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The NLS equation

u(t, x) : R × Rd −→ C satisfying{
i∂tu + ∆u = |u|p−1u
u(t = 0) = u0 ∈ Hs(Rd) .

(NLS)

for d ⩾ 2 and p ∈ [1, 1 + 4
d ].

Two formal conserved quantities:

M(t) = ∥u(t)∥2
L2 and E (t) = 1

2∥∇u(t)∥2
L2 + 1

p + 1∥u(t)∥p+1
Lp+1 .

Regularities: L2 and H1.
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Scattering for NLS

Duhamel formula for (NLS) reads:

u(t) = eit∆u0 − i
∫ t

0
ei(t−t′)∆(|u(t ′)|p−1u(t ′)) dt ′ .

We say that u(t) scatters forward in time in Hs if

e−it∆u(t) − u0 = −i
∫ t

0
e−it′∆(|u(t ′)|p−1u(t ′)) dt ′

−→
t→∞

u+ ,

in Hs , for some u+ ∈ Hs .
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Scattering at H1 regularity

i∂tu + ∆u = |u|p−1u (NLS)

[Colliander, Keel, Staffilani, Takaoa, Tao] proved that for (d , p) = (3, 5),
global well-posedness and scattering holds in H1(R3).

Probabilistic improvement on this result are of the following flavour:
[Killip, Murphy, Visan + Dodson, Lührmann, Mendelson] etc. prove that
for some s < 1 almost every initial data in Hs give rise to global solutions
u(t) = eit∆u0 + v(t) where v ∈ C0(R, H1) scatters in H1 using
deterministic methods on v and probabilistic estimates on eit∆u0.

In this work we investigate what happens at regularity ≃ L2 using
completely different methods.
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Deterministic results

Theorem (Deterministic theory)
Let p ⩾ 1 and d ⩾ 2. Then:

1 For p ∈
[
1, 1 + 4

d

]
the Cauchy problem for (NLS) is globally

well-posed in L2(Rd) and ill-posed in L2 if p > 1 + 4
d .

2 For p ⩽ 1 + 2
d and for every u0 ∈ L2, the solutions do not scatter in

L2, neither forward nor backward in time.
3 For d ⩾ 2, p ∈

(
1 + 2

d , 1 + 4
d−2

)
and initial data in H1 scattering in

L2 holds.
4 For d ⩾ 2, p = 1 + 4

d and radial initial data in L2, scattering holds in
L2.

Works of Christ, Colliander and Tao; Dodson; Barab; Tsutsumi, Yajima.
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The main result

Set X 0
rad =

⋂
s>0 H−s

rad, that almost radial L2 functions.

Theorem (Chapter 4, Theorem 4.3)
Let d ∈ {2, . . . , 24} and p ∈]1 + 2

d , 1 + 4
d ]. There exists a measure µ on

X 0
rad and σ > 0 such that for µ-almost every u0 ∈ X 0

rad there exists a
unique solution to (NLS) in the space

uL + C0(R, Hσ) ,

where uL(t) = eit∆u0. Furthermore, there is a σ′ > 0 such that the
solution u scatters in Hσ′ as t → ±∞, that is there exists u± ∈ Hσ′ such
that

∥e−it∆u(t) − u0 − u±∥Hσ′ −→
t→±∞

0 .
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1 Slow growth of Lp+1 and Sobolev norms =⇒ scattering
2 A general globalisation argument designed for this
3 Fitting (NLS) into this framework using the lens transform
4 Constructing the quasi-invariant measures needed
5 Constructing a probabilistic local and global theory
6 Obtaining the Lp+1 bounds.
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The scattering e−it∆u(t) − u0 → u+ in Hσ′ results from:

A global bound supt>0 ∥e−it∆u(t) − (u0 + u+)∥Hσ′+ε ⩽ C

Precised scattering in H−σ0 :

∥e−it∆u(t) − (u0 + u+)∥H−σ0 ≲ t−C .

We only explain the second part. Duhamel formula:

e−it∆u(t) − u0 = −i
∫ t

0
e−it′∆(|u|p−1u) dt ′

Expect u+ = −i
∫∞

0 e−it′∆(|u|p−1u) dt ′
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Crude bound:

∥e−it∆u(t) − (u0 + u+)∥H−σ0 ≲
∥∥∥∥∫ ∞

t
e−it′∆(|u|p−1u) dt ′

∥∥∥∥
H−σ0

≲
∫ ∞

t
∥|u|p−1u∥H−σ0 dt ′

≲
∫ ∞

t
∥v(t ′)∥p

Lp+1 dt ′ ,

we used Sobolev embedding L
p+1

p ↪→ H−σ0 .

This is motivation for obtaining slowly growing estimates for u ∈ Lp+1 or
u ∈ Hσ.
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1 Slow growth bounds of Lp+1 and Sobolev norms =⇒ scattering ✔

2 A general globalisation argument designed for this
3 Fitting (NLS) into this framework using the lens transform
4 Constructing the quasi-invariant measures needed
5 Constructing a probabilistic local and global theory
6 Obtaining the Lp+1 bounds.
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Invariant measure and global solutions

Flow ϕt of a PDE: u(t) = ϕtu0. µ is invariant on Hs if for any measurable
sets A ⊂ Hs , µ(ϕ−tA) = µ(A) that is P(u(t) ∈ A) = P(u0 ∈ A).
Assumptions.

1 µ is invariant for under ϕt on Hs ;
2 µ(∥u∥Hs > λ) ≲ e−cλ2 ;
3 Good LWP theory: if ∥u0∥Hs ⩽ λ then a solution exists on [0, τ ],

τ ∼ 1
λK and ∥u(t)∥Hs ⩽ 2λ for t ⩽ τ .

Proposition
Then for µ-almost every u0 ∈ Hs there exists a global solution u such that:

∥u(t)∥Hs ≲ log
1
2 (t) .
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The picture

Goal: Set of measure ⩾ 1 − ε made of solutions with logarithmic growth
until time T .

Local well-posedness time τ = 1
λK .

Gλ,T := {u0, for all n ⩽ ⌊T
τ ⌋, ∥u(nτ)∥Hs ⩽ λ}.

2λ

λ

τ = 1
λK

2τ · · · bTτ cτ ∼ T
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The proof

Set Bλ,T := Hs \ Gλ,T ⊂
⌊ T

τ
⌋⋃

n=0
{u0, ∥u(nτ)∥Hs > λ} the set of potentially

bad initial data.

µ(Bλ,T ) ⩽
⌊ T

τ
⌋∑

n=0
P(∥u(nτ)∥Hs > λ)

⩽
T
τ
P(∥u0∥Hs > λ)

⩽ TλK e−cλ2
,

thus µ(Bλ,T ) ⩽ ε for λ ∼ log1/2
(

T
ε

)
.
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1 Slowly growing bounds of Lp+1 and Sobolev norms =⇒ scattering ✔

2 A general globalisation argument designed for this ✔

3 Fitting (NLS) into this framework using the lens transform
4 Constructing the quasi-invariant measures needed
5 Constructing a probabilistic local and global theory
6 Obtaining the Lp+1 bounds.
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Looking for invariant measures

For which systems is it easy to construct invariant measures?

In finite dimension. A good class of equations: Hamiltonian equations.
Let:

∂tp = −∂qH(p, q) ∂tq = ∂pH(p, q) ,

Then dµ = Z−1︸︷︷︸
Renorm.Cst.

e−H(p,q)dpdq is invariant, because:

1 H is conserved by the flow.
2 dpdq is conserved (Liouville).

Problems:

(NLS) is infinite dimensional.

−∆ has uncountable spectrum when acting on Rd .
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Compactification of (NLS)

We solve the second problem by applying a transformation to (NLS), the
lens transform, mapping u solution to (NLS) to a v solution to (HNLS):

i∂tv − Hv = cos(2t)−α(p,d)|v |p−1v on (−π

4 ,
π

4 ) × Rd , (HNLS)

where α(p, d) = 2 − d
2 (p − 1) ∈ [0, 1). and (Appendix B for explanation)

v(t, x) := Lu(t, x) = 1
cos(2t) d

2
u
( tan(2t)

2 ,
x

cos(2t)

)
exp

(
− i |x |2 tan(2t)

2

)
,

H = −∆ + |x |2 the harmonic oscillator with discrete spectrum:

Hen = (4n + d)en =: λ2
nen , n ⩾ 0 .

Denote ∥u∥Ws,p = ∥H s
2 u∥Lp , and Hs = Ws,2.
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Scattering for (HNLS)

Scattering for (NLS) ⇐⇒ scattering for (HNLS), this time it is simpler
since

eitHv(t) − u0 =
∫ t

0
e−i(t−t′)H

(
cos(2t)−α(p,d)|v |p−1v

)
dt ′ ,

so as t → ∞ expect

v+ =
∫ π

4

0
e−i(t−t′)H

(
cos(2t)−α(p,d)|v |p−1v

)
dt ′ .

∥eitHv(t) − (u0 + v+)∥H−σ0 ≲
∫ π

4

t
cos(2t ′)−α(p,d)∥v(t ′)∥p

Lp+1 dt ′ ,

Since cos(2t ′) ∼ (π/4 − t ′) as t → π/4, and α(p, d) ∈ (0, 1) only needs:

∥v(t)∥Lp+1 ≲ logα(π

4 − t) .
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1 Slow growth of Lp+1 and Sobolev norms ↭ scattering ✔

2 A general globalisation argument designed for this ✔

3 Fitting (NLS) into this framework using the lens transform ✔

4 Constructing the quasi-invariant measures needed
5 Constructing a probabilistic local and global theory
6 Obtaining the Lp+1 bounds.
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Hamiltonian setting (Section 4)

Writing v =
∑

n⩾0 vnen and vn = qn + ipn one has an infinite dimensional
hamiltonian system for

H = Ht({pn, qn}n⩾0) = 1
2∥v∥2

H1 + cos(2t)−α(p,d)

p + 1 ∥v∥p+1
Lp+1 ,

Dependence of the Hamiltonian on t =⇒ do not expect invariance of the
formal measure

νt(A) =
∫

A
exp(−Ht(v)) dv

=
∫

A
exp

(
cos(2t)−α(p,d)

p + 1 ∥v∥p+1
Lp+1

)
dµ(v) ,

with dµ := e−∥v∥2
H1 dv =

⊗
n⩾0

e−λ2
nv2

n dvn (Gaussian densities)
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Construction of the Gaussian measure

Definition
µ is the image measure by the randomisation map:

uω
0 (x) :=

∑
n⩾0

gω
n

λn
en(x) ,

where (gn)n⩾0 are i.i.d. Gaussian random variables.

Lemma
1 µ is supported by X 0

rad =
⋂

s>0 H−s
rad.

2 For µ-almost every u there holds that u ∈ X 0
rad \

⋃
ε⩾0 Hε

rad.
3 For any v ∈ X 0

rad and any ε > 0 there holds µ (B(v , ε)) > 0.

µ is a Gaussian measure, with good non-smoothing properties.
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The quasi-invariant measure analysis

Define dνt(v) := Cte− cos(2t)−α(p,d) ∥v∥p+1
p+1 dµ(v).

Let ϕt be the flow of:

i∂tv − Hv = cos(2t)−α(p,d)|v |p−1v .

Proposition (Quasi-invariant bound (Proposition 4.4, Section 4))
1 For all t ⩾ 0, µ ≪ νt ≪ µ.
2 For all t and Borelian set A,

ν0(A) ⩽ νt(ϕtA)cos(2t)α(p,d)

Remark. This bound is bad for t → π/4, it is a bound by 1.
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Growth of Sobolev norms with quasi-invariant measures

Assumptions. Generalise the assumption of the globalisation theorem.
1 ν0(ϕ−tA) ⩽ νt(A)cos(2t)α(p,d) is the "quasi-invariance".
2 For any σ > 0, νt(∥u∥H−σ > λ) ⩽ µ(∥u∥H−σ > λ) ⩽ e−cλ−2 .
3 Good LWP theory in X 0

rad ?

Proposition (Lemma 4.23 (Section 5))
For µ-almost every u0 ∈ X 0

rad there exists a global solution
v = vL + w ∈ vL + C0(R, Hσ) to (HNLS), obeying

∥w(t)∥Hs , ∥w∥Lq
[0,t]W

s,r ≲
(

π

4 − t
)−α(p,d)

2
log

1
2

(
π

4 − t
)

.

when 2
q + d

r = d
2 and s ⩽ σ.
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1 Slow growth of Lp+1 and Sobolev norms ↭ scattering ✔

2 A general globalisation argument designed for this ✔

3 Fitting (NLS) into this framework using the lens transform ✔

4 Constructing the quasi-invariant measures needed ✔

5 Constructing a probabilistic local and global theory
6 Obtaining the Lp+1 bounds.
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Local theory in X 0
rad

Affine ansatz: v(t) = e−itHuω
0 + v(t) = vL(t) + w(t), where

i∂tw − Hw(t) = cos(2t)−α(p,d)|vL(t) + w(t)|p−1(vL(t) + w(t)) .

Proposition (Proposition 4.3 (Section 3))
There exist σ > 0 and T ∈ [0, π/4) such that local well-posedness for w
holds in some space Y s ↪→ C0([0, T ], Hσ).

The proof is a fixed-point argument on

Φ(w)(t) = −i
∫ t

0
e−i(t−t′)H cos(2t)−α(p,d)

(
|vL + w |p−1(vL + w)

)
dt ′

in an adapted space Y σ =
⋂

(q,r): 2
q + d

r = d
2

Lq
T Ws,σ
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Difficulty of the local theory

Crude Bound in L∞
T Hσ, and use cos(2t)−α(p,d) ≲ (π/4 − T )−α(p,d).

∥Φ(v)∥L∞
T Hσ ≲T

∫ T

0
∥|vL + w |p−1(uL + v)∥Hs dt

≲T ∥|vL|p−1vL∥L1
T Hs + ∥|w |p−1w∥L1

T Hσ + { other terms.}︸ ︷︷ ︸
Handled similarly

The term ∥|w |p−1w∥L1
T Hσ may be controlled (for some p) by

deterministic methods, since w ∈ Hσ.

vL /∈ Hσ so we have to control |vL|p−1vL.

−→ We use randomness in vL =
∑
n⩾0

e−itλ2
n
gω

n
λn

en(x)
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Random linear gain
Lemma (Lemma 4.12 (Section 2))
Outside a set of probability at most Ce−cλ2 there holds

∥vL∥
Lq

T Ws−
p ,p ⩽ T

1
q λ ,

where sp =

 d
(

1
2 − 1

p

)
for 2 ⩽ p < 2d

d−1

1 − d
(

1
2 − 1

p

)
for 2d

d−1 ⩽ p ⩽ 2d
d−2 .

1
2

1
2

1
p

s

1
2 − 1

2d
1
2 − 1

d

1
2

1
2

1
p

s

1
4

Scattering for NLS July 29, 2025 26 / 1



Random linear gain: preparation of the proof

With the lemma, write H σ
2 (|vL|p−1vL) ≃ |vL|p−1H σ

2 vL so that Hölder
yields

∥|vL|p−1vL∥L1
T Hσ ≲ ∥vL∥p−1

L2(p−1)T L4(p−1) ∥vL∥L2
T Wσ,4 ,

when (d , σ) = (2, 2) this works, e.g.

For the proof we use:

Lemma (Kolmogorov, Paley, Zygmund)
For complex numbers (an)n⩾0,

∥∥∥∥∥∥
∑
n⩾2

angω
n

∥∥∥∥∥∥
Lr

Ω

≲
√

r

∑
n⩾0

|an|2
 1

2

.
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Random linear gain: proof (random decoupling)

For s < sp, write H s
2 vL(t, x) =

∑
n⩾0

λs
ne−itλ2

n
gω

n
λn

en(x). The lemma with

an = λs−1
n e−itλ2

n implies∥∥∥∥∥∥
∑
n⩾0

λs
ne−itλ2

n
gω

n
λn

en(x)

∥∥∥∥∥∥
La

Ω

≲
√

a

∑
n⩾0

λ2(s−1)
n |en(x)|2

 1
2

Combinend with Minkowski for a ⩾ q, r we get∥∥∥∥∥∥
∑
n⩾0

λs
ne−itλ2

n
gω

n
λn

en(x)

∥∥∥∥∥∥
La

ΩLq
T Lr

x

≲
√

a

∥∥∥∥∥∥∥
∑

n⩾0
λ2(s−1)

n |en(x)|2
 1

2
∥∥∥∥∥∥∥

Lq
T Lr

x

≲ T
1
q

∑
n⩾0

λ2(s−1)
n ∥en∥2

Lr

 1
2
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Random linear gain: proof (deterministic estimate)

Finally we have obtained

∥uL∥
La

ΩLq
T Ws−

r ,r ≲ T
1
q

∑
n⩾0

λ2(s−1)
n ∥en∥2

Lr

 1
2

.

We conclude with deterministic estimates:

Lemma (Estimates of Hermite functions)

∥en∥Lr ≲

{
λ

−d(1/2−1/r)
n for 2 ⩽ r < 2d

d−1
λ

d(1/2−1/r)−1
n for 2d

d−1 < r ⩽ 2d
d−2 .
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1 Slowly growing bounds of Lp+1 and Sobolev norms =⇒ scattering ✔

2 A general globalisation argument designed for this ✔

3 Fitting (NLS) into this framework using the lens transform ✔

4 Constructing the quasi-invariant measures needed ✔

5 Constructing a probabilistic local and global theory ✔

6 Obtaining the Lp+1 bounds.
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A pointwise Lp+1 bound

Lemma ((4.28) in Corollary 4.21)
Set At,λ := {u0 ∈ X 0, ∥ϕtu0∥Lp+1 > λ} then

ν0(At,λ) ⩽ e− λp+1
p+1 .

Proof. Quasi-invariance brings ν0(At,λ) ⩽ νt(ϕtAt,λ)cos(2t)α(p,d) . For
u ∈ ϕtAt,λ one has ∥u∥Lp+1 > λ.

ν0(At,λ) ⩽
(

e− λp+1
p+1 cos(2t)−α(p,d)

µ(ϕtAt,λ)

)cos(2t)α(p,d)

⩽ e− λp+1
p+1 .

We used that dνt(u) = e−
∥u∥p+1

Lp+1
p+1 cos(2t)−α(p,d)

dµ(u).

Scattering for NLS July 29, 2025 31 / 1



Framework for Lp+1 bounds

Proposition (Lemma 4.25, Section 5)
For almost-every u0 ∈ X 0

rad, there holds

∥v(t)∥Lp+1 ≲ log
1

p+1

(
π

4 − t
)

for all t ∈
[
0,

π

4

)
.

Application of the globalisation argument on intervals [0, t]!

Chop [0, t] in intervals [tn, tn+1], n = 0, . . . , N with tn = nτ .

For each time tn we have ∥v(tn)∥Lp+1 ⩽ λ for u0 ∈ Utn such that
µ(X 0

rad \ Utn) ⩽ e− λp+1
p+1 .

!△ Not possible to take
⋃

t∈[0, π
4 ) Ut , not a countable union !△

Check that with high probability for t ∈ [tn, tn+1]
∥v(t) − t(tn)∥Lp+1 ≲ |t − tn|γ .
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Variation of Lp+1 norms

Lemma
With "high probability" there holds ∥v(t1) − v(t2)∥Lp+1 ≲ |t1 − t2|β.

Case (1): low values of p implies control by Sobolev norms and L∞
t Lp+1

x .

Case (2): higher values need an extra argument. We write

v(t2) − v(t1) = (e−i(t−t1)H − 1)v(t1)︸ ︷︷ ︸
=I

− i
∫ t

t1
e−i(t−t′)H(cos(2t ′)α(p,d)|v(t ′)|p−1v(t ′))dt ′

︸ ︷︷ ︸
=II
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Treatment of II

Recall the dispersion estimate for q ⩾ 2,

∥eitHv∥Lq ≲ t−d
(

1
2 − 1

q

)
∥v∥Lq′ .

Applied with q = p + 1 we get By dispersion we have:

∥II∥Lp+1 ≲
∫ t

t1

cos(2t ′)−α(p,d)

|t − s|d
(

1
2 − 1

p

) ∥v(t ′)∥p
Lp+1dt ′

≲
(

π

4 − t
)−α(p,d)

|t2 − t1|β∥v∥p
Lr

[t1,t2]L
p+1
x

,

Which is controlable if ∥v∥p
Lr

[t1,t2]L
p+1
x

is. Requires: s > d
(

1
2 − 1

p+1

)
− 2

r .

Control of ∥v∥L∞Lp+1
x

by Y s if s > d
(

1
2 − 1

p+1

)
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Treatment of I

Sobolev embedding in time:

∥(e−i(t−t1)H − 1)v(t1)∥L∞Lp+1 ≲ |t − t1|β∥e−i(t−t1)v(t1)∥C0,β
t Lp+1

≲ |t2 − t1|β∥∥e−i(t−t1)v(t1)∥W ε,q
t Lp+1 .

Then use that |∂t |εeitHv = HεeitHv hence:

∥I∥L∞Lp+1 ≲ ∥e−i(t−t1)Hv(t1)∥Lq
t W2ε,p+1 ,

and random estimates to finish.
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Where does the Lens transform comes from?

Scaling invariance: u(s, y) 7→ λ− d
2 u
(

s
λ2 , y

λ

)
.

When λ = λ(s), we define new variables (t, x) such that dx = dy
λ(s) and

dt = ds
λ2(s) , i.e., t =

∫ t
0

ds
λ2(s) .

Good way to compactify time is t = 1
2 arctan(2s) thus λ = cos(2s).

New equation is i∂tv + ∆xv − i λ′(t)
λ(t) x · ∇xv + · · · . We gauge this last

term by absoring it in an exponential.
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