High-Regularity Invariant Measures for Euler Equations and Growth of the Solutions

July 29, 2025

Euler Equations, $d \in \{2,3\}$

$$u(t): \mathbb{T}^d \longrightarrow \mathbb{R}^d, \; \rho(t): \mathbb{T}^d \longrightarrow \mathbb{R} \; \text{satisfying}$$

$$\left\{ egin{array}{ll} \partial_t u + u \cdot
abla u &= -
abla p \
abla \cdot u &= 0 \
abla u(0) &= u_0 \in H^s(\mathbb{T}^d) \, . \end{array}
ight.$$

Leray projector: ${f P}:L^2 o L^2_{div}$,

$$\begin{cases}
\partial_t u + B(u, u) = 0 \\
u(0) = u_0 \in H^s_{div}(\mathbb{T}^d).
\end{cases}$$

with $B(u, v) := \mathbf{P}(u \cdot \nabla v)$.

$$-\Delta p = \nabla \cdot (u \cdot \nabla u).$$

Deterministic results (d = 2)

Global well-posedness in H^s holds for large s.

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|u(t)\|_{H^s}^2 = -(B(u,u),u)_{H^s}.$$

Modulo lower order error terms:

$$(B(u,u),u)_{H^s} \sim (\nabla^s(u \cdot \nabla u), \nabla^s u)_{L^2} \sim (u \cdot \nabla \nabla^s u, \nabla^s u)_{L^2} + (\nabla u \cdot \nabla^s u, \nabla^s u)_{L^2}.$$

Property of B: $(B(u, v), v)_{L^2} = 0$.

$$\frac{\mathrm{d}}{\mathrm{d}t}\|u(t)\|_{H^s}^2\lesssim \underbrace{\|\nabla u\|_{L^\infty}}_2\|u(t)\|_{H^s}^2.$$

With interpolation,

$$\frac{\mathrm{d}}{\mathrm{d}t} \|u(t)\|_{H^s}^2 \lesssim \|\nabla u(t)\|_{L^p} \|u(t)\|_{H^s}^{2+\frac{2}{p}}.$$

Deterministic results (d = 2)

Remark: $\Omega(t) = \nabla \wedge u(t)$ satisfies a transport equation

$$\partial_t \Omega + u \cdot \nabla \Omega = 0.$$

Calderón-Zygmund: $\|\nabla u(t)\|_{L^p} \lesssim p\|\Omega(t)\|_{L^p} \lesssim p\|\Omega_0\|_{L^p}$.

With $y(t) := ||u(t)||_{H^s}$ we get:

$$y'(t) \leqslant Cpy(t)^{1+\frac{2}{p}} \leqslant Cy(t) \log y(t),$$

in the end we obtain $||u(t)||_{H^s} \leqslant Ce^{Ce^{Ct}}$.

Theorem (Matching lower bounds)

(Kiselev-Šverak) In a disc, double exponential growth can occur. (Zlatoš) Best result on the torus: exponential growth on arbitrary long time.

Conjecture. Almost-surely double exponential growth does not occur.

Main result

Flow ϕ_t of a PDE: $u(t) = \phi_t u_0$. μ is invariant on H^s if for any measurable sets $A \subset H^s$, $\mu(\phi_{-t}A) = \mu(A)$ that is:

$$\mathbb{P}(u(t) \in A) = \mathbb{P}(u_0 \in A).$$

Theorem

For s > 2 (d = 2) and s > 7/2 (d = 3) there exists measure μ_s on H^s , invariant under the flow of the Euler equation and such that:

- Almost sure global well-posedness holds on the support of the measure. (Thm 5.2/5.5)
- ② Growth estimates of the form $\|u(t)\|_{H^s} \lesssim t^{\alpha(s)}$. (Thm. 5.9/5.11)

Similar results in other settings: Sy (on NLS), Sy-Flödes (on SQG).

Invariant measure as a tool of globalisation

- **1** Invariant measure + LWP \Longrightarrow slowly growing global solutions.
- Construction of invariant measures.
- Properties of such measures.

Growth of Sobolev Norms with Invariant Measures

Assumptions.

- μ is invariant on H^s ;
- **3** Good LWP theory: if $\|u_0\|_{H^s} \leqslant \lambda$ then a solution exists on $[0, \tau]$, $\tau \sim \frac{1}{\lambda^K}$ and $\|u(t)\|_{H^s} \leqslant 2\lambda$ for $t \leqslant \tau$.

Proposition

Then for μ -almost every $u_0 \in H^s$ there exists a global solution u such that:

$$||u(t)||_{H^s} \lesssim \log^{\frac{1}{2}}(t)$$
.

Growth of Sobolev Norms with Invariant Measures

Assumptions. Really flexible, except (3).

- $\mu(\phi_{-t}A) \leqslant \mu(A)$ "quasi-invariance".
- $② \mathbb{E}_{\mu}[\|u\|_{H^s}^2] < \infty, \text{ hence } \mu(\|u\|_{H^s} > \lambda) \lesssim \lambda^{-2}.$
- Good LWP theory: if ||u₀||_{H^s} ≤ λ then a solution exists on [0, τ],
 τ ~ 1/λ^K and ||u(t)||_{H^s} ≤ 2λ for t ≤ τ.

Proposition (Section 5 (if d=2 a global flow is already known))

Then for μ -almost every $u_0 \in H^s$ there exists a global solution u such that:

$$||u(t)||_{H^s} \lesssim F(t)$$
.

Conservation Laws and Invariant Measures

For which systems is it easy to construct invariant measures?

In finite dimension. A good class of equations: Hamiltonian equations. Let:

$$\partial_t p = -\partial_q H(p,q) \quad \partial_t q = \partial_p H(p,q),$$

Then $d\mu = \underbrace{Z^{-1}}_{Renorm.Cst.} e^{-H(p,q)} \mathrm{d}p\mathrm{d}q$ is invariant, because:

- H is conserved by the flow.
- **2** dpdq is conserved (Liouville).

Conservation Laws and Invariant Measures

Two-dimensional case. Let $\Omega(x) = \sum_{n} \Omega_n e^{in \cdot x}$:

- **1** Conservation law for Euler in 2*d*: $E = ||\Omega||_{L^2}^2 = \sum_n |\Omega_n|^2$.
- Quessing invariant measure:

$$d\mu(u) = Ce^{-\sum_{n}\Omega_{n}^{2}}\prod_{n}d\Omega_{n}$$

 \bullet μ is the law of the random variable:

$$\Omega^{\omega}(x) = \sum_{n} g_{n}(\omega) e^{in \cdot x}.$$

• Issue: $supp(\mu) \sim \{\Omega \in H^{-1-}\} \sim \{u \in H^{0-}\}$. (See Flandoli).

Hyper-dissipative method (1)

Hyper-dissipative stochastic regularization (HVE_{ν}^2) and (HVE_{ν}^3)

$$\begin{cases}
\partial_t u_{\nu} + B(u_{\nu}, u_{\nu}) + \nu L u_{\nu} &= \sqrt{\nu} \eta \\
u_{\nu}(0) &= u_0 \in H^s_{div}(\mathbb{T}^d),
\end{cases}$$

with $L=(-\Delta)^{1+\delta}$ and $\eta=\partial_t\xi$ with:

$$\xi(t) = \sum_{n} \phi_{n} \beta_{n}(t) e^{i n \cdot x},$$

white in time ($\beta_n \sim$ brownian), smooth in space.

$$\sum |n|^{2k} |\phi_n|^2 =: \mathcal{B}_k.$$

Stochastic Navier-Stokes $\longrightarrow \delta = 0$.

Scaling balance between νL and $\sqrt{\nu} \eta$

Hyper-dissipative method (2)

Follwing Kuksin:

① Construct invariant measures $\mu_{
u}$ to the approximate equations

$$\partial_t u_{\nu} + B(u_{\nu}, u_{\nu}) + \nu L u_{\nu} = \sqrt{\nu} \eta$$

using a Krylov-Bogolyubov argument. (Section

- 2 Prove uniform estimates for the μ_{ν} .
- **3** Pass to the limit $\nu \to 0$.

Hyper-viscous method (2)

Follwing Kuksin:

① Construct invariant measures μ_{ν} to the approximate equations

$$\partial_t u_{\nu} + B(u_{\nu}, u_{\nu}) + \nu L u_{\nu} = \sqrt{\nu} \eta$$

using a Krylov-Bogolyubov argument.

Classical μ_{ν} invariant in H^1 : Section 3 for solutions, Section 4.1/4.2

2 Prove uniform estimates for the μ_{ν} .

Crucial step: Proposition 5.3/5.4

3 Pass to the limit $\nu \to 0$.

Easy once one has uniform estimate: Section 4.3

Proving uniform estimates: Itô formula

$$u_{\nu}(t) = u_0 + \int_0^t (-\nu L u_{\nu} - B(u_{\nu}, u_{\nu})) dt' + \sqrt{\nu} \sum_n \phi_n \beta_n(t) e_n$$

then for any functional F:

$$\mathbb{E}[F(u_{\nu}(t))] - \mathbb{E}[F(u_0)] = -\nu \int_0^t \mathbb{E}[F'(u_{\nu}; Lu_{\nu}) dt'$$

$$- \int_0^t \mathbb{E}[F'(u_{\nu}; B(u_{\nu}, u_{\nu})] dt'$$

$$+ \frac{\nu}{2} \int_0^t \sum_n |\phi_n|^2 \mathbb{E}[F''(u; e_n, e_n)] dt'.$$

Dimension 2

Itô formua to $F(u) = ||u||_{H^1}^2$ gives

$$\mathbb{E}\left[\|u_{\nu}(t)\|_{H^1}^2\right] - \mathbb{E}\left[\|u_0\|_{H^1}^2\right] = \int_0^t \left((I) + (II)\right) \,\mathrm{d}t'\,,$$

where (I) is the deterministic contribution:

$$(I) := -\mathbb{E}\left[(B(u_{\nu}, u_{\nu}), u_{\nu})_{H^{1}} + \nu (Lu_{\nu}, u_{\nu})_{H^{1}} \right],$$

and (II) is the Itô correction: (II) := $\frac{\nu}{2} \sum_n |n|^2 |\phi_n|^2 =: \frac{\nu}{2} \mathcal{B}_1$.

- Algebraic cancellation: $(B(u, u), u)_{H^1} = 0$. (Dimension 2 used here!)
- **3** Measure invariance $\mathbb{E}\left[\|u_{\nu}(t)\|_{H^1}^2\right] = \mathbb{E}\left[\|u_0\|_{H^1}^2\right]$.

Dimension 2 (Cont.)

From this:

$$\int_0^t \left(\nu \mathbb{E}[\|u_\nu(t')\|_{H^{2+\delta}}^2] - \nu \frac{\mathcal{B}_1}{2} \right) \, \mathrm{d}t' = \mathbb{E} \int_0^t (B(u_\nu,u_\nu),u_\nu)_{H^1} \, \mathrm{d}t' = 0 \,,$$

thus

$$\mathbb{E}\left[\|u_
u(t)\|_{H^{2+\delta}}^2
ight]=rac{\mathcal{B}_1}{2}$$
 independently of u .

Obtained:

- Measures μ_{ν} , invariant for $(HVE)_{\nu}$.
- ullet Uniform estimate $\mathbb{E}_{\mu_
 u}[\|u\|_{H^{2+\delta}}^2]=rac{\mathcal{B}_1}{2}.$
- $2 + \delta > 2$: local theory of the form $\tau_{LWP} \sim \lambda^{-K}$ is available.

Possible to pass to the limit.

Summary (dimension 2)

Obtained:

- Measure μ , invariant for the Euler equations.
- $\mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{2+\delta}}^2] \leqslant \frac{\mathcal{B}_1}{2}$, in particular $\mu(H^{2+\delta}) = 1$.
- Almost-surely $\|u(t)\|_{H^s} \lesssim t^{\alpha(s)}$ (C.f. Bourgain's globalisation argument).

Dimension 3 case

• Key algebraic cancellation: only in L^2 , $(B(u, v), v)_{L^2} = 0$: Itô to $F(u) = ||u||_{L^2}^2$:

$$\mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1+\delta}}^2] = \frac{\mathcal{B}_0}{2}.$$

- Leads to invariant measure μ , $\mu(H^{1+\delta})=1$ and $\mathbb{E}_{\mu}[\|u\|_{H^{1+\delta}}^2]\leqslant \frac{\mathcal{B}_0}{2}$. $1+\delta>\frac{3}{2}+1$
- Further approximation problem: $\mu = \mu_N$ for approximate equation (truncation in low frequencies)

$$\partial_t u_N + B_N(u_N, u_N) = 0,$$

$$u_N(0) = \mathbf{P}_{\leq N} u_0$$
 and $B_N(u, v) = \mathbf{P}_{\leq N} B(u, v)$.

• Again uniform estimate $\mathbb{E}_{\mu_N}[\|u\|_{H^{1+\delta}}]\leqslant rac{\mathcal{B}_0}{2}$ and $N o\infty$.

Is it finished?

- Invariant measure + LWP ⇒ slowly growing global solutions.
- ② Construction of invariant measures in H^s , $s > \frac{d}{2} + 1$.
 - $\mu(H^{2+\delta}) = 1$
 - $\mathbb{E}_{\mu}[\|u\|_{H^{2+\delta}}^2] < \infty$
 - $2 + \delta > \frac{d}{2} + 1$
- **3** Properties of such measures. Question: what does μ look like?

Properties of the invariant measures: partial answer

Proposition (d = 2 Thm 5.4, see Section 6)

The measure μ constructed satisfies:

$$\mu(u, ||u||_{L^2} \in \Gamma) \lesssim |\Gamma|,$$

in particular μ does not possess any atom.

Proposition (d = 3 Thm. 5.6, see Section 6)

The measure μ constructed satisfies the following alternative:

1 μ does not have any atom, and for dist $(\Gamma,0) > \varepsilon$,

$$\mu(u, ||u||_{L^2} \in \Gamma) \lesssim_{\varepsilon} |\Gamma|.$$

What precludes the $\mu = \delta_0$ case in dimension 2?

- Algebraic miracle $(B(u,u),u)_{L^2}=0 \Longrightarrow \mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1+\delta}}^2]=\frac{\mathcal{B}_0}{2}.$
- Algebraic miracle $(B(u,u),u)_{H^1}=0 \Longrightarrow \mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{2+\delta}}^2]=\frac{\mathcal{B}_1}{2}.$
- Weak convergence $\mu_{\nu} \to \mu$ in $H^{2+\delta-\varepsilon}$.

Expect that $\mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1+\delta}}^2] o \mathbb{E}_{\mu}[\|u\|_{H^{1+\delta}}^2] = \frac{\mathcal{B}_0}{2}$, precluding δ_0 .

Only have $\mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1+\delta}}^2\mathbf{1}_{\|u\|_{H^{1+\delta}}\leqslant R}]\underset{\nu\to 0}{\longrightarrow} \mathbb{E}_{\mu}[\|u\|_{H^{1+\delta}}^2\mathbf{1}_{\|u\|_{H^{1+\delta}}\leqslant R}].$

Proposition (Prop 5.6 (iv))

The correct limiting statement is:

$$\mathbb{E}_{\mu}[\|u\|_{H^1}^2] \geqslant C(\mathcal{B}_0, \mathcal{B}_1, \delta) > 0.$$

What precludes the $\mu = \delta_0$ case in dimension 2?

Proposition (Prop 5.6 (iv))

$$\mathbb{E}_{\mu}[\|u\|_{H^1}^2] \geqslant C(\mathcal{B}_0, \mathcal{B}_1, \delta) > 0.$$

Proof.

- By Itô + H^1 algebraic miracle: $\mathbb{E}_{\mu_{\nu}}\left[\mathrm{e}^{\mathrm{c}\|u\|_{H^1}^2}\right]\leqslant C<\infty.$
- Implies $\mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1}}^{2}\mathbf{1}_{\|u\|_{H^{1}}>R}]\leqslant R^{-2}\mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1}}^{4}]\leqslant CR^{-2}.$

This gives

$$\begin{split} \lim_{\nu \to 0} \mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1}}^{2}] &= \lim_{R \to \infty} \lim_{\nu \to 0} \mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1}}^{2} \mathbf{1}_{\|u\|_{H^{1}} > R}] \\ &= \lim_{R \to \infty} \mathbb{E}_{\mu}[\|u\|_{H^{1}}^{2} \mathbf{1}_{\|u\|_{H^{1}} > R}] = \mathbb{E}_{\mu}[\|u\|_{H^{1}}^{2}]. \end{split}$$

Last step:
$$\frac{\mathcal{B}_0}{2} = \mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1+\delta}}^2] \leqslant \mathbb{E}_{\mu_{\nu}}[\|u\|_{H^1}^2]^{1-\theta} \underbrace{\mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{2+\delta}}^2]^{\theta}}_{=\mathcal{B}_1/2}.$$

Proof of no other atom than 0

Let Γ be such that dist $(\Gamma, 0) > r$. Reduces to:

Proposition (Prop. 5.9)

There holds: $\mu_{\nu}(u, ||u||_{L^2} \in \Gamma) \leqslant C(r)|\Gamma|$.

Probability detour. For processes $y(t) = y_0 + \int_0^t x(s) ds + \sum_n \phi_n \beta_n(t)$, there exists a "local time" field $\Lambda_t^{\omega}(a)$ such that:

$$\frac{\mathcal{B}_0}{2} \int_0^t \mathbf{1}_{\Gamma}(y(t')) \, \mathrm{d}t' = \int_{\Gamma} \Lambda_t^{\omega}(a) \, \mathrm{d}a.$$

- $\int_{\Gamma} \mathbb{E}[\Lambda_t(a)] da = \frac{t\mathcal{B}_0}{2} \mathbb{E}[\mathbf{1}_{\Gamma}(y_0)].$
- $\mathbb{E}[\Lambda_t(a)] = -t\mathbb{E}[\mathbf{1}_{[a,\infty)}(y_0)x_0]$ (From Itô formula)

Proof of no other atom than 0 (end)

Uniform control on $\mathbb{E}_{\mu_{\nu}}[\|u\|_{H^{1+\delta}}^2]$ imply:

$$\mathbb{E}_{\mu_{\nu}}\left[\mathbf{1}_{\Gamma}(\|u\|_{L^{2}})\sum_{n}|\phi_{n}|^{2}|u_{n}|^{2}\right]\lesssim |\Gamma| \text{ where } u_{n}=(u,e_{n})_{L^{2}}.$$

Goal: lower bound on $\sum_{n} |\phi_n|^2 |u_n|^2$.

Remark: let
$$\Omega_{\varepsilon} = \{v, \|v\|_{L^{2}} \leqslant \varepsilon \text{ or } \|v\|_{H^{1+\delta}} \geqslant \varepsilon^{-1/2} \}$$
, then for $u \in \Omega_{\varepsilon}^{c}$:
$$\sum |\phi_{n}|^{2} |u_{n}|^{2} \geqslant \kappa(\varepsilon) .$$

Let
$$\varepsilon < r$$
 so that $\{\|u\|_{L^2} \in \Gamma\} \cap \Omega_{\varepsilon} \subset \{\|u\|_{H^{1+\delta}} > \varepsilon^{-1/2}\},$
 $\mu_{\nu}(\{\|u\|_{L^2} \in \Gamma\} \cap \Omega_{\varepsilon}) \lesssim \varepsilon.$

Finally

$$\mu_{\nu}(\|u\|_{L^{2}} \in \Gamma) = \mu_{\nu}(\{\|u\|_{L^{2}} \in \Gamma\} \cap \Omega_{\varepsilon}) + \mu_{\nu}(\{\|u\|_{L^{2}} \in \Gamma\} \cap \Omega_{\varepsilon}^{c})$$
$$\lesssim \varepsilon + \kappa(\varepsilon)^{-1}|\Gamma|.$$

$\mu_{ u}$ construction: Krylov-Bogolyubov method (1/2)

Given $\lambda_t = \mathcal{L}(u_{\nu}(t))$ where $\mathcal{L}(u_0) = \delta_0$, existence of the invariant measure comes if:

- **1** The measure $\bar{\lambda}_t := \frac{1}{t} \int_0^t \lambda_{t'} dt'$ are uniformly tight in H^1 .
- Some continuity of the trajectories (this is OK).

Local and global theory Use $e^{-tL}: H^s \to H^{s+2(1+\delta)}$.

$$u_{
u}(t) = (\mathsf{Linear} \; \mathsf{evol}. \; \mathsf{of} \; \xi(t)) + (\mathsf{Smoother} \; \mathsf{Deterministic} \; \mathsf{Term})$$

- Subcritical space for $s>\frac{d}{2}+1-2(1+\delta)=-2\delta$: we have LWP in H^1 .
- Global theory: apply deterministic arguments, works since Navier-Stokes is globally well-posed in H^1 in dimension 2.

Krylov-Bogolyubov method (2/2)

(1) By compactness of $H^1 \to H^{2+\delta}$, reduces to:

$$\sup_{t>0} \bar{\lambda}_t(u, \|u\|_{H^{2+\delta}} > R) \underset{R\to\infty}{\longrightarrow} 0.$$

$$\begin{split} \bar{\lambda}_{t}(u, \|u\|_{H^{2+\delta}} > R) \leqslant \frac{1}{t} \int_{0}^{t} \mathbb{P}(\|u_{\nu}(t')\|_{H^{2+\delta}} > R) \, \mathrm{d}t' \\ \leqslant \frac{C}{tR^{2}} \int_{0}^{t} \mathbb{E}\left[\|u_{\nu}(t')\|_{H^{2+\delta}}^{2}\right] \, \mathrm{d}t' \end{split}$$

Itô formula:

$$\mathbb{E}[\|u_{\nu}(t)\|_{H^{1}}^{2}] - \underbrace{\mathbb{E}[\|u_{0}\|_{H^{1}}^{2}]}_{=0} + \nu \int_{0}^{t} \mathbb{E}[\|u_{\nu}(t')\|_{H^{1}}^{2}] dt' = \nu \mathcal{B}_{1} t,$$

this gives

$$\bar{\lambda}_t(\|u\|_{H^{2+\delta}} > R) \leqslant \frac{C}{R^2}$$
.

No concentration around zero (1/4)

Remark. (1) results from the fact that the measures μ_{ν} do not possess any atom and the uniform estimate

$$\mu_{\nu}(0<\|u\|_{L^{2}}\leqslant\varepsilon)\lesssim\varepsilon$$
.

What should be used in the proof:

- **1** Invariance of the measure μ ;
- ② Some properties of the bilinear form $B(u,u) = \mathbb{P}u \cdot \nabla u$;
- The high regularity support of the measure.

Better to estimate $\mathbb{P}(a \leqslant ||u||_{L^2} \leqslant \varepsilon) \lesssim \varepsilon$, by writing:

$$\mathbb{P}(0<\|u\|_{L^{2}}\leqslant\varepsilon)=\lim_{\beta\to0}\frac{1}{\beta}\int_{0}^{\beta}\mathbb{P}(a<\|u\|_{L^{2}}\leqslant\varepsilon)\,\mathrm{d}a\,,$$

hence we need:

$$\frac{1}{\varepsilon\beta}\mathbb{E}\int_0^\beta \mathbf{1}_{(a,\varepsilon)}(\|u\|_{L^2})\,\mathrm{d}a\lesssim 1.$$

No concentration around zero (2/4)

Starting point:

$$\frac{1}{\varepsilon\beta}\mathbb{E}\int_0^\beta \mathbf{1}_{(a,\varepsilon)}(\|u\|_{L^2})\,\mathrm{d} a\lesssim \frac{1}{\beta}\int_0^\beta \frac{\mathbf{1}_{(a,\varepsilon)}(\|u\|_{L^2})}{\|u\|_{L^2}}\,\mathrm{d} a\,.$$

Tool. Local time for martingales and Itô formulas:

$$\mathbb{E}_{\mu_{\nu}} \left[\int_{0}^{\beta} \mathbf{1}_{(a,\infty)} (\|u\|_{L^{2}}^{2}) A(u) \, \mathrm{d}a \right]$$

$$+ \sum_{n} |\phi_{n}|^{2} \mathbb{E}_{\mu_{\nu}} \left[\mathbf{1}_{(0,\beta)} (g(\|u\|_{L^{2}}^{2})) (g'(\|u\|_{L^{2}}^{2}) |u_{n}|)^{2} \right] = 0$$

 $A(u) := g'(\|u\|_{L^2}^2) \left(\frac{\mathcal{B}_0}{2} - \|\nabla u\|_{L^2}^2\right) + g''(\|u\|_{L^2}^2) \sum_n |\phi_n|^2 |u_n|^2$ Properties B(u,u) and invariance is used.

No concentration around zero (3/4)

Take $g(x) = \sqrt{x}$ and get:

$$\mathbb{E}_{\mu_{\nu}}\left[\int_{0}^{\beta}\mathbf{1}_{(a,\infty)}(\|u\|_{L^{2}}^{2})A(u)\,\mathrm{d}a\right]\leqslant0\,,$$

that is:

$$\mathbb{E}_{\mu_{\nu}} \left[\int_{0}^{\beta} \frac{\mathbf{1}_{(a,\infty)(\|u\|_{L^{2}})}}{\|u\|_{L^{2}}^{3}} \left(\mathcal{B}_{0} \|u\|_{L^{2}}^{2} - \sum_{n} |\phi_{n}|^{2} |u_{n}|^{2} \right) da \right]$$

$$\leq \int_{0}^{\beta} \mathbb{E}_{\mu_{\nu}} \left[\frac{\|\nabla u\|_{L^{2}}^{2}}{\|u\|_{L^{2}}^{2}} \right] da.$$

- $\mathcal{B}_0 \|u\|_{L^2}^2 \sum_n |\phi_n|^2 |u_n|^2 \gtrsim \|u\|_{L^2}^2$;
- High regularity: $\|\nabla u\|_{L^2}^2 \lesssim \|u\|_{L^2} \|\nabla^2 u\|_{L^2}$ and

$$\mathbb{E}_{u,u}[\|u\|_{H^2}] \leq 1.$$

No concentration around zero (4/4)

We summarize:

$$\frac{1}{\varepsilon} \mathbb{E} \int_{0}^{\beta} \mathbf{1}_{(a,\varepsilon)}(\|u\|_{L^{2}}) \, \mathrm{d}a \lesssim \mathbb{E} \int_{0}^{\beta} \frac{\mathbf{1}_{(a,\varepsilon)}(\|u\|_{L^{2}})}{\|u\|_{L^{2}}^{2}} \, \mathrm{d}a$$

$$\lesssim \mathbb{E}_{\mu_{\nu}} \left[\int_{0}^{\beta} \frac{\mathbf{1}_{(a,\infty)(\|u\|_{L^{2}})}}{\|u\|_{L^{2}}^{3}} \left(\mathcal{B}_{0} \|u\|_{L^{2}}^{2} - \sum_{n} |\phi_{n}|^{2} |u_{n}|^{2} \right) \, \mathrm{d}a \right]$$

$$\lesssim \int_{0}^{\beta} \mathbb{E}_{\mu_{\nu}} \left[\frac{\|\nabla u\|^{2}}{\|u\|_{L^{2}}} \right] \, \mathrm{d}a$$

$$\lesssim \beta.$$