Small data in an optimal Banach space for the
parabolic-parabolic and parabolic-elliptic
Keller-Segel equations in the whole space

Pierre Gilles Lemarié—Rieusset™®

Abstract
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1 The Keller-Segel equations.

We consider two Keller-Segel equations defined on the whole space R? (where
d > 1). Those equations describe the evolution of the density u of a biological
population submitted to the influence of a chemical agent with concentration

w [9].
The first model is called the parabolic-elliptic model :

du = Au— div (uVe)
—Ap=—ap+u (PE)
u=1ug fort=20

The second model is called the parabolic-parabolic model and is given by

du = Au— div (uVy)

edyp=Ap—ap+u PP
u=1ugfort=0 (PF)
p=0fort=0

where € > 0.
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Note that in (PE) and (PP.), the damping coefficient « is constant and
non-negative :
a > 0.

The value of a will have no great importance in our results.

We turn these equations into integro-differential equations on u, through
the Duhamel formula : we consider the Green function G for the Laplacian,
the heat kernel W; and the Bessel kernel G, defined as

= ln(ﬁ) ifd=2
G(z) = (1)

T id 23

Wt(ﬂf) = W(ffj (2)
+o0o
Gao(z) = Wy(x)e ™ ds (3)

0
so that, for ¢ € S(R?), we have

AGxy) =~y
0u(Wy#9p) = A(Wy %) and T W, + ¢ = o)

and
(—A+ald)(Gy*x9) =1

If @ = 0, the parabolic-elliptic equation (PE) is then turned into the integral
equation :

t
u=W;*ug— / div Wy, * (u(u* VG)) ds (IPE)
0
and the parabolic-parabolic equation (PP.) is turned into the equation
t 1 s
u=MW;*ug— / div Wy_g % (u(—/ VWi xu do)) ds (IPP.)
0 €Jo ¢

If @ > 0, the parabolic-elliptic equation (PE) is then turned into the integral
equation :

¢
u=W;*uy— / div Wi_y % (u(u* VGy)) ds (IPE,)
0



and the parabolic-parabolic equation (PP,) is turned into the equation

t 1 S
u:Wt*uo—/ div Wts*(u(—/ e
0 € Jo

We are going to involve the four equations in a simultaneous study. As a
matter of fact, we may write each equation in the form

)) ds (IPP,,)

t
uw=W;*uy— / div Wi_g * (u L (u)) ds (4)
0

where the linear operator L, . will satisfy size estimates independent of the
specific parameters € and « of the equation.

Proposition 1 (Size estimates for L, )
Let M,u be the time-variable Hardy—Littlewood mazimal function :

1 t+r
M, u(t,z) = sup — lu(s, z)| ds (5)
>0 2r

and, for 0 <r <d, let I,u be the space-vamable Riesz potential of u

_ I'((d—1)/2)
fru(t, @) = 7rd/22’” ['(r/2) /\x— gl a2 0

Let L, be the operator

1 t
L cu(t,z) = —/ e~
€ Jo

Lo cu(t,r) = u* vJ, ife=0 and a > 0,
Locu(t,z) =ux VG if e = a=0.

Then there exists a constant Cy which does not depend on o nor on € such
that :

|Locu(t,x)| < Cy I (Mu)(t, z) (7)
The proof of the proposition relies on two classical lemmas :

Lemma 1
If w 1s a radially decreasing function on R™ and f a locally integrable function,
then

| RnW(ﬂs —y)f(y) dy| < ||lw|[rsup flx—y)ldy  (8)

1
>0 ’B(Ov T)’ ly|<r

or equivalently
jw s fI < flwll1 My (9)

where My 1s the Hardy-Littlewood mazimal function of f.
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Lemma 2
The function el belongs to the Schwartz class. Therefore, we have for
every B € N¢

sup (Vi + |z) a7 W (2)] < oo (10)

z€R >0

Lemma 1 is classical (see Grafakos[6] for instance). Lemma 2 is obvious.
Using Lemma 2, we obtain, for € > 0,

1 [t 1
Loatol<c [ f ju(o,y)| dy do
Jo ] (J=2 s o — ypee

where €} = sup,cpa(1 + |2])* VWi (z)|. Using Fubini’s theorem, we first
integrate with respect to do and use Lemma 1 to get :

do
Lou(t, z) gcl/(46((ﬂ+|x_y|>d+l)M*(t,y) dy

1

where Cy = [, (HJ}%' This proves inequality (7) for e > 0.
When € = 0, we write |u(t, z)| < M,u(t,z) and thus

|Loou(t, z)| < / IVG(2z —y)|Mu(t,y) dy < Cy I(M,u)(t, z).

For a > 0, we write

Too
| Lo ou(t,z)| < / (/0 VW, (x — y)|ds)M*u(t,y) dy

Feo ds
<C Mu(t,y) d
<O [ ([ ey Meatt)
1

Thus Proposition 1 is proved.

2 Main results

We may now state our main result. We define the Morrey space M} /Q(Rd) as
the space of locally finite measures du such that

sup ﬂ%/k)dm@n<+m. (11)
B(x,r

z€R r>0
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This space is endowed with the norm

ldpll i oy = sup 72 / )

/2 zER r>0

We shall see in Section 4 why this space is optimal for the search of global
solutions to the Keller-Segel equations.

We shall use another Morrey-space, based on the weak Lebesgue spaces
LP* (or Marcinkiewicz spaces). In secion 3, we shall recall basic facts on
Marcinkiewicz spaces. For 1 < p < 400, the space LP* is a Banach space. For
1/2 < B < 1, we shall use the Morrey-Marcinkiewics space Mj//g__g))’*(Rd).
This space is defined as the space of measurable functions f that are locally
in L?/?=A)* and that are such that

(2-d)(1—

)
sup 1 NX B fllpae-n. < +00

zER r>0

where xp(sr is the characteristic function of the ball B(z,r). This space is
endowed with the norm

(2—d)(1—

B
||f”M§//((22:§)>v*(Rd) = S8sup 7 2)||XB(x,r)fHLd/<2—5>,*-

z€RL,r>0

We associate to this space the space

Eﬂ = {u(t, {L‘) / sup tﬂ/Qu(t7;p) c M;/(Q—ﬁ),*}'

0 /(2=B)
The space Eg is normed with
U = || sup t*"*u t,T)| 2/ 2-8)% -
lulles = 1 sup ™ =ult, )1l 222

We shall see that, for 1/2 < 8 < 2 and uy € M}

12(R?), we have

Wy xuy € Eg.
Our result is then the following :

Theorem 1 (Keller-Segel equations)
A) The operators (f,g) — Ba.c(f,g) where

t
Boc(£9)(t:0) = [ Wiesn (F Lasg) ds
0
are equicontinuous on Eg when 1/2 < <1 :
| Ba.e(f; 9) ey < Collfll s ll9lles

b}



for a constant Cy which does not depend on o nor on e. .
B) There ezists a positive 6y > 0 such that, for every uy € M;/Q(]Rd) with
HuoHMdl/z((Rd) < 0y, for every a > 0 and every € > 0, the Picard iterates

t
Va,e,0 = Wt * Ug and Va,en+1 = Vo — / div Wt—s * (Uoc,e,nLoz,e(er,e,n)) ds
0

converge in the Eg norm to a solution of the Keller-Segel equation u,. =
W, * ug — fg div Wi_g % (Ua,e Lactiae) ds.

C) Moreover, when € goes to 0, the solution u,.of the parabolic-parabolic
problem converges in the Eg norm to the solution uq o of the parabolic-elliptic
problem.

This theorem is a generalization of the existence theorems for small data
proved by various authors in the setting of scaling invariant spaces : Lebesgue
spaces [5], weak Lebesgue spaces [10, 12], Sobolev spaces [11], Besov spaces
[8], pseudo-measures [3]. It is as well a generalization of the stability theorems
proved by Biler and Brandolese [2] and Raczynski [14] (see the discussion in
Section 4).

3 Morrey spaces

Let us recall the definition of Morrey spaces:

Definition 1 (Morrey spaces) .
If1 < p < q < +oo, the Morrey space Mg(Rd) is the space of measurable
functions f that are locally in LP and that are such that

sup rd(z_l)/ lf(W)P dy < +oc.
z€R r>0 B(z,r)
This space is endowed with the norm

p_ 1
Il = sup (G / )P ).
B(z,r)

2ER r>0

If 1 < q < 400, the Morrey space M;(Rd) 1s the space of locally finite
measures du such that

sup 57 [ dluty)] < +ox.
z€R >0 B(z,r)
This space is endowed with the norm

1_
el | dn)

z€R r>0



We have, for po <p1 <¢q,1<gq,, LI = Mq C ]\/ﬂ’1 C Mpo

Instead of the LP norm, it is sometimes useful to work in the weak
Lebesgue space, or Marcinkiewicz space, LP*. Let us recall some basic facts
abour Marcinkiewicz spaces. The space L%* is the space of measurable func-
tions f such that

N(f):e\li%))\‘{xeRd/|f(a:)]>)\}‘<+oo. (12)

We have obviously L' ¢ L' and N(f) < ||f|l1. However, L** is not a
space of distributions and its elements may be functions that are not locally
integrable (such as f(x Moreover, A is not a norm (it is not convex).

For 1 < p < 400, the Marcmkwwmz space LP* is the space of measurable
functions f such that |f|P € LY*. in that case, the functions are locally inte-
grable : we have LP* = [L!, L”][l_ 1 o) and for two positive constants A, and

1
B, we have A,| |11 1] < (N(|fP)) < Byl fllzr,L=y, - Thus,

LP* is a normed space, when we define the norm as || f|| o+ = || f[[z1, 0]

[1- 5 .00]

[1-4,00]

Definition 2 (Morrey—Marcinkiewicz spaces) .
If 1 < p < q< 400, the Morrey—Marcinkiewicz space Mg’*(]Rd) s the space
of measurable functions f that are locally in LP* and that are such that

1_1
sup i p)”XB(x,r)fHLPv* < +00
z€R >0

where X p(z,r) is the characteristic function of the ball B(xz,r). This space is
endowed with the norm

1_1
£z @ay = sup 72X B fll o
z€R r>0

If 1 < q < 400, the Morrey—Marcinkiewicz space M;’*(Rd) is the space of
measurable functions f that are locally in LY* and that are such that

N*,q(f) = SsSup rd(%il)N(XB(x,r)f) < 400

xER r>0

Note that Mg’* = L9*,



4 Optimal space for solving Keller-Segel equa-
tions

When dealing with the Keller-Segel equations on the whole space, one always
try and use the symmetries of the equations :

e since the coefficients of the equations are constant, the equations are
translation invariant : we find that if (u, ¢) is a solution to (PP) or(PP.)
with initial value ug, then (u(t,z — xg), (t,x — x¢)) is a solution of the
same equation with initial value ug(x — x¢)

e when a = 0, the equations are scale invariant : if (u, ) is a solution to
(PP) or(PP,) with initial value ug, then (A2u(N\%t,, A\x), o(N\%t,, A\x)) is
a solution of the same equation with initial value A\2ug(Ax).

This explains the important litterature on Keller-Segel equations with
data in scale invariant spaces such as L%? [5], L%¥%* [10, 12], HY/P=%P [11],
Bpar®? (8], PM" [3]. However, there is another important feature of the

Keller-Segel equation that should be underlined :
e if ug is non-negative, then u remains non-negative.

This property is important, as the equations aim to describe the density of
a biological population. Focusing on this property, we may identify a good
candidate for optimality in the search of global solutions :

Proposition 2 (Homogeneous shift—invariant Banach spaces)

A) Let E be a Banach space of tempered distributions on R? : E C S'(R?)
(continuous embedding). If the norm of E is shift-invariant (|| f(x —xo)||g =
|flle) and homogeneous (|| f(Ax)||g = XN||f||lg for every A > 0) with homo-
geneity exponent v < 0, then E s continuously embedded into the homoge-
neous Besov space Bgo,oo.

B) If ug € BY. __is non-negative and —d < v < 0, then ug € MC}/M and there

00,00

exists two positive constants A, and B, such that

AvHUOHM;/l <luoll gz, .. < Bylluollyp (13)
7l : d/l|

The proposition is easily proved by using the characterization of the Besov
space Bl ., (with negative regularity exponent ) through the heat kernel

(see [13] for instance) :

e f belongs to ngo if and only if sup,. o t"/2||W; % f|lee < 400



e the norm of f in Bgo’oo is equivalent to sup,.o t"/2||W; * fle < +oc.

We know that |{f|W1)] < C||f||g for all f € E (since E C §'(RY)). We have
W [ = (f(Vty + 2)|Wi(=y)), hence [|[W; * flloo < C||f]|st"2. Thus A) is
proved.

B) is easily checked as well. The existence of B, is a consequence of
Mj /i1 C Bgm (since MC} /5 18 @ homogeneous shift—invariant Banach space).
The existence of A, is easy as well : if ug is non negative, we have ug = du
for a locally finite non-negative measure u. We then write

d w.
/ d,u < ’I“ Ug * r2(l') < OT&HJYHUOHBV '
B(a,r) inf)yj<1 Wi(y) o

Thus, Proposition 2 is proved.

As a conclusion, we see that, in order to solve the Keller-Segel equa-
tions, one is lead to work with an initial data ug which belongs to a shift-
invarariant Banach space whose norm is homogeneous with exponent —2,
thus with ug € Bgo%oo; since we work with non-negative data (densities), we
find that uy belongs to M 5/2 and that smallness in the norm of ug in any
other homogeneous shift-invariant Banach space will imply the smallness of

Up in MC}/Q as well.

5 Maximal functions and Morrey spaces

For a locally integrable function f, the Hardy-Littlewood maximal function of
f is defined as M¢(x) = sup,, m fB(m) |f(y)|dy. We have the same defi-
nition for a locally finite measure dy : My, (x) = sup,-, m S ()]

We start from the well-known boundedness of the maximal function on
L7 3 1< p < oo, [ Myll, < Cllfll, while N(M;) < Cylf]l (see [6]). By
real interpolation, one find that, for 1 < p < 400, ||My||p < C)| fl| Lo~
From those inequalities, one gets similar inequalities for Morrey or Morrey—
Marcinkiewicz spaces :

Proposition 3 (Maximal functions and Morrey spaces)
A) For1 < p<gq< +o0, we have

1Myl < Coall fllir and [Mylygze < Coallf iz (14)
B) For 1 < q < 400, we have

N*,q(Mdu) < CquﬂL“Mql (15)



The proof is quite direct. We just have to estimate ||xp(r) M|, or

||XB(a:,r)Mf”Lp'* lfp > 1or N(XB(x,T)Mf) lfp = 1. We write fl - fXB(x,Sr)
and fo = f — fi. We have My < My, + My,. Moreover, we have

X Mz (y) < Cr=4 fllyp

Thus, for p > 1, we have ||xp@nM;l, < CUA Nl + 7YX Il Fll )
and HXB(m,T)MfHL”v* < C(HleLp’* + r_d/qHXB(m,r)HLPv* fHMql)7 Whﬂe, for f =
dp,

N(xB@r M) < 2N (XB@nMp) + N(XB@rn M)

<c(f A e L )

Thus, Proposition 3 is proved.

6 Riesz potentials and Morrey spaces

The next tool we will discuss is the Riesz potentials of a function (or a
measure) in a Morrey space. We begin with a variant of Lemma 1.

Lemma 3
Let 0 <~ < d. If w is a non-negative radially decreasing function on R¢ and
f=du alocally finite measure, then

[ wla = pduto)| < Cltalial s = [ dul) (16)

|le—y|<r

Indeed, let us define M, (dp) as

M (dp)e) =swp = [ dlul(y) (1)

>0 7477 |lz—y|<r
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Writing w(z) = 6(|x|), we find :

[ e —ndul <30 [l

jEz I <Jo—y|<27+1
< Z (0(2771) — 9(27)) 27 (=M () (@)
JEZ
= 37 0(2) (20 — 2 @D) M (dpr) ()

JEZL

=, 3 02) / B0 (dpe) ()

ieZ 21 <|z—y| <27 [yl
dy
<e / () - M ) ()

Thus, Lemma 3 is proved. The same proof works for a truncated kernel :
if we integrate only for |z — y| > A, we find that

_ . dy .
[ el < / O A

A direct consequence of this lemma is the Adams-Hedberg inequality for
Riesz potentials [7, 1] :

Lemma 4 (Adams—Hedberg inequality)
Let O <r <~y <d. Then we have

[ (dp)(@)] < ey May ()07 M, (dp) ()7 (19)

To prove the inequality, it is enough to split the integration defining I,.(du)
into |z —y| < A and |z — y| < A, and we get from Lemmas 1 and 3 :

dy
|y | d—r+y

1 (dp) ()] < C(Myu(a) / WM () (@) /

lyl<A Jyld— ly[>A/4
< C'(A" Mgy () + A" M, (dp) ()

)

(Mw(dﬂ)(JJ)) ) Yl

and we conclude by taking A = (=} @)
n

Proposition 4 (Riesz potentials and Morrey spaces)

Let 0 <r <d/q. Let \=1—"1. Then :

/A % Ak
A)ifl<p<gq, I, mapsMptoMp//\ ande toMf//\ .

e f ey < eoarllFllzy and 11 fll e < Cpgallfllarg (20)
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pq : /A
B)if 1 =p <q, I, maps M} to M5

e fll iy < carllFllag (21)

Proposition 4 is a consequence of the Adams-Hedberg inequality : we
have M? C ]\4(]1 and MP* C Mql; for du € Mql7 we have

sup Mgy, (dp)(z) < ||dﬂ||M;

z€R4

and thus
I(dp) < CrgMau(x)*|dpl L’A

We conclude by using Proposition 3.

7 Estimates for the bilinear operators.

We are going to prove Part A) of Theorem 1. We begin with the classical
following lemma :

Lemma 5
Let 0 < B < 1. The mazimal function My of the function [t|7/% satisfies
Mg(t) < Cplt| =72

. L. 1 ds 28/2 .
The proof is easy : if r < [t/2, 5 s—tl<r BT S T if r > |t]|/2,
1 ds 1 ds 23176/ 2 26/2 31-8/2
2r Jis—t|<r |s|F/2 — 2r J|s|<3r |s|F/2 T (1-B/2)rf/2 — (1-8/2)  |t|8/2"

When f and h belong to Ejs, we may write |f(¢,2)| < t7/2F(x) and
h(t,z)| <t P/2H(x) where F, H € M2/(2__6)’*. Using Proposition 1, we find
2/(2-8)
that

1
S
V=5 + [z —yl)iH

! 1 1
< S — — — _F(yLH
_C/O W=k ds/m_y‘dw1 (y) 1 H(y) dy

t
/ (t — s)_Hgs_ﬁ ds = ~yat =P/
0

Bal(f.h)| < C / : BP(y)LH(y) ds dy

Since

we find that
| Bae(f, h)| < Ct =PI _g(F I H)(x)
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where the constant Cz does not depend on a nor on e.

From Proposition 4, we get that for H € Mj//g g)) , we have I;(H) €

M2//((7((275))))’* with 7 = 1 — 525, Thus, we get that ' [,(H) € MPo* with
o= a2=0)(1+7) and - = 32— B)(1+7) = 328 Moreover, since

1/2<6<1,Wehave

d 2
1-8<3—-28=—and1l<
b & o 3—-28

Thus, we may apply again Proposition 4 and find that I,_z(FI,(H)) €
M”O/f* with § = 1 — 28 But we have
5§ 1 1-8 2-8 6 1 1-8¢ 2-8
—=—— = and — = — — ———— = ——,
g Qo d d Do Po d po 2
Thus, Theorem 1, Part A) is proved.

= Po-

8 Parabolic-elliptic and parabolic-parabolic Keller—
Segel equations

The proof of Theorem 1, Part B), is now easy. We want to solve
t
Un,e = Wi % up — / div Wi_g * (Uae Lactiae) ds.
0

This is done with the contraction principle.
First, we check that for 1/2 < g < 1, we have W; x uy € Ez where

2/(2—08),*
By = {ult,z) / |[u]lg, = Supt’B/Qu(t,x) e My o

Indeed, we just write Wi(z) < C——— \f+| ik hence t/2W,(z) < Cwﬁ, so that

1t872W, % ug(z)| < Cls(|ug|)(w). We then use Proposition 4.
Then, one easily concludes from the following classical lemma (see [13]
for instance) :

Lemma 6 (Picard iterates for bilinear operators)
Let B is a bounded bilinear operator on a Banach space E :

1Bz, y)lle < Cpllz]elyl e

Let xg € E be such that ||xo|| g < ﬁ. Then the iterates x,+1 = vo—B(Tn, Tp)
converge in the E norm to a solution of the equation

x =1x9— B(z,x)

such that ||z||g < 2||wo||g. This solution is unique in the ball B(0, ﬁ)
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9 The convergence from the parabolic-parabolic
equations to the parabolic-elliptic equations

For the proof of Theorem 1, Part C), we shall follow the strategy of [2].
When f and h belong to Ej, we may write |f(t,z)| < t#/2F(x) and

|h(t,x)| < t7P2H(z) where F, H € MZZ//((Z2 g The key estimattes for Part

A) were then :

t
|/ div Wi_s % (fLach) ds| < Cot P21 _g(F I, H)(x)
0

and
Log(F LH)| yere-ne < CLlF y2re-o.-
| s (F LHD) -0 < Cll Fllyzree-s

H Y — *
lugjecsy

where the constants Cy and € don’t depend on « nor on e.
When we want to compare uq . and uq, we write :

t
Ug,e — Ua,0 :/ div Wtfs * ((Umo - ua,e)La,eua,e) ds
0
t
+ / div Wi_g * (Ua,0Lae(Ua,0 — Ua,)) ds
0

t
—+ / div Wy_, * (Ua,O(La,O - La,6>u&70) dS’
0

hence
Hua,e - ua,OHEﬁ Scocl”ua,o - ua,eHEﬂ(“ua,eHEg + ”uoz,OHE@)

t
+ || / div Wi—s * (a,0(Lao — La,e)ta0) ds| e,
0

If ||u0||M1/ is small enough (so that ||W; * ugl|z, < do < the solutions

el
Uq,e and uq o Will be small in Eg (||ua.el|z; < 200 and |[uaollz, < 260) and we
find

1

¢
|Ua,e = UayllE, < m” /0 div Wi—s * (ta.0(Lao — Lac)Uao) ds||Eﬁ.

Thus, we are lead to prove that
t

lim || div Wi_g * (Ua,0(La,0 — La.e)Uao) ds||Eﬁ =0.

e—0 0
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Let Fp., be defined, for 0 <y <1 — 3, as

r2/(1— ,k
Fs. = {u(t,z) / Stglo)t(ﬁ-w)/?u(t,x) e M= mo,

The space Fj, is normed with

U = |lsup tPI 20t 2)|| - 2/1 ..
ullms, = |l up (t, >||M§//(<117((§i~7))))7

If f € By (|f(t,x)] < tP2F(2) with F € M35~ 0") and k € Fs, (|k(t,z)] <

t—(6+7)/2[((3;) with K € Mj//((llj((gi;y))))’*), then we write

1
|z — y|d-1+B+

[div Wi—o(x — y)| < Gt~ 12
and thus

t
| /0 div Wy, (fk) ds| < CtPPT_, y(FK)(x).

We have FK € My 22" hence I1_,_(FK) € My 7", Hence,

we get, for 0 <y < 1— 3, that :

t
H / div Wtfs*<ua,O<La,0_La,e)ua,O) dSHEB S CHua,OHEBH(La,O_La,e)ua,OHF5,0+F37.\/'
0

Thus, we are lead to prove that we may write (Lao — Lac)Ua,0 = Va,c + Wae
with
1 {|va,el | o + [|Wa,ell 7y, = 0-

Let n = €, with 0 < § < 1. we may assume that n < 1/2 (since
we are interested in € — 0). Let qu(t,2) = Lo ctao(t,x) and ¢uo(t,z) =
Lo otao(t,z). We define

1 t
Wee = _e_a%Wn?t * (o (1 = 1)t, ) — qao(t, x))

€
We know that g, . and g, belong to Fj( (uniformly with respect to a and
€), and so does ¢q.((1 —n)t, ). We then write that

—_at nt_ 2 1
W —y) < (L)
e EWplo =) < O

Thus, we obtain
(1-0)
Hwa7E”FB,'y S Ouoeﬂ{ 2
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where the constant C),, depends on ug, but not on « nor on e.
Let Quet(8,2) = (s, x) and Qa0+(s, ) = qao(t, z). We have

685@&,6,15(87 ZE) - AQa,e,t(S7 $) - aQa,e,t(su I) + 6uoz,O(Sa l’)
with
Qaet(( )t l‘) Qa,e((l _n)t7x)
while

0= EasQoa,O,t(sa ,I’) = AQ@,O,t(Sy l’) - aQa,O,t<S; ZL’) + 6U'oz,O(t) $)

with
Qaot((1 =)t 2) = qao(t, x)
We have the identity

Vet) =Qua(t,7) — e E Wyt x Qoo (1~ )t )

1
- Qa,e,t(ta SC) + Eeia?Wﬂ * Qa,e,t((l - n)tv SC)

or, equivalently,

| Y
Va,e = _/ VWi * (ua70(3, ZL‘) - umo(ta "L‘)) ds.
( €

1-n)t

If Uy (s, ) = Supg_py<sct [Ua0(8; ) — uapo(t, z)|, we find that
[aell 0 < CllU | 5

It remains to estimate U,. We know that u,o belongs to Ejz, hence

ltao(t, )| < t7P/2V,(x) where V, € MdQ//g B’B) We write, for (1—-n)t < s < t,

Uao(t, ) — Uap(s, ) = Ault,s,z) — Ba(t, s,x) — Cy(t, s, x) with
((A(t,s,2) = (W — W) x ug

B, (t,s,x) = / div (Wi—o — Ws_o) * (U0 La0llao) do
0

t
Colt,s,z) = / div Wi_y * (Ua,0 La,oUap) do

\
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The control of A, is easy :
[Aa(t, s, 2)] < /IWt(év —y) = Wit = y)lluo(y)] dy

< (t-s) / sup 9, Wo (& — )l uo(y)] dy

s<o<t
1
<Clt—s / uo(y)| dy
A e e )
t—s
!/
<C 142 Igluo|(x)
Thus, we find that [[sup_ycsct [Aa(t; s, 2)|l5, < CnllLa(|uol)| W@ =
O(n).

The control of C, is easy as well. We have

t
1
Co(t,s,z)| <C
Culten ) 2 [ e
t

1
< Ot / - do I,_g(Vy 1,V,)(x)
s — O 2

(t — 5)5/2
8

U_BVa(y)IlVa(y) dy do

= C” [175(‘/0( Ilva)<£lj'>.

Thus, we find that || sup_,y<s<; [Ca(t, s, 2)|||g, < CnP2|| I _s(V, LV))|l -0 =

d/(2—p)
O(n°?).
The control of B, is a bit trickier. We write

D.(s,z) = / div W_g * (Ua,0 Laolao) do
0
so that
(1)
Bu(t,s,x) = Wi_s % Dy(s,2) — Dy(s,x) = / AW, % D, (s, ) dr
0

and finally, since AW, x D,(s,z) = (=A)'W, x (=A)D,(s,z) (where
0<f<1-p<p),

t=s s 1 Vo (2)[1Vy(2)
B, (t,s,7)|<C dzdydo d
eSO [ [ | | s s sy e e

We then write

b=s s 1 Vo (2) 1V (2)
|Ba(t, s, )| SC/() /0// T1I=0/2] — y[d=0 (5 — o) 1T O0-P)/2[y — ,|d+B+0—158 dzdydo dr
17




which gives

t—s ps 1 1
’Ba(t, S, l’)‘ SO/(; /(; 7_1_9/2 (S — (7)1+(9_5)/2(7ﬂ dodr Lg([l,g,g(va Ilva)<£lj')

and finally
(t — )72
|Bao(t,s,x)] < C o I_3(Vo 1 V) ().

B+0)/2
Thus, we find that || supy _)<oc; | Bal(t, 5, 2)[l5, < Cn2(l15(Va LVl yzre-n =
O(n’).
We have thus proved that ||ua,c—uao0l| 5, = O(€") with £ = min(
0. Theorem 1 is proved.

y(1-0) 66
2 2

) >

10 Fractional diffusion

The Keller-Segel equations have been generalized with the introduction of
non-local diffusion [4]. The equations are then the following :

e the parabolic-elliptic model :

du+ (—A) 2y = — div (uV )
(—=A)P2p = —ap +u
uw=ug fort =0

e the parabolic-parabolic model :

du+ (—A)2u = — div (uV)
€Oyp + (—A)2p = —ap +u
uw=ug fort =0
p=0fort=0

where 6 € (1, 2].

Let Wy be the function whose Fourier transform is e~1¥” and Who(z) =

5 Wo(5i5). We are lead to solve the integral equation

t
u=W,g*uy— / div Wy_s 9 * (u(Laepu)) ds
0
where L, ¢ is the operator

1 t —o0 =2
Locou(t,z) = —/ e VWie p*u doif « >0 and e >0,
0 <’

€
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Lo cou(t,z) =ux* 6;]&79 ife=0and a > 0,
Lo cou(t,z) = ux VG if € = a = 0.

where Gy x u = (—A)~2y and Jop = fo Wspe™ ds.
We have |W,9| < Cp—a (1/9+|2| 7 and [0;Whe| < CW' We thus find
that :

1[5~
|/ div Wy_s 9 * ( (—/ VWﬂya*vda)) ds|

<0 [ [ sl e L)) dy s

Then it is easy to see that the optimal space to pick the initial value for
those Keller-Segel equations is the space M*! , , and that the space where

200-1)

to solve them is

20—2 20—2—
Egg = {u(t,z) / Stggtﬂ/e( ) € Mé/@e )Q(m 7y

Whereeg—1<6<9—1.
Then one may adapt Theorem 1 into :

Theorem 2 (Fractional Keller-Segel equations)

Let 6 € (1,2] and 5L < B <6 —1.
A) There ezists a posztwe do > 0 such that, for every ug € M, (R?) with
200-1)
|| wol| yyr L (® < do, for every a > 0 and every € > 0, the Picard iterates
2(0-1)

t
Vae,0 = Wt,@ * Ug and Va,e,n+1 = Vo — / div Wt—s,@ * (va,e,nLa,e,G (Ua,e,n)) ds
0

converge in the Egg norm to a solution of the Keller-Segel equation uq . =
Wi * ug — fot div Wi_s g * (Uae Laepliae) ds.

B) Moreover, when € goes to 0, the solution u,. of the parabolic-parabolic
problem converges in the Egg norm to the solution u.o of the parabolic-
elliptic problem.
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