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Introduction.

This paper deals with multiplication by functions in Morrey spaces.
For 1 < p <∞ and 0 ≤ λ ≤ d, the Morrey space Lp,λ(IRd) is defined as the
space of locally integrable functions on IRd such that

(1) sup
Q∈Q

R−λQ

∫
Q
|f(x)|p dx <∞

where Q is the collection of cubes Q and where RQ is the size of Q =
xQ + [0, RQ]d.
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The notation Lp,λ (used for instance by Peetre [8]) is not used by all au-
thors. Vega uses Lα,p with the condition that

sup
Q∈Q

Rα
Q(

1

|Q|

∫
Q
|f(x)|p dx)1/p <∞

where |Q| is the Lebesgue measure ofQ. We have Lp,λ = Lα,p with λ = d−pα.
We shall use another notation, the space Ṁp,q defined by

sup
Q∈Q

R
d/q−d/p
Q (

∫
Q
|f(x)|p dx)1/p <∞

We have Ṁp,q = Lα,p with q = d/α.
The restrictions on λ, α or q are the following ones : 0 ≤ λ ≤ d (if f

satisfies inequality (1) for λ < 0 or λ > d, then f = 0), and thus 0 ≤ α ≤ d/p
and p ≤ q ≤ +∞. Moreover, we have :
– Lp,0 = Ld/p,p = Ṁp,p = Lp

– Lp,d = L0,p = Ṁp,∞ = L∞

– for α = d/q, Lq ⊂ Ṁp,q = Lα,p ⊂ Ḃ−α,∞∞ .

We define ‖f‖Ṁp,q = supQ∈QR
d/q−d/p
Q (

∫
Q |f(x)|p dx)1/p. We have the Hölder

estimate : if f ∈ Ṁp0,q0 and g ∈ Ṁp1,q1 with 1/p = 1/p0 + 1/p1 < 1 and
1/q = 1/q0 + 1/q1, then fg ∈ Ṁp,q and ‖fg‖Ṁp,q ≤ ‖f‖Ṁp0,q0‖g‖Ṁp1,q1 . The
motivation of our paper is to study the reverse inequality : when do we have

‖g‖Ṁp1,q1 ≤ C sup
‖f‖Mp0,q0≤1

‖fg‖Ṁp,q ?

As we shall see, a necessary and sufficient condition to get this reverse
inequality is that q1/p1 ≥ q0/p0 (or, equivalently, if Ṁpi,qi = Lp,λi , that
λ1 ≥ λ0). In the case λ1 < λ0, we construct a counter-example based on a
fractal set Kβ with Hausdorff dimension β = d−dp1

q1
(or β = d−p1α1 = λ1).

This fractal set will allow us to recover simple counterexamples for trace
inequalities or interpolation of operators.

1 Statement of the results.

We first consider the problem of pointwise multipliers between Morrey spaces.
Our result is the following one :
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Theorem 1:
Let 1 < p ≤ q and 1 < p0 ≤ q0 < ∞. Let M(Ṁp0,q0 → Ṁp,q) be the set

of pointwise multipliers from Ṁp0,q0 to Ṁp,q, with norm

‖f‖M(Ṁp0,q0→Ṁp,q) = sup
‖g‖Ṁp0,q0≤1

‖fg‖Ṁp,q

Then :
i) M(Ṁp0,q0 → Ṁp,q) 6= {0} if and only if p ≤ p0 and q ≤ q0.
ii) If p ≤ p0 (1/p = 1/p0 + 1/p1) and q ≤ q0 (1/q = 1/q0 + 1/q1), then we
have the embeddings Ṁp1,q1 ⊂M(Ṁp0,q0 → Ṁp,q) ⊂ Ṁp,q1

iii) Ṁp1,q1 = M(Ṁp0,q0 → Ṁp,q) if and only if q1/p1 ≥ q0/p0. In this case,
we have equality of norms.

We shall next consider the problem of trace inequalities. We will show
that the limit case is not fulfilled for the Fefferman–Phong inequality [3] :

Theorem 2
Let 1 < p < ∞ and 0 < r < d/p. Let M(Ẇ r,p → L̇p) be the set of

pointwise multipliers from Ẇ r,p to Lp, with norm

‖f‖M(Ẇ r,p→Lp) = sup
‖g‖p≤1

‖fIrg‖p

Then :
i) If p < p1, then we have the embeddings Ṁp1,d/r ⊂M(Ẇ r,p → L̇p) ⊂ Ṁp,d/r

ii) M(Ẇ r,p → L̇p) 6= Ṁp,d/r

We shall end with Ruiz and Vega’s counterexample for interpolation [11]
and give a counterexample for every case when interpolation fails :

Theorem 3
Let 1 < p0 ≤ q0 <∞ and 1 < p1 ≤ q1 <∞. Let 0 < θ < 1, 1

p
= 1−θ

p0
+ θ

p1

and 1
q

= 1−θ
q0

+ θ
q1

. Then :

i) We have [Ṁp0,q0 , Ṁp1,q1 ]θ ⊂ Ṁp,q (complex interpolation)
ii) [Ṁp0,q0 , Ṁp1,q1 ]θ = Ṁp,q (with equivalence of norms) if and only if p0/q0 =
p1/q1.
iii) We have [Ṁp0,q0 , Ṁp1,q1 ]θ,p ⊂ Ṁp,q (real interpolation)
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iv) Ṁp,q ⊂ [Ṁp0,q0 , Ṁp1,q1 ]θ,∞ (continuous embedding) if and only if p0/q0 =
p1/q1.
v) [Ṁp0,q0 , Ṁp1,q1 ]θ,∞ ⊂ Ṁp,q if and only if p0 = p1

2 The fractal set Kβ

In this section we construct a fractal subset Kβ of IRd (with Hausdorff dimen-
sion β ∈ [0, d)). We shall use the dyadic cubes Qj,k =

∏d
i=1[ki2

−j, (ki+1)2−j] :

1Qj,k(x) = 1[0,1]d(2
jx− k).

We inductively define Kβ
j = ∪k∈KjQj,k in the following way :

i) Kβ
0 = Q0,0 = [0, 1]d.

ii) Let Kβ
j = ∪k∈KjQj,k. If #(Kj) ≤ 2(j+1)β−d, then we keep in each Qj,k, k ∈

Kj, the 2d dyadic cubes of size 2−(j+1) contained in Qj,k, so that Kβ
j+1 = Kβ

j

and #(Kj+1) = 2d #(Kj).

iii) Let Kβ
j = ∪k∈KjQj,k. If #(Kj) > 2(j+1)β−d, then we keep in each Qj,k,

k ∈ Kj, only one dyadic cube Qj+1,2k of size 2−(j+1) contained in Qj,k, so

that Kβ
j+1 ⊂ Kβ

j and #(Kj+1) = #(Kj).

By induction, we see that 2jβ−d < #(Kj) ≤ 2jβ :
– #(K0) = 1 = 20β;
– in case ii) we have 2(j+1)β−d = 2jβ−d2β < 2d #(Kj) = #(Kj+1) ≤ 2d2(j+1)β−d =
2(j+1)β

– in case iii) we have 2(j+1)β−d < #(Kj) = #(Kj+1) ≤ 2jβ ≤ 2(j+1)β

If Q = Qj,k is a dyadic cube contained in [0, 1]d such that |Q ∩Kβ
n | > 0,

then we have |Q ∩ Kβ
n | = |Q| if j ≥ n and |Q ∩ Kβ

n | = #(Kn)
#(Kj)

2−nd if j ≤ n

(with 2−d2(n−j)β ≤ #(Kn)
#(Kj)

≤ 2d2(n−j)β).

The next step is to introduce the measures µβn = 1

|Kβ
n |

1Kβ
n
dx. This is a

sequence of probability measures and we may find a subsequence (µβnk)k∈IN

which converges vaguely to a probability measure µβ. This measure µβ is
supported by the compact set Kβ = ∩n∈INK

β
n .
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If Q = Qj,k is a dyadic cube contained in [0, 1]d, such that µβ(Q) > 0,
then we have µβ(Q) = 1

#(Kj)
and thus 2−jβ ≤ µβ(Q) ≤ 2d2−jβ. Thus, we find

that Kβ has Hausdorff dimension β and that 0 < Hβ(Kβ) < +∞.
A classical result of potential theory [7] [1] then states that the Riesz

potential Iαµβ (convolution of µβ with a kernel kα(x) = cα,d
1

|x|d−α ) satisfies
the following equality :

Lemma 1 :
For 1 < p <∞, 0 < α ≤ d/p and β = d− pα,

(2)
∫

(Iαµ
β)

p
p−1 dx = +∞

Proof : We have F(Iαµ) = |ξ|−αµ̂. Thus, if Λα is the operator defined
by F(Λαϕ) = |ξ|αϕ̂, we have

∫
ϕdµβ =

∫
IαµβΛαϕ dx. We choose ω ∈ D

such that 1[0,1]d ≤ ω. We then define

ωj(x) =
∑
k∈Kj

ω(2jx− k)

Since ωj ≥ 1Kβ
j
≥ 1Kβ , we find that

(3) 1 = µβ(Kβ) ≤
∫
IαµβΛαωj dx

We now estimate the size and decay of

Λα(
∑
k∈ZZd

λkω(x− k)) :

i) for γ ∈ INd, we have obviously

‖
∑
k∈ZZd

λk∂
γω(x− k))‖p ≤ Cγ,ω(

∑
k∈ZZd

|λk|p)1/p

ii) by interpolation, we get

(4) ‖Λα(
∑
k∈ZZd

λkω(x− k)) ≤ Cα,ω(
∑
k∈ZZd

|λk|p)1/p
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iii) Since Λα is a convolution with a distribution which is equal to Cα,d
1

|x|d+α ,
we find that, for R larger than 2δ where δ is the diameter of the support of
ω,

∑
k∈ZZd

1|x−k|>R|λkΛαω(x− k)| ≤ Cα,d

∫
|x−y|>R/2

1

|x− y|d+α

∑
k∈ZZd

|λk||ω(y)| dy

so that

(5) ‖
∑
k∈ZZd

1|x−k|>R|λkΛαω(x− k)|‖p ≤ Cα,ωR
−α(

∑
k∈ZZd

|λk|p)1/p

Now, assume that Iαµβ ∈ L
p
p−1 . From (3), we would get

1 ≤ ‖Iαµβ‖ p
p−1
‖1d(x,Kβ

j )>R2−jΛ
αωj‖p+‖1d(x,Kβ

j )≤R2−jI
αµβ‖ p

p−1
‖Λαωj‖p = Aj,R+Bj,R.

The control of Aj,R is given by (5) :

Aj,R ≤ CR−α‖Iαµβ‖ p
p−1

2jα−j
d
p (#(Kj))

1/p ≤ CR−α‖Iαµβ‖ p
p−1

Thus, we could choose R > 0 such that : supj∈IN Aj,R < 1/2. Now, we control
Bj,R through (4) :

Bj,R ≤ C‖1d(x,Kβ
j )≤R2−jI

αµβ‖ p
p−1

2jα−j
d
p (#(Kj))

1/p ≤ C‖1d(x,Kβ
j )≤R2−jI

αµβ‖ p
p−1

Since

|{x ∈ IRd /d(x,Kβ
j ) ≤ R2−j}| ≤ C#(Kj)(1 +R)d2−jd ≤ C(1 +R)d2j(β−d),

we find that limj→+∞Bj,R = 0. This would give 1 < 1/2 . . . �

Lemma 1 has the following corollary :

Corollary 1 :
For 1 < p <∞, 0 < α ≤ d/p and β = d− pα,

(6) sup
n∈IN

∫
(Iαµ

β
n)

p
p−1 dx = +∞
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The sets are Kβ
n are very interesting for generating examples and coun-

terexamples in Morrey spaces. Indeed, we have the following result :

Lemma 2 :
Let (αn) be a sequence of non-negative numbers. Let f =

∑
n∈IN αn1Kβ

n
.

Then the following statements are equivalent :
i) f ∈ Lp
ii)

∑
n∈IN α

p
n2n(β−d) <∞

If moreover p ≤ q ≤ pd
d−β , then i) and ii) are equivalent to

iii) f ∈ Ṁp,q

Proof : i) ⇒ ii) is obvious, since
∑
n∈IN α

p
n1Kβ

n
=

∑
n∈IN α

p
n1

p

Kβ
n
≤

(
∑
n∈IN αn1Kβ

n
)p.

Conversely, we have∫
|
∑
n∈IN

αn1Kβ
n
|p dx ≤

∫ ∑
n∈IN

(
n∑
k=0

αk)
p1Kβ

n
dx ≤

∑
n∈IN

(
n∑
k=0

αk)
p2n(β−d)

hence ∫
|
∑
n∈IN

αn1Kβ
n
|p dx ≤

∑
n∈IN

(
n∑
k=0

αk2
k(β−d)/p2(n−k)(β−d)/p)p

and finally ∫
|
∑
n∈IN

αn1Kβ
n
|p dx ≤ (

∞∑
k=0

αpk2
k(β−d)) (

∞∑
k=0

2−(β−d)/p)p.

So that ii)⇒ i).

Since f is supported in [0, 1]d, we have, for p ≤ q ≤ dp
d−β , f ∈ Ṁp, pd

d−β ⇒
f ∈ Ṁp,q ⇒ f ∈ Lp.

We now prove f ∈ Lp ⇒ f ∈ Ṁp, pd
d−β . It is enough to estimate the norm

‖f1Qj,k‖p for a dyadic cube (with j ≥ 0). We write fj =
∑
n<j αn1Kβ

n
and

gj = f − fj. We have∫
Qj,k

|gj|p dx ≤
∫
Qj,k

∑
n≥j

(
n∑
k=j

αk)
p1Kβ

n
dx ≤ 2d

∑
n∈IN

(
n∑
k=j

αk)
p2(n−j)β2−nd

hence ∫
Qj,k

|gj|p dx ≤ C‖f‖pp2−jβ.
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On the other hand, we have∫
Qj,k

|fj|p dx ≤ 2−jd(
∑
n<j

αn)p ≤ C‖f‖pp2−jd(
∑
n<j

2
n(d−β)
p−1 )p−1 ≤ C ′‖f‖pp2−jβ.

Thus, we find that f ∈ Lp ⇒ f ∈ Lp,β = Ṁp, dp
d−β . �

3 Pointwise products.

In this section, we prove theorem 1. Let 1 < p ≤ q and 1 < p0 ≤ q0 < ∞.
We study the space X =M(Ṁp0,q0 → Ṁp,q).

a) Case q > q0 : Let Q be a cube. Then we have, for f ∈ X,∫
Q
|f |p dx ≤ ‖f1Q‖pṀp,q |Q|1−

p
q ≤ ‖f‖pX‖1Q‖

p

Ṁp0,q0
|Q|1−

p
q ≤ ‖f‖pX |Q|1−p/q+p/q0

Hence, f ∈ Lp,d(1−p/q+p/q0). If q > q0, d(1 − p/q + p/q0) > d, hence
Lp,d(1−p/q+p/q0) = {0}.

b) Case p > p0 : If f ∈ X and ϕ ∈ D, then f ∗ ϕ ∈ X :

‖(f ∗ ϕ)g‖Ṁp,q ≤
∫
|ϕ(y)|‖f(x− y)g(x)‖Ṁp,q dy ≤ ‖ϕ‖1‖f‖X‖g‖Ṁp0,q0

If f ∗ ϕ 6= 0, we may find γ > 0 and a cube Q such that γ|f ∗ ϕ| ≥ 1Q. This
proves that 1Q ∈ X. In that case, we would have Ṁp0,q0 ⊂ Lploc. But this is

false if p > p0 : take for instance f =
∑
n≥1

1
n
2
n(d−β)
p0 1Kβ

n
, with β = d − dp0

q0
.

Using lemma 2, we find that f ∈Mp0,q0 but f /∈ Lp.

c) Case p ≤ p0 and q ≤ q0 : In that case, we haveX 6= {0}. For instance,
1[0,1]d ∈ X. If g ∈ Ṁp0,q0 , then g ∈ Ṁp,q0 , thus 1[0,1]dg ∈ Ṁp,q0 ∩ Lp =

Ṁp,q0 ∩ Ṁp,p ⊂ Ṁp,q.

d) Easy embeddings : Let p ≤ p0 and q ≤ q0. We write 1/p =
1/p0 + 1/p1 and 1/q = 1/q0 + 1/q1. We have seen (when discussing the case
q > q0) that X ⊂ Lp,d(1−p/q+p/q0) = Ṁp,q1 . Moreover, Hölder inequality gives
us easily that Ṁp1,q1 ⊂ X.
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e) Case q1/p1 ≥ q0/p0 : If q0 = q, hence q1 = +∞, we have L∞ =
Ṁp1,q1 ⊂ X ⊂ Ṁp,q1 = L∞. Thus, we consider only the case q < q0. (Thus,
q1 < +∞, hence p1 < +∞). If f ∈ X, then fR = f1B(0,R)1{x / |f(x)|<R} ∈ X
and ‖fR‖X ≤ ‖f‖X . Moreover, ‖f‖Ṁp1,q1 = supR>0 ‖fR‖Ṁp1,q1 . Thus, it is
enough to prove that ‖f‖Ṁp1,q1 ≤ C‖f‖X for f ∈ L1 ∩ L∞ ⊂ Ṁp1,q1 . For a
cube Q, we write :∫

Q
|f |p1 dx =

∫
Q
|f |f |

p1−p
p 1Q|p dx ≤ ‖f‖pX‖1Q|f |

p1−p
p ‖pMp0,q0 |Q|1−

p
q

and we thus have∫
Q
|f |p1 dx ≤ ‖f‖pX‖1Qf‖

p1−p

M
p0
p1−p
p ,q0

p1−p
p

|Q|1−
p
q = ‖f‖pX‖1Qf‖

p1−p

M
p1,q0

p1
p0

|Q|1−
p
q

Since q0
p1
p0
≤ q1, we have ‖1Qf‖

M
p1,q0

p1
p0
≤ |Q|−

1
q1

+
p0
p1q0 ‖1Qf‖Mp1,q1 and thus∫

Q
|f |p1 dx ≤ ‖f‖pX‖f‖

p1−p
Mp1,q1 |Q|

1− p
q

+(p1−p)(− 1
q1

+
p0
p1q0

)
= ‖f‖pX‖f‖

p1−p
Mp1,q1 |Q|

1− p1
q1

Thus, ‖f‖p1
Ṁp1,q1

≤ ‖f‖pX‖f‖
p1−p
Mp1,q1 , and we may conclude that ‖f‖Ṁp1,q1 ≤

‖f‖X . Since the reverse inequality is obvious, we find that ‖f‖Ṁp1,q1 = ‖f‖X .

f) Case q1/p1 < q0/p0 : If q1 < p1, then Ṁp1,q1 = {0} 6= X. Thus,

we now consider the case p1 ≤ q1 < p1
q0
p0

. Let f =
∑
k∈IN 2

n(d−β)
p1 1Kβ

n
with

β = d − dp1
q1

. From Lemma 2, we know that f /∈ Ṁp1,q1 . We shall prove

that f ∈ X. Let g ∈ Ṁp0,q0 . We estimate ‖fg1Q‖p for a cube Q. Since f is
supported in [0, 1]d, it is enough to take dyadic cubes Qj,k with j ≥ 0. On

Kβ
n −K

β
n+1 we have 2

n(d−β)
p1 ≤ f ≤ C2

n(d−β)
p1 , so that∫

Qj,k

|fg|p dx ≤ C
∑
n∈IN

2
n(d−β)p

p1

∫
Qj,k∩Kβ

n

|g|p dx

When n < j, we write∫
Qj,k∩Kβ

n

|g|p dx ≤
∫
Qj,k

|g|p dx ≤ ‖g‖p
Ṁp0,q0

2
−jd(1− p

q0
)

When n ≥ j, we write∫
Qj,k∩Kβ

n

|g|p dx =
∑
l∈Kn

∫
Qj,k∩Qn,l

|g|p dx ≤ #(Kn)

#(Kj)
‖g‖p

Ṁp0,q0
2
−nd(1− p

q0
)
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Thus, we get∫
Qj,k

|fg|p dx ≤ C‖g‖p
Ṁp0,q0

(
∑
n<j

2
−jd(1− p

q0
)
2
nd p

q1 +
∑
n≥j

2
(n−j)d(1− p1

q1
)
2
−nd(1− p

q0
)
2
nd p

q1 )

or, equivalently,∫
Qj,k

|fg|p dx ≤ C‖g‖p
Ṁp0,q0

2−jd(1− p
q

)(
∑
n<j

2
(n−j)d p

q1 +
∑
n≥j

2
(n−j)d( p

q
− p1
q1

)
)

We have
1

p
=

1

p0

+
1

p1

>
q1

p1q0

+
1

p1

=
q1

p1

1

q

so that p/q − p1/q1 < 0. This gives∫
Qj,k

|fg|p dx ≤ C‖g‖p
Ṁp0,q0

2−jd(1− p
q

)

and thus f ∈ X.

4 Trace inequalities.

In [3], Fefferman states a theorem of Fefferman and Phong : for s < d/2,
f ∈ Ḣs and g ∈ Ṁp,d/s with 2 < p ≤ d/s, we have :

(7) ‖fg‖2 ≤ C‖g‖Ṁp,d/s‖f‖Ḣs

Thus, belonging to the Morrey space Ṁp,d/s with p > 2 is a sufficient con-
dition for belonging to the space of multipliers from Ḣs to L2. The space
of such multipliers has been studied by several authors, including Maz’ya [5]
[6].

More generally, trace inequalities deals with nonnegative measures µ such
that

(8)
∫
|Iαf |p dµ ≤ C

∫
|f |p dx

A necessary condition on µ has been given by Kermann and Sawyer in [4].
It is now well known that, for dµ = |g|p dx, a sufficient condition on g for (8)
to hold (with 1 < p < d/α) is that g ∈ Ṁp1,d/α for some p < p1 ≤ d/α (see
[9] for instance for further references). Thus, if 1 < p <∞ and 0 < r < d/p,
if moreover p < p1 ≤ d/r, then, for f ∈ Lp and g ∈ Ṁp1,d/r we have

(9) ‖gIrf‖r ≤ C‖f‖Ṁp,q‖g‖r
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In this section, we shall check that (9) is no longer valid when p1 = d/r.
This has been known for long when pr = k ∈ IN (by considering functions
φ(x1, . . . , xd) = φ(x1, . . . , xk) with φ ∈ Lp(IRk)). Counterexamples have been
recently given by Qixiang Yang [12] for any r ∈ (0, d/p).

Our counterexample is slightly different from Yang’s example, and is
based on our sets Kβ

n , with β = d − pr. If g ∈ M(Ẇ r,p → Lp) = Ẋr,p,

we have by duality that, for all f ∈ L
p
p−1

(10) ‖Ir(fg)‖ p
p−1
≤ C‖g‖Ẋr,p‖f‖ p

p−1

We are going to exhibit f ∈ L
p
p−1 and g ∈ Ṁp,d/r such that ‖Ir(fg)‖ p

p−1
=

+∞. Using corollary 1, we take β = d−rp fix an increasing sequence (nk)k∈IN∗

of integers such that ‖Irµβnk‖ p
p−1
≥ k3. We define f =

∑
k∈IN∗

1
k
2nk(d−β) p−1

p 1Kβ
nk

and g =
∑
k∈IN∗

1
k
2nk(d−β) 1

p1Kβ
nk

. From Lemma 2, we get that f ∈ L
p
p−1 and

g ∈ Ṁp,d/r. Moreover fg ≥ 1
k2

2nk(d−β)1Kβ
nk
≥ 2−d 1

k2
µβnk . Hence, ‖Ir(fg)‖ p

p−1
≥

k for every k , and thus ‖Ir(fg)‖ p
p−1

= +∞. �

5 Non-interpolation results.

Let 1 < p0 ≤ q0 < ∞ and 1 < p1 ≤ q1 < ∞. Let 0 < θ < 1, 1
p

= 1−θ
p0

+ θ
p1

and 1
q

= 1−θ
q0

+ θ
q1

. If F is an interpolation functor such that, for any Banach

pair (A0, A1) and any bounded operator T from A0 to Lp0 (with operator
norm M0) and A1 to Lp1 (with operator norm M1) , then T is bounded from
F (A0, A1) to Lp with operator norm M ≤ CM1−θ

0 M θ
1 (where the constant C

does not depend on T ), then it is easy to see that F (Ṁp0,q0 , Ṁp1,q1) ⊂ Ṁp,q

[10] : it is enough to interpolate the operator norms of TQ : f 7→ 1Qf .
Thus, it is obvious that [Ṁp0,q0 , Ṁp1,q1 ]θ ⊂ Ṁp,q (complex interpolation

functor), [Ṁp0,q0 , Ṁp1,q1 ]θ,p ⊂ Ṁp,q (real interpolation functor). Similarly,
when p0 = p1 = p, we have [Ṁp,q0 , Ṁp,q1 ]θ,∞ ⊂ Ṁp,q (real interpolation
functor) .

Conversely, when p0/q0 = p1/q1 = p/q we may define for f ∈ Ṁp,q the

function F (z) = f
|f | |f |

(1−z) p
p0

+z p
p1 . This is a bounded continuous function of

z = x+ iy (for 0 ≤ x ≤ 1) with values in Ṁp0,q0 +Ṁp1,q1 , holomorphic on the
strip 0 < x < 1, with sup∈IR ‖F (iy)‖Ṁp0,q0 < +∞, sup∈IR ‖F (1 + iy)‖Ṁp1,q1 <
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+∞, and F (θ) = f . This proves that Ṁp,q ⊂ [Ṁp0,q0 , Ṁp1,q1 ]θ (complex
interpolation functor).

We shall now give our counterexamples :

a) Non-inclusion of Ṁp,q into [Ṁp0,q0 , Ṁp1,q1 ]θ,∞ when p0/q0 6= p1/q1 :
By a duality argument, it is easy to see that a Banach B is continuously

embedded into [Ṁp0,q0 , Ṁp1,q1 ]θ,∞ if and only the followingg assertion is true
: for every linear form T which is bounded from Ṁp0,q0 to IR (with operator
norm M0) and bounded from Ṁp1,q1 to IR (with operator norm M1), T is
bounded from B to IR and its operator norm M is bounded by C0M

1−θ
0 M θ

1

where the constant C0 does not depend on T .
Thus, we shall follow the strategy of [11] and exhibit a sequence of linear

forms Tn such that supn∈IN

‖Tn‖L(Ṁp,q→IR)

‖Tn‖1−θL(Ṁp0,q0→IR)
‖Tn‖θL(Ṁp1,q1→IR)

= +∞.

Our example is very simple : we just take Tn(f) =
∫
Kβ
n
f dx with β =

d(1− p/q). Our task is to estimate ‖Tn‖L(Ṁr,s→IR) for (r, s) = (p0, q0), (p, q)
and (p1, q1).

We have

|Kβ
n | = #(Kn)2−nd = Tn(1Kβ

n
) ≤ ‖Tn‖L(Ṁp,q→IR)‖1Kβ

n
‖Ṁp,q

From Lemma 2, we see that

‖1Kβ
n
‖Ṁp,q ≤ C2−d/q = C2−n(d−β)/p,

hence
‖Tn‖L(Ṁp,q→IR) ≥ C2−n(d−β)(1−1/p)

On the other hand, we have

|Tn(f)| ≤ |Kβ
n |1−1/pi(

∫
[0,1]d
|f |pi dx)1/pi ≤ C2−n(d−β)(1−1/pi)‖f‖Ṁpi,qi

and
|Tn(f)| ≤

∑
k∈Kn

∫
Qn,k

|f | dx ≤ C2nβ‖f‖Ṁpi,qi2
−nd(1−1/qi).

Thus, we have :

‖Tn‖L(Ṁpi,qi→IR) ≤ C2−n(d−β)(1−1/pi) min(1, 2n(β/pi+d/qi−d/pi))

12



If p0/q0 < p1/q1 (hence p0/q0 < p/q < p1/q1), we write

d/qi − (d− β)/pi = d/qi − dp/qpi = d(pi/qi − p/q)/pi

and find that

‖Tn‖1−θ
L(Ṁp0,q0→IR)

‖Tn‖θL(Ṁp1,q1→IR)
≤ C2−n(d−β)(1−1/p)2n(1−θ)d(p0/q0−p/q)/p0 .

Since (1−θ)d(p0/q0−p/q)/p0 < 0, we get that supn∈IN

‖Tn‖L(Ṁp,q→IR)

‖Tn‖1−θL(Ṁp0,q0→IR)
‖Tn‖θL(Ṁp1,q1→IR)

=

+∞.

b) Non-inclusion of [Ṁp0,q0 , Ṁp1,q1 ]θ,∞ into Ṁp,q when p0 6= p1 :

We may assume p0 < p1. Let f =
∑
n∈IN 2

n(d−β)
p 1Kβ

n
where

d > β ≥ dmax(1− p0

q0

, 1− p

q
, 1− p1

q1

).

Lemma 2 gives us that f /∈ Ṁp,q. If fN =
∑
n<N 2

n(d−β)
p 1Kβ

n
. Lemma 2

gives us moreover that fN ∈ Ṁp1,q1 with ‖fN‖Ṁp1,q1 ≤ C2
N(d−β)( 1

p
− 1
p1

)
=

C2
(1−θ)N(d−β)( 1

p0
− 1
p1

)
, while f−fN ∈ Ṁp0,q0 with ‖f−fN‖Ṁp0,q0 ≤ C2

N(d−β)( 1
p
− 1
p0

)
=

C2
−θN(d−β)( 1

p0
− 1
p1

)
. Thus f ∈ [Ṁp0,q0 , Ṁp1,q1 ]θ,∞. (Remark : this proves that

the statement in the introduction of [2] is false). �

6 The case β ∈ IN.

As we already underlined it, Theorems 2 and 3 are not really new. How-
ever, counterexamples were given only for special values of the indexes at
stake. Indeed, in [3], [4] or [11], the counterexamples are based on functions
f(x1, . . . , xd) = g(x1, . . . , xk) with g ∈ Lp(IRk); such functions f belong to

Lp,d−k(IRd) = Ṁp, pd
k (IRd). They correspond to integer values of β = d− k in

our construction.
In order to illustrate those cases, let us consider the function

f =
∑
n∈IN

2nα
1

(1 + n)γ
1Kβ

n

for 0 < α and 0 ≤ γ. When β = d − k with k ∈ IN∗, we may choose
Kβ
n = [0, 1

2n
]k × [0, 1]d−k. In that case, we find that f is of the same order
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of magnitude as 1
|x′|α(1+| lnx′|)γ 1[0,1]d with x′ = (x1, . . . , xk). Thus, we see that

our examples are straightforward generalizations of the classical counterex-
amples.
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