Probabilistic well-posedness for a nonlinear Grushin-Schrödinger equation

Mickaël Latocca¹

¹University of Basel

March 2022, CY Days in Nonlinear Analysis

The work presented has been done in collaboration with Louise Gassot (University of Basel)

Motivation for the Grushin NLS

Consider $u(t): \mathbb{R}^2 \longrightarrow \mathbb{C}$ satisfying

$$\begin{cases}
i\partial_t u + \Delta u &= |u|^2 u \\
u(0) &= u_0 \in H^s(\mathbb{R}^2).
\end{cases}$$
(NLS)

Two formal conserved quantities:

$$M(t) = \|u(t)\|_{L^2}^2 \text{ and } E(t) = \frac{1}{2} \|\nabla u(t)\|_{L^2}^2 + \frac{1}{4} \|u(t)\|_{L^4}^4.$$

- Scaling $s_c = 0$. Standard LWP for s > 0 uses dispersion: Cazenave-Weissler '90,
- Global theory in H^1 , even in L^2 Dodson '16.

Motivation for the Grushin NLS

What if we change a little bit the setting? Consider the equation

$$\begin{cases} i\partial_t u + \Delta_G u &= |u|^2 u \\ u(0) &= u_0 \in H_G^k, \end{cases}$$
 (NLS-G)

 $-\Delta_G = -\partial_x^2 - x^2 \partial_y^2$ is the Grushin operator.

 $\|u\|_{H^k_G} = \|\langle -\Delta_G
angle^{rac{k}{2}} u\|_{L^2}$ are the adapted Sobolev spaces.

$$u \mapsto u_{\lambda}(t,x) = \lambda u(\lambda^2 t, \lambda x, \lambda^2 y),$$

scaling invariance $H_G^{\frac{1}{2}}$ critical.

Question: Can we construct solutions in H_G^k for $k > \frac{1}{2}$?

Deterministic picture

$$H_G^{1/2}$$
 H_G^1 $H_G^{3/2}$ $H_G^{3/2}$ Local well-posedness

Well-posedness part k > 3/2: Bahouri-Gallagher '01, stated for NLS- \mathbb{H}^1 .

Proposition (Best local theory : Bahouri-Gallagher '01)

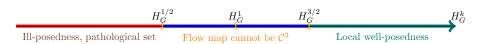
The Cauchy problem for (??) is locally well-posed in $C^0([0,T],H_G^k)$ as soon as $k>\frac{3}{2}$.

Consequence of Sobolev embedding $H_G^{\frac{3}{2}^+}\hookrightarrow L^\infty.$

No result is known at energy regularity in H_G^1 !

Bahouri-Barilari-Gallagher '19: anisotropic Strichartz estimates on $\|e^{it\Delta_G}u_0\|_{L^\infty_T L^p_T L^q_x}$. Does not lead to a better local theory.

Deterministic picture



- 1/2 < k < 3/2 part due to Bahouri-Gérard-Xu '00: due to non-existence of Strichartz estimate $L^4_{t,x,y}$ (See Gérard-Grellier '10 and Remark 2.12 in Burq-Gérard-Tzvetkov '04).
- III-posedness part k < 1/2: Camps-Gassot '22. G_{δ} dense set of initial data producing norm inflation: for example, data $\|u_0\|_{H^k_G} \sim 1$ and $\|u(\varepsilon)\|_{H^k} > 2$ for $\varepsilon \ll 1$.

Uses the supercriticality of the scaling!

Main result: random data techniques

Theorem (Deterministic version)

Let $k \in (1, \frac{3}{2}]$ There exists a dense set $X \subset H_G^k \setminus \bigcup_{\varepsilon > 0} H_G^{k+\varepsilon}$ such that for every $u_0 \in X$ there exists a unique solution to (G-NLS) associated to u_0 in the space $e^{it\Delta}u_0 + \mathcal{C}^0([0, T_{u_0}], H_G^{\frac{3}{2}^+}) \hookrightarrow \mathcal{C}^0([0, T_{u_0}], H_G^k)$.

Theorem (Probabilistic version)

Let $k \in (1, \frac{3}{2}]$. There exists a measure μ_k supported by $\mathcal{X}_1^k \subset H_G^k \setminus \bigcup_{\varepsilon > 0} H_G^{k+\varepsilon}$ such that for μ_k almost-every $u_0 \in \mathcal{X}_1^k$ a unique solution to (G-NLS) exists in the space $u_L + \mathcal{C}^0([0, T], H_G^{\frac{3}{2}})$, where $u_L(t) = e^{it\Delta_G}u_0$.

We can construct many such measures μ_k whose set \mathcal{M}_k satisfies:

$$\overline{\bigcup_{\mu_k \in \mathcal{M}_k} \operatorname{\mathsf{supp}} \mu_k} = H_G^k \setminus \bigcup_{\varepsilon > 0} H_G^{k+\varepsilon} \,.$$

What are we going to do?

- **1** The probabilistic local well-posedness framework
- The randomisation
- The linear random estimates: first Cauchy theory
- The bilinear random estimate: better Cauchy theory
- Sandom-deterministic bilinear estimates

General probabilistic well-posedness framework

$$\partial_t u + \Delta_G u = |u|^2 u \tag{NLS-G}$$

The goal is to seek for $u=u_L^\omega+v$ solution to (??) (Bourgain '96, Burq-Tzvetkov '08) where:

- u_L^{ω} has regularity H^k , but is explicit and benefits from improved random estimates (more on that later!).
- ullet v is more regular, i.e., the deterministic regularity $H_G^{rac{3}{2}^+}$ which solves

$$i\partial_t v + \Delta_G v = |u_L^{\omega} + v|^2 (u_L^{\omega} + v).$$

Only need to solve the equation in v, requires estimates on u_L^{ω} !

Fixed point argument

Fixed point on the Duhamel formulation in v:

$$v(t) = \Phi(v)(t) := -i \int_0^t e^{i(t-t')\Delta_G} (|u_L^{\omega} + v|^2 (u_L^{\omega} + v)) dt',$$

We bound

$$\begin{split} \|\Phi v\|_{L^{\infty}_{T}H^{\frac{3}{2}+}_{G}} &\leqslant \int_{0}^{T} \||u^{\omega}_{L} + v|^{2} (u^{\omega}_{L} + v)\|_{H^{\frac{3}{2}+}_{G}} \\ &\lesssim \||u^{\omega}_{L}|^{2} u^{\omega}_{L}\|_{L^{1}_{T}H^{\frac{3}{2}+}_{G}} + \|u^{\omega}_{L}|v|^{2}\|_{L^{1}_{T}H^{\frac{3}{2}+}_{G}} + \||u^{\omega}_{L}|^{2} v\|_{L^{1}_{T}H^{\frac{3}{2}+}_{G}} + \||v|^{2} v\|_{L^{1}_{T}H^{\frac{3}{2}+}_{G}} \\ &+ \{\text{similar terms}\} \,. \end{split}$$

Identifying problematic terms

- The bound $||v|^2v||_{L^1_TH^{\frac{3}{2}^+}_G}\lesssim T||v||^3_{L^\infty_TH^{\frac{3}{2}^+}_G}$ is obtained by composition and Sobolev embedding.
- For $|u_L^{\omega}|^2 u_L^{\omega}$ the problem is that u_L^{ω} is not even $H_G^{\frac{3}{2}^+}$. Some non-trivial smoothing is needed!
- For $u_L^{\omega}|v|^2$ Also non-trivial smoothing needed: more complicated

- The probabilistic local well-posedness framework
- The randomisation
- The linear random estimates: first Cauchy theory
- The bilinear random estimate: second Cauchy theory
- The mixed terms random-deterministic?

Fourier decomposition

Fourier partial transform in y of $-\Delta_G = -\partial_x^2 - x^2 \partial_y^2$,

$$\mathcal{F}_{y \to \eta}(-\Delta) = -\partial_x^2 + |\eta|^2 x^2$$
,

which is a rescaled harmonic oscillator of L^2 -normalised eigenfunctions $|\eta|^{\frac{1}{4}}h_m(|\eta|^{\frac{1}{2}}\cdot)$ associated to eigenvalue $(2m+1)|\eta|$ where the h_m are Hermite functions, $(-\Delta+|x|^2)h_m=(2m+1)h_m$.

Any $u \in L_G^2$ thus writes

$$\mathcal{F}_{y\to\eta}u(x;\eta)=\sum_{m\geqslant 0}f_m(\eta)h_m(|\eta|^{\frac{1}{2}}x)=\sum_{m\geqslant 0}\frac{f_m(\eta)}{|\eta|^{1/4}}|\eta|^{\frac{1}{4}}h_m(|\eta|^{\frac{1}{2}}x),$$

and we have

$$||u||_{H^k}^2 = \sum_{m\geqslant 0} (1+|\eta|(2m+1))^k \left\| \frac{f_m(\eta)}{|\eta|^{\frac{1}{4}}} \right\|_{L^2}^2.$$

Cost of $-\Delta$ is " $(2m+1)|\eta|$ ".

The randomisation

We further decompose dyadically in $\eta \in [I, 2I]$, $I \in 2^{\mathbb{Z}}$.

$$u = \sum_{\substack{m \geqslant 0 \\ I \in 2^{\mathbb{Z}}}} u_{m,I} = \sum_{A \in 2^{\mathbb{N}}} \sum_{\substack{m,I \\ 1 + (2m+1)I \in [A,2A]}} u_{m,I} = \sum_{A \in 2^{\mathbb{N}}} u_A,$$

with $\mathcal{F}_{y o \eta} u_{m,I} = \mathbf{1}_{\eta \in [I,2I]} f_m(\eta) h_m(|\eta|^{\frac{1}{2}} x)$. Observe that:

$$||u_A||_{H^s} \sim A^{\frac{s}{2}} ||u_A||_{L^2}.$$

Definition

For $u_0 = \sum_{m \geqslant 0, I \in 2^{\mathbb{Z}}} u_{m,I}$ we introduce a randomisation

$$u_0^\omega = \sum_{\substack{m\geqslant 0 \ I\in 2^\mathbb{Z}}} g_{m,I}^\omega u_{m,I}$$
 and $\mu_{u_0} = \operatorname{Im}$ Measure of \mathbb{P} ,

where $(g_{m,l})_{m,l}$ are i.i.d. Gaussian random variables.

Adapted space

The space \mathcal{X}_{ρ}^{k} is defined by the norm

$$||u||_{\mathcal{X}^k_{\rho}}^2 = \sum_{\substack{m \geqslant 0 \ I \in 2^{\mathbb{Z}}}} (1 + (2m+1)I)^k \langle I \rangle^{\rho} ||u_{m,I}||_{L^2}^2 ,$$

is a space of H_G^k functions, with additional $\frac{\rho}{2}$ regularity in the variable y.

Lemma

For any $\varepsilon > 0$, $\mathcal{X}_{\rho}^{k} \nsubseteq H_{G}^{k+\varepsilon}$.

Proposition (Properties of the measures)

 $\cup_{u_0\in\mathcal{X}_1^k}\operatorname{supp}(\mu_{u_0})\subset H_G^k\setminus \bigcup_{arepsilon>0}H_G^{k+arepsilon}$ is dense in $H_G^k\setminus \bigcup_{arepsilon>0}H_G^{k+arepsilon}$.

Why these anisotropic spaces?

- The probabilistic local well-posedness framework
- 2 The randomisation
- The linear random estimates: first Cauchy theory
- The bilinear random estimate: second Cauchy theory
- The mixed random-deterministic terms

Overcoming the obstruction $u_L \notin H_G^{\frac{3}{2}^+}$

Heuristics suggests:

$$\langle \nabla \rangle^{\frac{3}{2}^+} (|u_L^{\omega}|^2 u_L^{\omega}) \simeq |u_L^{\omega}|^2 \langle \nabla \rangle^{\frac{3}{2}^+} u_L^{\omega}$$

With "Good measure construction" $u_L^{\omega} \notin H_G^{\frac{3}{2}^+}$.

Next attempt by Hölder:

$$\||u_L^{\omega}|^2 u_L^{\omega}\|_{H_G^{\frac{3}{2}+}} \lesssim \|u_L^{\omega}\|_{L^8}^2 \|u_L^{\omega}\|_{W_G^{\frac{3}{2}+,4}}.$$

Can randomness can prove $u_L^{\omega} \in W_G^{\frac{3}{2}^+,4}$?

Probabilistic toolbox: part I

Lemma (Decoupling estimate)

For all $r \ge 2$ and all complex numbers $(a_n)_{n \ge 0}$ there holds:

$$\left\| \sum_{n \geqslant 0} a_n g_n^{\omega} \right\|_{L_{\infty}^r} \lesssim \sqrt{r} \left(\sum_{n \geqslant 0} |a_n|^2 \right)^{\frac{1}{2}}$$
 (g_n^{ω} are i.i.d. Gaussians).

• Implies that outside a set of probability $\leqslant e^{-cR^2}$

$$\left|\sum_{n\geqslant 0} a_n g_n^{\omega}\right| \leqslant R \left(\sum_{n\geqslant 0} |a_n|^2\right)^{\frac{1}{2}}.$$

Deterministic estimate:

$$\left|\sum_{n=N}^{2N} a_n g_n^{\omega}\right| \leqslant \sqrt{N} \left(\sum_{n=N}^{2N} |a_n g_n^{\omega}|^2\right)^{\frac{1}{2}}.$$

Randomness + deterministic input

$$\begin{split} \langle \nabla \rangle^{\frac{3}{2}} u_L^\omega(t,x) &= \sum_{m,l} g_{m,l}^\omega \langle \nabla \rangle^{\frac{3}{2}} \big(e^{it\Delta} u_{m,l} \big) \,, \\ \Big\| \langle \nabla \rangle^{\frac{3}{2}} u_L^\omega(t,x) \Big\|_{L_\Omega^r} &\lesssim \sqrt{r} \left(\sum_{m,l} |\langle \nabla \rangle^{\frac{3}{2}} (e^{it\Delta} u_{m,l}(x))|^2 \right)^{\frac{1}{2}} \,. \end{split}$$

Fourier localisation: $\|\langle \nabla \rangle^{\frac{3}{2}} u_{m,I} \|_{L^p}^2 \lesssim (1+(2m+1)I)^{\frac{3}{2}} \|u_{m,I}\|_{L^p}^2$.

$$\|u_L^{\omega}\|_{L_{\Omega}^{r}L_{T}^{q}W_{G}^{3/2,4}} \lesssim \sqrt{r}T^{\frac{1}{q}}\left(\sum_{m,l}(1+(2m+1)l)^{\frac{3}{2}}\|u_{m,l}\|_{L^{4}}^{2}\right)^{\frac{1}{2}}$$

Probability decouples L^4 norms!

Lemma (Deterministic input)

$$||u_{m,l}||_{L^4} \lesssim (1+(2m+1)l)^{-\frac{1}{8}} \langle l \rangle^{\frac{1}{2}} ||u_{m,l}||_{L^2}.$$

Main linear random estimate

Proposition (Regularity gain in L^4 norm)

Let $q \geqslant 1$. Outside a set of probability at most e^{-cR^2} there holds

$$\|u_L^{\omega}\|_{L_T^q W_G^{\frac{3}{2}^+,4}} \leqslant T^{\frac{1}{q}} R \|u_0\|_{\mathcal{X}_1^{\frac{5}{4}^+}}$$

Remarks: in L^4 norms we have an 1/4 derivative gain. In L^2 norm this gain is 0, no smoothing in usual Sobolev spaces.

This is the maximum gain: generally on $W_G^{s,p}$ the gain is computable by the same method.

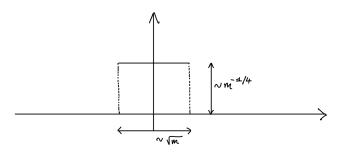
The proof of the lemma

$$||u_{m,I}||_{L^4} \lesssim ||\hat{u}_{m,I}||_{L^{4/3}_{\eta}L^4_{x}} = ||f_{m}(\eta)\mathbf{1}_{\eta\sim I}||h_{m}(|\eta|^{1/2}x)||_{L^4_{x}}||_{L^{4/3}_{\eta}}$$

Lemma

(Linear Hermite estimate) $||h_m||_{L^4} \lesssim m^{-1/8}$.

Because there is only a gain in m this explains the $\mathcal{X}^{k,\rho}$ spaces.



Local theory: probabilistic improvement

Writing
$$\langle \nabla \rangle^{\frac{3}{2}^+} (|u_L^{\omega}|^2 u_L^{\omega}) \simeq |u_L^{\omega}|^2 \langle \nabla \rangle^{\frac{3}{2}^+} u_L^{\omega} \text{ by H\"older:}$$

$$||u_L^{\omega}|^2 u_L^{\omega}||_{L_T^1 H_G^{\frac{3}{2}^+}} \lesssim ||u_L^{\omega}||_{L_T^4 L_x^8} ||u_L^{\omega}||_{L_T^2 W_G^{\frac{3}{2}^+,4}}$$

$$\lesssim T^{\frac{1}{2}} ||u_L^{\omega}||_{L_T^4 L_x^8} ||u_0||_{\mathcal{X}_1^{5/4}} \,.$$

Now only requires regularity 5/4 on u_0 and not 3/2!

Anisotropic space \mathcal{X}_1^k : Hermite gains powers of m, not $A \sim mI$.

To go further: multilinear theory.

- The probabilistic local well-posedness framework
- 2 The randomisation
- The linear random estimates: first Cauchy theory
 ✓
- The bilinear random estimate: second Cauchy theory
- The mixed random-deterministic terms

Multilinear estimates

Theorem (Key multilinear estimates)

• Outside a set of probability at most e^{-cR^2} there holds

$$|||u_L^{\omega}|^2 u_L^{\omega}||_{L_T^q H_G^{\frac{3}{2}^+}} \lesssim R^3 T^{\frac{1}{q}} ||u_0||_{\mathcal{X}_1^1}^3.$$

② Outside a set of probability at most e^{-cR^2} the following is true. For every $v, w \in C^0([0, T], H_G^{\frac{3}{2}^+})$,

$$\|u_L^{\omega}vw\|_{L^q_TH_G^{\frac{3}{2}^+}} \lesssim R^3 T^{\frac{1}{q}} \|u_0\|_{\mathcal{X}_1^1} \|v\|_{H_2^{\frac{3}{2}^+}} \|w\|_{H_G^{\frac{3}{2}^+}}.$$

We concentrate on explaining (1).

Such estimates give a local theory in H_G^{1+}

Probabilistic reductions

Time averages is not used: replace $u_L(t) = e^{it\Delta}u_0^{\omega}$ by u_0^{ω} .

Proposition (Random-Random bilinear estimate)

Outside a set of probability at most e^{-cR^2} there holds

$$\|(u_0^{\omega})^2\|_{H_c^{k+\frac{1}{2}}} \leqslant R^2 \|u_0\|_{\mathcal{X}_1^k}^2.$$

$$(u_0^\omega)^2 = \sum_{B\gg A} (u_0^\omega)_A (u_0^\omega)_B + \underbrace{\sum_{A\sim B} (u_0^\omega)_A (u_0^\omega)_B}_{\mathsf{Split} \; \mathsf{derivatives}}$$

Use of randomness

$$\langle \nabla \rangle^{k+\frac{1}{2}} (u_0^{\omega})^2 = \sum_{mI \sim A \ll B \sim nJ} \langle \nabla \rangle^{k+1/2} (u_{m,I} u_{n,J}) g_{m,I}^{\omega} g_{n,J}^{\omega}.$$

Theorem (Order 2 Wiener Chaos)

Let \mathcal{I} be countable and $(g_n)_{n\in\mathcal{I}}$ complex i.i.d. standard Gaussians. Then for all $r\geqslant 2$,

$$\left\| \sum_{n,n'\in\mathcal{I}} \Psi_{n,n'} g_n^{\omega} g_{n'}^{\omega} \right\|_{L^r(\Omega)} \lesssim r \left\| \sum_{n,n'\in\mathcal{I}} \Psi_{n,n'} g_n^{\omega} g_{n'}^{\omega} \right\|_{L^2(\Omega)}.$$

Minkowski $r \geqslant 2$:

$$\|(u_0^{\omega})^2\|_{L_{\omega}^r H_G^{k+\frac{1}{2}}}^2 \leqslant r^2 \left\| \sum_{ml \sim A \ll B \sim nJ} \|u_{m,l} u_{n,J}\|_{H_G^{k+\frac{1}{2}}} g_n^{\omega} g_m^{\omega} \right\|_{L_{\omega}^2}^2.$$

Reduction to deterministic estimates

Expand L^2_{ω} norm. Use: $\mathbb{E}[g^{\omega}_{n_1}g^{\omega}_{m_1}\bar{g}^{\omega}_{n_2}\bar{g}^{\omega}_{m_2}] = 1$ iff $\{n_1, m_1\} = \{n_2, m_2\}$.

$$\|(u_0^{\omega})^2\|_{L_{\omega}^r H_G^{k+\frac{1}{2}}}^2 \leqslant r^2 \sum_{mI \sim A \ll B \sim nJ} \|u_{m,I} u_{n,J}\|_{H_G^{k+\frac{1}{2}}}^2$$

Proposition (Paradifferential input)

Let $mI \sim A$ and $nJ \sim B$,

$$\|u_{m,I}v_{n,J}\|_{H_c^{k+\frac{1}{2}}}^2 \lesssim \max\{A,B\}^{k+1/2} \|u_{m,I}v_{n,J}\|_{L^2}^2$$
.

$$\|(u_0^{\omega})^2\|_{L_{\omega}^r H_G^{k+\frac{1}{2}}}^2 \leqslant r^2 B^{k+\frac{1}{2}} \sum_{mI \sim A \ll B \sim nJ} \|u_{m,I} u_{n,J}\|_{L^2}^2$$

The main deterministic bilinear estimate

Proposition (Key bilinear estimate)

For any n, m, I, J there holds:

$$\|u_{m,I}v_{n,J}\|_{L^{2}}^{2} \lesssim \min\left\{\frac{J\langle I\rangle}{A^{\frac{1}{2}}}, \frac{I\langle J\rangle}{B^{\frac{1}{2}}}\right\} \|u_{m,I}\|_{L^{2}}^{2} \|v_{n,J}\|_{L^{2}}^{2}.$$

We write:

$$\begin{split} \mathcal{F}_{y \to \eta}(u_{m,I}v_{n,J})(x,\eta) &= \hat{u}_{m,I} * \hat{v}_{n,J}(x,\eta) \\ &= \int_{\eta_1 + \eta_2 = \eta} f_m(\eta_1) f_n(\eta_2) \mathbf{1}_{(|\eta_1|,|\eta_2|) \in [I,2I] \times [J,2J]} h_m(|\eta_1|^{\frac{1}{2}}x) h_n(|\eta_2|^{\frac{1}{2}}x) \end{split}$$

 \rightsquigarrow Need to study $h_n h_m$

Bilinear estimates for Hermite functions

Lemma

For any n, m, η_1, η_2 ,

$$\|h_m(|\eta_1|^{rac{1}{2}}\cdot)h_n(|\eta_2|^{rac{1}{2}}\cdot)\|_{L^2}^2\lesssim \min\left\{rac{1}{\sqrt{|\eta_1|(2n+1)}},rac{1}{\sqrt{|\eta_2|(2m+1)}}
ight\}\,.$$

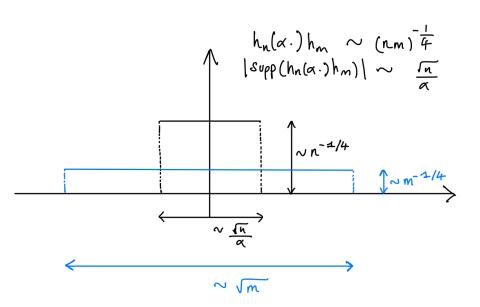
After rescaling, reduces to:

$$||h_m h_n(\alpha \cdot)||_{L^2}^2 \lesssim \frac{1}{\alpha \sqrt{2m+1}},$$

for
$$(2n+1) \ll \alpha^2(2m+1)$$
.

This is the bilinear Hermite input.

Bilinear Hermite estimate



- The probabilistic local well-posedness framework
- 2 The randomisation
- The linear random estimates: first Cauchy theory
 ✓
- The bilinear random estimate: second Cauchy theory
 ✓
- The mixed random-deterministic terms

Mixed terms

Proposition (content of Section 7 in the paper)

Outside a set of probability e^{-cR^2} there holds:

$$\forall v \in H_G^k, \ \|u^{\omega}v\|_{H_C^{k+\frac{1}{2}}} \leqslant R^2 \|u_0\|_{X_1^k} \|v\|_{H_C^{k+\frac{1}{2}}}.$$

We write:

$$\hat{u}_{A}^{\omega} = \sum_{m,l} f_{m,l}^{\omega}(\eta) h_{m,l}(|\eta|^{\frac{1}{2}}x) \quad \hat{v}_{B} = \sum_{n,J} g_{n,J}(\eta) h_{n,J}(|\eta|^{\frac{1}{2}}x)$$

Write:

$$\|u_{A}^{\omega}v_{B}\|_{L^{2}}^{2}=\int_{x}\hat{u}_{A}^{\omega}*\hat{\bar{u}}_{A}^{\omega}\hat{v}_{B}*\hat{\bar{v}}_{B}$$

Mixed terms (end)

Re-write everything as

$$\|u_A^{\omega}v_B\|_{L^2}^2 = \sum_{\psi=(n_1,n_2,m_1,m_2,...)} \mathbf{J}_{\psi}^{\omega} \mathbf{K}_{\psi}$$

Hölder estimates and deterministic treatment available on \mathbf{K} : just as before.

Khinchine only possible on \mathbf{J}^{ω} : Important! Khinchine set of probability depends on the coefficients to which it is applied!

Questions?