Almost-Sure Scattering for NLS at Mass Regularity in
dimensions d > 2
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The NLS equation

u(t,x) : R x R — C satisfying

iOru+Au = |uPlu
{ W(t=0) = upe H(RY). (NLS)

ford >2and p€[1,1+4].

Two formal conserved quantities:

1 1 .
M(t) = |lu(t)[|7= and E(t) = EHVU(t)IIfz + ﬁHU(t)II”+

[P+l *

Regularities: L? and H!.
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Scattering for NLS

Duhamel formula for (NLS) reads:
. t ’
u(t) = e ug — // R (u(t) P u(t)) dt’ .
0
We say that u(t) scatters forward in time in H® if

. t P}
e P u(t) — up = —i/ e A (|u(t) P u(t)) dt!
0

— u
t—o0 o

in H®, for some uy € H".
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Scattering at H! regularity

iOru+ Au = |ulP~u (NLS)

[Colliander, Keel, Staffilani, Takaoa, Tao] proved that for (d, p) = (3,5),
global well-posedness and scattering holds in H*(R3).

Probabilistic improvement on this result are of the following flavour:
[Killip, Murphy, Visan + Dodson, Liihrmann, Mendelson]| etc. prove that
for some s < 1 almost every initial data in H® give rise to global solutions
u(t) = e ug + v(t) where v € CO(R, H!) scatters in H! using

deterministic methods on v and probabilistic estimates on e® uq.

In this work we investigate what happens at regularity ~ L? using
completely different methods.
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Deterministic results

Theorem (Deterministic theory)

Let p>1andd > 2. Then:

Q@ Forpe {1, 1+ %} the Cauchy problem for (NLS) is globally
well-posed in L?(R?) and ill-posed in L% if p > 1+ %.

Q@ Forp<1l+ % and for every ug € L?, the solutions do not scatter in
L2, neither forward nor backward in time.

Q@ Ford>2,pe (1 + %, 1+ ﬁ) and initial data in H scattering in
L2 holds.

Q@ Ford>2,p=1+ % and radial initial data in L2, scattering holds in
L2.

Works of Christ, Colliander and Tao; Dodson; Barab; Tsutsumi, Yajima.
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The main result

Set X2y = Ns»0 H.,5, that almost radial L? functions.

Theorem (Chapter 4, Theorem 4.3)

Letd € {2,...,24} and p €)1+ 2,1+ %]. There exists a measure i on
X%, and o > 0 such that for pi-almost every ug € X2, there exists a
unique solution to (NLS) in the space

up + CO(R, HU) ,
where uy(t) = e™®uy. Furthermore, there is a o’ > 0 such that the
a 5 /! o . /!
solution u scatters in H° as t — +oo, that is there exists u+ € H° such
that

le~" u(t) — ug — ut|| yor t_?ooo.
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@ Slow growth of LP*! and Sobolev norms —> scattering
@ A general globalisation argument designed for this

@ Fitting (NLS) into this framework using the lens transform
@ Constructing the quasi-invariant measures needed

© Constructing a probabilistic local and global theory

@ Obtaining the LP*! bounds.
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The scattering e "2 u(t) — ug — uy in H? results from:
o A global bound sup,- |le ™ u(t) — (uo + uy)|| yorse < C

@ Precised scattering in H~7°:

le™ A u(t) = (uo + us )| y-o0 S €.
We only explain the second part. Duhamel formula:
. t .
e By(t) —up = —i/ e*’t/A(]u\pflu) dt’
0

Expect uy = —i [;° e A (|ulP~tu) dt’
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Crude bound:
. oo 3
e 2u(e) = (uo + w)lweo S | [ e B (P M ae
t
o0
S [ 1l o e
t

o / /
S [ MOl

H~°0

1
we used Sobolev embedding L% — H™9,

This is motivation for obtaining slowly growing estimates for u € LPT! or

ue H°.
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@ Slow growth bounds of LPT! and Sobolev norms = scattering v/
@ A general globalisation argument designed for this

@ Fitting (NLS) into this framework using the lens transform

@ Constructing the quasi-invariant measures needed

© Constructing a probabilistic local and global theory

@ Obtaining the LP*! bounds.
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Invariant measure and global solutions

Flow ¢: of a PDE: u(t) = ¢+up. w is invariant on H* if for any measurable
sets A C H®, pu(od—+A) = p(A) that is P(u(t) € A) = P(up € A).
Assumptions.

@  is invariant for under ¢; on H®;
@ u(llullms > ) S e

© Good LWP theory: if ||ug||ns < A then a solution exists on [0, 7],
7 ~ sk and [|u(t)|[ps < 2) for t < 7.

Proposition

Then for p-almost every uy € H® there exists a global solution u such that:

lu()] e < log2 () -
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The picture

Goal: Set of measure > 1 — & made of solutions with logarithmic growth
until time T.

1

Local well-posedness time 7 = %.

Gy, 1 = {uo, forall n < [ L], |lu(n7)||ns < A}.

T:)\LK 2T \_%JTNT
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The proof

|7

Set By 7 :=H*\ G\7 C U {uo, ||u(nT)||ns > A} the set of potentially
=0

bad initial data. "

L)
p(Ba 1) <D P(lu(nT)l[s > N)
n=0
T
< —P(uollns > A)

K_2
< TAKe™

thus 1u(By,7) < & for A ~ log?/? %)
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@ Slowly growing bounds of LPT! and Sobolev norms = scattering v/
© A general globalisation argument designed for this ¢/

@ Fitting (NLS) into this framework using the lens transform

@ Constructing the quasi-invariant measures needed

© Constructing a probabilistic local and global theory

@ Obtaining the LPT! bounds.
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Looking for invariant measures

For which systems is it easy to construct invariant measures?

In finite dimension. A good class of equations: Hamiltonian equations.
Let:

Otp = —0qH(p,q) 0:q = 0pH(p,q),

Then du= Z71 e~ H(P-9)dpdq is invariant, because:

Renorm. Cst.

@ H is conserved by the flow.

@ dpdgq is conserved (Liouville).

Problems:
@ (NLS) is infinite dimensional.

@ —A has uncountable spectrum when acting on R,
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Compactification of (NLS)

We solve the second problem by applying a transformation to (NLS), the
lens transform, mapping u solution to (NLS) to a v solution to (HNLS):

i0:v — Hv = cos(2t) (P d)|y|P~1y on (_Z Z) x RY, (HNLS)

where a(p,d) =2 — 9(p— 1) € [0,1). and (Appendix B for explanation)

._ _ 1 tan(2t)  x i|x|? tan(2t)
v(t,x) = Lu(t,x) = cos(2t)g u < > cos(2t)) exp <—2> 7

H = —A + |x|? the harmonic oscillator with discrete spectrum

He, = (4n+ d)e, =: X\2e,,n > 0.

Denote ||ul[yyse = ||HZul|re, and HS = WS2.
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Scattering for (HNLS)

Scattering for (NLS) <= scattering for (HNLS), this time it is simpler
since

. t . /
ety (t) — up = / e (=M (cos(2t) PN |y[P~Ly) dr',
0

so as t — oo expect

v+—/ 1 (cos(2t) P |y[P~y) dt’

jus

) 4 _
||e'tHV(t) — (uo + V+)H7—r"0 < /t cos(2t/) a(p’d)HV(t/)lep+1 dt’,

Since cos(2t') ~ (n/4 — t') as t — /4, and a(p, d) € (0,1) only needs:

s
Iv(t)llpes S log™( — 1)
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@ Slow growth of LP*! and Sobolev norms «~ scattering v/

© A general globalisation argument designed for this ¢/

© Fitting (NLS) into this framework using the lens transform v/
@ Constructing the quasi-invariant measures needed

© Constructing a probabilistic local and global theory

@ Obtaining the LPT! bounds.
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Hamiltonian setting (Section 4)

Writing v = 3~ Vnen and v, = g, + ip, one has an infinite dimensional
hamiltonian system for

cos(2t)™ ¢

1
H = H:({pn, qn}n=0) = §||VH311 pt1

+1
|| ”ILJpHv

Dependence of the Hamiltonian on t = do not expect invariance of the
formal measure

Ve(A) = /exp( He(v)) dv

cos(2t)~ a(p.d)
- few (SRR ) )

—|lv||? 2,2
with dy = e Mhady = & e "7 dv, (Gaussian densities)
n>0
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Construction of the Gaussian measure

1 is the image measure by the randomisation map:

where (g,)n>0 are i.i.d. Gaussian random variables.

Q 1 is supported by X2, = Neuo Hiol-
Q@ For p-almost every u there holds that u € X2\ U.>o Heg-
© For any v e X%, and any € > 0 there holds j(B(v,€)) > 0.

1 is a Gaussian measure, with good non-smoothing properties.
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The quasi-invariant measure analysis

[lv|P+?

Define due(v) 1= Cee™ <" quu(v).
Let ¢; be the flow of:

i0sv — Hv = cos(2t)~(Pd)|y|P~1y

Proposition (Quasi-invariant bound (Proposition 4.4, Section 4))

Q Forallt>20, p <KLy L p.
@ For all t and Borelian set A,

() < ve(geAY==20"

Remark. This bound is bad for t — /4, it is a bound by 1.
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Growth of Sobolev norms with quasi-invariant measures

Assumptions. Generalise the assumption of the globalisation theorem.
O 1o(¢_tA) < e (A)esC)™ ™ i the "quasi-invariance".
@ Forany o > 0, vi([luly—s > A) < p(lully—- > \) < e

© Good LWP theory in X2, 7

Proposition (Lemma 4.23 (Section 5))

For p-almost every ug € ng there exists a global solution
v=v +we€ v +CR,H) to (HNLS), obeying

—a(p,d)

i 2 1 T
t Sy S,r < == I 2 t 5
(el Iy oo S (5 =€) tog? (5 )

When%+%:‘5/ands<0.
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@ Slow growth of LP*! and Sobolev norms «~ scattering v/

© A general globalisation argument designed for this ¢/

© Fitting (NLS) into this framework using the lens transform v/
@ Constructing the quasi-invariant measures needed ¢/

© Constructing a probabilistic local and global theory

@ Obtaining the LPT! bounds.
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Local theory in X2,

Affine ansatz: v(t) = e ™y + v(t) = vi(t) + w(t), where

i0:w — Hw(t) = cos(2t) P vy (t) + w(t)|P~ (v (t) + w(t)).

Proposition (Proposition 4.3 (Section 3))

There exist o > 0 and T € [0,7/4) such that local well-posedness for w
holds in some space Y* < C°([0, T], H°).

The proof is a fixed-point argument on

t : !
O(w)(t) = —i/ e (=t cog(21) ~(p.d) (va + wlP v + W)) dt’
0

in an adapted space Y7 = ﬂ L7

(ar)2+4=4
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Difficulty of the local theory

Crude Bound in L¥H7, and use cos(2t)~(Pd) < (r/4 — T)~e(pd),

;
[e(W)lLgere ST /0 lve + wlP up + v)l3es dt

<7 Ve P Vel g + WP ]l 1 g0 + { other terms.}
—_——

Handled similarly

e The term \\]W\P*1W\|L1THU may be controlled (for some p) by
deterministic methods, since w € H°.

@ v, ¢ H so we have to control |v|P~ty,.

w
. —itA2 8,
— We use randomness in v; = Z e 't)‘")\fnen(x)
n>0 n
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Random linear gain
Lemma (Lemma 4.12 (Section 2))
Outside a set of probability at most Ce=* there holds

1
Ta
|| L”L‘;—WSPP )\7
1 1 2
- d(i_l_3> for2<p<ﬂ
A Gy = 11 2d 2d
1—-d 5—5) ford lépéTz

2
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Random linear gain: preparation of the proof

With the lemma, write H2 (|v.[P~1v;) ~ |vi [P~ HZ v, so that Holder
yields
- -1
IvlP = vellae S el o Vel iz oee
when (d, o) = (2,2) this works, e.g.

For the proof we use:

Lemma (Kolmogorov, Paley, Zygmund)

For complex numbers (an)n>0,

1

Z angn SVr (Z ’an|2) :

n>2 L n>0
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Random linear gain: proof (random decoupling)

For s < s,, write H2v,(t, x) Z)\s —itxd g,, ,,(x). The lemma with
n=>0

1l
an = A5~ te A implies

N =

> Ase g” ~en(x) Sﬁ(zkﬁ(s_l)len(X)F)

n=0 L2 n>0
Q

Combinend with Minkowski for a > q, r we get

N=

_in2 &Y _
SYoape i <V (Z e 1>|en(x)r2)
n>=0 n a1qr n=0

Lol L L9Ly

1

2
<STa ZA%(S—”Henn%r)

n>0
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Random linear gain: proof (deterministic estimate)

Finally we have obtained

1

2

> X el

n>0

Q=

- <
HULHLEL?I—WS’ NaEa™) T

We conclude with deterministic estimates:

Lemma (Estimates of Hermite functions)

< ;d(1/2_1/r) for2<r< %
lenller < )\gu/z_l/r)_l for% cpE %‘
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@ Slowly growing bounds of LPT! and Sobolev norms = scattering v/

© A general globalisation argument designed for this ¢/

© Fitting (NLS) into this framework using the lens transform v/
@ Constructing the quasi-invariant measures needed ¢/

© Constructing a probabilistic local and global theory ¢/

@ Obtaining the LPT! bounds.
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A pointwise LP*! bound

Lemma ((4.28) in Corollary 4.21)

Set Aex := {uo € X0, ||¢ruol|prr > A} then

att
vo(Arp) < &P .

Proof. Quasi-invariance brings vo(Ax) < ve(peAsx )52 9 For
u € ¢tAex one has |[uf[pr1 > A

cos(2t)(p:d) WP
) <e pl,

_aptt d)
VO(At7)\) < (e FEs COS(2t) (p, (¢tAt7)\)

+1
llull®

TLAR —a(p,d)
We used that dv(u) = e~ et <5(2t)

dp(u).
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Framework for LP*! bounds

Proposition (Lemma 4.25, Section 5)

For almost-every uy € X0, there holds

rad’

IOl S log#t G — t) for all t € [0, %) :

Application of the globalisation argument on intervals [0, t]!

e Chop [0, t] in intervals [t,, th1], n=0,..., N with t, = nt.

e For each time t, we have ||v(t,)|p+1 < A for up € Uy, such that
)\P+1

(X2 \ Up,) < e w1

o /N Not possible to take Ute[o,g) Ue, not a countable union /A

@ Check that with high probability for t € [t,, tpt1]
[v(t) = t(tn)llprs S|t —ta].
]
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Variation of LPt! norms

With "high probability" there holds ||v(t1) — v(t2)| o1 < [t — to]P.

Case (1): low values of p implies control by Sobolev norms and L5°L2*!.
Case (2): higher values need an extra argument. We write
v(t2) = v(t) = (e "7 —1)v(n)
=/

t i !
— ,/ e~ i(t—t )H(COS(2tl)a(p’d)|V(tl)‘p71v(t1))dt'

t1

=1l
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Treatment of Il

Recall the dispersion estimate for g > 2,
. 1 1
le Vo < £ C73) vlle

Applied with g = p + 1 we get By dispersion we have:

t cos(2t')~(p.d)
il < [ 2 e
t1 ’t_sld(Z p)

T _a(pvd)
s(G-t) e al Mg .

[t1,:12]

b : P : e 1 1 2
Which is controlable if ||v||L[rt e is. Requires: s > d (5 - m) - 2.
1,82

Control of ||v|[,c pr1 by Y*if s > d (% - ﬁ)
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Treatment of |

Sobolev embedding in time:

(e 7 — 1)v(ty)[| oo S [t~ t1!5Hef"(tftl)V(fl)HcgﬁLpﬂ

St — t1|BH||e_i(t_t1)V(t1)||vaquH :
Then use that |0;|e™v = HZe™My hence:
Mlooper S e D v () [ ggpee oo

and random estimates to finish.
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Where does the Lens transform comes from?

L . _d
Scaling invariance: u(s,y)+— A" 2u (%’

>I<

).

When A = A(s), we define new variables (t, x) such that dx = ( y and
dt = )\g(ss)’ Ie t = fo /\2(5

e Good way to compactify time is t = %arctan(Zs) thus A = cos(2s).

@ New equation is i0;v + Axv — i%x -Vxv+---. We gauge this last

term by absoring it in an exponential.
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