Double Hölder Regularity for Incompressible Euler Equations

Mickaël Latocca¹

¹Université d'Évry

March 2023, La Rochelle

The work presented has been done in collaboration with: Luigi De Rosa (Univ. of Basel) and Giorgio Stefani (SISSA)

The Incompressible Euler Equations in a domain

The setting is the following:

- $oldsymbol{\Omega} \subset \mathbb{R}^d$ a **bounded domain** with unit normal n. $\Omega \in C^{2^+}$, so $n \in C^{1^+}$
- Incompressible Euler Equations in Ω,

$$\partial_t u(t) + u(t) \cdot \nabla u(t) = -\nabla p(t),$$

where $u(t): \Omega \to \mathbb{R}^d$ and $p(t): \Omega \to \mathbb{R}$.

- ▶ Divergence free condition: div u(t) = 0.
- ▶ Boundary conditions: $u(0) = u_0$ and $u(t) \cdot n|_{\partial\Omega} = 0$.

Equation of the pressure: interior equation

$$egin{aligned} -\Delta
ho(t) &= \operatorname{div}(-
abla
ho(t)) = \operatorname{div}(u(t) \cdot
abla u(t)) \ &= \partial_i(u^j(t)\partial_j u^i(t)) = \partial^i_{ij}(u^i(t)u^j(t)) \ &= \operatorname{div}\operatorname{div}(u(t) \otimes u(t)) \end{aligned}$$

In this talk: u(t,x) = u(x) such that div u = 0 (weakly) and $u \cdot n|_{\partial\Omega} = 0$. p is a solution of

$$-\Delta p = \operatorname{div}\operatorname{div}(u\otimes u),$$

which makes sense whenever u is a (weakly) divergence-free function.

Equation of the pressure: boundary terms

Using that $\partial\Omega$ is a level set of $u\cdot n$,

$$\partial_{n}p = \nabla p \cdot n = -(u \cdot \nabla u) \cdot n = -u^{i}\partial_{i}(u^{j})n^{j} = -u_{i}\partial_{i}(u^{j}n^{j}) + u^{i}u^{j}\partial_{i}n^{j}$$
$$= -u \cdot \nabla(u \cdot n) + u \otimes u : \nabla n = u \otimes u : \nabla n.$$

Finally we are considering (weak) solutions of:

$$\begin{cases}
-\Delta p &= \operatorname{div}\operatorname{div}(u \otimes u) \\
\partial_n p &= u \otimes u : \nabla n.
\end{cases}$$

Question: if $u \in C^{\theta}(\Omega)$, what is the regularity of p?

4

Why is that a relevant question?

Regularity of the Lagrangian trajectories: for u(t) a solution to the Euler equation, consider

$$\begin{cases} \dot{X}(t,x) = u(t,X(t,x)) \\ X(0,x) = x. \end{cases}$$

Question: Trajectories regularity $u \in L^{\infty}_t C^{\theta}_x \Rightarrow X(\cdot, x) \in C^{\infty}_t$?

Answer : Chemin '92 for $u \in L^{\infty}_t C^{1,\varepsilon}_x(\mathbb{R}^d)$ (uniqueness class). Isett '13 : $u \in L^{\infty}_t C^{1^-}_x(\mathbb{R}^d)$ (non-uniqueness class).

$$\frac{d^2}{dt^2}X(t,x) = \underbrace{(\partial_t + u \cdot \nabla)}_{Dt} u(t,X(t,x)) = -\nabla p(t,X(t,x)).$$

$$p \in L^{\infty}_t C^{\alpha}_x \Rightarrow \frac{D}{Dt} u \in L^{\infty}_t C^{\alpha-1}_x \Rightarrow \frac{d^2}{dt^2} X(\cdot, x) \in C^{\alpha-1}_t.$$

Question: Obtain such results on bounded domains Ω .

Main result

Theorem (De Rosa, L., Stefani '23)

Let $\theta \in (0, \frac{1}{2})$ and $\Omega \in C^{2^+}$. Let u be a (weakly) divergence-free vector field. Then:

$$u \in C^{\theta}(\Omega) \Longrightarrow p \in C^{2\theta}(\Omega)$$
.

- 1. Endpoint: $u \in C^{\frac{1}{2}}(\Omega) \Longrightarrow p \in C^{1}_{*}(\Omega)$.
- 2. Higher regularity $1/2 < \theta < 1$, $u \in C^{\theta}(\Omega) \Longrightarrow p \in C^{1,2\theta-1}(\Omega)$ (De Rosa, L., Stefani '22, much simpler).
- 3. Even $u \in C^{\theta}(\Omega) \Longrightarrow p \in C^{\theta}(\Omega)$ does **not** follow from standard elliptic regularity. [Bardos-Titi] used this result (and later proved it) to obtain the positive part of Onsager's conjecture in bounded domains.

6

Very high regularities (Used by Chemin for example)

The key observation is the computation:

$$\begin{aligned} \operatorname{div}\operatorname{div}(u\otimes u) &= \partial_{ij}(u^iu^j) = \partial_i(u^j\partial_ju^i + u^i\underbrace{\partial_ju^j}_{=0}) \\ &= \partial_i(u^j\partial_ju^i) \\ &= \partial_iu^j\partial_ju^i \\ &= \nabla u : \nabla u \,. \end{aligned}$$

Makes sense if $u \in C^1$ for example.

So if
$$u \in C^{1+\varepsilon}$$
, $p = (-\Delta)^{-1} \operatorname{div} \operatorname{div} (u \otimes u) = (-\Delta)^{-1} (\underbrace{\nabla u : \nabla u}_{\in C^{\varepsilon}})$,

"Double" regularity:
$$u \in C^{1+\varepsilon}(\mathbb{R}^d) \Longrightarrow p \in C^{2+\varepsilon}$$

7

Argument on \mathbb{R}^2 : [Silvestre '11] and [Isett '13]

We can use Fourier on the euclidean space!

Since

$$p = (-\Delta)^{-1} \operatorname{div} \operatorname{div} u \otimes u = (-\Delta)^{-1} \partial_{ij}^2 (u^i u^j),$$
 one has $\hat{p}(\xi) = -\frac{\xi^i \xi^j}{|\xi|^2} \widehat{u^i u^j}(\xi)$. With $a(\xi) = -\frac{\xi^i \xi^j}{|\xi|^2}$, $D = -i\nabla$,

$$p=a_0(D)(u\otimes u)$$

where a(D) is an operator of order 0.

Lemma

If $u = \sum_{N \in 2^{\mathbb{N}}} u_N$, $\hat{u}_N(\xi) = \chi(\xi N^{-1})\hat{u}(\xi)$ is a Littlewood-Paley decomposition:

$$||u||_{C^{\theta}} \sim ||u||_{C_*^{\theta}} = ||u||_{B_{\infty,\infty}^{\theta}} = \sup_{N} N^{\theta} ||u_N||_{L^{\infty}}.$$

Argument on \mathbb{R}^2 : [Silvestre '11] and [Isett '13] continued Write:

$$\begin{aligned} p_{N} &= \mathbf{P}_{N} p = \mathbf{P}_{N} a_{0}(D) \sum_{M,K} u_{M}^{i} u_{K}^{j} \\ &= \sum_{\max\{M,K\} \gtrsim N} \mathbf{P}_{N} a_{0}(D) (u_{M}^{i} u_{K}^{j}) \\ &= \sum_{N \lesssim K \sim M} \mathbf{P}_{N} a_{0}(D) (u_{M}^{i} u_{K}^{j}) + \sum_{K \ll M \sim N} \mathbf{P}_{N} a_{0}(D) (u_{M}^{i} u_{K}^{j}) = p_{N}^{(1)} + p_{N}^{(2)} \end{aligned}$$

Lemma (Shur test)

 $\mathbf{P}_{N}a_{0}(D):L^{\infty}\rightarrow L^{\infty}$ is continuous (uniformly in N).

$$\|p_N^{(1)}\|_{L^\infty} \lesssim \sum_{K \sim M \geq N} \|u_K\|_{L^\infty} \|u_M\|_{L^\infty} \lesssim \sum_{M \geq N} M^{-2\theta} \lesssim N^{-2\theta}.$$

Argument on \mathbb{R}^2 : [Silvestre '11] and [Isett '13] end

To prove $\|p_N^{(2)}\|_{L^\infty} \lesssim N^{-2\theta}$ we use the **oserved fact**

$$\operatorname{div}\operatorname{div}(u_M\otimes u_K)=\nabla u_M:\nabla u_K\,,$$

and
$$\|\mathbf{P}_N(-\Delta)^{-1}\|_{L^\infty\to L^\infty}\lesssim N^{-2}$$
 so that

$$||p_N^{(2)}||_{L^{\infty}} \lesssim \sum_{K \ll M \sim N} ||\mathbf{P}_N(-\Delta)^{-1}(\nabla u_M : \nabla u_K)||_{L^{\infty}}$$
$$\lesssim N^{-2} \sum_{K \ll M \sim N} K^{1-\theta} M^{1-\theta} \lesssim N^{-2\theta}.$$

Question: Generalization to Ω ?

- 1. Physical proof in \mathbb{R}^d exist (Silvestre '11, Colombo & De Rosa '18): extend to Ω but do not give optimal result (De Rosa, L., Stefani '22)
- 2. Result is only **local** near the boundary and true for half-space.

First step: extending using boundary conditions wisely (1)

$$p=p_{int}+p_{bounday}$$
 $\partial_n p=u\otimes u:
abla n\in C^{0^+}\Longrightarrow p_{boundary}\in C^{1^+}\subset C^{2 heta}$

The boundary term is not the main issue! p_{int} equation:

$$\begin{cases}
-\Delta p &= \operatorname{div}\operatorname{div}(u \otimes u) + C \text{ in } B_R(x_0) \cap \Omega \\
\partial_n p &= 0 \text{ on } B_R(x_0) \cap \partial\Omega
\end{cases}$$

Straightening of the boundary:

$$\begin{cases} -\partial_i (g^{ij} \sqrt{\det g} \partial_j p) &= \partial_{ij}^2 (\sqrt{\det g} u^i u^j) + C \text{ for } r > 0 \cap \Omega \\ \partial_n p &= 0 \text{ on } B_R(x_0) \cap \partial \Omega \text{ for } r = 0. \end{cases}$$

Attention: this change of variable is adapted to the geometric situation!

Geometric change of variable: picture

First step: extending using boundary conditions wisely (2)

$$u_r(0,\theta) = 0$$
 and $\partial_r p(0,\theta) = 0$

Extensions: u_{θ} and p evenly, u_r oddly.

 $\tilde{u}_r, \partial_r \tilde{p}$ are continuous extensions.

Proposition

The equation satisfied is (here $v = \sqrt{\det g} u$):

$$-\partial_{i}(g^{ij}\sqrt{\det g}\partial_{j}q) = \partial_{ij}^{2}(av^{i}v^{j}) \text{ on } \mathbb{R}^{d},$$

$$\partial_{i}v^{i} = \partial_{i}(\sqrt{\det g}u^{i}) = \operatorname{div} u = 0,$$

$$a = a(r,\theta) \in \operatorname{Lip}.$$

$$(1)$$

Theorem

(1) satisfies
$$v \in C^{\theta}(\mathbb{R}^d) \Longrightarrow q \in C^{2\theta}(\mathbb{R}^d)$$
.

Second step: Non-smooth pseudodifferential operators

$$-\partial_i(g^{ij}\sqrt{\det g}\partial_jq)=\partial^2_{ij}(av^iv^j)\Longleftrightarrow \textit{E}_2q=\partial^2_{ij}(av^iv^j)$$

where $E_2 = \partial_i \circ E_{1,i} = i\partial_i \circ \operatorname{Op}(g^{ij(x)} \sqrt{g(x)} \xi^j)$ is an **elliptic** operator.

Lemma

$$\partial_{ij}^{2}(a_{L}v_{M}^{i}v_{K}^{j})=a_{L}\partial_{j}u_{M}^{i}\partial_{i}v_{K}^{j}+\partial_{j}a_{L}v_{M}^{i}\partial_{i}v_{K}^{j}+\partial_{j}(a_{L}v_{M}^{i}\partial_{i}v_{K}^{j}).$$

If we could write

$$q = \left(\sum_{\substack{M \sim K \\ L \ll M, K}} + \sum_{\substack{L \gtrsim M, K}} \right) E_2^{-1} \circ \partial_{ij}^2 (a_L v_M^i v_K^j)$$

$$\sum_{\substack{K \gg M \\ L \ll M}} E_2^{-1} \circ \left(a_L \partial_j u_M^i \partial_i v_K^j + \partial_j a_L v_M^i \partial_i v_K^j + \partial_j (a_L v_M^i \partial_i v_K^j)\right)$$

we could just do a variant of the LP proof in the euclidean case.

Second step: Problems

- 1. $E_2 \in Op(Lip_x S^2)$, i.e. order 2 but limited spatial regularity.
- 2. One cannot compose / invert / have good continuity bounds $C_*^s \to C_*^t$ for such operators.

This is because we work at low spatial regulaity. The extension is responsible for this Lip regularity. Same happens on C^{∞} domains.

1. Define $E_{1,i}=E_{1,i}^{\sharp}+E_{1-\delta,i}^{\flat}$ where

$$E_{1,i}^\sharp\in\operatorname{Op}(S_{1,\delta}^1)$$
 smooth, and $E_{1-\delta,i}^\sharp$ of lower order.

$$A = \operatorname{Op}(a(x,\xi) \Longrightarrow a^{\sharp}(x,\xi) = \sum_{M \leqslant N^{\delta}} a_{M}(x,\xi) \mathbf{P}_{N}(\xi)$$

- 2. $\partial_i \circ E_{1,i}^{\sharp} = E_2^{\sharp} \in \operatorname{Op}(S_{1,\delta}^2)$ elliptic.
- 3. Write $E_2^{\sharp} q = -E_{2-\delta} q + [\cdots] \Longrightarrow q = -(E_2^{\sharp})^{-1} \circ E_{2-\delta} q + (E_2^{\sharp})^{-1} [\cdots]$

Thank you!

Questions?