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I We want tractable stochastic models that are flexible enough to
describe reality up to a satisfactory degree of accuracy.

I Polynomial preserving processes is one such class of models

I The analysis comes in two main parts:

(1) Theoretical study of polynomial preserving processes:
This leads to a rich set of mathematical questions involving
probability as well as geometry and algebra (semi-algebraic
geometry, sums of squares, the Nullstellensatz, etc.)

(2) Financial modeling: Construct models that exploit the
tractable structure of polynomial preserving processes.

I The two main references for this mini-course are:

I [FL16]: Polynomial preserving diffusions and applications in
finance (with D. Filipović), forthcoming in Fin. Stochastics.

I [FLT16]: Linear-rational term structure models (with
D. Filipović and A. Trolle), forthcoming in Journal of Finance.

I . . . but some material is drawn from other places or is not yet
available in the literature.
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Polynomial preserving processes

I State space E ⊆ Rd

I X = (Xt)t≥0 an E -valued semimartingale with extended generator

G f (x) = b(x)>∇f (x) +
1

2
Tr
(
a(x)∇2f (x)

)
+

∫
Rd

(
f (x + ξ)− f (x)− ξ>∇f (x)

)
ν(x , dξ)

Meaning: f (Xt)− f (X0)−
∫ t

0
G f (Xs)ds = local martingale (∗)

I Domain: dom(G ) =
{
f ∈ C 2(Rd) : (∗) holds

}
Example. If X satisfies an SDE of the form

dXt = µ(Xt)dt + σ(Xt)dWt

then b ≡ µ, a ≡ σσ>, ν ≡ 0, and (∗) is just Itô’s formula.
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Polynomial preserving processes

Remark. Existence of G implies that X has absolutely continuous
characteristics whose densities are deterministic functions of the
current state.

=⇒ X should “morally” be a Markov process.

Warning: X is not always a Markov process!

Assumption (A): For all n ≥ 1, E[‖X0‖2n] < ∞ and there exists
Kn <∞ such that∫

Rd

‖ξ‖2nν(x , dξ) ≤ Kn(1 + ‖x‖2n), x ∈ E .

Moreover, G is well-defined on E : f
∣∣
E

= 0 implies G f
∣∣
E

= 0.
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Definition of polynomial preserving processes

I Multi-indices, monomials and their degree:

k = (k1, . . . , kd) ∈ Nd
0 , xk = xk1

1 xk2
2 · · · xkdd , |k | =

∑
i

ki

I Spaces of polynomials:

Poln(E ) =
{
p|E : p is polynomial on Rd of degree ≤ n

}
I Assumption (A) implies (∗) holds for all p ∈ Poln(E ): p ∈ dom(G )

Definition. We call G polynomial preserving (PP) if

GPoln(E ) ⊆ Poln(E ) for all n ≥ 1.

In this case X is called a polynomial preserving process.
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Characterization of (PP) generators

Lemma. The extended generator

G f (x) = b(x)>∇f (x) +
1

2
Tr
(
a(x)∇2f (x)

)
+

∫
Rd

(
f (x + ξ)− f (x)− ξ>∇f (x)

)
ν(x , dξ)

is (PP) if and only if for all i , j ,

bi (x) ∈ Pol1(E ) (drift)

aij(x) +

∫
Rd

ξiξjν(x , dξ) ∈ Pol2(E ) (modified diffusion)∫
Rd

ξkν(x , dξ) ∈ Pol|k|(E ), ∀|k | ≥ 3 (jumps)

Proof: Evaluate G p for polynomials p, collect and match terms.
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First examples of (PP) processes

The lemma immediately yields several examples of (PP) processes:

Example. The following processes are (PP):

I Ornstein-Uhlenbeck processes: dXt = κ(θ − Xt)dt + σdWt

I Geometric Brownian motion: dXt = µXtdt + σXtdWt

I Square-root diffusions: dXt = κ(θ − Xt)dt + σ
√
XtdWt

I Jacobi diffusions: dXt = κ(θ − Xt)dt + σ
√
Xt(1− Xt)dWt

I Dunkl processes: E = R with extended generator

G f (x) = f ′′(x) +
λ

2x

∫
R

(
f (x + ξ)− f (x)− ξf ′(x)

)
δ−2x(dξ)

I Any affine semimartingale satisfying Assumption (A)

. . . but we want a larger class of examples, and more information about
their properties. Specifically: 10/67



Main questions

I If a (PP) process X is given a priori, what can be said in general
about its properties?

I What about existence and uniqueness of (PP) processes on various
state spaces E of interest? More specifically, we would like
convenient parameterizations.

Closely related literature:

Wong (1964); Mazet (1997); Zhou (2003); Forman and Sørensen (2008);
Cuchiero, Keller-Ressel, Teichmann (2012); Filipović, Gourier, Mancini
(2013); Bakry, Orevkov, Zani (2014); Larsson, Pulido (2015); Larsson,
Krühner (2016); etc.
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Basic properties: Conditional moments

Given: (PP) process X , extended generator G , satisfies Assumption (A).

Lemma. For any polynomial p on Rd ,

Mp
t = p(Xt)− p(X0)−

∫ t

0

G p(Xs)ds

is a (true) martingale.

Proof: Assumption (A) implies p ∈ dom(G ), so Mp is a local martingale.

Assumption (A) and BDG imply supt≤T |Mp
t | integrable, for any T . See

for instance Lemma 2.17 in Cuchiero et al. (2012).

Hence Mp
t is a martingale since supt≤T |Mp

t | integrable.
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Basic properties: Conditional moments

I Fix n ∈ N and set N = dimPoln(E ) <∞
I By definition of (PP), G restricts to an operator G |Poln(E) on the

finite-dimensional vector space Poln(E )

I Find a basis h1(x), . . . , hN(x) of Poln(E ) and denote

H(x) = (h1(x), . . . , hN(x))>

I Coordinate representation ~p ∈ RN of p ∈ Poln(E ):

p(x) = H(x)>~p.

I Matrix representation G ∈ RN×N of G |Poln(E):

G p(x) = H(x)>G ~p.
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Basic properties: Conditional moments

Theorem. For any p ∈ Poln(E ) with coordinate vector ~p ∈ RN ,

E[p(XT ) | Ft ] = H(Xt)
>e(T−t)G ~p

is an explicit polynomial in Xt of degree ≤ n, for all t ≤ T .
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Basic properties: Conditional moments

Theorem. For any p ∈ Poln(E ) with coordinate vector ~p ∈ RN ,

E[p(XT ) | Ft ] = H(Xt)
>e(T−t)G ~p

is an explicit polynomial in Xt of degree ≤ n, for all t ≤ T .

Proof. By definition GH(x) = G>H(x). Thus for N-dim local mg M,

H(Xu) = H(Xt) +

∫ u

t

G>H(Xs)ds + Mu −Mt , u ≥ t.

Lemma implies M is true martingale. Thus with F (u) = E[H(Xu) | Ft ],

F (u) = H(Xt) +

∫ u

t

G>F (s)ds.

Hence E[H(XT ) | Ft ] = F (T ) = e(T−t)G>H(Xt).
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Basic properties: Conditional moments

Theorem. For any p ∈ Poln(E ) with coordinate vector ~p ∈ RN ,

E[p(XT ) | Ft ] = H(Xt)
>e(T−t)G ~p

is an explicit polynomial in Xt of degree ≤ n, for all t ≤ T .

Punchline:

I Conditional expectations of polynomials are explicit.

I Computing them only requires calculating a matrix exponential . . .

I . . . which should be contrasted with solving a PIDE.
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Example: The scalar diffusion case

Generic scalar (PP) diffusion: E ⊆ R,

dXt = (b + βXt)dt +
√

a + αXt + AX 2
t dWt

Standard basis {1, x , x2, . . . , xn} of Poln:

p(x) =
n∑

k=0

pkx
k ←→ ~p = (p0, . . . , pn)>

Then: Matrix representation G ∈ R(n+1)×(n+1) of G is

G =



0 b 2 a
2

0 · · · 0

0 β 2
(
b + α

2

)
3 · 2 a

2
0

.

.

.

0 0 2
(
β + A

2

)
3
(
b + 2 α

2

) . . . 0

0 0 0 3
(
β + 2 A

2

) . . . n(n − 1) a
2

.

.

. 0
. . . n

(
b + (n − 1) α

2

)
0 . . . 0 n

(
β + (n − 1) A

2

)


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Example: Scalar Lévy case

Suppose
a(x) ≡ b(x) ≡ 0 and ν(x , dξ) = µ(dξ)

for some measure η(dξ) on R \ {0} such that∫
ξkµ(dξ) <∞, k ≥ 2.

Then: X is a Lévy process and G is given by

G =



0 0
∫
ξ2µ(dξ)

∫
ξ3µ(dξ)

∫
ξ4µ(dξ) · · ·

(
n
0

) ∫
ξnµ(dξ)

0 0 0 3
∫
ξ2µ(dξ) 4

∫
ξ3µ(dξ)

.

.

.

0 0 0 0 6
∫
ξ2µ(dξ)

. . .

. . . 0
. . .

(
n

n−3

) ∫
ξ3µ(dξ)

.

.

.
. . .

(
n

n−2

) ∫
ξ2µ(dξ)

.

.

.
. . . 0

0 . . . . . . 0 0 0


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Basic properties: New (PP) processes from old

I If X = (X 1, . . . ,X d) is (PP) then

(Xt ,

∫ t

0

X 1
s ds)

is (PP) on the state space E × R.

I More generally, let p, q ∈ Poln(E ). Define

X t = H(Xt)

Yt =

∫ t

0

p(Xs)ds +

∫ t

0

√
q(Xs)dWs

with W ⊥⊥ X a Brownian motion. Then:

(X ,Y ) is (PP) on H(E )× R ⊆ RN+1.

I More general results hold, where Y also can have jumps.
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Basic properties: New (PP) processes from old

I The proof of these statements relies on the following lemma:

Lemma. Let k ∈ N. Then

p ∈ Polkn(Rd) ⇐⇒ p(x) = f (H(x)) for some f ∈ Polk(RN)
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Existence of (PP) diffusions

I So far we have taken a (PP) process X as given a priori.

I Question: Which pairs (E ,G ) of candidate state space and
generator admit a corresponding (PP) process X?

Setup (I): Consider operator G of diffusion type:

G f (x) = b(x)>∇f (x) +
1

2
Tr
(
a(x)∇2f (x)

)
with (see Lemma characterizing (PP) generators):

bi ∈ Pol1, aij ∈ Pol2

21/67



Existence of (PP) diffusions

Setup (II): Consider basic closed semialgebraic state space:

E =
{
x ∈ Rd : p(x) ≥ 0 for all p ∈P

}
with P a finite collection of polynomials on Rd .
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Existence of (PP) diffusions

Setup (II): Consider basic closed semialgebraic state space:

E =
{
x ∈ Rd : p(x) ≥ 0 for all p ∈P

}
with P a finite collection of polynomials on Rd .

𝑝ଵ = 0  

𝑝ଶ = 0  

𝑝ଷ = 0  
∇𝑝ଵ 

∇𝑝ଷ 

∇𝑝ଶ 
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Existence of (PP) diffusions

Setup (II): Consider basic closed semialgebraic state space:

E =
{
x ∈ Rd : p(x) ≥ 0 for all p ∈P

}
with P a finite collection of polynomials on Rd .

Examples:

Rd
+ : P = {pi (x) = xi , i = 1, . . . , d}

[0, 1]d : P = {pi (x) = xi , pd+i (x) = 1− xi , i = 1, . . . , d}

unit ball : P = {p(x) = 1− ‖x‖2}

Sm+ : P = {pI (x) = det xII , I ⊂ {1, . . . ,m}},

(In the last example, Sm+ ⊂ Sm ∼= Rd , d = m(m + 1)/2.)
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Existence of (PP) diffusions

Goal: Look for E -valued (weak) solutions to SDE of the form

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x0, (∗)

for some σ : Rd → Rd×d with σσ> ≡ a on E .
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Existence of (PP) diffusions

Goal: Look for E -valued (weak) solutions to SDE of the form

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x0, (∗)

for some σ : Rd → Rd×d with σσ> ≡ a on E .

Theorem (necessary conditions). Assume (∗) admits an E -
valued solution for any x0 ∈ E . Then for all p ∈P,

a∇p = 0 and G p ≥ 0 on E ∩ {p = 0}.
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Existence of (PP) diffusions

Goal: Look for E -valued (weak) solutions to SDE of the form

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x0, (∗)

for some σ : Rd → Rd×d with σσ> ≡ a on E .

Theorem (necessary conditions). Assume (∗) admits an E -
valued solution for any x0 ∈ E . Then for all p ∈P,

a∇p = 0 and G p ≥ 0 on E ∩ {p = 0}.

Proof: X is E -valued implies p(X ) ≥ 0, ∀ p ∈P. On the other hand,

p(Xt) = p(x0) +

∫ t

0

G p(Xs)ds +

∫ t

0

∇p(Xs)>σ(Xs)dWs

〈p(X )〉t =

∫ t

0

‖σ(Xs)>∇p(Xs)‖2ds.
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Existence of (PP) diffusions

Goal: Look for E -valued (weak) solutions to SDE of the form

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x0, (∗)

for some σ : Rd → Rd×d with σσ> ≡ a on E .

Theorem (existence). Assume

I a(x) ∈ Sd+ for all x ∈ E ,

I a∇p = 0 on {p = 0} and G p > 0 on E ∩{p = 0}, ∀ p ∈P,

I each p ∈P is irreducible and changes sign on Rd .

Then ∃σ : Rd → Rd×d with σσ> ≡ a on E such that (∗) has an
E -valued solution for every x0 ∈ E . Furthermore, one has∫ t

0

1{p(Xs )=0}ds ≡ 0 ∀ p ∈P.
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Existence of (PP) diffusions
Proof: Consider the metric projection π : Sd → Sd+, and define

â(x) = π(a(x)), σ̂(x) = â(x)1/2.

Then (see Ikeda/Watanabe, 1981) there exists Rd -valued solution to

dXt = b(Xt)dt + σ̂(Xt)dWt .

To do: For all p ∈P, show p(X ) ≥ 0 and
∫ t

0 1{p(Xs )=0}ds ≡ 0.

Lemma (See [FL16], Lemma A.1). Let Y be a continuous semimartingale

Yt = Y0 +

∫ t

0
µsds + Mt , Y0 ≥ 0, µ continuous.

If µt > 0 on {Yt = 0} and L0(Y ) = 0, then Y ≥ 0 and
∫ t

0 1{Ys=0}ds ≡ 0.

Take Y = p(X ), p ∈P. After stopping, µt = G p(Xt) > 0 on {p(Xt) = 0}.
To do: Show L0(p(X )) = 0.
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Existence of (PP) diffusions
Proof (cont’d): Occupation density formula (see [RY99], Corollary VI.1.6):

∫ ∞
0

1

y
Lyt (p(X ))dy =

∫ t

0
1{p(Xs )>0}

∇p(Xs)>â(Xs)∇p(Xs)

p(Xs)
ds

Want
∇p>â∇p

p
locally bounded. Let’s show this for

∇p>a∇p
p

instead!

Lemma from real algebra on real principal ideals (See [BCR98], Theorem 5.4.1):
Assume p ∈ Pol(Rd ) is irreducible. The following are equivalent:

(i) p changes sign on Rd

(ii) Any q ∈ Pol(Rd ) with q = 0 on {p = 0} satisfies q = pr for some
r ∈ Pol(Rd ).

By assumption a∇p = 0 on {p = 0}. Hence

a∇p = pF , F = (f1, . . . , fd )> polynomial.

Thus
∇p>a∇p

p
= ∇p>F = polynomial.
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Existence of (PP) diffusions

Remarks.

I A more general existence theorem is in [FL16], Theorem 5.3:

E = {x ∈ M : p(x) ≥ 0 for all p ∈P}

where
M =

{
x ∈ Rd : q(x) = 0 for all q ∈ Q

}
with P, Q finite collections of polynomials on Rd . This requires
further conditions involving polynomial ideals and their varieties.

Example: Unit simplex ∆d = {x ∈ Rd
+ : x1 + · · ·+ xd = 1}

I Can relax G p > 0 to G p ≥ 0 near E ∩ {p = 0}.
=⇒ Boundary absorption. Here we don’t yet have the full picture.

I Conditions for boundary attainment: [FL16], Theorem 5.7.
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Uniqueness of (PP) processes

I Let (G ,E ) be given with Assumption (A) satisfied.

I Notion of uniqueness:

X , X ′ two E -valued
semimartingales with
extended generator G
X0 = X ′0 deterministic

=⇒ Law(X ) = Law(X ′)

“Uniqueness in law among E-valued solutions to the local
martingale problem for G .”
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Uniqueness of (PP) processes

I Non-trivial in general: Non-Lipschitz, non–uniformly elliptic.

I Scalar diffusion case:

dXt = (b + βXt)dt +
√

a + αXt + AX 2
t dWt

Yamada-Watanabe gives pathwise uniqueness, and hence:

Theorem. If d = 1 and ν ≡ 0, then uniqueness holds.

I What about the general case?
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Uniqueness of (PP) processes

I Observation: G and X0 determine all mixed moments

E
[
X k1
t1
· · ·X km

tm

]
, 0 ≤ t1 < · · · < tm, ki ∈ Nd

0 .

Theorem. Let X be (PP) on E with extended generator G . If

for each t ≥ 0, there is ε > 0 with E[eε‖Xt‖] <∞ (∗∗)

then the law of X is uniquely determined by G and X0.

Proof: Using MGFs, (∗∗) implies Law(X i
t ) determined by its moments.

By Petersen (1982), so are all FDMDs Law(X i1
t1
, . . . ,X im

tm ).
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Uniqueness of (PP) processes

Lemma. Assume ν ≡ 0 (diffusion case) and there exists C < ∞
such that ‖a(x)‖ ≤ C (1 + ‖x‖) for all x ∈ E . Then (∗∗) holds.

These results cover:

I Scalar (PP) diffusions,

I (PP) processes on compact sets,

I Any affine diffusions,

I . . . etc.

Remark. Uniqueness does not always hold: P. Krühner has con-
structed a (PP) process on R for which uniqueness fails. This also
leads to an example of a non-Markovian (PP) process.
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An open problem

I The proof of the Theorem uses moment determinacy of each Xt .

I If dXt = XtdWt (Geometric Brownian motion) then Xt is lognormal.

=⇒ Moment determinacy of Xt fails (see Heyde, 1963)

=⇒ Uniqueness can’t be proved in this way

I But could the mixed moments still pin down the law of X?

I Open problem: Find a process Y , not geometric Brownian motion,
such that for all 0 ≤ t1 < . . . < tm, (k1, . . . , km) ∈ Nm

0 ,

E
[
Y k1
t1
· · ·Y km

tm

]
= E

[
X k1
t1
· · ·X km

tm

]
,

where X is geometric Brownian motion.

(Related to “weak” and “fake” Brownian motion, see
Föllmer/Wu/Yor (2000), Hobson (2012), etc.)
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Examples of (PP) diffusions

I Diffusion case only.

I Three examples: Unit cube [0, 1]d , unit ball Bd , unit simplex ∆d .

I All of them are compact, hence no issue with uniqueness.

I Compactness is also nice thanks to Weierstrass: polynomial
approximation is possible.

I An affine diffusion on a compact state is necessarily deterministic.
This is one reason to go beyond affine processes.

I Geometry of the state space crucially affects the possible dynamics.

33/67



The unit cube [0, 1]d

E = [0, 1]d

Proposition. The conditions of the existence theorem are satisfied
if and only if

a(x) =

γ1x1(1− x1) 0

. . .

0 γdxd (1− xd )

 , b(x) = β + Bx ,

where γi ≥ 0 and
∑

j 6=i B
−
ij < βi < −Bii −

∑
j 6=i B

+
ij .

I Interaction occurs only
through the drifts.

I Volatility is componentwise
of Jacobi type.
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The unit simplex ∆d

E = ∆d = {x ∈ Rd
+ : x1 + · · ·+ xd}

Proposition. The conditions of the (general) existence theorem
are satisfied if and only if a(x) and b(x) are given by

aii (x) =
∑
j 6=i

αijxixj aij(x) = −αijxixj (i 6= j)

b(x) = β + Bx ,

with αij ≥ 0, αij = αji , B
>1 + (β>1)1 = 0 and βi + Bji > 0 for

all i and j 6= i .

I Generalizes the multivariate Jacobi
process: take αij = σ2, i 6= j ; see
Gourieroux/Jasiak (2006).
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The unit ball Bd

E = Bd = {x ∈ Rd : ‖x‖ ≤ 1}. Details are in Larsson/Pulido (2015).

Example. Let d = 2 and consider

dXt = −Xtdt +
√

1− ‖Xt‖2 σ dWt + AXtdBt

with σ ∈ R2×2, W =

(
W 1

W 2

)
, A =

(
0 1
−1 0

)
skew-symmetric,

B is one-dimensional Brownian motion.

I Mean-reverting drift.

I Volatility has both
tangential and radially
scaled components.

Note: a(x) = (1− ‖x‖2)σσ> + Axx>A>
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The unit ball Bd

Proposition. G is the extended generator of a (PP) diffusion on E
if and only if

a(x) = (1− ‖x‖2)α + c(x),

b(x) = b + Bx ,

for some b ∈ Rd , B ∈ Rd×d , α ∈ Sd+, and c ∈ C+ such that

b>x + x>Bx +
1

2
Tr(c(x)) ≤ 0 for all x ∈ S d−1.

Here S d−1 is the unit sphere in Rd , and

C+ =

c : Rd → Sd :

cij ∈ Hom2 for all i , j

c(x)x ≡ 0

c(x) ∈ Sd+ for all x


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The unit ball Bd

C+ =

c : Rd → Sd :

cij ∈ Hom2 for all i , j

c(x)x ≡ 0

c(x) ∈ Sd+ for all x


Examples of c ∈ C+:

I Take A1 ∈ Skew(d) and set

c(x) = A1xx
>A>1 + A2xx

>A>2 + · · ·+ Amxx
>A>m
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The unit ball Bd

C+ =

c : Rd → Sd :

cij ∈ Hom2 for all i , j

c(x)x ≡ 0

c(x) ∈ Sd+ for all x


Examples of c ∈ C+:

I Take A1, . . . ,Am ∈ Skew(d) and set

c(x) = A1xx
>A>1 + A2xx

>A>2 + · · ·+ Amxx
>A>m
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The unit ball Bd

C+ =

c : Rd → Sd :

cij ∈ Hom2 for all i , j

c(x)x ≡ 0

c(x) ∈ Sd+ for all x


Examples of c ∈ C+:

I Take A1, . . . ,Am ∈ Skew(d) and set

c(x) = A1xx
>A>1 + A2xx

>A>2 + · · ·+ Amxx
>A>m

I This leads to a convenient parameterization of a large class of
elements of C+ . . .
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The unit ball Bd

C+ =

c : Rd → Sd :

cij ∈ Hom2 for all i , j

c(x)x ≡ 0

c(x) ∈ Sd+ for all x


Examples of c ∈ C+:

I Take A1, . . . ,Am ∈ Skew(d) and set

c(x) = A1xx
>A>1 + A2xx

>A>2 + · · ·+ Amxx
>A>m

I This leads to a convenient parameterization of a large class of
elements of C+ . . .

I . . . but is this exhaustive?
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The unit ball Bd

c(x) with cij = cji ∈ Hom2 ⇐⇒ BQ(x , y) := y>c(x)y

is a biquadratic form

c(x)x ≡ 0 ⇐⇒ BQ(x , x) ≡ 0

c(x) positive semidefinite for all x ⇐⇒ BQ(x , y) ≥ 0 for all x , y

c(x) positive semidefinite for all x ⇐⇒ BQ(x , y) ≥ 0 for all x , y

c(x) =
∑m

p=1 Apxx
>A>p ⇐⇒ BQ(x , y) =

∑
p(y>Apx)2

= sum of squares (SOS)

C+
∼= {all nonnegative biquadratic forms with vanishing diagonal}
?
= {all SOS biquadratic forms with vanishing diagonal}

Answer: d ≤ 4: Yes! d ≥ 6: No! d = 5: Don’t know!
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Other interesting state spaces

I [0, 1]m ×Rn
+ and [0, 1]m ×Rn

+ ×Rl are straightforward extensions of
the unit cube; see [FL16].

I The unit ball analysis can be brought to bear on parabolic and
hyperbolic sets, although this has not been done and will require
some effort.

I A nice feature of the unit sphere is that it is compact (polynomial
approximation) with no boundary (simulation easier). This has yet
to be exploited in applications.

I Partial parameterization exists for E = Sm+: the affine case is fully
understood, see Cuchiero et al. (2011).

I Partial parameterization exists for E = Cm (correlation matrices),
see Ahdida/Alfonsi (2013), but work remains.
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Applications in finance

I Overview

I State price density models

I Polynomial term structure models
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Overview

(PP) processes have been used in a variety of applications

I Term structure of interest rates (See [FLT15] and
Glau/Grbac/Keller-Ressel, 2015)

I Stochastic volatility models (Ackerer/Filipović/Pulido, 2016)

I Variance swap rates (Filipović/Gourier/Mancini, 2016)

I Credit risk (Ackerer/Filipović, 2016)

I Stochastic portfolio theory (Cuchiero, 2016)

The crucial property of (PP) processes — closed-form expressions for
conditional moments — are exploited in different ways in these papers.

Here I will focus on models for the term structure of interest rates.
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Applications in finance

I Overview

I State price density models

I Polynomial term structure models
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State price density models

Recipe for building arbitrage-free asset pricing models:

Let ζ > 0 be a positive semimartingale on (Ω,F ,F,P). For any
claim CT maturing at some T <∞, define

model price at t =
1

ζt
E[ ζTCT | Ft ] (t ≤ T ).

We call ζ the state price density.
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State price density models

Recipe for building arbitrage-free asset pricing models:

Let ζ > 0 be a positive semimartingale on (Ω,F ,F,P). For any
claim CT maturing at some T <∞, define

model price at t =
1

ζt
E[ ζTCT | Ft ] (t ≤ T ).

We call ζ the state price density.

Remarks:

I Usually P is not a risk-neutral measure . . .

I . . . but need not be the historical measure either.

I In the applications to interest rate modeling presented here, P is the
so-called long forward measure; see Hansen/Scheinkman (2009)
and Qin/Linetsky (2015), etc.
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State price density models

Recipe for building arbitrage-free asset pricing models:

Let ζ > 0 be a positive semimartingale on (Ω,F ,F,P). For any
claim CT maturing at some T <∞, define

model price at t =
1

ζt
E[ ζTCT | Ft ] (t ≤ T ).

We call ζ the state price density.

Remarks:

I Zero-coupon bond prices, CT = 1:

P(t,T ) =
1

ζt
E[ ζT | Ft ]
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State price density models

Such models are arbitrage-free on any finite time horizon [0,T ∗]:

I Asset prices S1, . . . ,Sm:

S i
t =

1

ζt
E[ ζT∗S

i
T∗ | Ft ]

I Suppose S1 > 0 and choose this as numeraire.

I Define Q1 ∼ P with Radon-Nikodym density process

Zt =
ζtS

1
t

ζ0S1
0

I Then S i/S1 is a Q1-martingale for all i ,

S i
t

S1
t

Zt =
ζtS

i
t

ζ0S1
0

= P-martingale

. . . and hence NFLVR holds with respect to the numeraire S1.
45/67



State price density models

Such models are arbitrage-free on any finite time horizon [0,T ∗]:

I Suppose Q ∼ P is a (local) martingale measure associated with the
usual bank account numeraire

Bt = e
∫ t

0
rsds .

Then

ζt = e−
∫ t

0
rsds E

[
dQ
dP
| Ft

]
is the “discounted density process”.
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State price density models

Closely related literature:

Constantinides (1992); Flesaker and Hughston (1996); Rogers (1997);
Rutkowski (1997); Brody and Hughston (2005), Carr, Gabaix, Wu
(2010); Nguyen and Seifried (2015) Crépey, Macrina, Nguyen, Skovmand
(2015), etc.
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Applications in finance

I Overview

I State price density models

I Polynomial term structure models
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Polynomial term structure models

Let X be a (PP) process on E ⊆ Rd with extended generator G .
Specify the state price density by

ζt = e−αtp(Xt)

for some positive p ∈ Pol(E ) and some α ∈ R.
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Polynomial term structure models

Let X be a (PP) process on E ⊆ Rd with extended generator G .
Specify the state price density by

ζt = e−αtp(Xt)

for some positive p ∈ Pol(E ) and some α ∈ R.

Example. X is a scalar square-root diffusion

dXt = κ(θ − Xt)dt + σ
√
XtdWt

and the state price density is given by

ζt = e−αt(1 + Xt).
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Polynomial term structure models

Let X be a (PP) process on E ⊆ Rd with extended generator G .
Specify the state price density by

ζt = e−αtp(Xt)

for some positive p ∈ Pol(E ) and some α ∈ R.

Fix the following notation:

I n ≥ deg(p)

I N = dimPoln(E )

I H(x) = (h1(x), . . . , hN(x))> basis for Poln(E )

I G matrix representation of G

I ~p coordinate representation of p
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Bond prices and short rate

Explicit zero-coupon bond prices:

P(t,T ) = e−α(T−t) H(Xt)
>e(T−t)G ~p

H(Xt)>~p

Proof: P(t,T ) = 1
ζt
E[ ζT | Ft ] = e−αTE[p(XT )|Ft ]

e−αtp(Xt)

Explicit short rate:

rt = α− H(Xt)
>G ~p

H(Xt)>~p

Proof: rt = −∂T logP(t,T )
∣∣
T=t

= α− H(Xt)
>Ge(T−t)G~p

H(Xt)>e(T−t)G~p

∣∣∣
T=t

I Elucidates the role of α as a shift to the short rate
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Bond prices and short rate

Example (cont’d). X is a scalar square-root diffusion

dXt = κ(θ − Xt)dt + σ
√
XtdWt

and the state price density is given by

ζt = e−αt(1 + Xt).

Then

P(t,T ) = e−α(T−t) 1 + θ + e−κ(T−t)(Xt − θ)

1 + Xt

rt = α +
1 + θ(1 + κ)− κXt

1 + Xt

The short rate is bounded:

α− κ ≤ rt ≤ α + 1 + θ(κ+ 1)
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α as infinite-maturity yield

I The yield y(t,T ) is by definition

P(t,T ) = e−(T−t)y(t,T )

I Since G 1 = 0, G has at least one zero eigenvalue. Suppose it has
exactly one. Suppose also that every other eigenvalue λ satisfies

Re(λ) < 0.

I Assume infx∈E p(x) > 0

Under these conditions, α = limT→∞ y(t,T ).

Proof: y(t,T ) = α− 1
T−t logE[p(XT ) | Ft ] + 1

T−t log p(Xt).

Eigenvalue assumption =⇒ moments E[X k
t ], |k | ≤ n, bounded in t.
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Interest rate swaps

I Tenor structure T0 < T1 < · · · < Tm, ∆ = Ti − Ti−1

I Fixed annualized rate K

I Value per dollar notional of payer swap (pay fixed, receive floating):

Πswap
t = P(t,T0)− P(t,Tn)−∆K

m∑
i=1

P(t,Ti ), t ≤ T0

I The swap rate ST0,Tm
t is the value of K that yields Πswap

t = 0.

T0 T1 TmT2
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Swaptions

I Option with expiry date T0 written on the swap

I Payoff at time T0:

CT0 =
(
Πswap

T0

)+

I Note that

Πswap
T0

=
m∑
i=0

ciP(T0,Ti ) =
1

ζT0

m∑
i=0

ciqi (XT0 )

for some constants ci and polynomials qi .

I Option price at t ≤ T0:

Πswaption
t =

1

ζt
E[ ζT0CT0 | Ft ] =

1

ζt
E

[( m∑
i=0

ciqi (XT0 )
)+ ∣∣∣ Ft

]

I =⇒ Must compute E[q(XT0 )+ | Ft ] for q ∈ Poln(E )

I More coupon payments yield no increase in complexity!
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Swaptions: Comparison with affine models

I Consider (for this slide only) an affine interest rate model:

rt = α + a>Xt for some α ∈ R, a ∈ Rd

X is an affine process under Q.

I Then X t = (
∫ t

0
rsds,Xt) is again affine, and bond prices are given by

P(t,T ) = EQ

[
eu
>XT0

∣∣∣ Ft

]
= eA(T−t)+B(T−t)>X t

where u = (−1, 0, . . . , 0)> and (A,B) solves a system of quadratic
ODEs called the (generalized) Riccati equations.

I Hence Πswaption
t = E

[( m∑
i=0

cie
Ai+B>i XT0

)+ ∣∣∣ Ft

]
. . .

I . . . but linear combinations of exponentials are unfriendly!

I See Filipović (2009) for more on affine term structure models.
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Swaptions: How to evaluate E[q(XT )+]?

I Transform method if q̂(z) = E[ezq(XT )] is available: The identity

s+ =
1

2π

∫ ∞
−∞

e(µ+iλ)s 1

(µ+ iλ)2
dλ (any µ > 0)

implies

E[q(XT )+] =
1

π

∫ ∞
0

Re

(
q̂(µ+ iλ)

(µ+ iλ)2

)
dλ

I Polynomial expansion: Fix a weight function w(x) and consider
Hilbert space L2

w with inner product 〈f , g〉w =
∫
f (x)g(x)w(x)dx .

Let Qn, n ≥ 0 be an orthonormal polynomial basis. Then∫
q(x)+fXT

(x)dx = 〈q+,
fXT

w
〉w =

∑
n≥0

〈q+,Qn〉w 〈
fXT

w
,Qn〉w

(Filipović/Mayerhofer/Schneider, ’13; Ackerer/Filipović/Pulido, ’15)
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Unspanned stochastic volatility

Empirical fact: Volatility risk cannot be hedged using bonds

I Collin-Dufresne, Goldstein (2002): Interest rate swaps can hedge
only 10%–50% of variation in ATM straddles (a volatility-sensitive
instrument)

I Heidari, Wu (2003): Level/curve/slope explain 99.5% of yield curve
variation, but 59.5% of variation in swaption implied vol

This phenomenon is called Unspanned Stochastic Volatility (USV).

I Other types of factors can be similarly unspanned

I Joslin, Priebsch, Singleton (2014): Bonds cannot be used to hedge
macro-economic risks

How to operationalize this in a polynomial term structure model?
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Unspanned stochastic volatility

I Assume we are in the linear case:

ζt = e−αt
(
φ+ ψ>Xt

)
for some φ ∈ R and ψ ∈ Rd .

I This is w.l.o.g.: ζt = e−αtp(Xt) is linear in X t = H(Xt), which is
again (PP).

I Since X is (PP) it has affine drift. Thus, in mean-reversion form:

dXt = κ(θ − Xt)dt + dMt ,

where κ ∈ Rd×d , θ ∈ Rd , and M is a martingale.

I Bond prices are linear-rational in Xt ,

P(t,T ) = e−α(T−t)φ+ ψ>Xt + ψ>e−κ(T−t)(Xt − θ)

φ+ ψ>Xt
,

which does not depend on the specification of M.
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Unspanned stochastic volatility

Consider an extended factor process (X ,U) such that:

I (X ,U) is jointly (PP)

I X has autonomous linear drift,

dXt = κ(θ − Xt)dt + dMt

I U feeds into the characteristics of M.

Then U acts as an unspanned volatility factor:

I Does not affect P(t,T ) = e−α(T−t) φ+ψ>Xt+ψ
>e−κ(T−t)(Xt−θ)

φ+ψ>Xt

I But does generically affect the “volatility” 〈P(·,T )〉t
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Unspanned stochastic volatility

Example. Consider a model on R+ × [0, 1] of the form

dXt = κ(θ − Xt)dt + σ
√
UtXtdWt

dUt = γ(η − Ut)dt + ν
√
Ut(1− Ut)dBt

with W and B independent Brownian motions. Let

ζt = e−αt(1 + Xt).

Then with τ = T − t,

P(t,T ) = e−ατ
1 + θ + e−κτ (Xt − θ)

1 + Xt

〈P(·,T )〉t = σ2(1 + θ)2e−2ατ (1− e−κτ )2 XtUt

(1 + Xt)4

This leads to USV: Delta-hedging is ineffective for risks that de-
pend on 〈P(·,T )〉.
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Empirics

I Panel data set of swaps and ATM swaptions

I Swap maturities: 1Y, 2Y, 3Y, 5Y, 7Y, 10Y

I Swaptions on 1Y, 2Y, 3Y, 5Y, 7Y, 10Y forward starting swaps with
option expiries 3M, 1Y, 2Y, 5Y

I 866 weekly observations, Jan 29, 1997 – Aug 28, 2013

Panel A1: Swap data Panel B1: Swaption data

Panel A2: Swap fit, LRSQ(3,3) Panel B2: Swaption fit, LRSQ(3,3)

Panel A3: Swap RMSE, LRSQ(3,3) Panel B3: Swaption RMSE, LRSQ(3,3)
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Figure 2: Data and fit.
Panel A1 shows time series of the 1-year, 5-year, and 10-year swap rates (displayed
as thick light-grey, thick dark-grey, and thin black lines, respectively). Panel B1
shows time series of the normal implied volatilities on three “benchmark” swaptions:
the 3-month option on the 2-year swap, the 2-year option on the 2-year swap, and
the 5-year option on the 5-year swap (displayed as thick light-grey, thick dark-grey,
and thin black lines, respectively). Panels A2 and B2 show the fit to swap rates and
implied volatilities, respectively, in case of the LRSQ(3,3) specification. Panels A3
and B3 show time series of the root-mean-squared pricing errors (RMSE) of swap
rates and implied volatilities, respectively, in case of the LRSQ(3,3) specification.
The units in Panels B1, B2, A3, and B3 are basis points. The grey areas mark
the two NBER-designated recessions from March 2001 to November 2001 and from
December 2007 to June 2009, respectively. Each time series consists of 866 weekly
observations from January 29, 1997 to August 28, 2013.
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Empirics

Linear-rational square root (LRSQ) model: E = Rd
+

dXt = κ(θ − Xt)dt +

 σ1

√
X1t 0

. . .

0 σd
√
Xdt

 dWt

ζt = e−αt(1 + 1>Xt)

LRSQ(m, n):

I Constrained to have m term structure factors and n USV factors
(m ≥ n, m + n = d)

I Number of parameters: m2 + 2m + 2n

I Estimation approach: Quasi-maximum likelihood in conjunction
with the unscented Kalman Filter
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Fit to data

Panel A1: Swap data Panel B1: Swaption data

Panel A2: Swap fit, LRSQ(3,3) Panel B2: Swaption fit, LRSQ(3,3)

Panel A3: Swap RMSE, LRSQ(3,3) Panel B3: Swaption RMSE, LRSQ(3,3)
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Figure 2: Data and fit.
Panel A1 shows time series of the 1-year, 5-year, and 10-year swap rates (displayed
as thick light-grey, thick dark-grey, and thin black lines, respectively). Panel B1
shows time series of the normal implied volatilities on three “benchmark” swaptions:
the 3-month option on the 2-year swap, the 2-year option on the 2-year swap, and
the 5-year option on the 5-year swap (displayed as thick light-grey, thick dark-grey,
and thin black lines, respectively). Panels A2 and B2 show the fit to swap rates and
implied volatilities, respectively, in case of the LRSQ(3,3) specification. Panels A3
and B3 show time series of the root-mean-squared pricing errors (RMSE) of swap
rates and implied volatilities, respectively, in case of the LRSQ(3,3) specification.
The units in Panels B1, B2, A3, and B3 are basis points. The grey areas mark
the two NBER-designated recessions from March 2001 to November 2001 and from
December 2007 to June 2009, respectively. Each time series consists of 866 weekly
observations from January 29, 1997 to August 28, 2013.
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Comparison of model specifications

Specification Swaps Swaptions
All 3 mths 1 yr 2 yrs 5 yrs

LRSQ(3,1) 7.11 6.63 8.27 5.54 5.25 5.71
LRSQ(3,2) 3.83 5.77 7.87 5.12 3.98 4.19
LRSQ(3,3) 3.72 5.19 7.20 4.40 3.88 3.70
LRSQ(3,2)-LRSQ(3,1) −3.28

(−8.95)

∗∗∗ −0.86
(−2.18)

∗∗ −0.40
(−0.74)

−0.42
(−1.04)

−1.27
(−3.66)

∗∗∗ −1.52
(−2.55)

∗∗

LRSQ(3,3)-LRSQ(3,2) −0.12
(−0.78)

−0.58
(−2.52)

∗∗ −0.67
(−1.82)

∗ −0.72
(−2.97)

∗∗∗−0.11
(−0.46)

−0.49
(−2.06)

∗∗

Table 3: Comparison of model specifications.
The table reports means of time series of the root-mean-squared pricing errors
(RMSE) of swap rates and normal implied swaption volatilities. For swaptions,
results are reported for the entire volatility surface as well as for the volatility term
structures at the four option maturities in the sample (3 months, 1 year, 2 years,
and 5 years). Units are basis points. t-statistics, corrected for heteroscedasticity and
serial correlation up to 26 lags (i.e. 6 months) using the method of Newey and West
(1987), are in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and
1% level, respectively. The sample period consists of 866 weekly observations from
January 29, 1997 to August 28, 2013.
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Figure: Average RMSE (bps)

I LRSQ(3, 1) and LRSQ(3.2) both have reasonable fit

I . . . but LRSQ(3, 3) is the preferred model

I Captures level-dependence in swaption implied vol at low rates

I Upper bounds on short rate:

LRSQ(3,1) LRSQ(3,2) LRSQ(3,3)
0.20 1.46 0.72
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Conclusions and outlook
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Conclusions and outlook

I Polynomial models represent an attractive tradeoff between
flexibility and tractability.

I Significant progress has already been made both on the theoretical
side and in applications.

I Nonetheless this is a wide open area . . .
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Conclusions and outlook

. . . the following being but a few examples of unexplored territory:

I Statistical estimation. E.g. martingale estimating functions (see
Forman/Sørensen (2008) and Kessler/Sørensen (1999)) and
generalized method of moments (see Zhou (2003)).

I Filtering. Exploit the (PP) property to improve existing approximate
filters, such as the extended and unscented Kalman filters.

I Improved existence/uniqueness theory. Various natural state spaces
like Cd are not well-understood. Uniqueness in the diffusion case
should hold but is not completely settled. Same for boundary
absorption.

I Other open questions, such as existence of “fake” GBM and the
sum-of-squares problem for the unit ball.
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Thank you!
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une famille de polynômes orthogonaux.
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