Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space

Pierre Gilles Lemarié-Rieusset*

Abstract

We prove global existence and stability for the Keller–Segel equations with small initial values in the critical Morrey space. **Keywords :** Keller–Segel equations, Morrey spaces, maximal function, Hedberg inequality, global in time solutions **2010 Mathematics Subject Classification :** 35K57, 35B35.

1 The Keller-Segel equations.

We consider two Keller-Segel equations defined on the whole space \mathbb{R}^d (where $d \geq 1$). Those equations describe the evolution of the density u of a biological population submitted to the influence of a chemical agent with concentration φ [9].

The first model is called the parabolic-elliptic model :

$$\begin{cases} \partial_t u = \Delta u - \operatorname{div} \left(u \vec{\nabla} \varphi \right) \\ -\Delta \varphi = -\alpha \varphi + u \\ u = u_0 \text{ for } t = 0 \end{cases}$$
(PE)

The second model is called the parabolic-parabolic model and is given by

$$\begin{cases} \partial_t u = \Delta u - \operatorname{div} (u \nabla \varphi) \\ \epsilon \partial_t \varphi = \Delta \varphi - \alpha \varphi + u \\ u = u_0 \text{ for } t = 0 \\ \varphi = 0 \text{ for } t = 0 \end{cases}$$
(PP_e)

where $\epsilon > 0$.

^{*}Laboratoire Analyse et Probabilités, Université d'Évry; e-mail : plemarie@univ-evry.fr

Note that in (PE) and (PP_{ϵ}), the damping coefficient α is constant and non-negative :

$$\alpha \ge 0.$$

The value of α will have no great importance in our results.

We turn these equations into integro-differential equations on u, through the Duhamel formula : we consider the Green function G for the Laplacian, the heat kernel W_t and the Bessel kernel G_{α} defined as

$$G(x) = \begin{cases} \frac{1}{2\pi} \ln(\frac{1}{|x|}) & \text{if } d = 2\\ \\ \frac{\Gamma(d/2)}{2(d-2)\pi^{d/2}} \frac{1}{|x|^{d-2}} & \text{if } d \ge 3 \end{cases}$$
(1)

$$W_t(x) = \frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}}$$
(2)

$$G_{\alpha}(x) = \int_{0}^{+\infty} W_{s}(x)e^{-\alpha s} ds$$
(3)

so that, for $\psi \in \mathcal{S}(\mathbb{R}^d)$, we have

$$\Delta(G\ast\psi)=-\psi$$

$$\partial_t(W_t\ast\psi)=\Delta(W_t\ast\psi) \text{ and } \lim_{t\to 0}W_t\ast\psi=\psi$$

and

$$(-\Delta + \alpha \operatorname{Id})(G_{\alpha} * \psi) = \psi$$

If $\alpha = 0$, the parabolic-elliptic equation (PE) is then turned into the integral equation :

$$u = W_t * u_0 - \int_0^t \operatorname{div} W_{t-s} * (u(u * \vec{\nabla} G)) \, ds$$
 (IPE)

and the parabolic-parabolic equation (PP_{ϵ}) is turned into the equation

$$u = W_t * u_0 - \int_0^t \operatorname{div} W_{t-s} * \left(u(\frac{1}{\epsilon} \int_0^s \vec{\nabla} W_{\frac{s-\sigma}{\epsilon}} * u \ d\sigma) \right) ds \qquad (IPP_\epsilon)$$

If $\alpha > 0$, the parabolic-elliptic equation (PE) is then turned into the integral equation :

$$u = W_t * u_0 - \int_0^t \operatorname{div} W_{t-s} * (u(u * \vec{\nabla} G_\alpha)) \, ds \qquad (IPE_\alpha)$$

and the parabolic-parabolic equation (PP_{ϵ}) is turned into the equation

$$u = W_t * u_0 - \int_0^t \operatorname{div} W_{t-s} * \left(u \left(\frac{1}{\epsilon} \int_0^s e^{-\alpha \frac{s-\sigma}{\epsilon}} \vec{\nabla} W_{\frac{s-\sigma}{\epsilon}} * u \, d\sigma \right) \right) \, ds \quad (IPP_{\alpha,\epsilon})$$

We are going to involve the four equations in a simultaneous study. As a matter of fact, we may write each equation in the form

$$u = W_t * u_0 - \int_0^t \operatorname{div} W_{t-s} * (u L_{\alpha,\epsilon}(u)) \, ds \tag{4}$$

where the linear operator $L_{\alpha,\epsilon}$ will satisfy size estimates independent of the specific parameters ϵ and α of the equation.

Proposition 1 (Size estimates for $L_{\alpha,\epsilon}$)

Let M_*u be the time-variable Hardy-Littlewood maximal function :

$$M_*u(t,x) = \sup_{r>0} \frac{1}{2r} \int_{t-r}^{t+r} |u(s,x)| \, ds \tag{5}$$

and, for 0 < r < d, let $I_r u$ be the space-variable Riesz potential of u

$$I_r u(t,x) = \frac{\Gamma((d-r)/2)}{\pi^{d/2} 2^r \Gamma(r/2)} \int \frac{1}{|x-y|^{d-r}} u(t,y) \, dy \tag{6}$$

Let $L_{\alpha,\epsilon}$ be the operator

$$L_{\alpha,\epsilon}u(t,x) = \frac{1}{\epsilon} \int_0^t e^{-\alpha \frac{t-\sigma}{\epsilon}} \vec{\nabla} W_{\frac{t-\sigma}{\epsilon}} * u \ d\sigma \ if \ \alpha \ge 0 \ and \ \epsilon > 0,$$
$$L_{\alpha,\epsilon}u(t,x) = u * \vec{\nabla} J_\alpha \ if \ \epsilon = 0 \ and \ \alpha > 0,$$
$$L_{\alpha,\epsilon}u(t,x) = u * \vec{\nabla} G \ if \ \epsilon = \alpha = 0.$$

Then there exists a constant C_0 which does not depend on α nor on ϵ such that :

$$|L_{\alpha,\epsilon}u(t,x)| \le C_0 \ I_1(M_*u)(t,x) \tag{7}$$

The proof of the proposition relies on two classical lemmas :

Lemma 1

If ω is a radially decreasing function on \mathbb{R}^n and f a locally integrable function, then

$$\left|\int_{\mathbb{R}^{n}} \omega(x-y)f(y) \, dy\right| \le \|\omega\|_{1} \sup_{r>0} \frac{1}{|B(0,r)|} \int_{|y|< r} |f(x-y)| \, dy \qquad (8)$$

or equivalently

$$|\omega * f| \le \|\omega\|_1 M_f \tag{9}$$

where M_f is the Hardy-Littlewood maximal function of f.

Lemma 2

The function $e^{-|x|^2}$ belongs to the Schwartz class. Therefore, we have for every $\beta \in \mathbb{N}^d$

$$\sup_{x \in \mathbb{R}^d, t>0} (\sqrt{t} + |x|)^{d+|\beta|} |\partial_x^\beta W_t(x)| < \infty.$$

$$\tag{10}$$

Lemma 1 is classical (see Grafakos[6] for instance). Lemma 2 is obvious. Using Lemma 2, we obtain, for $\epsilon > 0$,

$$|L_{\alpha,\epsilon}u(t,x)| \le C_1 \frac{1}{\epsilon} \int_0^t \int \frac{1}{(\sqrt{\frac{t-\sigma}{\epsilon}} + |x-y|)^{d+1}} |u(\sigma,y)| \, dy \, d\sigma$$

where $C_1 = \sup_{x \in \mathbb{R}^d} (1 + |x|)^{d+1} |\vec{\nabla} W_1(x)|$. Using Fubini's theorem, we first integrate with respect to $d\sigma$ and use Lemma 1 to get :

$$\begin{aligned} |L_{\alpha,\epsilon}u(t,x)| &\leq C_1 \int \Big(\int_{\mathbb{R}} \frac{d\sigma}{\epsilon((\sqrt{\frac{\sigma}{\epsilon}} + |x-y|)^{d+1}} \Big) M_*(t,y) \ dy \\ &= C_1 C_2 \int \frac{1}{|x-y|^{d-1}} M_*u(t,y) \ dy \end{aligned}$$

where $C_2 = \int_{\mathbb{R}} \frac{d\sigma}{(1+\sqrt{\sigma})^{d+1}}$. This proves inequality (7) for $\epsilon > 0$. When $\epsilon = 0$, we write $|u(t, x)| \leq M_* u(t, x)$ and thus

$$|L_{0,0}u(t,x)| \le \int |\vec{\nabla}G(x-y)| M_*u(t,y) \, dy \le C_0 \, I_1(M_*u)(t,x).$$

For $\alpha > 0$, we write

$$\begin{aligned} |L_{\alpha,0}u(t,x)| &\leq \int \Big(\int_{0}^{+\infty} |\vec{\nabla}W_{s}(x-y)|ds\Big) M_{*}u(t,y) \, dy \\ &\leq C_{1} \int \Big(\int_{0}^{+\infty} \frac{ds}{(\sqrt{s}+|x-y|)^{d+1}}\Big) M_{*}u(t,y) \, dy \\ &= C_{1}C_{2} \int \frac{1}{|x-y|^{d-1}} M_{*}u(t,y) \, dy. \end{aligned}$$

Thus Proposition 1 is proved.

2 Main results

We may now state our main result. We define the Morrey space $\dot{M}^{1}_{d/2}(\mathbb{R}^{d})$ as the space of locally finite measures $d\mu$ such that

$$\sup_{x \in \mathbb{R}^d, r > 0} r^{2-d} \int_{B(x,r)} d|\mu(y)| < +\infty.$$
(11)

This space is endowed with the norm

$$\|d\mu\|_{\dot{M}^{1}_{d/2}(\mathbb{R}^{d})} = \sup_{x \in \mathbb{R}^{d}, r > 0} r^{2-d} \int_{B(x,r)} d|\mu(y)|.$$

We shall see in Section 4 why this space is optimal for the search of global solutions to the Keller-Segel equations.

We shall use another Morrey-space, based on the weak Lebesgue spaces $L^{p,*}$ (or Marcinkiewicz spaces). In section 3, we shall recall basic facts on Marcinkiewicz spaces. For $1 , the space <math>L^{p,*}$ is a Banach space. For $1/2 < \beta < 1$, we shall use the Morrey–Marcinkiewics space $\dot{M}_{d/(2-\beta)}^{2/(2-\beta),*}(\mathbb{R}^d)$. This space is defined as the space of measurable functions f that are locally in $L^{2/(2-\beta),*}$ and that are such that

$$\sup_{x \in \mathbb{R}^d, r > 0} r^{(2-d)(1-\frac{\beta}{2})} \|\chi_{B(x,r)}f\|_{L^{d/(2-\beta),*}} < +\infty$$

where $\chi_{B(x,r)}$ is the characteristic function of the ball B(x,r). This space is endowed with the norm

$$\|f\|_{\dot{M}^{2/(2-\beta),*}_{d/(2-\beta)}(\mathbb{R}^d)} = \sup_{x \in \mathbb{R}^d, r > 0} r^{(2-d)(1-\frac{\beta}{2})} \|\chi_{B(x,r)}f\|_{L^{d/(2-\beta),*}}.$$

We associate to this space the space

$$E_{\beta} = \{ u(t,x) / \sup_{t>0} t^{\beta/2} u(t,x) \in \dot{M}_{d/(2-\beta)}^{2/(2-\beta),*} \}.$$

The space E_{β} is normed with

$$||u||_{E_{\beta}} = ||\sup_{t>0} t^{\beta/2} u(t,x)||_{\dot{M}^{2/(2-\beta),*}_{d/(2-\beta)}}.$$

We shall see that, for $1/2 < \beta < 2$ and $u_0 \in \dot{M}^1_{d/2}(\mathbb{R}^d)$, we have

$$W_t * u_0 \in E_\beta.$$

Our result is then the following :

Theorem 1 (Keller-Segel equations)

A) The operators $(f,g) \mapsto B_{\alpha,\epsilon}(f,g)$ where

$$B_{\alpha,\epsilon}(f,g)(t,x) = \int_0^t W_{t-s} * (f L_{\alpha,\epsilon}g) \, ds$$

are equicontinuous on E_{β} when $1/2 < \beta < 1$:

$$||B_{\alpha,\epsilon}(f,g)||_{E_{\beta}} \le C_0 ||f||_{E_{\beta}} ||g||_{E_{\beta}}$$

for a constant C_0 which does not depend on α nor on ϵ .

B) There exists a positive $\delta_0 > 0$ such that, for every $u_0 \in \dot{M}^1_{d/2}(\mathbb{R}^d)$ with $\|u_0\|_{\dot{M}^1_{d/2}(\mathbb{R}^d)} < \delta_0$, for every $\alpha \ge 0$ and every $\epsilon \ge 0$, the Picard iterates

$$v_{\alpha,\epsilon,0} = W_t * u_0 \text{ and } v_{\alpha,\epsilon,n+1} = v_0 - \int_0^t div W_{t-s} * (v_{\alpha,\epsilon,n} L_{\alpha,\epsilon}(v_{\alpha,\epsilon,n})) ds$$

converge in the E_{β} norm to a solution of the Keller-Segel equation $u_{\alpha,\epsilon} = W_t * u_0 - \int_0^t div W_{t-s} * (u_{\alpha,\epsilon} \ L_{\alpha,\epsilon} u_{\alpha,\epsilon}) ds.$ C) Moreover, when ϵ goes to 0, the solution $u_{\alpha,\epsilon}$ of the parabolic-parabolic

C) Moreover, when ϵ goes to 0, the solution $u_{\alpha,\epsilon}$ of the parabolic-parabolic problem converges in the E_{β} norm to the solution $u_{\alpha,0}$ of the parabolic-elliptic problem.

This theorem is a generalization of the existence theorems for small data proved by various authors in the setting of scaling invariant spaces : Lebesgue spaces [5], weak Lebesgue spaces [10, 12], Sobolev spaces [11], Besov spaces [8], pseudo-measures [3]. It is as well a generalization of the stability theorems proved by Biler and Brandolese [2] and Raczynski [14] (see the discussion in Section 4).

3 Morrey spaces

Let us recall the definition of Morrey spaces:

Definition 1 (Morrey spaces)

If $1 , the Morrey space <math>\dot{M}_q^p(\mathbb{R}^d)$ is the space of measurable functions f that are locally in L^p and that are such that

$$\sup_{y \in \mathbb{R}^d, r > 0} r^{d(\frac{p}{q}-1)} \int_{B(x,r)} |f(y)|^p \, dy < +\infty.$$

This space is endowed with the norm

$$||f||_{\dot{M}^{p}_{q}(\mathbb{R}^{d})} = \sup_{x \in \mathbb{R}^{d}, r > 0} \left(r^{d(\frac{p}{q}-1)} \int_{B(x,r)} |f(y)|^{p} \, dy \right)^{1/p}$$

If $1 \leq q < +\infty$, the Morrey space $\dot{M}_q^1(\mathbb{R}^d)$ is the space of locally finite measures $d\mu$ such that

$$\sup_{y \in \mathbb{R}^d, r > 0} r^{d(\frac{1}{q}-1)} \int_{B(x,r)} d|\mu(y)| < +\infty.$$

This space is endowed with the norm

 \boldsymbol{x}

$$\|d\mu\|_{\dot{M}^{1}_{q}(\mathbb{R}^{d})} = \sup_{x \in \mathbb{R}^{d}, r > 0} r^{d(\frac{1}{q}-1)} \int_{B(x,r)} d|\mu(y)|$$

We have, for $p_0 \leq p_1 \leq q$, $1 < q_{,, L^q} = \dot{M}_q^q \subset \dot{M}_q^{p_1} \subset \dot{M}_q^{p_0}$.

Instead of the L^p norm, it is sometimes useful to work in the weak Lebesgue space, or Marcinkiewicz space, $L^{p,*}$. Let us recall some basic facts abour Marcinkiewicz spaces. The space $L^{1,*}$ is the space of measurable functions f such that

$$\mathcal{N}(f) = \sup_{\lambda > 0} \lambda \left| \left\{ x \in \mathbb{R}^d / |f(x)| > \lambda \right\} \right| < +\infty.$$
(12)

We have obviously $L^1 \subset L^{1,*}$ and $\mathcal{N}(f) \leq ||f||_1$. However, $L^{1,*}$ is not a space of distributions and its elements may be functions that are not locally integrable (such as $f(x) = \frac{1}{|x|^d}$). Moreover, \mathcal{N} is not a norm (it is not convex). For $1 , the Marcinkiewicz space <math>L^{p,*}$ is the space of measurable

For $1 , the Marcinkiewicz space <math>L^{p,*}$ is the space of measurable functions f such that $|f|^p \in L^{1,*}$. in that case, the functions are locally integrable : we have $L^{p,*} = [L^1, L^\infty]_{[1-\frac{1}{p},\infty]}$ and for two positive constants A_p and B_p , we have $A_p ||f||_{[L^1,L^\infty]_{[1-\frac{1}{p},\infty]}} \leq \left(\mathcal{N}(|f|^p)\right)^{1/p} \leq B_p ||f||_{[L^1,L^\infty]_{[1-\frac{1}{p},\infty]}}$. Thus, $L^{p,*}$ is a normed space, when we define the norm as $||f||_{L^{p,*}} = ||f||_{[L^1,L^\infty]_{[1-\frac{1}{p},\infty]}}$.

Definition 2 (Morrey–Marcinkiewicz spaces)

If $1 , the Morrey-Marcinkiewicz space <math>\dot{M}_{q}^{p,*}(\mathbb{R}^d)$ is the space of measurable functions f that are locally in $L^{p,*}$ and that are such that

$$\sup_{x \in \mathbb{R}^d, r > 0} r^{d(\frac{1}{q} - \frac{1}{p})} \|\chi_{B(x,r)} f\|_{L^{p,*}} < +\infty$$

where $\chi_{B(x,r)}$ is the characteristic function of the ball B(x,r). This space is endowed with the norm

$$\|f\|_{\dot{M}^{p,*}_{q}(\mathbb{R}^{d})} = \sup_{x \in \mathbb{R}^{d}, r > 0} r^{d(\frac{1}{q} - \frac{1}{p})} \|\chi_{B(x,r)}f\|_{L^{p,*}}.$$

If $1 \leq q < +\infty$, the Morrey-Marcinkiewicz space $\dot{M}_q^{1,*}(\mathbb{R}^d)$ is the space of measurable functions f that are locally in $L^{1,*}$ and that are such that

$$\mathcal{N}_{*,q}(f) = \sup_{x \in \mathbb{R}^d, r > 0} r^{d(\frac{1}{q}-1)} \mathcal{N}(\chi_{B(x,r)}f) < +\infty$$

Note that $\dot{M}_q^{q,*} = L^{q,*}$.

4 Optimal space for solving Keller-Segel equations

When dealing with the Keller-Segel equations on the whole space, one always try and use the symmetries of the equations :

- since the coefficients of the equations are constant, the equations are translation invariant : we find that if (u, φ) is a solution to (PP) or (PP_{ϵ}) with initial value u_0 , then $(u(t, x x_0), \varphi(t, x x_0))$ is a solution of the same equation with initial value $u_0(x x_0)$
- when $\alpha = 0$, the equations are scale invariant : if (u, φ) is a solution to (PP) or (PP_e) with initial value u_0 , then $(\lambda^2 u(\lambda^2 t, \lambda x), \varphi(\lambda^2 t, \lambda x))$ is a solution of the same equation with initial value $\lambda^2 u_0(\lambda x)$.

This explains the important litterature on Keller-Segel equations with data in scale invariant spaces such as $L^{d/2}$ [5], $L^{d/2,*}$ [10, 12], $\dot{H}^{d/p-2,p}$ [11], $\dot{B}_{p,\infty}^{-2+d/p}$ [8], \mathcal{PM}^1 [3]. However, there is another important feature of the Keller-Segel equation that should be underlined :

• if u_0 is non-negative, then u remains non-negative.

This property is important, as the equations aim to describe the density of a biological population. Focusing on this property, we may identify a good candidate for optimality in the search of global solutions :

Proposition 2 (Homogeneous shift-invariant Banach spaces)

A) Let E be a Banach space of tempered distributions on \mathbb{R}^d : $E \subset \mathcal{S}'(\mathbb{R}^d)$ (continuous embedding). If the norm of E is shift-invariant $(||f(x-x_0)||_E = ||f||_E)$ and homogeneous $(||f(\lambda x)||_E = \lambda^{\gamma} ||f||_E$ for every $\lambda > 0$) with homogeneity exponent $\gamma < 0$, then E is continuously embedded into the homogeneous Besov space $\dot{B}^{\gamma}_{\infty,\infty}$.

B) If $u_0 \in \dot{B}^{\gamma}_{\infty,\infty}$ is non-negative and $-d \leq \gamma < 0$, then $u_0 \in \dot{M}^1_{d/|\gamma|}$ and there exists two positive constants A_{γ} and B_{γ} such that

$$A_{\gamma} \|u_0\|_{\dot{M}^1_{d/|\gamma|}} \le \|u_0\|_{\dot{B}^{\gamma}_{\infty,\infty}} \le B_{\gamma} \|u_0\|_{\dot{M}^1_{d/|\gamma|}}$$
(13)

The proposition is easily proved by using the characterization of the Besov space $\dot{B}^{\gamma}_{\infty,\infty}$ (with negative regularity exponent γ) through the heat kernel (see [13] for instance) :

• f belongs to $\dot{B}^{\gamma}_{\infty,\infty}$ if and only if $\sup_{t>0} t^{|\gamma|/2} \|W_t * f\|_{\infty} < +\infty$

• the norm of f in $\dot{B}^{\gamma}_{\infty,\infty}$ is equivalent to $\sup_{t>0} t^{|\gamma|/2} ||W_t * f||_{\infty} < +\infty$.

We know that $|\langle f|W_1\rangle| \leq C||f||_E$ for all $f \in E$ (since $E \subset \mathcal{S}'(\mathbb{R}^d)$). We have $W_t * f = \langle f(\sqrt{ty} + x)|W_1(-y)\rangle$, hence $||W_t * f||_{\infty} \leq C||f||_E t^{\gamma/2}$. Thus A) is proved.

B) is easily checked as well. The existence of B_{γ} is a consequence of $\dot{M}^{1}_{d/|\gamma|} \subset \dot{B}^{\gamma}_{\infty,\infty}$ (since $\dot{M}^{1}_{d/|\gamma|}$ is a homogeneous shift–invariant Banach space). The existence of A_{γ} is easy as well : if u_{0} is non negative, we have $u_{0} = d\mu$ for a locally finite non-negative measure μ . We then write

$$\int_{B(x,r)} d\mu \le \frac{r^d \ u_0 * W_{r^2}(x)}{\inf_{|y| < 1} W_1(y)} \le C r^{d+\gamma} \|u_0\|_{\dot{B}^{\gamma}_{\infty,\infty}}$$

Thus, Proposition 2 is proved.

As a conclusion, we see that, in order to solve the Keller-Segel equations, one is lead to work with an initial data u_0 which belongs to a shiftinvarariant Banach space whose norm is homogeneous with exponent -2, thus with $u_0 \in \dot{B}_{\infty,\infty}^{-2}$; since we work with non-negative data (densities), we find that u_0 belongs to $\dot{M}_{d/2}^1$ and that smallness in the norm of u_0 in any other homogeneous shift-invariant Banach space will imply the smallness of u_0 in $\dot{M}_{d/2}^1$ as well.

5 Maximal functions and Morrey spaces

For a locally integrable function f, the Hardy-Littlewood maximal function of f is defined as $M_f(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy$. We have the same definition for a locally finite measure $d\mu$: $M_{d\mu}(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} d|\mu(y)|$.

We start from the well-known boundedness of the maximal function on L^p : if $1 , <math>||M_f||_p \leq C_p ||f||_p$, while $\mathcal{N}(M_f) \leq C_1 ||f||_1$ (see [6]). By real interpolation, one find that, for $1 , <math>||M_f||_{L^{p,*}} \leq C'_p ||f||_{L^{p,*}}$. From those inequalities, one gets similar inequalities for Morrey or Morrey–Marcinkiewicz spaces :

Proposition 3 (Maximal functions and Morrey spaces)

A) For 1 , we have

$$\|M_f\|_{\dot{M}^p_q} \le C_{p,q} \|f\|_{\dot{M}^p_q} \text{ and } \|M_f\|_{\dot{M}^{p,*}_q} \le C_{p,q} \|f\|_{\dot{M}^{p,*}_q}$$
(14)

B) For $1 \leq q < +\infty$, we have

$$\mathcal{N}_{*,q}(M_{d\mu}) \le C_q \|d\mu\|_{\dot{M}^1_a} \tag{15}$$

The proof is quite direct. We just have to estimate $\|\chi_{B(x,r)}M_f\|_p$ or $\|\chi_{B(x,r)}M_f\|_{L^{p,*}}$ if p > 1 or $\mathcal{N}(\chi_{B(x,r)}M_f)$ if p = 1. We write $f_1 = f\chi_{B(x,3r)}$ and $f_2 = f - f_1$. We have $M_f \leq M_{f_1} + M_{f_2}$. Moreover, we have

$$\chi_{B(x,r)}M_{f_2}(y) \le Cr^{-d/q} \|f\|_{\dot{M}_a^1}$$

Thus, for p > 1, we have $\|\chi_{B(x,r)}M_f\|_p \leq C(\|f_1\|_p + r^{-d/q}\|\chi_{B(x,r)}\|_p\|f\|_{\dot{M}^1_q})$ and $\|\chi_{B(x,r)}M_f\|_{L^{p,*}} \leq C(\|f_1\|_{L^{p,*}} + r^{-d/q}\|\chi_{B(x,r)}\|_{L^{p,*}}\|f\|_{\dot{M}^1_q})$, while, for $f = d\mu$,

$$\mathcal{N}(\chi_{B(x,r)}M_f) \le 2(\mathcal{N}(\chi_{B(x,r)}M_{f_1}) + \mathcal{N}(\chi_{B(x,r)}M_{f_2}))$$
$$\le C(\int_{B(x,r)} d|\mu| + r^{-d/q} \|\chi_{B(x,r)}\|_1 \|f\|_{\dot{M}^1_q}).$$

Thus, Proposition 3 is proved.

6 Riesz potentials and Morrey spaces

The next tool we will discuss is the Riesz potentials of a function (or a measure) in a Morrey space. We begin with a variant of Lemma 1.

Lemma 3

Let $0 \leq \gamma < d$. If ω is a non-negative radially decreasing function on \mathbb{R}^d and $f = d\mu$ a locally finite measure, then

$$\left|\int_{\mathbb{R}^{d}} \omega(x-y) d\mu(y)\right| \le C \|\omega(x)|x|^{-\gamma}\|_{1} \sup_{r>0} \frac{1}{r^{d-\gamma}} \int_{|x-y|< r} d|\mu|(y)$$
(16)

Indeed, let us define $M_{\gamma}(d\mu)$ as

$$M_{\gamma}(d\mu)(x) = \sup_{r>0} \frac{1}{r^{d-\gamma}} \int_{|x-y|< r} d|\mu|(y)$$
 (17)

Writing $\omega(x) = \theta(|x|)$, we find :

$$\begin{split} \left| \int_{\mathbb{R}^d} \omega(x-y) d\mu(y) \right| &\leq \sum_{j \in \mathbb{Z}} \theta(2^j) \int_{2^j < |x-y| \le 2^{j+1}} d|\mu|(y) \\ &\leq \sum_{j \in \mathbb{Z}} (\theta(2^{j-1}) - \theta(2^j)) 2^{j(d-\gamma)M_{\gamma}(d\mu)(x)} \\ &= \sum_{j \in \mathbb{Z}} \theta(2^j) (2^{(j+1)(d-\gamma)} - 2^{j(d-\gamma)}) M_{\gamma}(d\mu)(x) \\ &= c_{\gamma} \sum_{j \in \mathbb{Z}} \theta(2^j) \int_{2^{j-1} < |x-y| \le 2^j} \frac{dy}{|y|^{\gamma}} M_{\gamma}(d\mu)(x) \\ &\leq c_{\gamma} \int \omega(y) \frac{dy}{|y|^{\gamma}} M_{\gamma}(d\mu)(x). \end{split}$$

Thus, Lemma 3 is proved. The same proof works for a truncated kernel : if we integrate only for |x - y| > A, we find that

$$\left|\int_{|x-y|>A}\omega(x-y)d\mu(y)\right| \le c_{\gamma}\int_{|y|>A/4}\frac{dy}{|y|^{\gamma}} M_{\gamma}(d\mu)(x).$$
(18)

A direct consequence of this lemma is the Adams-Hedberg inequality for Riesz potentials [7, 1]:

Lemma 4 (Adams–Hedberg inequality)

Let $0 < r < \gamma < d$. Then we have

$$|I_r(d\mu)(x)| \le c_{\gamma,r} M_{d\mu}(x)^{(\gamma-r)/\gamma} M_{\gamma}(d\mu)(x)^{r/\gamma}.$$
(19)

To prove the inequality, it is enough to split the integration defining $I_r(d\mu)$ into |x - y| < A and $|x - y| \leq A$, and we get from Lemmas 1 and 3 :

$$|I_r(d\mu)(x)| \le C(M_{d\mu}(x) \int_{|y| < A} \frac{dy}{|y|^{d-r}} + M_{\gamma}(d\mu)(x) \int_{|y| > A/4} \frac{dy}{|y|^{d-r+\gamma}}) \le C'(A^r M_{d\mu}(x) + A^{r-\gamma} M_{\gamma}(d\mu)(x))$$

and we conclude by taking $A = \left(\frac{M_{\gamma}(d\mu)(x))}{M_{d\mu}(x)}\right)^{1/\gamma}$.

Proposition 4 (Riesz potentials and Morrey spaces) Let 0 < r < d/q. Let $\lambda = 1 - \frac{rq}{d}$. Then : A) if $1 , <math>I_r$ maps \dot{M}_q^p to $\dot{M}_{q/\lambda}^{p/\lambda}$ and $\dot{M}_q^{p,*}$ to $\dot{M}_{q/\lambda}^{p/\lambda,*}$: $\|I_r f\|_{\dot{M}_{q/\lambda}^{p/\lambda}} \le c_{p,q,r} \|f\|_{\dot{M}_q^p}$ and $\|I_r f\|_{\dot{M}_{q/\lambda}^{p/\lambda,*}} \le c_{p,q,r} \|f\|_{\dot{M}_q^{p,*}}$ (20) B) if $1 = p \leq q$, I_r maps \dot{M}_q^p to $\dot{M}_{q/\lambda}^{p/\lambda,*}$: $\|I_r f\|_{\dot{M}_{q/\lambda}^{1/\lambda}} \leq c_{q,r} \|f\|_{\dot{M}_q^1}$ (21)

Proposition 4 is a consequence of the Adams-Hedberg inequality : we have $\dot{M}_q^p \subset M_q^1$ and $M_q^{p,*} \subset \dot{M}_q^1$; for $d\mu \in \dot{M}_q^1$, we have

$$\sup_{x \in \mathbb{R}^d} \mathcal{M}_{d/q}(d\mu)(x) \le \|d\mu\|_{\dot{M}^1_q}$$

and thus

$$I_r(d\mu) \le C_{r,q} \mathcal{M}_{d\mu}(x)^{\lambda} \|d\mu\|_{\dot{M}_1^1}^{1-\lambda}.$$

We conclude by using Proposition 3.

7 Estimates for the bilinear operators.

We are going to prove Part A) of Theorem 1. We begin with the classical following lemma :

Lemma 5

Let $0 < \beta < 1$. The maximal function M_{β} of the function $|t|^{-\beta/2}$ satisfies $M_{\beta}(t) \leq C_{\beta}|t|^{-\beta/2}$.

The proof is easy : if $r \leq |t|/2$, $\frac{1}{2r} \int_{|s-t| < r} \frac{ds}{|s|^{\beta/2}} \leq \frac{2^{\beta/2}}{t^{\beta/2}}$; if r > |t|/2, $\frac{1}{2r} \int_{|s-t| < r} \frac{ds}{|s|^{\beta/2}} \leq \frac{1}{2r} \int_{|s| < 3r} \frac{ds}{|s|^{\beta/2}} = \frac{2 \ 3^{1-\beta/2}}{(1-\beta/2)r^{\beta/2}} \leq \frac{2 \ 2^{\beta/2} \ 3^{1-\beta/2}}{(1-\beta/2)} \frac{1}{|t|^{\beta/2}}$.

When f and h belong to E_{β} , we may write $|f(t,x)| \leq t^{-\beta/2}F(x)$ and $|h(t,x)| \leq t^{-\beta/2}H(x)$ where $F, H \in \dot{M}_{2/(2-\beta)}^{2/(2-\beta),*}$. Using Proposition 1, we find that

$$|B_{\alpha,\epsilon}(f,h)| \le C \int_0^t \frac{1}{(\sqrt{t-s}+|x-y|)^{d+1}} s^{-\beta} F(y) I_1 H(y) \, ds \, dy$$

$$\le C \int_0^t \frac{1}{(\sqrt{t-s})^{2-\beta}} s^{-\beta} \, ds \int \frac{1}{|x-y|^{d+\beta-1}} F(y) I_1 H(y) \, dy$$

Since

$$\int_0^t (t-s)^{-1+\frac{\beta}{2}} s^{-\beta} \, ds = \gamma_{\beta} t^{-\beta/2}$$

we find that

$$|B_{\alpha,\epsilon}(f,h)| \le C_{\beta} t^{-\beta/2} I_{1-\beta}(F I_1 H)(x)$$

where the constant C_{β} does not depend on α nor on ϵ .

From Proposition 4, we get that for $H \in \dot{M}_{d/(2-\beta)}^{2/(2-\beta),*}$, we have $I_1(H) \in \dot{M}_{d/(2-\beta)}^{2/(\gamma(2-\beta)),*}$ with $\gamma = 1 - \frac{1}{2-\beta}$. Thus, we get that $F I_1(H) \in \dot{M}_{q_0}^{p_0,*}$ with $\frac{1}{q_0} = \frac{1}{d}(2-\beta)(1+\gamma)$ and $\frac{1}{p_0} = \frac{1}{2}(2-\beta)(1+\gamma) = \frac{3-2\beta}{2}$. Moreover, since $1/2 < \beta < 1$, we have

$$1 - \beta < 3 - 2\beta = \frac{d}{q_0}$$
 and $1 < \frac{2}{3 - 2\beta} = p_0$.

Thus, we may apply again Proposition 4 and find that $I_{1-\beta}(FI_1(H)) \in$ $\dot{M}_{q_0/\delta}^{p_0/\delta,*}$ with $\delta = 1 - \frac{q_0(1-\beta)}{d}$. But we have

$$\frac{\delta}{q_0} = \frac{1}{q_0} - \frac{1-\beta}{d} = \frac{2-\beta}{d} \text{ and } \frac{\delta}{p_0} = \frac{1}{p_0} - \frac{1-\beta}{d} \frac{q_0}{p_0} = \frac{2-\beta}{2}.$$

Thus, Theorem 1, Part A) is proved.

Parabolic-elliptic and parabolic-parabolic Keller-8 Segel equations

The proof of Theorem 1, Part B), is now easy. We want to solve

$$u_{\alpha,\epsilon} = W_t * u_0 - \int_0^t \operatorname{div} W_{t-s} * (u_{\alpha,\epsilon} \ L_{\alpha,\epsilon} u_{\alpha,\epsilon}) \ ds.$$

This is done with the contraction principle.

First, we check that for $1/2 < \beta < 1$, we have $W_t * u_0 \in E_\beta$ where

$$E_{\beta} = \{ u(t,x) / \|u\|_{E_{\beta}} = \sup_{t>0} t^{\beta/2} u(t,x) \in \dot{M}^{2/(2-\beta),*}_{d/(2-\beta)} \}.$$

Indeed, we just write $W_t(x) \leq C \frac{1}{(\sqrt{t}+|x|)^d}$, hence $t^{\beta/2} W_t(x) \leq C \frac{1}{|x|^{d-\beta}}$, so that $|t^{\beta/2}W_t * u_0(x)| \leq CI_{\beta}(|u_0|)(x)$. We then use Proposition 4.

Then, one easily concludes from the following classical lemma (see [13] for instance) :

Lemma 6 (Picard iterates for bilinear operators)

Let B is a bounded bilinear operator on a Banach space E:

$$||B(x,y)||_E \le C_B ||x||_E ||y||_E.$$

Let $x_0 \in E$ be such that $||x_0||_E < \frac{1}{4C_B}$. Then the iterates $x_{n+1} = x_0 - B(x_n, x_n)$ converge in the E norm to a solution of the equation

$$x = x_0 - B(x, x)$$

such that $||x||_E \leq 2||x_0||_E$. This solution is unique in the ball $B(0, \frac{1}{2C_B})$.

9 The convergence from the parabolic-parabolic equations to the parabolic-elliptic equations

For the proof of Theorem 1, Part C), we shall follow the strategy of [2].

When f and h belong to E_{β} , we may write $|f(t,x)| \leq t^{-\beta/2}F(x)$ and $|h(t,x)| \leq t^{-\beta/2}H(x)$ where $F, H \in \dot{M}_{2/(2-\beta)}^{2/(2-\beta),*}$. The key estimattes for Part A) were then :

$$|\int_0^t \operatorname{div} W_{t-s} * (fL_{\alpha,\epsilon}h) \, ds| \le C_0 t^{-\beta/2} I_{1-\beta}(F \, I_1 H)(x)$$

and

$$\|I_{1-\beta}(F I_1 H)\|_{\dot{M}^{2/(2-\beta),*}_{2/(2-\beta)}} \le C_1 \|F\|_{\dot{M}^{2/(2-\beta),*}_{2/(2-\beta)}} \|H\|_{\dot{M}^{2/(2-\beta),*}_{2/(2-\beta)}}$$

where the constants C_0 and C_1 don't depend on α nor on ϵ .

When we want to compare $u_{\alpha,\epsilon}$ and $u_{\alpha,0}$, we write :

$$u_{\alpha,\epsilon} - u_{\alpha,0} = \int_0^t \operatorname{div} W_{t-s} * \left((u_{\alpha,0} - u_{\alpha,\epsilon}) L_{\alpha,\epsilon} u_{\alpha,\epsilon} \right) \, ds$$
$$+ \int_0^t \operatorname{div} W_{t-s} * \left(u_{\alpha,0} L_{\alpha,\epsilon} (u_{\alpha,0} - u_{\alpha,\epsilon}) \right) \, ds$$
$$+ \int_0^t \operatorname{div} W_{t-s} * \left(u_{\alpha,0} (L_{\alpha,0} - L_{\alpha,\epsilon}) u_{\alpha,0} \right) \, ds$$

hence

$$\begin{aligned} \|u_{\alpha,\epsilon} - u_{\alpha,0}\|_{E_{\beta}} &\leq C_0 C_1 \|u_{\alpha,0} - u_{\alpha,\epsilon}\|_{E_{\beta}} (\|u_{\alpha,\epsilon}\|_{E_{\beta}} + \|u_{\alpha,0}\|_{E_{\beta}}) \\ &+ \|\int_0^t \operatorname{div} W_{t-s} * (u_{\alpha,0}(L_{\alpha,0} - L_{\alpha,\epsilon})u_{\alpha,0}) \, ds\|_{E_{\beta}}. \end{aligned}$$

If $||u_0||_{\dot{M}_{d/2}^1}$ is small enough (so that $||W_t * u_0||_{E_{\beta}} \leq \delta_0 < \frac{1}{4C_0C_1}$), the solutions $u_{\alpha,\epsilon}$ and $u_{\alpha,0}$ will be small in E_{β} ($||u_{\alpha,\epsilon}||_{E_{\beta}} \leq 2\delta_0$ and $||u_{\alpha,0}||_{E_{\beta}} \leq 2\delta_0$) and we find

$$\|u_{\alpha,\epsilon} - u_{\alpha,0}\|_{E_{\beta}} \le \frac{1}{1 - 4C_0C_1\delta_0} \|\int_0^t \operatorname{div} W_{t-s} * (u_{\alpha,0}(L_{\alpha,0} - L_{\alpha,\epsilon})u_{\alpha,0}) \, ds\|_{E_{\beta}}.$$

Thus, we are lead to prove that

$$\lim_{\epsilon \to 0} \left\| \int_0^t \operatorname{div} W_{t-s} * \left(u_{\alpha,0} (L_{\alpha,0} - L_{\alpha,\epsilon}) u_{\alpha,0} \right) \, ds \right\|_{E_\beta} = 0$$

Let $F_{\beta,\gamma}$ be defined, for $0 \leq \gamma < 1 - \beta$, as

$$F_{\beta,\gamma} = \{ u(t,x) / \sup_{t>0} t^{(\beta+\gamma)/2} u(t,x) \in \dot{M}_{d/(1-(\beta+\gamma))}^{2/(1-(\beta+\gamma)),*} \}.$$

The space $F_{\beta,\gamma}$ is normed with

$$||u||_{F_{\beta,\gamma}} = ||\sup_{t>0} t^{(\beta+\gamma)/2} u(t,x)||_{\dot{M}^{2/(1-(\beta+\gamma)),*}_{d/(1-(\beta+\gamma))}}.$$

If $f \in E_{\beta}$ $(|f(t,x)| \leq t^{-\beta/2}F(x)$ with $F \in \dot{M}^{2/(2-\beta),*}_{d/(2-\beta)}$ and $k \in F_{\beta,\gamma}$ $(|k(t,x)| \leq t^{-(\beta+\gamma)/2}K(x)$ with $K \in \dot{M}^{1/(1-(\beta+\gamma)),*}_{d/(1-(\beta+\gamma))}$, then we write

$$|\text{div } W_{t-s}(x-y)| \le Ct^{-1+(\beta+\gamma)/2} \frac{1}{|x-y|^{d-1+\beta+\gamma}}$$

and thus

$$\left|\int_{0}^{t} \operatorname{div} W_{t-s} * (fk) \, ds\right| \le Ct^{-\beta/2} I_{1-\gamma-\beta}(FK)(x).$$

We have $FK \in \dot{M}^{2/(3-2\beta-\gamma),*}_{d/(3-2\beta-\gamma)}$, hence $I_{1-\gamma-\beta}(FK) \in \dot{M}^{2/(2-\beta),*}_{d/(2-\beta)}$. Hence, we get, for $0 < \gamma < 1 - \beta$, that :

$$\|\int_0^t \operatorname{div} W_{t-s} * (u_{\alpha,0}(L_{\alpha,0} - L_{\alpha,\epsilon})u_{\alpha,0}) \, ds\|_{E_\beta} \le C \|u_{\alpha,0}\|_{E_\beta} \|(L_{\alpha,0} - L_{\alpha,\epsilon})u_{\alpha,0}\|_{F_{\beta,0} + F_{\beta,\gamma}}.$$

Thus, we are lead to prove that we may write $(L_{\alpha,0} - L_{\alpha,\epsilon})u_{\alpha,0} = v_{\alpha,\epsilon} + w_{\alpha,\epsilon}$ with

$$\lim_{\epsilon \to 0} \|v_{\alpha,\epsilon}\|_{F_{\beta,0}} + \|w_{\alpha,\epsilon}\|_{F_{\beta,\gamma}} = 0.$$

Let $\eta = \epsilon^{\delta}$, with $0 < \delta < 1$. we may assume that $\eta < 1/2$ (since we are interested in $\epsilon \to 0$). Let $q_{\alpha,\epsilon}(t,x) = L_{\alpha,\epsilon}u_{\alpha,0}(t,x)$ and $q_{\alpha,0}(t,x) = L_{\alpha,0}u_{\alpha,0}(t,x)$. We define

$$w_{\alpha,\epsilon} = \frac{1}{\epsilon} e^{-\alpha \frac{\eta t}{\epsilon}} W_{\frac{\eta t}{\epsilon}} * (q_{\alpha,\epsilon}((1-\eta)t, x) - q_{\alpha,0}(t, x))$$

We know that $q_{\alpha,\epsilon}$ and $q_{\alpha,0}$ belong to $F_{\beta,0}$ (uniformly with respect to α and ϵ), and so does $q_{\alpha,\epsilon}((1-\eta)t, x)$. We then write that

$$e^{-\alpha \frac{\eta t}{\epsilon}} W_{\frac{\eta t}{\epsilon}}(x-y) \le C(\frac{\eta t}{\epsilon})^{-\gamma/2} \frac{1}{|x-y|^{d-\gamma}}.$$

Thus, we obtain

$$||w_{\alpha,\epsilon}||_{F_{\beta,\gamma}} \le C_{u_0} \epsilon^{\frac{\gamma(1-\delta)}{2}}$$

where the constant C_{u_0} depends on u_0 , but not on α nor on ϵ .

Let $Q_{\alpha,\epsilon,t}(s,x) = q_{\alpha,\epsilon}(s,x)$ and $Q_{\alpha,0,t}(s,x) = q_{\alpha,0}(t,x)$. We have

$$\epsilon \partial_s Q_{\alpha,\epsilon,t}(s,x) = \Delta Q_{\alpha,\epsilon,t}(s,x) - \alpha Q_{\alpha,\epsilon,t}(s,x) + \vec{\nabla} u_{\alpha,0}(s,x)$$

with

$$Q_{\alpha,\epsilon,t}((1-\eta)t,x) = q_{\alpha,\epsilon}((1-\eta)t,x)$$

while

$$0 = \epsilon \partial_s Q_{\alpha,0,t}(s,x) = \Delta Q_{\alpha,0,t}(s,x) - \alpha Q_{\alpha,0,t}(s,x) + \vec{\nabla} u_{\alpha,0}(t,x)$$

with

$$Q_{\alpha,0,t}((1-\eta)t,x) = q_{\alpha,0}(t,x)$$

We have the identity

$$v_{\alpha,\epsilon}(t) = Q_{\alpha,0,t}(t,x) - \frac{1}{\epsilon} e^{-\alpha \frac{\eta t}{\epsilon}} W_{\frac{\eta t}{\epsilon}} * Q_{\alpha,0,t}((1-\eta)t,x) - Q_{\alpha,\epsilon,t}(t,x) + \frac{1}{\epsilon} e^{-\alpha \frac{\eta t}{\epsilon}} W_{\frac{\eta t}{\epsilon}} * Q_{\alpha,\epsilon,t}((1-\eta)t,x)$$

or, equivalently,

$$v_{\alpha,\epsilon} = \frac{1}{\epsilon} \int_{(1-\eta)t}^{t} \vec{\nabla} W_{\frac{t-s}{\epsilon}} * \left(u_{\alpha,0}(s,x) - u_{\alpha,0}(t,x) \right) \, ds.$$

If $U_{\eta}(s, x) = \sup_{(1-\eta)t < s < t} |u_{\alpha,0}(s, x) - u_{\alpha,0}(t, x)|$, we find that

$$\|v_{\alpha,\epsilon}\|_{F_{\beta,0}} \le C \|U_\eta\|_{E_\beta}.$$

It remains to estimate U_{η} . We know that $u_{\alpha,0}$ belongs to E_{β} , hence $|u_{\alpha,0}(t,x)| \leq t^{-\beta/2} V_{\alpha}(x)$ where $V_{\alpha} \in \dot{M}_{d/(2-\beta)}^{2/(2-\beta),*}$. We write, for $(1-\eta)t < s < t$, $u_{\alpha,0}(t,x) - u_{\alpha,0}(s,x) = A_{\alpha}(t,s,x) - B_{\alpha}(t,s,x) - C_{\alpha}(t,s,x)$ with

$$\begin{cases} A_{\alpha}(t,s,x) = & (W_t - W_s) * u_0 \\ B_{\alpha}(t,s,x) = & \int_0^s \operatorname{div} (W_{t-\sigma} - W_{s-\sigma}) * (u_{\alpha,0} L_{\alpha,0} u_{\alpha,0}) \, d\sigma \\ C_{\alpha}(t,s,x) = & \int_s^t \operatorname{div} W_{t-\sigma} * (u_{\alpha,0} L_{\alpha,0} u_{\alpha,0}) \, d\sigma \end{cases}$$

The control of A_{α} is easy :

$$\begin{aligned} |A_{\alpha}(t,s,x)| &\leq \int |W_t(x-y) - W_s(t-y)| |u_0(y)| \, dy \\ &\leq (t-s) \int \sup_{s < \sigma < t} |\partial_{\sigma} W_{\sigma}(x-y)| |u_0(y)| \, dy \\ &\leq C |t-s| \int \frac{1}{(\sqrt{t} + |x-y|)^{d+2}} |u_0(y)| \, dy \\ &\leq C' \frac{t-s}{t^{1+\frac{\beta}{2}}} I_{\beta} |u_0|(x) \end{aligned}$$

Thus, we find that $\|\sup_{(1-\eta)t < s < t} |A_{\alpha}(t,s,x)|\|_{E_{\beta}} \le C\eta \|I_{\beta}(|u_0|)\|_{\dot{M}^{2/(2-\beta),*}_{d/(2-\beta)}} = O(\eta).$

The control of C_{α} is easy as well. We have

$$\begin{aligned} |C_{\alpha}(t,s,x)| &\leq C \int_{s}^{t} \frac{1}{(\sqrt{t-\sigma}+|x-y|)^{d+1}} \sigma^{-\beta} V_{\alpha}(y) I_{1} V_{\alpha}(y) \, dy \, d\sigma \\ &\leq C' t^{-\beta} \int_{s}^{t} \frac{1}{(t-\sigma)^{1-\frac{\beta}{2}}} \, d\sigma \quad I_{1-\beta}(V_{\alpha} \, I_{1} V_{\alpha})(x) \\ &= C'' \frac{(t-s)^{\beta/2}}{t^{\beta}} I_{1-\beta}(V_{\alpha} \, I_{1} V_{\alpha})(x). \end{aligned}$$

Thus, we find that $\|\sup_{(1-\eta)t < s < t} |C_{\alpha}(t,s,x)|\|_{E_{\beta}} \le C\eta^{\beta/2} \|I_{1-\beta}(V_{\alpha}I_{1}V_{\alpha}))\|_{\dot{M}^{2/(2-\beta),*}_{d/(2-\beta)}} = O(\eta^{\beta/2}).$

The control of B_{α} is a bit trickier. We write

$$D_{\alpha}(s,x) = \int_0^s \operatorname{div} W_{s-\sigma} * (u_{\alpha,0} L_{\alpha,0} u_{\alpha,0}) \, d\sigma$$

so that

$$B_{\alpha}(t, s, x) = W_{t-s} * D_{\alpha}(s, x) - D_{\alpha}(s, x) = \int_{0}^{(t-s)} \Delta W_{\tau} * D_{\alpha}(s, x) d\tau$$

and finally, since $\Delta W_{\tau} * D_{\alpha}(s, x) = (-\Delta)^{1-\theta} W_{\tau} * (-\Delta)^{\theta} D_{\alpha}(s, x)$ (where $0 < \theta < 1 - \beta < \beta$),

$$|B_{\alpha}(t,s,x)| \le C \int_{0}^{t-s} \int_{0}^{s} \iint \frac{1}{(\sqrt{\tau} + |x-y|)^{d+2-2\theta}} \frac{V_{\alpha}(z)I_{1}V_{\alpha}(z)}{(\sqrt{s-\sigma} + |y-z|)^{d+1+2\theta}\sigma^{\beta}} \, dz \, dy \, d\sigma \, d\tau$$

We then write

$$|B_{\alpha}(t,s,x)| \leq C \int_{0}^{t-s} \int_{0}^{s} \iint \frac{1}{\tau^{1-\theta/2} |x-y|^{d-\theta}} \frac{V_{\alpha}(z) I_{1} V_{\alpha}(z)}{(s-\sigma)^{1+(\theta-\beta)/2} |y-z|^{d+\beta+\theta-1} \sigma^{\beta}} \, dz \, dy \, d\sigma \, d\tau$$

which gives

$$|B_{\alpha}(t,s,x)| \leq C \int_{0}^{t-s} \int_{0}^{s} \frac{1}{\tau^{1-\theta/2}} \frac{1}{(s-\sigma)^{1+(\theta-\beta)/2}\sigma^{\beta}} \, d\sigma \, d\tau \quad I_{\theta}(I_{1-\beta-\theta}(V_{\alpha} \, I_{1}V_{\alpha})(x))$$

and finally

$$|B_{\alpha}(t,s,x)| \leq C \frac{(t-s)^{\theta/2}}{s^{(\beta+\theta)/2}} I_{1-\beta}(V_{\alpha} I_1 V_{\alpha})(x).$$

Thus, we find that $\|\sup_{(1-\eta)t < s < t} |B_{\alpha}(t,s,x)|\|_{E_{\beta}} \le C\eta^{\theta/2} \|I_{1-\beta}(V_{\alpha} I_{1}V_{\alpha}))\|_{\dot{M}^{2/(2-\beta),*}_{d/(2-\beta)}} = O(\eta^{\theta/2}).$

We have thus proved that $||u_{\alpha,\epsilon} - u_{\alpha,0}||_{E_{\beta}} = O(\epsilon^{\kappa})$ with $\kappa = \min(\frac{\gamma(1-\delta)}{2}, \frac{\theta\delta}{2}) > 0$. Theorem 1 is proved.

10 Fractional diffusion

The Keller-Segel equations have been generalized with the introduction of non-local diffusion [4]. The equations are then the following :

• the parabolic-elliptic model :

$$\begin{cases} \partial_t u + (-\Delta)^{\theta/2} u = -\operatorname{div} (u \vec{\nabla} \varphi) \\ (-\Delta)^{\theta/2} \varphi = -\alpha \varphi + u \\ u = u_0 \text{ for } t = 0 \end{cases}$$

• the parabolic-parabolic model :

$$\begin{cases} \partial_t u + (-\Delta)^{\theta/2} u = -\operatorname{div} (u \vec{\nabla} \varphi) \\ \epsilon \partial_t \varphi + (-\Delta)^{\theta/2} \varphi = -\alpha \varphi + u \\ u = u_0 \text{ for } t = 0 \\ \varphi = 0 \text{ for } t = 0 \end{cases}$$

where $\theta \in (1, 2]$.

Let \mathcal{W}_{θ} be the function whose Fourier transform is $e^{-|\xi|^{\theta}}$ and $\mathcal{W}_{t,\theta}(x) = \frac{1}{t^{d/\theta}} \mathcal{W}_{\theta}(\frac{x}{t^{1/\theta}})$. We are lead to solve the integral equation

$$u = \mathcal{W}_{t,\theta} * u_0 - \int_0^t \operatorname{div} \mathcal{W}_{t-s,\theta} * (u(L_{\alpha,\epsilon,\theta}u)) \ ds$$

where $L_{\alpha,\epsilon,\theta}$ is the operator

$$L_{\alpha,\epsilon,\theta}u(t,x) = \frac{1}{\epsilon} \int_0^t e^{-\alpha \frac{t-\sigma}{\epsilon}} \vec{\nabla} W_{\frac{t-\sigma}{\epsilon},\theta} * u \ d\sigma \text{ if } \alpha \ge 0 \text{ and } \epsilon > 0,$$

$$L_{\alpha,\epsilon,\theta}u(t,x) = u * \vec{\nabla}J_{\alpha,\theta} \text{ if } \epsilon = 0 \text{ and } \alpha > 0,$$
$$L_{\alpha,\epsilon,\theta}u(t,x) = u * \vec{\nabla}G_{\theta} \text{ if } \epsilon = \alpha = 0.$$

where $G_{\theta} * u = (-\Delta)^{-\theta/2} u$ and $J_{\alpha,\theta} = \int_0^\infty W_{s,\theta} e^{-\alpha s} ds$. We have $|\mathcal{W}_{t,\theta}| \leq C \frac{1}{t^{(1/\theta} + |x|)^d}$ and $|\partial_j \mathcal{W}_{t,\theta}| \leq C \frac{1}{t^{(1/\theta} + |x|)^{d+1}}$. We thus find that :

$$\begin{aligned} &|\int_0^t \operatorname{div} \mathcal{W}_{t-s,\theta} * \left(u(\frac{1}{\epsilon} \int_0^s \vec{\nabla} \mathcal{W}_{\frac{s-\sigma}{\epsilon},\theta} * v \ d\sigma) \right) \ ds| \\ &\leq C_0 \int_0^t \int \frac{1}{((t-s)^{1/\theta} + |x-y|)^{d+1}} |u(s,y)| I_{\theta-1}(M_*|v|)(s,y) \ dy \ ds \end{aligned}$$

Then it is easy to see that the optimal space to pick the initial value for those Keller-Segel equations is the space $\dot{M}_{\frac{d}{2(\theta-1)}}^{1}$, and that the space where to solve them is

$$E_{\beta,\theta} = \{ u(t,x) / \sup_{t>0} t^{\beta/\theta} u(t,x) \in \dot{M}_{d/(2\theta-2-\beta)}^{(2\theta-2)/(2\theta-2-\beta),*} \}$$

where $\frac{\theta-1}{2} < \beta < \theta - 1$.

Then one may adapt Theorem 1 into :

Theorem 2 (Fractional Keller-Segel equations)

Let $\theta \in (1,2]$ and $\frac{\theta-1}{2} < \beta < \theta - 1$. A) There exists a positive $\delta_0 > 0$ such that, for every $u_0 \in \dot{M}^1_{\frac{2}{2(\theta-1)}}(\mathbb{R}^d)$ with $\|u_0\|_{\dot{M}^1_{\frac{2}{2(\theta-1)}}(\mathbb{R}^d)} < \delta_0$, for every $\alpha \ge 0$ and every $\epsilon \ge 0$, the Picard iterates

$$v_{\alpha,\epsilon,0} = W_{t,\theta} * u_0 \text{ and } v_{\alpha,\epsilon,n+1} = v_0 - \int_0^t div \ W_{t-s,\theta} * (v_{\alpha,\epsilon,n} L_{\alpha,\epsilon,\theta}(v_{\alpha,\epsilon,n})) \ ds$$

converge in the $E_{\beta,\theta}$ norm to a solution of the Keller-Segel equation $u_{\alpha,\epsilon} = W_{t,\theta} * u_0 - \int_0^t div W_{t-s,\theta} * (u_{\alpha,\epsilon} \ L_{\alpha,\epsilon,\theta} u_{\alpha,\epsilon}) ds.$ B) Moreover, when ϵ goes to 0, the solution $u_{\alpha,\epsilon}$ of the parabolic-parabolic

B) Moreover, when ϵ goes to 0, the solution $u_{\alpha,\epsilon}$ of the parabolic-parabolic problem converges in the $E_{\beta,\theta}$ norm to the solution $u_{\alpha,0}$ of the parabolic-elliptic problem.

References

[1] D. Adams and L. Hedberg. *Function spaces and potential theory*. Springer, 1996.

- [2] P. Biler and L. Brandolese. On the parabolic–elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis. *Studia Math.*, 193:241–261, 2009.
- [3] P. Biler, M. Cannone, I. Guerra, and G. Karch. Global regular and singular solutions for a model of gravitating particles. *Math. Annal.*, 330:693–708, 2004.
- [4] P. Biler and G. Wu. Two-dimensional chemotaxis models with fractional diffusion. Math. Methods Appl. Sci., 32:112–126, 2009.
- [5] L. Corrias and B. Perthame. Critical space for the parabolic–parabolic Keller-Segel model in ℝ^d. C. R. Math. Acad. Sci. Paris, 342:745–750, 2006.
- [6] L. Grafakos. Classical harmonic analysis (2nd ed.). Springer, 2008.
- [7] L. Hedberg. On certain convolution inequalities. Proc. Amer. Math. Soc., 10:505–510, 1972.
- [8] T. Iwabuchi. Global well-posedness for Keller-Segel system in Besov type spaces. J.M.A.A., 379:930–948, 2011.
- [9] E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 29:399–415, 1970.
- [10] H. Kozono and Y. Sugiyama. The Keller-Segel system of parabolicparabolic type with initial data in weak $L^{n/2}(\mathbb{R}^n)$ and its application to self-similar solutions. *Indiana Univ. Math. J.*, 57:1467–1500, 2008.
- [11] H. Kozono and Y. Sugiyama. Global strong solution to the semi-linear Keller-Segel system of parabolic-parabolic type with small data in scale invariant spaces. J. Diff. Eq., 247:1–32, 2009.
- [12] H. Kozono and Y. Sugiyama. Strong solutions to the Keller-Segel system with the weak $L^{n/2}$ initial data and its application to the blow-up rate. *Math. Nachr.*, 283:732–751, 2010.
- [13] P.G. Lemarié-Rieusset. Recent developments in the Navier-Stokes problem. CRC Press, 2002.
- [14] A. Raczynski. Stability property of the two-dimensional Keller-Segel model. Asymptotic Analysis, 61:35–59, 2009.