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Introduction.

In this paper, we shall study parabolic semi-linear equations on (0, +00) x R™
from the type :
O+ (—A)Pu = (=A)P %2 (1)

with0<a<n+28and 0< 8 < a.

More generally, we consider the following Cauchy problem : given iy €
(8'(R™)4, find a vector distribution % on (0, +00) x R™ (or on (0,7) x R") so
that, for : = 1,...,d we have

Opu; = —(=A)Pui +Y ¥ 00 k(D) (uyup) (2)

j=1 k=1
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and
lim u;(t, ) = ;. (3)

t—0

We assume that o; ; (D) is an homogeneous pseudo-differential operator of
degree f with 0 < f < a <n+ 28 : for f € S(R") with Fourier transform
Ff, we have :

oik(D)f = f_l(Ui,j,k(f)Ff(f)) (4)

where o; ;1 is a (positively) smooth homogeneous function of degree § on
R™ — {0} :
for A\>0and € £0, 0, ;1\ = N0, ;1(€) (5)

We rewrite equation (2) in a vectorial form :
il = —(=AN)*?i + o(D)(i @ @) (6)

and use Duhamel’s formula to turn the problem into an integral problem :
t
G = e A5, 4 / e~ =22 6 (DY (7 @ 1) ds. (7)
0

We shall use the classical estimate :

Lemma 1 There exists a constant Cy (depending on o) such that, for two
functions f and T on R™ (with values in R?) we have

|i(y)||T(y)|
t — sV 4 |z — y[ s

D)o NI <G [ By ®)

This lemma will be proved in Section 1.

The core of the paper is the discussion of the equation

U(t,x) = Uy(t,z) + //R . Kop(t — s,z —y)U?(s,y) ds dy 9)

with
1

Kop(t,x) = CO(|t‘1/a + |z|)n+8

(10)

and Uy > 0.



1 Proof of Lemma 1.

Due to homogeneity, it is enough to prove that :

1

.8 o —[€] < (2m)"Cp——— 11
[ e o) el < @n o (1)

Let 6 € D(R") with 1p(,1) < 0 < 1p(2) and let N > # Let
I(x) :/ e e I8 5 (€) de. (12)

RTL
and
Iy = [ e ¥ o((e) de (13
Rn

I — J is a smooth function with rapid decay (it belongs to §). Of course,
J is a bounded function, since its Fourier transform is integrable. Thus, we
consider only the case |z| > 1. For R > 0, we write

/n e”'ge_maa(f)@(%)é’(x) dé+

J(r) = iz
T AN [, s
/www%( <w@uw50@

(14)

which gives, for a constant Cy which depend on o, on # and on N (but
neither on x nor on R) :

()] < Onlefde+ [ Loy A (15)
|€|<2R (|$| )

I€I>R

Thus
Rn+ﬁ—2N

|[J(2)] < C(R™ + (16)

EE

and we conclude the proof of Lemma 1 by taking R = .

||

2 Semilinear equation with a positive kernel.

In this section, before discussing equation (9), we discuss the general integral
equation

fw:ﬁ@+Ameﬂwm@ (17)



where £ is a non-negative o-finite measure on a space X (X = U,nY,, with
wu(Yy,) < +00), and K is a positive measurable function on X x X : K(z,y) >
0 almost everywhere. We shall make a stronger assumption on K : there
exists a sequence X,, of measurable subsets of X such that X = U, cnX,, and

dp(z) du(y)
/n/n —K(x,y) < +o0. (18)

We start with the following easy lemma :

Proposition 1 Let fy be non-negative and measurable and let f, be induc-
tively defined as

Jnia(w / K(z,y)fi(y) du(y) (19)

Let f = sup,ey fu(x). Then either f = 400 almost everywhere or f < +00
almost everywhere. If f < 400, then f is a solution to equation (17).

Proof: Due to the inequalities fy > 0 and K > 0, we find by induction that
0 < fn, so that f, 41 is well defined (with values in [0, +00]); we get moreover
(by induction, as well) that f, < f,41. We thus may apply the theorem of
monotone convergence and get that f(z) = fo(z —i— [y K(z,9)f*(y) du(y).
If f =00 on a set of positive measure, then [, K(z,y)f*(y) du(y) = o0
almost everywhere and f = 400 almost everywhere. o

We see that if fj is such that equation (1) has a solution f which is finite
almost everywhere, then we have fo < f and [ K(x,y)f*(y) du(y) < f(x).
This is almost a characterization of such functions fj :

Proposition 2 Let Cx be the set of non-negative measurable functions 2
such that Q < +oo (almost everywhere) and [, K(x,y)*(y) du(y) < Q(x).
Then, if Q € Ck and if fo is a non-negative measurable function such that
Jo < %197 equation (1) has a solution f which is finite almost everywhere.

Proof : Take the sequence of functions (f,,)nen defined in Proposition 1.
By induction, we see that f,, < %Q, and thus f = sup,, f, < %Q o

This remark leads us to define a Banach space of measurable functions in
which it is natural to solve equation (1) :

Proposition 3 Let Ex be the space of measurable functions f on X such that
there exists A > 0 and Q € Ck such that |f(x)] < AQ almost everywhere.
Then :



e & is a linear space

o the function f € Ex — ||fllx = inf{\ / IQ € Ck |f] < A\Q} is a
semi-norm on Ex

o ||fllxk =0« f=0 almost everywhere

e The normed linear space Ex (obtained from Ex by quotienting with the
relationship f ~ g < f = g a.e.) is a Banach space.

o If fo € Ek is non-negative and satisfies || fo|x < 3, then equation (17)
has a non-negative solution f € Ex.

Proof : Since t — t? is a convex function, we find that Cx is a balanced
convex set and thus that £k is a linear space and || || x is a semi-norm on Ex-.
Next, we see that, for Q € Ck, p,q € N, we have

Jx Jx, i

/Y ) dpla) < e S (20)

P

This is easily checked by writing that

[ 00 o) into) <
\//x /x bR \//Ypqu /K 7, y)P(Y) du(y)] du(x)

Thus we find that, when || f[|x = 0, we have [ [, | [f(2)| du(z) = 0 for all
p and ¢, so that f = 0 almost everywhere.

Similarly, we find that if A\, > 0, ,, € Cx and >
Q=23 cn Ay, we have (by dominated convergence),

dp(z
[ ot dut < e 22

so that ©Q < 400 almost everywhere. Moreover (by dominated convergence)
we have () € C'x. From that, we easily get that Ex is complete.

Finally, existence of a solution of (17) when || fo|x < 1 is a consequence
of Proposition 2. o

(21)

= 1, then, if

nEN

An easy corollary of Proposition 3 is the following one :



Proposition 4 If F is a Banach space of measurable functions such that :
e feE=|fle Eand| [f| e < Crlfle
o | [x K(z,9)f*(y) du()lle < CellflZ

then E is continuously embedded into Ey .

3 Multipliers.

In this section, we recall a result of Kalton and Verbitsky that characterizes
the space Ef for a general class of kernels K.

Theorem 1 (Kalton and Verbitsky [14], Theorem 5.7) Assume that the
kernel K satisfies :

o p(x,y) = m is a quasi-metric :

ple,y) = ply.z) = 0
plry) =0 =y

p(z,y) < k(p(z,2) + p(z,v))

o K satisfies the following inequality : there exists a constant C' > 0 such
that, for all x € X and all R > 0, we have

/ /(zy CR/JFOO/M)Q du(y)% (23)

Then the following assertions are equivalent for a measurable function f
on X :

e (A) f € Ek

e (B) There exists a constant C such that, for all g € L?, we have
2
[ 1s@P| [ Kagt) dut)f dnto) < Cllally (20

A direct consequence of this theorem is the following one :
Theorem 2 Let (X, 0, 1) be a space of homogeneous type :

o forallxz,y e X, d(x,y) >0



6(z,y) = 0(y,z)

z,y) =0 =y

there is a positive constant k such that :

for all z,y, = € X,6(x,y) < #(3(x, 2) + (=) (25)

there exists postive A, B and ) which satisfy :

forallz € X, for all v > 0, Ar9 < / du(y) < Br@ (26)
S(zy)<r
Let ]
K, - 2
a(l’,y) 5($,y)Qia ( 7)

(where 0 < o < Q/2) and Ef, the associated Banach space (defined in
Proposition 3). Let I, be the Riesz operator asociated K,

/ Koz, 1)f(y) du(y). (28)
We define two further linear spaces associated to K,
e the Sobolev space W< defined by

geEW* s 3Ihe L? g=1T,h (29)
e the multiplier space V* defined by

fevie |fllve = ( sup /\f )2\ Zah()? dpa(x)) ' < +o0 (30)

hl 2<1

(so that pointwise multiplication by a function in V* maps boundedly
W< to L?).

Then we have (with equivalence of norms) for 0 < a < Q/2 :
EKa - Va. (31)

Qo . .
Proof : It is enough to see that Atess < f eyt AYy) < Bta—s (with
plx,y) = W ) and that 1 < ?a < 2, then use Theorem 1. o

We shall be interested in two examples :

7



3.1 Riesz potentials on R".

In the case of the usual Euclidean space R" with d(z,y) = |z — y| =
Vi |w — yi]?, we find that W is the homogeneous Sobolev space He,
i.e. the Banach space of tempered distributions such that their Fourier trans-
forms f are locally integrable and satisfy [ |€[2*|f(€)[? dé < +oo.

3.2 Parabolic Riesz potential on R x R".

We shall use the parabolic (quasi)-distance
Sal(t,), (5,9)) = |t = 5[/ + |z — | (32)

on R x R", where 0 < a. The associated homogeneous dimension (for the
Lebesgue measure) is Q) = n + .
For 0 < 8 < «, we consider the kernel

1

Ka,ﬁ(xu y) = (57(513,y)Q_(O‘_6)

(33)

From Theorem 2, we know that Ex, , = V*# = M(W*’ = L?) whenever
0<a—pB<Q/2 (e B<a<n+28). In the following section, we shall
give a characterization of W when 3 < 2.

4 The case [§ < 2.

We now are going to give a characterization of W*#(R x R") :

Theorem 3 If 3 < 2, WeP(R x R") is the Banach space of tempered distri-
butions such that their Fourier transforms f are locally integrable and satisfy

/ / (€1 4 |2 21 f(r. O de dr < +oo (34)

: 18
Equivalently, we have : W#(R x R") = L2Ho=# N L2H, =

To prove this theorem, we shall use the theory of y-stable processes on
RP? for the cases p=mn and v =3, and p=1 andfy:O‘T_ﬁ.

Let W, ,(x) be defined, for p € N* and 0 <y < 2, as

1 v
W, pl(a) = (2P /Rp e ™€ de (35)

8



When v = 2, we get the Gaussian function

Wa,(2) = -1 (36)

When 0 < v < 2, we have a subordination of W, , to W5, :

W) = [ Wl o) dus(o) (37)

where dji, is a probability measure on (0, +00)[25].
We have the following important result of Blumenthal and Getoor [3] :

Lemma 2 Let 0 <~y < 2. There exists a positive constant ¢, such that

lim W, ,(2)[z"™ = ¢y . (38)
|z| =400
Thus, we have
v/2 1
= [ W (e ) dy (39)
R U7 ¥
with 1 ;
Yy
= Wip(T) R Ur——) (40)
G el

(where Q(.) is the Landau notation : F = Q(G) if there are two positive
constants ¢; and ¢y such that ¢; < F/G < ¢3).

In order to prove Theorem 3, 1t us remark that equation (9) involves a
convolution on RxR" with K, 3. It will be interesting to give an approximate
Fourier transform of the convolution kernel K, g.

Proposition 5 Let 0 < f < min(a, 2). Let K, 5(t,x) be defined on R x R"
as

1 T
Ko(t, ) = m@WB,n ( ) (41)

I+
Then :
Kas(t,z) = Q(K,5(t,x)). (42)
Let M, 5(7,&) be the Fourier transform of K, 5(t,z). Then

Ma5(7,&) =~ € ( ! ) : (43)

_8
€le=? + |5



Proof : Inequality (42) is a direct consequence of (40) with v = 5 and
p = n. We then compute the Fourier transform M, (7, ¢) as the Fourier
transform in the time variable ¢ of the Fourier transform N (,£) in the space
variable = of K, g. We have

1 8
N = e Iel (44)
tl e
so that
M, 5(7,€) c/ ! Ly (”)d (45)
a, T, - o B _a n
’ R |r—p|t=a gl @t \ ]
Thus, we have
1 €17
M p(r.6) ~ € ( / ). )
[ = n'=% (gl + )5
We may rewrite that estimate as
1 T
Ma,B(Ta f) ~ () a—3 Aoc,ﬁ( a) (47)
€ i
with
Aas(r) = [ — S (18)
o8 = B :
7=l (14 [n])+e
Let G(1) = —5 and H(t) = —X—5, so that A,3 = G * H. Since
-4 (1+7)) & ’

G € L'+ L*(R) and H € L' N L>®(R), we have that H % G is continuous,
positive and bounded, so that we have : for |7| < 2, A, 3(7) ~ Q(1). For
7| > 2, we write :

o« HxG(r) = () e J* H(n) d

_B

o [T Gt —mHm) dn< (Z) 1A,

1—
—n)H —1 — 1
d f|n|>|7'|/2 G<T 77) (77) dT/ S f“n|>‘7_|/2 |7—,77|1** |n‘1+3 dn C < C (T)

so that A, (1) =~ Q <|T|115)' o

Now, Theorem 3 is a direct consequence of Proposition 5.

10
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5 Parabolic Morrey spaces and the Fefferman—
Phong inequality.

We follow in this section the notations of Theorem 2 : (X, 4, i) is a space of
homogeneous type, with homogeneous dimension @). For 0 < a < Q/2, Z,
is the Riesz potential associated to the kernel K, = W, and V* is the
space of functions that satisfy

||f||va=(‘sur> /X 1F (@) 2| Zah(2)]? du(z))'? < +oc. (49)

|nll2<1

We saw that V¢ is the space of pointwise multipliers who map W¢ = T, L?
to L?. This space of multipliers is not easy to handle (it can be characterized
through capacitary inequalities, see [23] for the Euclidean case). So, we will
use some spaces that are very close to V* : the (homogeneous) Morrey—
Campanato spaces.

Definition 1 The (homogeneous) Morrey-Campanato space MP9(X) (1 <
p < q < +00) is the space of the functions that are locally LP and satisfy

1_1 1
s = supsup ROGD( [ ) () < +oe 60
z€X R>0 d(zy)<R

Remark that L9 C MP4(X), as it is easy to check by using Holder in-
equality.

We shall need two technical lemmas on Morrey—Campanato spaces. The
first lemma deals with the Hardy—Littlewood maximal function :

Lemma 3 Let My be the Hardy-Littlewood mazimal function of f :

My (x) = pﬁ / L )l duty (51)

R>0 M

where B(x, R) = {y € X / 0(z,y) < R}. Then there exists constants C, and
Cp.q such that :

e for every f € L' and every XA > 0,
plfr € X | My(a) > 2)) < ¢ 121

e for 1l < p< 400 and for every f € LP

HMpr < Cp”pr

11



o for every 1 < p < q < +oo and for every f € MP(X)
”MfHMp»q < CP#IHf”MP,q

Proof : The weak type (1,1) of the Hardy—Littlewood maximal function is
a classical result (see Coifman and Weiss [7] for the spaces of homogeneous
type). The boundedness of the maximal function on L? for 1 < p < +o0 is
then a direct consequence of the Marcinkiewicz interpolation theorem [11].

Thus, we shall be interested in the proof for MP4(X). Let f € MP9(X).
For x € X and R > 0, we need to estimate fB(%R) (M (y)|P du(y). We write
f = Ju+ foy where fi(y) = f(Y)12sr)(y). We have My < My, + My,.
We have

My () du(y) < (Coll Allp)” < CRIFI, o (26 R)

B(z,R)
On the other hand, for §(z,y) < R,

1—1)

1
Mp(y) = swp - — /
7 (y) o>k B, ) [y

so that 1p pM;, < LEA R |
ARq

|2(2)] dp(2) < SUD 40 QHfHMpqp

M () duly) < (B, R ey Mgz, < |||, RO~
B(z,R) Ap

O

The second lemma is a pointwise estimate for the Riesz potential, known
as the Hedberg inequality [12, 1].

Lemma 4 If f € MP(X) and zf0<oz< , then
1 _og
| s ) dn)| < Coaa My @) F I, 52)
Proof : Let R > 0. We have
fw) — @l
———d d
| / e =S s duly

xay)Q @ =0 2J+1<p(zy)<R 5(
+o0 1

<Y BRG]y

J=0

<B

11— 2_QR ./\/lf(x)

12



f) V- /)
| /P(%y)ZR Wdﬂ(y” = Z /QJ'RSp(a:,y)<2j+1R W duy)

Jj=0

+oo
1 _1 _1 11
<ZO(23—B1 <2]+1R)Q(1 (2J+1R) v HfHMPq
]:

R)@—«
Q(1-3)
_1 2 a _Q
< B2 R fll e
We then end the proof by taking R 7 = % o

As a direct corollary of Lemma 4, we get the following result of Adams
[2] on Riesz potentials :

Corollary 1 For0 < a < <, the Riesz potential T, is bounded from MP: 1(X)
to MXX(X), with A =1 — aq.
We may now state the comparison result between spaces of multipliers

and Morrey—Campanato spaces, a result which is known as the Fefferman—
Phong inequality [9] :

Theorem 4 Let 0 < a<Q/2 and 2 <p < % Then we have :

MPE(X) C V= MW s L) € M>(X) (53)
Proof : For f € MPQ(X) and g € M”Q(X), we have fg € M% %(X).
We have p/2 > 1 and o < Q/q with ¢ = Q , hence, since A = aq =1/2,

T.(fg) € MP4(X). Thus, from Proposmon 4, we see that MP: *(X) c v
The embedding V* C Mz’%(X) is easy to check. Indeed, if F' = 1p(; 2xR),
we have for y € B(z, R)

IQF(y)z/ dp(z) o B ER) o ) pa

(cwy<r P(2,9)97* — RO~
hence, for f € V°,

1 B
2 < 2a F 2 < = 2a Q—2oz‘
/B(w,R) F @I dply) < A2R2a”fHV 17 < A2HfHV R

o
Remark : The embeddings are strict. For a proof in the case of the
Euclidean space, see for instance [19].

In the following, we shall write MP4(R"™) when we have X = R" with
d(z,y) = |r—yl|, and MP9(RxR"™) when we have X = R™ with §,((¢,z), (s,y)) =
[t = sl + o~y .

13



6 Cheap solutions for a semilinear parabolic
equation.

In this section we consider our Cauchy problem : given i, € (S'(R")4, find
a vector distribution 4 on (0, +00) X R™ so that, for i = 1,...,d we have

d d
i = —(=L)u; + > > 04 (D) (wjur) (54)

j=1 k=1

and
lim w;(t, ) = ;. (55)

t—0

where 0, 1(D) is an homogeneous pseudo-differential operator of dergee
with 0 < < a<n+20.
Due to Lemma 1, we have a domination principle :

Theorem 5 If there exist a function W (t,s) such that

1
/ / Wi ey) ds dy < Wita)  (56)
o oo - yl)

and such that, for some T € (0, +o0] we have

Locserle VG| < 4_CQW (57)

[where Cy is the constant given in Lemma 1], then defining inductively Uy on
(0,7) x R™ and Wy on R x R" as

o Up(t,z) = e 20 for0 <t <T
o Wy(t,z) = 10<t<T‘e_t(_A)a/Ql_j()|
° [j'kJrl = [70 + fot e_(t—s)(—A)a/Z)o(D)(Uk X ﬁk) ds

g Wk+1 = WO + ffRXR" 1 Co n+p Wk(s7y)2 ds dy
(It=s17 +l2—y1)

we have the following results :

o Wy converges monotonically to a function W, such that Wy, < ﬁW
and

Wo =Wy + // n+ﬂWoo(s,y)2 ds dy (58)
Rk |x—y|)

14



° ’ﬁo‘ < Wo and ‘ﬁk+1 — ﬁk| < Wiy — Wy on (0,7) x R™

o the sequence (Uy(t, z))en converges pointwise to a solution Uy, of

t
Uy = Uy + / e =20 (DY (T @ Us) ds (59)
0

As we did not use any refined analysis of the coefficients o, ;,(D) (no
maximum principle, no conservation of energy, and so on), but just con-
trolled the integrals by the absolute values of the integrands, we shall call
the solutions we found as cheap solutions : they do not provide much insight
on the structure of the equation.

Instead of considering pointwise estimates, we can give the same proof in
the setting of the Banach contraction principle and find the following results
on global or local existence of solutions :

Theorem 6 Let V¥#(R x R") be the space M(W*P s L?) described in
Subsection 3.2 and || ||k, , be the norm on V*# described in Proposition 3.
Then if Uy is such that

a/2

—t(— a2 o —t(— — 1
Lisole H=8) 2UO| e V*" and [ 1es0le H=8) U0|HKa,B < 4C (60)
0

(where Cy is the constant in Lemma 1), then the equation

t
i =e A" 5, 4+ / e~ =220 (DY(E @ 1) ds. (61)
0

has a solution i on (0,4+00) x R™ such that 1;s¢i € (V*P)4.

Proof : We define an operator B on (V*#)¢ by

t
B(i,7) = / e =5 (D) (4 @ §) ds. (62)

—0o0

a/2

and we are going to solve U= (jo + lS'(U7 lj) with (jo = 1,0 1224,
We have, from Lemma 1, that

BT, V)| < Cy / Kaplt — s, — )| 0(s,9)| [V(s,9)| ds dy  (63)
RxR"

so that oL . .
||B( ’V)HKaB < OOHU”Ka,B”VHKa,B (64)

15



The Banach contraction principle gives that, when ||Up|| Kus 4c , there

exists a unique solution U such that ||[7 k.5 < For i satisfying the

1
m.
assumptions of Theorem 6, we thus can find a solution Uoft U = Uy+B(U,U)
Wlth UO = l;pe t Ayl tp; this solution, obtained by iteration, Satlsﬁes
U =0 for ¢t < 0. The solution @ of Theorem 6 is then given by u = 1t>0U o

Theorem 7 Let V*?(RxR") be the space M(W®P s L?) described in Sub-
section 3.2 and || ||k, , be the norm on V*F described in Proposition 3. Then

ifﬁo is such that 1oopep|e "2 @] € VP and ||1ocrer|e "2 i) k., 5 <
40 , then the equation
t
= e A, 4 / e_(t_s)(_A)a/Qa(D)(i_L’@ u) ds (65)
0

has a solution i on (0,T) x R™ such that 1gciept € (V¥P)4,

Proof : Just solve U = Uy + B((j, (7) with Uy = locter et =820 o

7 Regularity of the solutions.
In this section, we discuss the size and regularity of global cheap solutions.

Definition 2 A tempered distribution f wil be said to be low-frequentially
bounded if, for every ¢ € D(R™), we have F~(of) € L™, where f = Ff is
the Fourier transform of f.

The space X, g(R"™) is defined as the space of low-frequentially bounded
tempered distributions f such that 14~¢ e_t(_mamf € VP, It is normed by
110 sy = [1Lin0 €D Fllpas.

Remark : If f is low-frequentially bounded, then the distribution e—t(=2)/2 f
is well-defined for fixed ¢ > 0, moreover the function (¢,z) — e 2" f(x)
is C* on (0, +00) x R™.

We have the following easy result on X, 3(R") :

Proposition 6 If f € X,3(R"), zo € R* and A > 0, then the function
Frazo defined by X7 f(A(x—120)) = frz(x) belongs to X, 5(R™) and we have

||f)\7$0||Xa,ﬂ(Rn) = HfHXa,,@(R")'

16



Corollary 2 X, 3(R") C B?~% and we have, for a constant C which de-

00,00

pends only onn, o and 3 :
—H(—A)e/ 148
e A Fll ooz < ClIf [l pmmyt ™ (66)
In order to use this last estimate, we shall now prove the following lemma :

Lemma 5 There exists a constant C' which depends only on n, o and 8 such
that :

_8
] [ Kt = 5.0 = )W) dsdy

(67)
_B
< ClIW[ves (W lyes + sup [sI"" = [W (s, )llc)

Proof : The proof is based on the following remark : the function

1 1
st = [[ , : —dsdy  (68)
si>le) ([t = s|= + |z —y|)"* (|s]a + |y[)* 2

is well-defined for (¢,z) # (0,0), as 8 < «a (local integrability) and # >0
(integrability at infinity). By Fatou’s lemma, it is semi-continuous, hence,
since {(t,x) / pa(t,x) =1} is a compact set, we have

= inf J(t,x) >0 69
v= inf J(t ) (69)

By homogeneity, we find
J(t,x) >~ (70)

pull, )P

We may now estimate I(t,z) = [[ Kyp(t — s,x — y)W?(s,y)dsdy. Let
e € (0,1/2) and let

Ao = [[ Kaslt-so-gWispdsay (1)
|t—s|<e|t]

and B(t,z) = I(t,x) — A.(t,z). Let us define moreover N; = ||W||ya.s and
Ny = sup,cp |s|1_g||I/V(s7 Iloo- We have

28
9\ 2% 1—
A (t,z) < N2 <—> // Ko5(t — s,z —y)dsdy = CNy <£)
|t’ [t—s|<et |t’ ( )
72

Q[
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On the other hand, writing Je(t,x) = 1j_gseJ(t — 5,2 — y), we have

1
Bt,) < — / / Jolt = 5,2 — y)W (s, y) ds dy (73)
Y
and
1 1 —o|>e
J(t—s,x—y) < // - - li=ol>el] — dodz
(Is —ole +ly — 2™ (|t —ola + |z —a])*" 7=
(74)
Let Fiye(o,2) = He—o| >t —7; we get

1
(It—ofa +|z—a)** 2

1 1
Be(twr) < _2N12/ |B,$,€(O-7 Z)|2 dodz = CNfﬁ (75)
7 (eft) =
We conclude the proof by taking -5 = % NﬁlNQ. o

We now consider a solution @ on (0,400) x R™ of the semi-linear heat
equation

7= Mg, 4 / t e =2 0 ( DY (i @ @) ds (76)
0
obtained by the iteration algorithm :
Uo = e85 and Uyyy = (70+/t e*(t’s)(’mama(D)(U’k @ Uy) ds. (77)
0
We already know that, if 19-,Up is small enough in (V*#(R x R")? (ie. if

ily is small enough in (X, 5(R™))?), then 37720 || Lo« Terr — Ui lyes < +00.
We get other estimates from this inequality :

Proposition 7 If

+oo
1To<t Usllves + D Mo<t(Ursr — Up)llyes < 400, (78)
k=0
then
B\ <= B\ =
sup '~ o [|Ug(t, )l + > supt' 7 [[Upga (£,.) = Uk(t, )] < +00.  (79)
o<t =0 o<t
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Proof : Writing U, = 0, A, = ]ﬁk — U'k,l\ and By, = \U’kl, we have, for all
keN,

Ak S y Bk S y)+Bk 1(8 y))
Apia(t,x) < CO/ / (Tt — sl + |z — g )" ds dy (80)

Let us define

_B
ap = supt' e [ Ag(t, )]

o<t
B
=supt 7o ||Bi(t, )]l
B up | Bi(t, )| (81)
Ve = [|Aklyes
6 = || Bilyes-

We remark that || /[ FGl < V[ FllxllGlle and [[/[FGllves < v/ Fllyes [Gllves,

thus we may apply Lemma 5 and get :

pr1 < O ar(Be + Be1) Ve (0 + 0p_1) (82)
Let
Gk:Z%‘ andM:z:wf (83)
i<k keN

We have the inequality

1
(07N S §Oék + CM’ykEk (84)
which gives
er1 < 20M Y ¢ (85)
J<k
hence
> e < (14 20My) Y i€ (86)
j<k+1 j<k
which gives
Z Vi€ < Yoo H +2C M) (87)
7<k+1 =
and finally
+o0
sup €, < 2C' M~pe€ H (1+2CM~,;) (88)
keN P
Proposition 7 is proved. o
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Proposition 8 Under the same assumptions as in Proposition 7, we have,
for all positive vy, that

a=B+y

sup #°75 [i(t, )] g, < oo (89)
o<t ’

Hence the solution i is C* on (0,T) x R".

a=f+y

Proof: Let~y > 0. Start from the information that supg_, to ||(t,.)[| 52 _

if ¥ > 0 and that sup0<tta77ﬁ||ﬁ(t, Iloe < +00. We then have the estimate
sup0<ttwéaﬂ [4(t,.) @ (t, )| gy, . < +oo. Then write

t a t t o
it x) = e 22 /2ﬁ(§,m)+ / e =D 0 (DY (s, ) @ (s, .)) ds (90)
t/2

to control the the norm of @ in Bg;go—ﬂ : ©

8 A Besov-space approach of cheap solutions.

Theorems 6 and 7 give a criterion to grant existence of a solution : the initial
value is required to satisfy 10<t<T\e_t(_A)a/zﬁo| € V8. But the space of the
distributions such that 1o,cp|e 27| € V28 is not a classical one and
we might try and find some subspaces that are close enough to this maximal
space but belong to a classical scale of spaces.

Thus, we shall describe Banach spaces X of measurable functions in time
and space variables that lead to cheap solutions : one should have the fol-
lowing properties :

o if f(t,x) € X and if [g(t, z)| <|f(¢ z)|, then g € X and |lgllx <||flx

o for f.g € X, F = [[ Kup(t— 5,2 — 9)| £(5,9)||g(s,9)| ds dy € X and
IFlix < Cxllfllxliglx

From Proposition 4, we know that X C V*?(R x R") and from Lemma 1 we
know that we may find a solution « of the equation

t
R A / D" (DY (@ @ ) ds (91)
0

on (0,7) x R™ such that 1go;erti € X9 as soon as 10<t<T|e*t(*A)a/2ﬁ’o| e X
and || Liocrer|e 20| x < @ (where T" might be a positive real

number [local solution| or equal to +oo [global solution]).
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The simplest way to find such a space X is to replace the kernel K, 3 by
kernels whose action are well documented on functions in time variable or in
space variable. For instance, if max(1/2,5/a) < v < min(1, ";rj'g), we may
write

1 1

Let I, .,—p be the convolution operator (in x variable) with W and

I;1_+ be the convolution operator (in ¢ variable) with # We have :

/ / Kuslt — 5,0 — )| (5,9)| [9(5.9)] ds dy < TonToays(|fa)(&) (93)

In this way, we have dissociated the action on the variable x from the action
of the variable ¢.

Let E be a Banach space of measurable functions on R" satisfying ||| f| ||z <
Cgllflle. We see that Xps = {f / sup,.ot”?|f(t, )|z < +oo} will be
contained in V*# if (f,g) — I.,_s(fg) is bounded from E x E to E and
(f,9) = Li_,(fg) is bounded on X; = {f / [t|*/*f € L>}. We find that
the maximal Banach space E we can associate (this way) to v is Xgs
with B = VY 9(R") = M(H*? — L?) and v = 1 — . Thus, we find
that we can easily get cheap solutions when the initial value y belongs
to (and is small in) X¢, with Xy is the Besov space X, = B;fj:f” with
max(0, o‘;w) <r <min(a - 3, %) [18].

Due to the Fefferman—Phong inequality, we may replace the space V" by
a Morrey spce M*"/" with 2 < s < . The corresponding space X will be a

_a
P
M3 00

scaling relation % —|—§ =a—f (and with 2 < s < ¢, ﬁ < q and, if o > 28,

2 5). If s = ¢, we find the classical Besov space By & (see Cannone [5]).

We have more precisely the following result :

Besov-Morrey space B (see Kozono and Yamazaki [17]) with Serrin’s

q <

Theorem 8 Let 0 < < a < n+ 23. Let X*® be the Banach space of
distributions such that 1o, e‘t(_A)a/Quo e V8. Then :

o X% C B Y
e if > /2, then
c yP (94)

o [@

t]'

so that X9 = Bfggg

21



e if 5 < a2, there exists ug € Bfoffo such that ug ¢ X*?. More pre-
cisely :

— if B < a2, then there exists ug € Bfofla such that uy ¢ X%P.

. . B—a+2
—if B < a/2, then Bfm 1 C X s g < Oﬁgﬁ'

Proof : We already know that X*# C Bfo_fo If 3>a/2and 2 <7 < 24,
we have

1 e R" I pn+a—r(a—F3)
pti=sa—n)< ([s|15) o (IsI%)
(95)
. pnta
This inequality gives that —— € M, * 7 C V¥

t~-a
We now consider the case 23 < a. We shall consider the cheap parabolic
equation of Montgomery—Smith [24] :

du + (=A% = (—=A)P2(u?) (96)

and the associated bilinear operator
t
Bas(u,v) = / eI N (s, Yos, ) ds.(97)
0

Let 0 € S(R") such that 1« < 0(¢) < ligj<2. For v € R, we take u, =
23755 0(x) cos(2721)277. Then u, belongs to B, ], for every ¢ € [1, +00], and

belongs to BgoJ for every 0 < —v. Let vy, = e_(t(_A)a/zuw. If By g(Va,y, Vary)
is well defined, we check it agains a test function w(t¢,z) which satisfies, in
spatial Fourier variables,

11/2<t<11|§\<1 < @(t,f) (98)

For |n| = Q(27), |€] <1, 1/2 <t < 1, we have

t t
M/‘e(tS)HQMWQSMnW ds;zelh/‘eS”“SK"“ s
0 0

o 1 1 — e~ tnl*+1E=nl?) (99)
- € = nl* + [nl
> .27,
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We thus get (with e; = (1,0,...,0))
27)"(Ba,s(Va,y; Vay)|lw) 2

//2/§1|£‘r3222'ya /95 7]—2j€1) (n+2j€1)d£dt

j (100)
“+o0o
> C;ZQJ'(QV*O‘)
=3

with ¢/, > 0. Thus, By, (Va,y, Va,y) cannot be well defined for 2y > a.
Thus, a2 ¢ X*P. But we know that ua/Q € Bfofla if 0 —a< —a/2 ie.

f < «/2. Similatly, if 8 < a/2 and ¢ = we know that uq/s € Bq_:jO =

2,37
Bg, ot . Theorem 8 is thus proved. o
Remark : In this paper, we deal only with critical spaces and global

existence. But it is easy to check that the same example of the cheap equation
and of the initial value u,, /2 gives that there is no local existence results for
the subcritical spaces BZ). with a/2 < 4§ < a — 6.

9 The case a = 20.

We have seen that for § > «/2 we had Boﬁo’; C X*P so that the Cauchy
problem for our general parabolic equation with a small initial value in
(B2 2)? will have a solution. For 8 > /2, we found an example u, /> € B2 |
so that, for every A > 0, the Cauchy problem for the cheap equation with
the initial value Au,/, will have no solution.

In the limit case 8 = «/2, the counter-example u,/2 belongs to Booao/f ,

so that B;o?‘éf is not included in X**/2. However, the Cauchy problem for
the general parabolic equation with a small data in (Bo_ot,ll/ )4 will have a
global solution. As a matter of fact, the Koch and Tataru theorem [16]
gives that this is true for a small initial value in (B]\/[ o~/ 2) where we have
B c B € BMO~2 = (=A)*/ABMO = F%* c Bx2L2).

We don £ detail the proof here, as it is exactly the same one as for the
Koch and Tataru theorem (see [18] for details). The path space where to
use the fixed-point theorem is the space of functions w(¢,x) which satisfy
sup,-o /2 ||u(t, )]|oe < 400 and

t
sup te / / lu(s,y)|* ds dy < +o0 (101)
t>0,xeR™ 0 B(a:,té)
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Note that the proof involves an integration by parts [using the fact that
(—A)/ 2t A2 — 5 (e 22 ) gee Lemma 16.2 in [18]]. Thus, the
proof does not involve domination by a positive kernel, and BMO~%/2 is not

a subspace of X**/2. But we have obviously (due to scaling invariance and
local square integrability in V*/2) the embedding X*®/2 ¢ BMO~/2,

10 Persistency.

When i is small in (X*#)¢ (or, when a = 23, in (BMO~%/?)?), we know
that a solution «# may be constructed through the iteration algorithm :

t
Uy = e "2, and Uks1 = UO—I—/ e_(t_s)(_A)a/2a(D)(Uk®Uk) ds. (102)
0

and that we have

+oo
_B . _B 3 =
sup ' o |Uo(t, )lloo + > supt' || Upsa(t,.) = Uk(t, )lloo < +00.  (103)
o<t k=0 o<t

This will allow us to use the persistency theory developed in [18]. Let us
recall first the definition of a shift-invariant Banach space of local measures :

Definition 3 A) A shift-invariant Banach space of test functions is a Ba-
nach space E so that we have the continuous embeddings D(R") C E C
D'(R™) and so that:

o for all xg € RY and for all f € E, f(x —x¢) € E and ||f||z = ||f(z —

7o) -

o for all A\ > 0 there exists C\ > 0 so that for all f € E f(Ax) € E and
1f(A2)lle < Callfll&-

e D(RY) is dense in E

B) A shift-invariant Banach space of distributions is a Banach space E, which
is the topological dual of a shift-invariant Banach space of test functions E™).
The space E©) of smooth elements of E is defined as the closure of D(R?) in
E.

C) A shift-invariant Banach space of local measures is a shift-invariant Ba-
nach space of distributions E so that for all f € E and all g € S(R?) we
have fg € E and ||fg|le < Cellfllgllgllw, where Cg is a positive constant
(which depends neither on f nor on g).
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An important property of shift-invariant Banach spaces E of distributions
or of test functions is that convolution is a bounded bilinear operator from
L' xEtoE: | f*gle <Iflllgle.
We measure regularity with semi-norms ||f||H],; = |[(=A)2f||g, or ||f||B£’E =
g

. 1/q
(Z ien 2P| A f H%) . Those are only semi-norms, but we shall work in

spaces L N H?, or L>® N ng, so that we don’t bother on the kernel of the
semi-norms.
The presistency theory then tells us the following :

Theorem 9 Let iy be small enough in (X*%)? (or, when a = 283, in (BMO~/?)?)
to grant that

“+o00
_é — _é — —
supt' = [|Uo(t, )loo + > supt' ™o |Uepa(t,.) = Ukt )]s < +00.  (104)
o<t —0 o<t
and
— +OO — —
sup [Up(t, ) g-o + > sup [Ueia(t, ) = Up(t, )| go-a < +00.  (105)
o<t ’ k=0 o<t ?

Let F be a shift-invariant Banach space of local measures.
e If moreoveriiy € Fe, then the limit @ of Uy, satisfies @ € L>=((0, +o0), F'4).

e Let E be a space of regular distributions over F': for some positive p
and for some q € [1,4+00], E = Hp or B = By, (with 1 < q < o0). If
iy € B4 then @ € L>((0,00), E?)

Proof : 1If @y € F? then Uy € L((0,400), FY). We then write, for
Wi = Uy — Ug—1 and oy, = sup, g Wity ) loos -

C hd b -, —
: |£ Uk (s,.) @ Wi(s,.) + Wi(s,.) ® Ug_1(s,.)||r ds
— Sl

t
Wi (2, )l < /
0
C 1

S
£ = sl Is|' =

t
< (I00llzer + 1Tl r)on /
0

= C'(10l o + Ut | oo ) v
(106)

If Ay = Z?:o HT/T/J-HL?op, we have ||t per < supyegn A;. Moreover, we have

A1 = A+ Wi e r < Ap(1 + 20" ay) (107)
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so that « € LO"((O, —|—OO), Fd) with HﬁHL?OF S ||ﬁO||F H?:O(l + 2C,C¥k)

We now consider the case when i@, € E%. We find that Uy € L>((0, +00), (Bf;,oo)d).
We write Wy, = Ur—Uk 1, a = suppsg ' [Wi(t, oo, T = S [IWill e os
and By, = Z?:o HVVJ'HL‘;OB;OO‘

We begin by estimating fg when f,g € L® N Bfojg; N B?‘,oo‘ Using the
Littlewood—Paley decomposition f = > ., Ajf = S f+D 5, A f (see [18]),
we write fg = u+ v, whereu =), Zj§k+3 AjfALG =D 1cq SkrafArg and
U= 2 2 ekia DifAkg = 205 A fS5-39. We havel| Ai(SkyafArg)||r <
ClifllcllAegllr < Clifllocliglsy, 27" if k > 16, and = 0if k < 1 —6.

Hence u € Bf;m and

lullg < CNfllllglzg (108)

On the other hand, when k < j — 4, we have Aj(A;fAxg)||lr = 0 if |l —

jl = 35 when [ — j| < 2, we wite [|A(A;fAug)lle < €2 gllg |1 fll

and [|A/(ArfA;g)||r < 28 g]| 45-a 2*3")||f||B; We then fix A such that
L_ < )\ <1, and we find that 7

pta—p
1804, £8,-39) I < X £l allge-a ) gl g1 F1l0)
(109)
and thus

I vl goses < C gyl e Mgl _l1fl)' ™ (110)

The second step is to check that e~ (=922 5( D) maps (B%joo)dXd to (Bf,vl)d
foro < p+p:

(l—s)(—A)/2 _ptBS
[N oD fl gy <Ot =) 0 [ flg . (11D)
Combining those estimates, we find that
- oo 1
Wi (t, g < akBk/ L
' T o |t — S|§ si=a
t
- C 1
A _\1=A
BTy )7 [ s g
(112)
We take A close enough to 1 to ensure that
B B B
AMl——=)<land —+(1—-XN)(1—-—)<1. 113
(-2 <tand 2+ (1-x0-2) (13)
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We thus get

Wi (. )lsg, < ConBi+ ClaxBONTIWilt, g ) (114)
We find )
[Wicea(t, gy, < 8B+ 5 IWa(t, sy, (115)

with & = Cag(l + A(2(1 — M)I)'%). For 1 < p < k, we have as well
I3, g, < 6yt B+ 3ITya(t, )y while [Ti(t, gy, < 61y it
we take 0_; = 1. This gives

k
[Wiar (8. )iy, < Bi(Y 6,27 (116)
j=—1

so that i

Bip1 < Bi(1+ ) 5;207%) (117)
j=—1
and finally
400 k

sup Bk S BO H(l + Z 5j2j_k> < +00 (118)

keN o =

The theorem is proved : for E = H% or Bf;’q, we have

@l ep < lldolls + D IWill pepe | < +o0 (119)
k=1

and we conclude since B2 ; C E. o

11 A Triebel-space approach of cheap solu-
tions.

Recall that X*# is defined by uy € X** < 1t>oe*t(*A)a/2uo € y»?. In
section 8, we tried to give an approximation of X*# by Besov spaces. Another
way of approximating X®? is to approach V*# with Morrey spaces, using
the Fefferman—Phong inequality.

We thus define .7-";’5 for 2 <p< TT% by :

n+a

Ug € ./—";’B -~ 1t>06_t(_A)a/2U0 € Mgm (120)
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We have of course (for 2 < p < TT%)

FoPbc XP c BE L. (121)

Assume now that po"%ﬁ > 1. For R > 0 and zy € R", we find that

“+oo
/ / e (=22 P dt dy < // |1t>oe_t(_A)a/2u0|p dt dy
B(zo,R (t—0,y—x0)
/ / e~ A g P dt dy
B(zo0,y)

< Cllugll, , R

+ CHUO ||B§O_§O RnRa(l_pi)
(122)

Thus, we find that ( 0+°° e t=R) 2y [P dt) € MP4(R™), where ¢ satisfies

the Serrin scaling relation % + 2 T 5. We thus see that f;’ﬂ is aTriebel-
Lizorkin-Morrey space, as studied by Sickel, Yang and Yuan [26] :

Theorem 10 For2 <p < ”*O‘ such that p= ﬁﬁ > 1, the space .7-"“”3 15 equal

a 1 1

to the homogeneous Triebel— Lzzorkm —Morrey space Fpp” P

12 Examples

12.1 The Navier—Stokes equations.

The Navier—Stokes equations are given on (0, +00) x R3 by

{ Byt + (.Y = Aii — Vp 123)

divid=0

Using the Leray projection operator P on divergence-free vector fields
and the fact that @ is divergence free, we get rid of the pressure (on the
assumption that p is small at infinity) and get

0yt = Al — P div (7@ @) = 0 (124)

This is a system of equations analogous to (2) with & = 2 and § = 1. Since
2001, from the Koch and Tataru theorem [16], we know that we may find a
global solution as soon as the initial value i, is small enough in BMO™1.
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Initially, in 1964 [10], the proof of existence of global solutions has been
given for an initial value in H*(R3) with s > 1/2 and with a small norm in
H'?(R3). Tt is easy to see that H/2 C X! so that the existence of a global
solution in L{°H?® is then a combination of Theorems 7 and 9.

Later, in 1984 [15], Kato proved existence of global solutions in L L? for
an initial value d with a small norm in L3. Again, this can be proved through
a combination of Theorems 7 and 9, as L3 C X2

Then, in 1995 [5], Cannone considered the case of an initial value in L3,
3

14
with a small norm in By ¢ with 3 < ¢ < 400 and obtained existence of a

global solutions in L{°L3. Again, this can be proved through a combination

3
of Theorems 7 and 9, as B;ijg C X%
Let us remark that ill-posedness in the critical Besov space Bo_ofoo has
been established in 2008 by Bourgain and Pavlovié¢ [4], following the examples
given by Montgomery—Smith for the cheap equation [24].

12.2 The modified Navier—Stokes equations.

The diffusion term in the Navier—Stokes equations has been modified in some
studies by a fractional diffusion :

{aﬂn (@.V)i = —(—A)a/fﬁ— Vp (125)

divee =0
Initially, o was taken larger than 2 (it is the hyperdiffusive case). Indeed,
when a > 5/2, the problem is locally well posed in L?, and, using the energy
inequality that ensures that the norm in L? stays bounded, local existence is
turned into global existence [21]. More recently, the sase 1 < a < 2 has been
considered, due to the increase use of a—stable process in non-local diffusion
models.

Using again the Leray projection operator P , we get the system

il = —(—A)?d —P div (Z® i) =0 (126)

This is a system of equations analogous to (2) with a > 1 and g = 1.

When 1 < a < 2, we know from Theorems 7 and 8 that we may find a
global solution as soon as the initial value % is small enough in Bé; ¢ (this
is the theorem of Yu and Zhai [28]).

When a > 2, in accordance with Theorem 8 and the remark we made
after the Theorem, Cheskidov and Shvydkoy [6] have shown illposedness in
B forl —a <~y < —a/2.

—00,00
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12.3 The subcritical quasi-geostrophic equation

The subcritical quasi-geostrophic equation is given by the system

-

0,0 + (@.V)0 = —(—A)*?9
( )= (= 22 2 (127)
Uy, Ug) = m

where 1 < o < 2.
If we use the unknowns (0, uy, us), we get the system

¢

00 = —(=A)*%9 — div (0i0)

Oy = —(—=A)2uy + dy div (01)

(128)

1
VA
8{&2 = —(—A)a/2U2 —

1
\ V&
This is a system of equations analogous to (2) with 1 < a < 2 and g = 1.
We know from Theorems 7 and 8 that we may find a global solution as soon
as the initial value 6, is small enough in B'-% (this is the theorem of May
and Zahrouni[22]).
In particular, when 6, € La1 C B2 and is small in B1 ¢ . we know

that the solution @ satisfies @ € L=®La-1. If 0y € L1 with E < q < oo,
we have local existence in L*°L9; moreover 6 satisfies a maximum principle :
10(, )lq < [|6oll,, and this implies that local existence is turned into global
existence [27]

o, div (0i0)

12.4 The parabolic-elliptic Keller—Segel system
The parabolic-elliptic Keller—Segel system is given on (0, +00) x R™ by

{ du = Au— div (uVy) (129)
—Ax =u
If we use the unknowns ﬁ iﬁu, we get the system
O = AU+ Z —V div 8;(v;7 Z’U (130)

This is a system of equations analogous to (2) with & = 2 and 5 = 1. We
thus know that we may find a global solution as soon as the initial value v is

30



small enough in BMO™!, i.e. ug is small enough in BMO~2. This estimate
2

seems to be new : in [13], the case ug € B, 7 is discussed.

Let us assume that ug € L™2? N L! (and n > 2), with the norm of wu
is small enough in BMO~2 (remark that L%?> ¢ BMO=2). Then we know
from Theorem 9 that the solution #' will belong to LOOI—.Iid/2 NL®H},, and

that 1 = 7 — ' € LOOBcll/Q’l N L®DB,. Writing
u = e®uy + div 7, (131)

we find that w € L°LY? N L>®L' : this is the theorem of Corrias, Perthame
and Zaag [8].

A final remark is that one usually deals with positive solutions (as u
represents a density of cells). We have the inequalities

Uollpz2 > Uo||BMO-2 > U || pr1.d/2
[uoll g2, < Clluoll < C"luol (132)

when the space M%?2 is the space of locally bounded (signed) measures
p such that : sup, cgn oo B2 ? fB(xO  dl(y)] < +oo. When u is a non-

negative distribution (i.e. a non-negative locally bounded measure), we have
the reverse inequality

[wollyprare < C"lluoll g2 (133)

(see [20]). Thus, the critical norm to be controlled is indeed the norm in the
Morrey space M14/2.
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