote the penultimate coefficient in the multiplicative equation

Pt — Ay (wr, wo)z? + ... — Ap(wr,wa)T + (—1)%1 =0

satisfied by

and Ag2p.0(t) € Q(&y) and the denominator of Agap(t) is at most powers of 2. Finally,

Ap(wlaw2) = ’Y;Lp'ygpfp(j)a

with
p—1 , 4o
?:6tp+2up+31)p,0<up<2,0§vp< L, fp(4) € Z[jl,d fp=tp.

Corollary 6.2.2 In the even index case the denominator of the number

ok Baw (3 7)
oL

is divisible by at most prime factors of 2, 3, f, v2,v3 or prime p > 5 such that p — 1 divides 2k.

Theorem 6.2.3 (Odd index)
Let § be an integral ideal in K # Q(i), Q(v/—3) and f be the smallest positive integer divisible
by f. Then for ¢ a complex parameter of a primitive f-division point of C/L and for k > 3, we
have B (o)
s

kaH% = Cop41 + Dokt
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where

Cop+1 =0
and
Doj1 = % X Z e(EL(t, 9)) el <t> X
G 7

b
E Aa,2b+1,c(t)(_1)a22b+zc_2k+230_k+172367k+1'}/3%67k+1h?( _ h? + 373,}/%}% - 2737:;1) )
a+3b+2c=k—1
a,b,c20

Corollary 6.2.4 In the odd index case the denominator of the number

f2k+1 Boj+1 (@? T)
,7(7.)4k+2

is only divisible by at most prime factors of 2, 8, f, v2(L) and v3(L).

Theorem 6.2.5 K = Q(7)
Let § be an integral ideal in K = Q(i) and f be the smallest positive integer divisible by f. Then
for ¢ a complex parameter of a primitive f-division point of C/Of and for k > 3, we have

i) The number
f4k By (p;7)
n(r)s
is divisible by at most prime factors of 2,3, f and prime p > 5 such that p divides 4k.

it) For k 20 (mod 4), we have the number

K Bi(p;7)
"

1s divisible by at most prime factors of 2,3, f.

Theorem 6.2.6 K = Q(v/—3)
Let § be an integral ideal in K = Q(v/—3) and f be the smallest positive integer divisible by f.
Then for ¢ a complex parameter of a primitive f-division point of C/Ok and for k > 3,

i) The number
o Bor (3 7)
n(r)t2k
is divisible by at most prime factors of 2,3, f and prime p > 5 such that p divides 6k.

it) For k20 (mod 6), we have the number

k Br(p; 7)
oE

is divisible by at most prime factors of 2,3, f.
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Remark 6.2.7 The first part Cy, of our elliptic Bernoulli number f* i’“(gi) is already studied

by G. Herglotz [25] and H.Lang [36, 37]. Consequently our attention is to study in details the
second object Dy,.

Proof of theorems 6.2.1, 6.2.3 and 6.2.5:

We get from Theorem 3.1.2

- | t
f2k B;éc-f;flk = n(42’¢k()71) Z e(EL(t,cp))EQk <f,L>

teL/fL

t
1L/ FIN0)

Then in G. Herglotz [25] and H.Lang [36, 37] it is showed, that

2k

(2k)! k172737" w17w2)7 :
——Ey (0,L) = (—1 + —+7“7”ij,
774k(7_)2( )=(-1) 6 pzl;g D 232()
pprime
where Gai(j) € Z[j], p prime > 5, and
t
Dy, = n(zik();) > (Bt 9)Ex (f’L>
teL/FLN{0}
t
= a5 Bt )k 1w (1)
teL/fL\{0}
Y o \?
— ot X eBte) Y Ao (1) o (F) ey
tEL/FLAO) RTAsC

Now, using the Weierstrass gp-function model,

p1(2)° = 491(2)* — g2(D)p1(2) — g5(L)
Here di < —4, we use the Weber’s functions and notations to obtain
(A(L)s = (2mi)n(r)?,
g2(L) = 272371 ASny,
(6.2.33) gs(L) = 273373 A2y,

pr(z) = —27237 At yy 1y thi(2),

/ de_3 Al _a _
pL(z)2:2 43 3A2723733( h3+3727 hy — 27§7§)

\
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Then

2k £\ b .
D%:m > elBulte) D Awze(t)pr <f> <4m(z)3—gz(L)m(Z)—ga(L)) 92(L)
" teL/fL\{0} aJ;%th;O:k
Hence
b
D=2k 3 e(Br(tp) Y. Auae(t)(—1)722 e hodemkademkpn (3o 2904 )
teL/IIN{0} AT

By theorem 6.1.1, we know that the denominator of A, 2 .(t) is at most powers of 2 in the other
hand the f-division values of Weber’s function h; are algebraic numbers whose denominators
are at most divisible by prime factors of f cf. Hasse [24]. This completes the proof of theorem
6.2.1.

Using the relation (6.2.33) the proof of theorem 6.2.3 is similar as the theorem 6.2.1.
Now, to prove the theorem 6.2.5 and theorem 6.2.6 you use same techniques as in the proof of
the theorem 6.2.1, we must only remark that:

j=1728,70 =223,93 =0 If K = Q(i)
6.2.34

This complete the proof of our result of elliptic analogue to Von Staudt Clausen over an
imaginary quadratic number field K = Q(7) for the elliptic Bernoulli numbers Boy (¢, 7). O

Theorem 6.2.8 (2-division points)
Let L be an arbitrary complex lattice with L = Zw1 + Zws, T = % € H. Then for ¢ a complex
parameter of a non zero 2-division point of C/L , we have

BQk-l—l(govT) = 07ij 2 0

and
2 Bok(p,7)
n*(7)
where Cy, and Doy, are the same as in the Theorem 6.2.1

= Czk +D2k,Vk Z 2

In this case the coefficients By (p, 7) are explicitely given by example 2.2.2.

7 The Kummer Congruence for elliptic Bernoulli functions

It should be noted that our results in this paragraph are to be brought closer to those obtained
by Villegas, in terms of special values of certain function L, in its paper [47].

In this section, it will be shown that the singular values of elliptic Bernoulli numbers satisfy
a Kummer congruence.
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7.1 An overview of the classical Kummer Congruence

We begin with an overview of classical Kummer congruences :
Let k,, and r with £ > r > 1 and p be prime with p — 1 fk. The classical Kummer congruence
[35] states that the Bernoulli numbers satisfy

r

Bt sp-1)
_)sos—Etsleml) dp").

In the study of p-adic L-series Iwasawa introduced generalized Bernoulli numbers B, ,, associated
to characters x s of conductor f. Carlitz [16] proved a Kummer congruence for these generalized
Bernoulli numbers. He showed that with k, p, and r as before and with p [f, then

r

Bt sp-1)
_q)sos—kslemh) dph).
g( ) e p—y (mod p")

In our main result of this section, we are insterested by a related Kummer congruence which
was established by Vandiver [45] who demonstrated that if k, and r with & > r > 1 and p be
prime with p — 1 fk, and a and f positive integers, then

~ " k+s(p—1)

=0 (modp").

7.2 Statement and proof of the elliptic Kummer congruence.
We state now our Kummer congruence type satisfied by the elliptic Bernoulli numbers By (¢, L).

Theorem 7.2.1 let p > 5 be prime and let k,r be integers with k >r > 1, f > 1 andp—1 Jk,
© € C\{0} of order f i.e f =[L+Zy: L], then if T is an imaginary quadratic complex number
with Imrm > 0, We have

r

_1\s(1+251) s pkts(p—1) Bk(907L) r
Sz_%( 1) G f Fts(p—1) 0 (mod p").

Siegel in [43] has shown that the values at positive integers of L(s,x), where K is an imag-
inary quadratic field, f is an integral ideal of K, x = ey € is a primitive ray-class character
modf and ¥ is a Grossencharacter, is expressed in terms of the elliptic Bernoulli numbers. Con-
sequently, our theorem 7.2.1 also give a Kummer congruence for the values of this Hecke L-series.

Proof of theorem 7.2.1:
In the proof of this theorem we need the g-expansion of By(¢, L) and the standard Kummer
congruence. We have the following g-expansion formula
mp

f*Br(e, L) = [*Brlp)+(=) "k Y e(Brlt,e) Y mk_l(sign(m))e<>qm-7l2

0< mmo >0 f
Suv<t mo=v (mod f)
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Hence

1
Bulp ) € 2| 1.6 [l
Now using classical Kummer congruence and Vandiver result. Then, we write the sum
T T
p—1 _ B (<P L) _ Bk+s( —1) (90)
-1 8(1+P21)Cs k+s(p—1) _ PE\¥ L) _ —1sC* k+s(p 1)P—+
2 Ty =~ e D

m

Y et Y m’“—1<sign<m>>e<”“‘)q

0< W< mmog >0 f
SH ! mo=v (mod f)

7 Z(_1)k++s(p—1)cimk+s(p—1)
s=0

We remark , after Newton’s binomial, that

Z(_1)k++s(p—1)07§mk+s(p—1) — mk1 ((_m)p—l _ 1)7' =0 (mod pr).
s=0

Let R(p,q) denote the ring of g-expansions of the form

m
E amq 12

with algebraic and p-integral coeflicients, with only finite number of nonzero terms with m < 0.
Hence one can use the last equalities to write

T

25t _1y_Brlp, L)
2. —1 s(1+221) ~s phts(p—1)  PrlP, L) .
(7.2.35) ;0( )+ o g Frsp D =0 (mod RE.a)

Hence, we can conclude with the result of Theorem 5.2.1 and the congruence 7.2.35, that the
Kummer congruence for elliptic Bernoulli numbers By (g, 7) is valid.

8 Hecke L-functions associated to Elliptic Bernoulli functions

The main purpose of this section is to study special values of Hecke L-Functions and their con-
nection with elliptic Bernoulli numbers.

8.1 Statement of the main result

Let K be a number Field, (x(s) the Dedekind zeta Function of K. We can break up (x into a
finite sum

Cr(s) = Cr(s, A),
A

where A runs over the ideal classgroup of K and
1
Cr(s,A) = Z o) Re(s) > 1.

acA
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Then (i (s, A) is, after analytic continuation, a meromorphic function of s with a simple pole
at s = 1 as its only singularity. Moreover, the residue of (i (s, A) at s = 1 is independent of the
ideal class A chosen; this fact, discovered by Dirichlet( for quadratic fields) is at the basis of the
analytic determination of class number of K. If we consider the Laurent expansion of (x (s, A)
at s = 1, however, say

CK

-1

Cr(s,A) = + po(A) + p1(A)(s —1) + ...

More generally, to a character x of the ideal class group of K, we associate the L-series

x(a)
N(a) for Re(s) >1

The sum runs over all ideals a of K.
Now, x being an ideal class character, we may write

L(s,x) = Z X(4))  N(a)™

acA

= ZX )Ck (8, A)
:ZX <

(A)+p1(A)(s—1)+...>

Then

L(s,x) = Y _ x(A)po(A) +o(s — 1)
A

since, x being # xo = 1, Z x(A) =0.
A
Taking the limit as s — 1, we get

= x(A)po(A
A

Then it transpires that the constant term pg(A) is no longer independent of the choice of A.
When K is an imaginary quadratic field, the evaluation of pg(A) accomplished by Kronecker[34]
( the so-called “First Kronecker limit Formula”), when K is real quadratic field pp(A) evaluated
by D. Zagier [52].

Our interest here is to connect L(s = m,x),m > 1, to elliptic Bernoulli numbers is as follows.
One may express the special values of Hecke L-functions of K using the coefficients of Laurent
expression of Jacobi forms Dy, (z, ¢).

Let K be an imaginary quadratic field with ring of integers Og. We consider Ok and any ideal
F of Ok to be lattices in C through a fixed embedding Q — C. Le x be an algebraic Hecke
character of ideals in K, with conductor f and type (m,n) i.e

x : Ik (f) — Q*

59



homomorphism of the form

x((B)) = e(B)™B"
for some finite character

e: (Ox/f)* — Q~,
we set () = ™3™ where 3 € Ok is prime to §

e((8)) = €(B), (B,§) =1

we extend e so that e(5) = 0 for (5,f) # 1 Then the Hecke L-function associated to x is defined
by
X a)
N(a)®

(a,p)=
where the sum is over integral ideals of Ok prime to f, and this series is absolutely convergent
if Re(s) > ™" + 1. The Hecke L-function is known to have a meromorphic continuation to the
whole complex s-plane and a functional equation.
The function L¢(s, x) has a pole at s = s¢ if and only if the conductor of x is trivial, m = n and

_ m+n

S0 = a5 + 1.
Now, we can state the main result of this section. The Hecke L-function may be expressed in
terms of Elliptic Bernoulli numbers as follows.

Theorem 8.1.1 (Interpolation)

Let § be an ideal of K. Let Ik (f) be the subgroup of the ideal groups of K consisting of ideal
prime to f, and Pk (f) be the subgroup of I1(f) of principal ideals (o) such that « =1 (mod )f.
Let x be an algebraic Hecke Character of K of conductor f and type (—m,m). Then we have

Lo =m0 = g o S <y<<b>>

Bis((A); ba)
VD )
Or equivalently

Li(s =m,x)

m

we have w; is the number of roots of 1 congruent to 1 (mod f), A runs over all ray-classes

)

modf, is the imaginary part of ifgg;‘), D is the discriminant of K. G, is the Gaussian sum
associated to x, defined as follows.
Let © be the different of K. Let a be an ideal such that (a,f) = 1, belonging to the inverse
class of '@ k"1, Then there exists an element v € K such that

(y) =of "Dx "
We fiz v one for all. The Gaussian sum is defined by

GX _ Z X(a)e2m‘5(o¢'y)
a (mod)f

G ) dQS(SO(A); bA)

where o Tuns over the complete set of representatives (mod f) and S denotes the trace from K

to Q.
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Let
a={ e K:S50\a) € Z,Va € a}

ideal of K. It is known that aa* is independent of a and in fact:
aa* = (1)* =D L.

Furthermore (a*)* = a and N(®g) = |Dg|, Dg: the discriminant of K. We make explicit
calculation if K is a quadratic field over Q, with discriminant Dg. Let {w;, w2} be an integral

basis of a:
a=Zwi + Zwy,a" ={X € K : S(Aw1), S(A\we) € Z}

Then
S()\wl) =
S(Awz) = n
where m,n € Z
ie
A+ A =
Awg + 5\@1 = n
Then _ _
w2 w1
A=m— — —N— —
W1y — Wawi W12 — Wawi
Hence _ _
w —
=72 47—+
wWiwy — Waw1 Wiwo — Waw1
Now,

WiWo — Waw] = :EN(CL)\/ ’DK‘

and this means that

1 1
af=a !t —— ], ieaa* = =D L
VDKl |Dk|

Moreover N (D) = |Dg].

We have

a) consider the ideal a = f!Dx ! in K; clearly a* = f.

b) Let us choose in the class of fD g, an integral ideal a coprime to f. Then

1

af "Dk = (7)., for v € K

ie
aj ! = (7)D g has exact denominator f.
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Lemma 8.1.2
i)
|Gx[? = N(f) i.e |Gy| = V/N(f).
B =Gt ST xS,

A (mod f)
Proof :
GXGX — GX Z X(a)€—27ri5'(a'y)
a (mod f)
— Z X(A) Z X(a)6727ri3(a()\71)'y)
A (mod §) a (mod f)
Because

GX _ Z X(a)e%riS(oz’y)
a (mod)f

« be an integer in K coprime to f, then aA runs over a complete set of prime residue classes
modulo f when A does so. Thus

GX _ X(a) Z X()\)eQMS(a)q)
A (mod )f

Thus

Z eZTriS(uow) _ { 0 If H g f

N(f) Ifpc
o iy (f) Huef

From the equalities above, we have then
‘GXP = N(f).

From the last equality above, we obtain directly the second assertion of our lemma:

X(Oé) — G;l Z X(A)eQWiS(Aa'y)'
A (mod )
8.2 Proof of the Interpolation Theorem 8.1.1: Computation of Li(s, x)

There are three key lemmas for our proof of the main result of this section.
First of all, the Hecke L-function associated to x is defined by

(a)
Li(s,x) = X .
f %‘ll N(e)
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where the sum is over all integral of Og coprime to f,

Xa
=22 Ny

A acA

where A runs over all the ideal classes in the wide sense and a over all the non-zero integrals
ideals in A, which are coprime to f.
In the class A~!, we can choose an integral ideal b4 coprime to f and

aba = (8)

where ( is an integer divisible by by and coprime to f. Conversely, any principal ideal (/)
divisible by b4 and coprime to f is of the form ab 4, where a is an integral ideal in A coprime to

f.

Moreover,
x(ba)x(a) = x((B)), and N(ba)N(a) = [N(3)].
where N () is the norm of 3. Then

L s x((8)

~—

A

Where the inner summation is over all principal ideal () divisible by by and coprime to f.
Since A™! runs over all classes in the wide sense when A does so, we may assume that b, is an
integral ideal in A coprime to f. Then

_ v(B)x(B)
$,X) = D _X(bA)N(ba)® Y —o
A b4l(B) N )

Lemma 8.2.1 Any character x(8) of the ray class group modulo f may be written in the form

X((8)) = v(B)x(P)

where v(f3) is a character “of signature” and x(f3) is a character of the group (Ok /)" . We may
extend x(0) to all residue classes modulo § by setting

x(8) =0 for 3 not coprime to §.

Next step, we have to replace x(/3) by an exponential of the form e2™(mu+nv)

8.1.2. Hence

, comes from lemma

Proposition 8.2.2 For any character x with conductor f,

1 U 27I'ZS(>\,3’Y)
Lf(svx):? Z ZX ba)N(ba)® Z
XX (modf) A b4 |(8)
In other hand
1 ’U QWZS()\ﬂ’Y)
L = (b
(5, %) eenl %;d f)ZA:x AN Zﬁ: — NG

where the summation is over all B # 0 in by.
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Note that A runs over all a full system of representatives of the prime residue classes modulo

f and by over a complete set of representatives integral and coprime to f of the classes in the

wide sense, then (A\)by covers exactly :’TK times, a complete system of representatives of the ray
A

classes modulo f. Then

( g)em’S(ﬁv)

O e DRUSA(CHAND DI s
A

B€bA,B#0

Where A runs over the ray classes modulo f and b4 is a fixed integral ideal in A coprime to f.

Lemma 8.2.3 Let {w1(A),w2(A)} be an integral basis of ba; we can assume, without loss of

generality that g;gﬁg =TA =24+ iys withya >0, ya=Im (:;gﬁ;) :

Then if B € ba, B =mwi(A) + nwa(A) for rational m,n and

N(B) = N(wa(A)|m + n7a|? = |wa(A)|*|m + nral?

Moreover,
N(ba)VI[Dk| = w1 (A)@2(A) — w2 (A)w1(A)]|
N(ba)V/[Dx| = 2yalws(A)*
_ 2yalwa(A)
M=
Thus

(8)e2miSB) (mmmﬁ)s v(w)e2miS)
N(ba)’ SR = G
ﬁef;ﬁ#o N VIDK]| we%{m Nw)

Now for w = mw1(A) + nws(A), let us set
ug = S(wi(A)y),va = S(w2(A)y)

and let f be the smallest positive integer divisible by f. Then in view of the fact that (y)Dx
has exact denominator f and b4 is coprime to f, it follows that w4 and v4 are rational numbers
with the reduced denominator f. Since f # (1), us and v4 are not simultaneously integral. We
then have

Noae 3 e <2yA|w2<A>|2>S D
A s |\ T P .
w€b,w#0 N(w) ’DK‘ webs \{0} |w|

We recall that
Ep, (w ==mwi(A) + nwz(A),p = —vawi(A) + uawz(A)) = mus +nva

Finally, we obtain
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Theorem 8.2.4 Let x be a Hecke character of conductor §.
Then we have
Li(s, x) =

v(w)e(EbA (w=mw1(A) +nws(A),pa) )egm(mumrmm)

1 2ylwa(A)[ )
oG > x(ba) <\/W ) > o ;

web\{0}

w4 = —vawi(A) + ugwa(A)

In particular, for

i)

‘We obtain

1 _ QyA|w2(A)|2 s U(w)e(EbA (w,gOA))e%ri(muA—HwA)
Lf(st) ) X(bA) ( m+s5s—m :
wiGix zA: VIDk| weg:d{o} WMTsE

As consequence, we have

1 . 2alwa (A2
Li(s =m,x) = oG > x(ba) (ZJ"ZD(K‘)') dom(pa,b4);¥m > 1.
X A

i) If

We obtain

Li(s =m,x) = ! > X(ba) (MJW) din(pa,ba);Vm > 1.

waX A V |DK|

Theorem 8.2.5 (Damerell’s type result)
For each Hecke character x of conductor §.

i) For

we have that
Lg(s = m, x)

(2mi)2ma ()4

is algebraic
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i1) For

we have that

is algebraic
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