THE REGULARIZING EFFECT OF SUPERLINEAR GRADIENT TERMS INNONLINEAR PARABOLIC EQUATIONS

MARTINA MAGLIOCCA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROME TOR VERGATA

(P)

(ID)

(Q)

(SC1)

(1)

1. THE SUPERLINEAR PROBLEM

We consider the following problem:

$$\begin{cases} u_t - \Delta_p u = |\nabla u|^q & \text{in } Q_T, \\ u = 0 & \text{on } (0, T) \times \partial \Omega, \\ u(0, x) = u_0(x) & \text{in } \Omega, \end{cases}$$

assuming 1 ,

$$u_0 \in L^{\sigma}(\Omega) \quad \text{with} \quad \sigma \ge \max\left\{1, \frac{N(q - (p - 1))}{p - q}\right\}$$

and superlinear *q* growths in the gradient term, i.e.

2. SUPERLINEAR STUFF

RMK 1: if (ID) is not satisfied then no solution exists. **RMK 2:** when (ID) verifies $\sigma > 1$, we have to take u s.t.

$$\left\{ u \text{ solution s.t. } (1+|u|)^{\frac{\sigma-2}{p}} u \in L^p(0,T;W_0^{1,p}(\Omega)) \right\}.$$
 (RC

This class makes the problem well posed: on the contrary, we lose uniqueness! **RMK 3:** when $\sigma = 1$, (**RC**) is replaced with

$$\lim_{n \to \infty} \frac{1}{n} \iint_{\{n \le |u| \le 2n\}} |\nabla u|^p = 0.$$
 (ET

The existence of solutions of (P) satisfying (RC)–(ET) is contained in [M1].

 $\max\left\{\frac{p}{2}, \frac{p(N+1) - N}{N+2}\right\} < q < p.$

AIM: proving long time decay of (renormalized) solutions of (P).

The incoming results hold in a general nonlinear setting (see [MP, M2]).

3. MAIN RESULT

THEOREM We assume that (Q), (ID) and (RC)–(ET) are in force. Then, solutions of (P) are bounded for positive times and they decay as solutions of coercive problems.

4. THE KEY POINT

We sketch the case $\sigma > 1$, then (**RC**) holds. Let

 $G_k(u) = (|u| - k)_+ \operatorname{sign}(u).$

A first smallness condition: if we take $k \gg 1$ s.t.

 $\|G_k(u_0)\|_{L^{\sigma}(\Omega)} < \delta \qquad k \gg 1,$

 $\delta > 0$ small enough, then

 $\|G_k(u(t))\|_{L^{\sigma}(\Omega)} \le \delta \qquad k \gg 1, \, \forall t > 0.$

N.B.: the requests in **RMK 1**, **RMK 2** are common features among superlinear problems. **RMK 3** is related to the renormalized setting.

5. REGULARIZING EFFECT

Taking advantage of (SC1), we manage to prove that

- $||G_k(u)||_{L^r(\Omega)}$, $r > \sigma$, decays polynomially in t and $u(t) \in L^r(\Omega)$ for t > 0;
- $||G_k(u)||_{L^{\infty}(\Omega)}$ decays polynomially in *t* (exponentially if p = 2) and $u(t) \in L^{\infty}(\Omega)$ for t > 0;

for $k \gg 1$ (as in (SC1)) and with the same rates of coercive problems.

CONCLUSION 1.: the $G_k(u)$ function decays as solutions of coercive problem for large values of k (see (SC1)).

6. The turning point

Combining the decay of $||G_k(u)||_{L^{\infty}(\Omega)}$ with (SC1) and (1), we manage to recover the one of the whole solution at an unspecified rate:

 $||u(t)||_{L^{\infty}(\Omega)} \to 0 \text{ for } t \to \infty.$

A second smallness condition: we take $\tau \gg 1$ s.t.

Indeed, testing (P) with $\int_{0}^{G_{k}(u)} (\varepsilon + |v|)^{\sigma-3} |v| dv$, $\varepsilon \geq 0$, and thanks to (RC) and to a continuity argument in time, we find

$$\int_{\Omega} |G_k(u(t))|^{\sigma} dx - \int_{\Omega} |G_k(u_0)|^{\sigma} dx$$
$$+ c \left(1 - \delta\right) \iint_{Q_t} \left| \nabla \left[\left(1 + |G_k(u)|\right)^{\frac{\sigma - 2}{p}} |G_k(u)| \right] \right|^p dx dt \le 0.$$

In particular, we deduce that $u(t) \in L^{\sigma}(\Omega)$ for t > 0.

CONSEQUENCE: if $u_0 \in L^{\infty}(\Omega)$ then we take $k = ||u_0||_{L^{\infty}(\Omega)}$ obtaining $\|u(t+\tau)\|_{L^{\infty}(\Omega)} \le \|u(\tau)\|_{L^{\infty}(\Omega)}.$

 $\|u(\tau)\|_{L^{\infty}(\Omega)} < \delta \qquad \tau \gg 1,$

 $\delta > 0$ small enough, then we use (SC2) instead of (SC1) in the previous proofs: in this way, all the results obtained for $G_k(u)$ hold for the whole u.

CONCLUSION 2.: the problem (P) decays as coercive problems for large time.

7. The case $\sigma = 1$

The condition (ET) takes the place of (RC). Then, letting $k \gg 1$ s.t. (SC1) holds with $\sigma = 1$, we recover the "key point" result. Once we get $u \in L^{\infty}(0,T; L^{1+\omega}(\Omega)), \omega > 0$, then the proofs follow as before.

8. COMPARISON WITH THE COERCIVE CASE AND THE SUPERLINEAR POWER PROBLEM

The results below are contained in [Po]. Consider

$$u_t - \Delta_p u = 0, \quad u_0 \in L^{\sigma}(\Omega).$$

If 1 then

$$\begin{aligned} \|u(t)\|_{L^{r}(\Omega)} \leq c \|u_{0}\|_{L^{\sigma}(\Omega)}^{\frac{\sigma[2N-p(N+r)]}{r[2N-p(N+\sigma)]}} t^{-\frac{N(\sigma-r)}{r(2N-p(N+\sigma))}} & \text{with} \quad r < \sigma. \end{aligned}$$

$$\text{f} \ \frac{2N}{N+\sigma} \sigma \text{ and} \end{aligned}$$

Superlinear problem (X_s) Coercive problem (X_c)

> = regularizing effect/decay $L^{\sigma} - L^{r}$, $r > \sigma$ = regularizing effect/decay $L^{\sigma} - L^{\infty}$ = nonexistence for superlinear q

(SC2)

$$\|u(t)\|_{L^{\infty}(\Omega)} \leq c \|u_0\|_{L^{\sigma}(\Omega)}^{\frac{p\sigma}{p(N+\sigma)-2N}} t^{-\frac{N}{p(N+\sigma)-2N}}.$$

Having (**Q**) implies that

$$p > \frac{2N}{N+\epsilon}$$

and this means that, if we are in the superlinear setting (see (Q)) and a solution of (P) exists, then such a solution regularizes.

RMK 4: the decay is not obvious in superlinear settings: as shown in [P], the problem

$$u_t - \Delta u = |u|^q$$
 with $q > 1$

does not admit global solutions and blow up phenomena occur!

9. REFERENCES

- M. Magliocca, *Existence results for a Cauchy-Dirichlet parabolic problem with a repulsive gradient term*, Nonlin. Anal., Vol. 166 (2018), pp. 102-143. [M1]
- M. Magliocca & A. Porretta, Local and global time decay for parabolic equations with super linear first order terms, available on https://arxiv.org/abs/1707.01761. [MP]
- M. Magliocca, Regularizing effects and long time decays for quasilinear parabolic equations with p-Laplace operator, available on https://arxiv.org/abs/1712.09246. [M2]
- A. Porretta, Local existence and uniqueness of weak solutions for nonlinear parabolic equations with superlinear growth and unbounded initial data, Adv. Diff. Eq., Vol. 6 (2001), pp. 73-128. [P]
- M. M. Porzio, *Existence, uniqueness and behavior of solutions for a class of nonlinear parabolic problems*, Nonlin. Anal., Vol. 74 (2011), pp. 5359-5382. [Po]