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Abstract :

We study the pointwise multipliers from one Morrey space to another
Morrey space. We give a necessary and sufficient condition to grant that the
space of those multipliers is a Morrey space as well.
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Introduction.

This paper deals with multiplication by functions in Morrey spaces.
For 1 < p < oo and 0 < \ < d, the Morrey space £, (IR%) is defined as the
space of locally integrable functions on IR? such that

(1) sup R [ |F()lF dr < oo

where Q is the collection of cubes () and where Rg is the size of ) =
rg + [0, RQ]d.



The notation £, (used for instance by Peetre [8]) is not used by all au-
thors. Vega uses £P with the condition that

o' L p 1/p
s 3 J, I o)™ < o0

where |Q] is the Lebesgue measure of Q. We have £, x = L? with A\ = d—pa.
We shall use another notation, the space M?9 defined by

sup RYT ([ |f)lr da)'’r < oo
QeQ Q

We have MP? = L£*? with ¢ = d/ov.

The restrictions on A\, a or ¢ are the following ones : 0 < A < d (if f
satisfies inequality (1) for A < 0 or A > d, then f = 0), and thus 0 < o < d/p
and p < g < +o00. Moreover, we have :

L0 = Ld/pp — Npp — [P
~ Lyg=LOP = MP>® = [
—for o =d/q, LY C MP9 = L%P C B,

We define || f|] yyna = supgeq Ry " *(Jo | f(@)|P da)!/?. We have the Holder
estimate : if f € MP% and g € MPY9 with 1/p = 1/po 4+ 1/p1 < 1 and

1/g=1/qo+1/q, then fg € MP* and || £g|l yypa < || f || yrouao 91l ygorar - The
motivation of our paper is to study the reverse inequality : when do we have

||g||Mp17‘11 <C sup ||fg”MP7q

I £l srpoa0 <1

As we shall see, a necessary and sufficient condition to get this reverse
inequality is that q;/p1 > ¢o/po (or, equivalently, if MP#% = L,»,, that
A1 > Xg). In the case Ay < Ag, we construct a counter-example based on a
fractal set K? with Hausdorff dimension 8 = d — d*;’—i (or B=d—pra; = \).
This fractal set will allow us to recover simple counterexamples for trace
inequalities or interpolation of operators.

1 Statement of the results.

We first consider the problem of pointwise multipliers between Morrey spaces.
Our result is the following one :



Theorem 1: ' ‘
Let 1 <p<qand1l <py<q <oo. Let M(MPo% — MP) be the set
of pointwise multipliers from MPo% to MP49 with norm

HfHM(MPO’quMP’q) = sup  [|f9llyma
lgll yrpo.20 <1

Then :

i) M(MPoto — MP) 2 {0} if and only if p < po and q < qo.

i) If p <po (1/p=1/po+1/p1) and ¢ < qo (1/q = 1/qo + 1/q1), then we
have the embeddings MP " C M(MPo-9 — MP9) C MPD

i) MPot = M(MPo — MP9) if and only if qi/pr > qo/po. In this case,
we have equality of norms.

We shall next consider the problem of trace inequalities. We will show
that the limit case is not fulfilled for the Fefferman-Phong inequality [3] :

Theorem 2 . _
Let 1 < p < oo and 0 <1 < dfp. Let M(W"™P — LP) be the set of
pointwise multipliers from WP to LP, with norm

1A i smy = sup [[F 1" gl
lgllp<1

Then :
i) If p < p1, then we have the embeddings MPra/r M(W”’ — D’) C MPpalT
i) M(W™P — LP) #£ MPa/r

We shall end with Ruiz and Vega’s counterexample for interpolation [11]
and give a counterexample for every case when interpolation fails :

Theorem 3
Let 1 <pg<q<o0and 1 <p <q < oo. Let0<9<1,1172170—|—i

and % = lq;(f)—k(%. Then :
i) We have [Mpo,qo’ Mﬁ“‘“]g C MP9 (complex interpolation)
ii) [MPo-9o MPrat]y = MP1 (with equivalence of norms) if and only if po/qo =

pi/q ) ] )
iii) We have [MPo% MPr®],  C MP9 (real interpolation)



iv) MP9 C [MPoso, NPvar], o (continuous embedding) if and only if po/qo =

Pl/ﬂh )
v) [MPodo, MPraly o MP9 if and only if po = p

2 The fractal set K”

In this section we construct a fractal subset K7 of IR (with Hausdorff dimen-
sion 3 € [0,d)). We shall use the dyadic cubes Q;, = [T, [k:277, (k;+1)277] :

1g,.(x) = Lo ya(2’a — k).

We inductively define K f = Ukek, @ in the following way :

) K§ = Qoo = [0.1]°

ii) Let K = Uper, Qjp- If #(K;) < 20+DA=d then we keep in each Qjr k€
K;, the 2d dyadic cubes of size 270+ contalned in @k, so that Kfﬂ K'B
and #( J+1) =27 #(K i)

iii) Let KJ = Ukek,; Qi If #(K;) > 20T~ then we keep in each Qjy,
k € K], only one dyadic cube Q;1 a1 of size 27UFV) contained in Q;y, so
that K/ | € K7 and #(K;41) = #(K).

By induction, we see that 279~ < #(K;) < 297 :
~#(Ko) =1= 20@
—in case ii) we have QHD-d _ 9if-dys < 2V H(K;) = #(Kjyy) < 2420F08~d =
2(+1)8

— in case iii) we have 2018~ d < #(K) = #(K; ) < 208 < 2U+D8
If Q = Q, is a dyadic cube contained in [0, 1]¢ such that |Q N K#| > 0,
then we have |Q N K| = |Q| if j > n and |Q N K?| = K”))Q ndif 5 <n

n— Kn n—
(with 27920=9) < £ < 9d2(n=1)3),

The next step is to introduce the measures p), = %1 w6 dr. This is a

K%

sequence of probability measures and we may find a subsequence (,ugk) kEN
which converges vaguely to a probability measure p®. This measure u” i
supported by the compact set K# = M,enK”.



If @ = Q, is a dyadic cube contained in [0,1]%, such that p?(Q) > 0,
then we have p?(Q) = ﬁ&) and thus 2777 < #(Q) < 292797, Thus, we find

that K” has Hausdorff dimension 3 and that 0 < H?(K*) < +oo0.

A classical result of potential theory [7] [1] then states that the Riesz
potential I*u? (convolution of x” with a kernel k%(z) = Ca,d\ﬂ%) satisfies
the following equality :

Lemma 1 :
Forl<p<oo,0<a<d/pandfp=d-— pa,

2) / (Iop®)?T do = +00

Proof :  We have F(I%u) = [£|"*f1. Thus, if A* is the operator defined
by F(A%p) = [£]%@, we have [pdu® = [I*uPA%p dx. We choose w € D
such that 1jy ¢ < w. We then define

w;(z) = Z w2z — k)

kEKj

Since w; > 1,5 > 1gs, we find that
J

(3) lzuﬁ(K’B)S/]auﬁAawj dx
We now estimate the size and decay of

A Mw(z — k)

kez?

i) for v € IN?, we have obviously

I3 Mdw(e = k))llp < Cow( 30 PP

kez? kez?

ii) by interpolation, we get

(4) || A% ( Z Mw(x — k) < Couf Z |)\k|P)1/p

keZd kez?



iii) Since A* is a convolution with a distribution which is equal to C’%dwﬁ,
we find that, for R larger than 20 where ¢ is the diameter of the support of
w’

1,_ M A“w(x — < C,, / el |w d
3 tsprl Ao RIS Coa [ e 3 ulletl
so that
(5) I3 Lok rlMeAw(@ — k)|l < CawR™(Y [Aef?)?
kEZd kEZd

Now, assume that ¢ € L71. From (3), we would get
1< |1 ﬁH Hld(;p,Kf)>R2 i w]”p"’"Hld(x K?)<R2- I ﬁ” NAwilly = Ajr+Bijig.
The control of A, is given by (5) :

—all T jo—jd —a| To
Ajr < ORI o, 27770 (#(K;) P < R 1) 2,

Thus, we could choose R > 0 such that : sup;cn Ajr < 1/2. Now, we control
B,  through (4) :

.ai.é o
Bjr < OH1d(z,Kf)§R2*an”6”f%12] Te (#(K))P < CHld(a:,Kf)SRQ*J'I “BH%
Since
{z € R? /d(z, K}) < R277} < C#(K;)(1 + R)"279 < O(1 + R)*213~9,

we find that lim; ., Bj g = 0. This would give 1 < 1/2 ... o
Lemma 1 has the following corollary :

Corollary 1 :
Forl<p<oo,0<a<d/pand f=d-—pa,

(6) sup (Ia,uﬁ)zf%l dx = +o0

nelN



The sets are K are very interesting for generating examples and coun-
terexamples in Morrey spaces. Indeed, we have the following result :

Lemma 2 :
Let (o) be a sequence of non-negative numbers. Let f = 3, cn nlpes.
Then the following statements are equivalent :
i) feLr
i) Ypen 227D < oo
If moreover p < q < %, then i) and i) are equivalent to
iii) f € MP9
Proof : i) = ii) is obvious, since ¥, enahlps = Yen aﬁlig <

(ZnelN O‘anﬁ )p'
Conversely, we have

SIS antl de < [ (3 ot de < (3 g2

nelN neN k=0 neN k=0
hence .
/ 1S anlsf? de < 37 (3 a2k E-A/mginRE-a/py
neN " neN k=0
and finally

/

So that i) = ).

Since f is supported in [0, 1]¢, we have, for p < ¢ < df—pﬁ, fe MPES =
feMPi= felr,

We now prove f € [P = f € MPEE Tt is enough to estimate the norm
1/1q; |y for a dyadic cube (with j > 0). We write f; = 35, anlys and
g; = f — fj. We have

/Q 95" dz < /Q S ) 1ys da <2737 (30 a2
7,k

ik n>j k=j neN k—j

oo [e%¢)
Y anls P do < (3 af2t ) (B 270y,
nelN k=0 k=0

hence

[ gl dz < Clflp2 .
Qjk

J

7



On the other hand, we have

n(d—pB) .
/ |filP de <2793 a,)P < Cllflb2- N2 = Pl < C/HfHﬁ?_]’B-
Qi n<j n<j
Thus, we find that f € LP = f € LPP = Vi3 o

3 Pointwise products.

In this section, we prove theorem 1. Let 1 <p < gand 1 < py < go < 00.
We study the space X = M (MPo-90 — MP9).

a) Case ¢ > qp : Let @ be a cube. Then we have, for f € X,

_P _p B
157 do < 120l Q1 < NI Lol nl @ < 17 IQP 7/

Hence, f € Lpdi-p/atp/o) 1f ¢ > qo, d(1 — p/q + p/q) > d, hence
Lrd0=r/atp/o) = [0},

b) Case p>py: If fe X and p € D, then fxp e X :

I * @)gllywa < /Iw(y)lllf(x = 9)9(@) [ dy < Nl Fllx N9l yrpo.ao

If f* ¢ #0, we may find v > 0 and a cube @ such that v|f % ¢| > 1. This
proves that 1o € X. In that case, we would have Mpoto < IP - But this is

n(d— /3)
false if p > po : take for instance f = 37,4 %2 ?0 with 8 = d — de.

Using lemma 2, we find that f € MPo% but f ¢ LP.

Kﬁ’

c) Casep <ppand g < qo: Inthat case, we have X # {0}. For instance,
1[01](1 G X If g 6 MPO q0 then g G ]\41)(1O thus 1[01]dg E Mpqo ﬂ Lp -
MPo O VPP — MPA.

d) Easy embeddings : Let p < py and ¢ < qo. We write 1/p =
1/po+1/p1 and 1/g =1/qo + 1/q:. We have seen (when discussing the case
q > qo) that X c £prd0-p/atp/w0) — M2 Moreover, Holder inequality gives
us easily that MPr C X.



e) Case ¢q1/p1 > qo/po @ I qo = q, hence ¢ = 400, we have L® =
M C X C MP9 = [, Thus, we consider only the case ¢ < go. (Thus,
q1 < 400, hence p; < +00). If f € X, then fr = flporl ) |f@)<r € X
and [ frllx < If]lx. Moreover, |[fllyrm o = Subpsg | frnll - Thus, it is
enough to prove that || f|yp.a < C|fllx for f € L' N L>® C MP»%. For a

cube @), we write :

o de= [ 17171

and we thus have

/QW“ do < 51 Fose  oae 1O =I5 Q177 n QI

Pl qo*

1-2
MP0:90 |Q| 1

Kl1elfI™s

Since goB < g1, we have [[1of|| < Q| T |1 f|pproar and thus

pl QO PO

_ 1_, 1 _ 1_i
/Q|f|m dr < || FI N B | Q5P P ot 5i8) = || F1% [ £ 1207 Q)

|| fllx. Since the reverse inequality is obvious, we find that || f{| ye1.00 = || x-

Thus, [|f1%,, . < IfI%IfIRi . and we may conclude that || f[|ym.e <

f) Case ¢1/p1 < qo/po : If ¢ < pi1, then M9 = {0} # X. Thus,
n(d—p)
we now consider the case p; < ¢1 < plg—g. Let f=3en2 7 1o with

B =d-— %. From Lemma 2, we know that f ¢ MP%. We shall prove
that f € X. Let g € MPo%. We estimate || fg1g]|, for a cube Q. Since f is
supported in [0,1]¢, it is enough to take dyadic cubes @, with j > 0. On

Kﬁ—K

n

nd=p) nd=p)
1 we have 2 <f< C’2 , So that

B)p

Pdr <O S 25 / oy
/Q |fgl? dx Y 2w ijnglgl x

Jk nelN

When n < 7, we write

jid(1— 2
Sy oot e < [ 1P de < gl 20

When n > j, we write

#(K —
[l de= 3 [ g dn < By, 20

leKy, Qg k Qn l




Thus, we get

/Q falP dz < Cllgl% a0 (D EATID LT 9(n=d(=Gp)gmnd(1=35)ond 3ty
i,k

J n<j n>j

or, equivalently,

L 159l dw < Cllgl,2 0 D30 2 4 30 2D
Qj .k

n<j n>j

We have 1 1 1 . 1
1t 1 e 1 _al
p Po D1 Pigo D1 P1q

so that p/q — p1/q1 < 0. This gives

[, Vol dr < Cllgly 240

J

and thus f € X.

4  Trace inequalities.

In [3], Fefferman states a theorem of Fefferman and Phong : for s < d/2,
f € H® and g € MP?* with 2 < p < d/s, we have :

(7) 1fgllz < Cligllyrpars 1]

Thus, belonging to the Morrey space MPYs with p > 2 is a sufficient con-
dition for belonging to the space of multipliers from H® to L?. The space
of such multipliers has been studied by several authors, including Maz'ya [5]
[6].

More generally, trace inequalities deals with nonnegative measures p such
that

(8) Juesrap<c [ do

A necessary condition on p has been given by Kermann and Sawyer in [4].
It is now well known that, for du = |g|P dz, a sufficient condition on g for (8)
to hold (with 1 < p < d/a) is that g € MP14/* for some p < p; < d/a (see
9] for instance for further references). Thus, if 1 < p < oo and 0 < r < d/p,
if moreover p < p; < d/r, then, for f € LP and g € MPHAT we have

(9) g2 fllr < Cllf Nl yroallglls

Hs

10



In this section, we shall check that (9) is no longer valid when p; = d/r.
This has been known for long when pr = k£ € IN (by considering functions
(x4, .., 2q) = d(x1,...,x1) with ¢ € LP(IR¥)). Counterexamples have been
recently given by Qixiang Yang [12] for any r € (0,d/p).

Our counterexample is slightly different from Yang’s example, and is
based on our sets K? with 3 = d —pr. If g € M(W’"’p — LP) = XrP
we have by duality that, for all f € LT

(10) 1L (f9)ll 2, < Cllglloll 1 2,

We are going to exhibit f € L7 1 and g € MP%" such that I1-(fo)ll 2. =
2

+00. Using corollary 1, we take § = d—rp fix an increasing sequence (nk) KEN*
of integers such that || I, 12 || > k®. We define f = 3 pen- %27%( B 1,

K7,

and g = > pene 12"’“(517 )Pl From Lemma 2, we get that f € L7 and

"k

g € MP9/" Moreover fg > 1 L omk(d= 5)1 KE, > 2" dkzﬂnk Hence, ||Ir(fg)||ﬁ 2

k for every k , and thus Hl}(fg)H%1 = +00. o

5 Non-interpolation results.

Let1<po<q0<ooand1<p1<q1<oo Let 0 < 6 <1, 1:11;)9+p€1
and é = 1(1;09 + & ” . If F'is an interpolation functor such that, for any Banach
pair (Ag, A1) and any bounded operator T from Ay to LP° (with operator
norm M) and A; to LP* (with operator norm M) , then 7" is bounded from
F(Ag, Ay) to LP with operator norm M < C Mg~ M? (where the constant C
does not depend on T)), then it is easy to see that F(MPow NP1y ¢ NP
[10] : it is enough to interpolate the operator norms of Ty : f — 1o f.

Thus, it is obvious that [Mpo’qo MPr), € MP4 (complex interpolation
functor), [MPo%o, MPra]y  C MP9 (real interpolation functor). Similarly,
when py = p1 = p, we have []W’q0 Mpql]gpo C Mpa (real interpolation
functor) .

Conversely, when pO/CIO = p1/Q1 = p/q we may define for f c M]Lq the
function F(z) = i |f | (1=#)35F231 . This is a bounded continuous function of

z = x+iy (for 0 < z < 1) with values in M?o% 4 VP19 holomorphic on the
strip 0 < = < 1, with supcg [|[F(2y) || yrrora0 < +00, supeg [|[F(1+iy) || ypra <

11



+00, and F(#) = f. This proves that MP4 C [MPo% MPra], (complex
interpolation functor).

We shall now give our counterexamples :

a) Non-inclusion of M? into [MPo% MP19], . when po/qo # p1/q1 :
By a duality argument, it is easy to see that a Banach B is continuously
embedded into [M P09 N[ pra], o if and only the followingg assertion is true
: for every linear form T which is bounded from MP% to IR (with operator
norm M) and bounded from M?>% to IR (with operator norm M), T is
bounded from B to IR and its operator norm M is bounded by CyMg % M?
where the constant Cy does not depend on T

Thus, we shall follow the strategy of [11] and exhibit a sequence of linear
1Tl 2 (xrpra—r) = 400

forms T, such that sup,,cp TN AT
e (arpos90 -r) M £(MP1:91 5 R)

Our example is very simple : we just take T,,(f) = [is f dv with 3 =
d(1 —p/q). Our task is to estimate || T, ;yrrsyg) for (r,8) = (Po, @), (P, q)

and (p1, q1).
We have

|KB’ = #(K,)2” e Tn(1}(ff> < “Tn“ﬁ(MM—ﬂR)HlKﬁHMM

From Lemma 2, we see that
||1KB||MM < (02 d/q — rg—n(d— 5)/17

hence
||Tn ||£(Mpvq_>]R) > OQ_n(d_B)(l_l/P)

On the other hand, we have

T ()] < 1

Pi dm)l/pz < 2~ Md=pF)(1=1/pi)
[0,1]

f

f”MPz‘"h‘

and

TN T [ U] de < O 200,

keKn

Thus, we have :

1T, ||£ Vi) < 2~ (d=B)(1=1/pi) min(1, on(B/pitd/qi— d/pz))

12



If po/qo < p1/q1 (hence po/qo < p/q < p1/q1), we write
d/qi — (d—B)/pi = d/q; — dp/qp; = d(pi/ @ — p/q)/pi
and find that

1T, ”E - HTnHi NP R < 2~ ™Md=B)(1=1/p)gn(1-0)d(po/90—p/a)/Po
(

[y

Since (1-0)d(po/qo—p/q)/po < 0, we get that sup, I Tl
+00.

L(MPO ‘10_>R)|| "HL(MIH 91 5 R)

b) Non-inclusion of [MPo% NP, into M?1 when py # p;
—6)

We may assume py < p1. Let f =3, cn 2 1,5 where

d>p>dmax(l1—21-2 1D
do q ¢
: : n(d-B)
Lemma 2 gives us that f ¢ MP? If fy = Y, cnv2 7 1

gives us moreover that fn € MP191 with N e < CoNd=h
1
C2 NG5 while f—fi € MPO0 with || f— fi |y < C2V ¢ PETE) =

02 NG5 Thus f e [Mroswo Mpra]y - (Remark : this proves that
the statement in the introduction of [2] is false). o

Lemma 2
_ )(l_i) _

p p1

K2

6 The case 5 € IN.

As we already underlined it, Theorems 2 and 3 are not really new. How-
ever, counterexamples were given only for special values of the indexes at
stake. Indeed, in [3], [4] or [11], the counterexamples are based on functions
f(zy, ... 2q) = g(a1,...,x;) with g € LP(IR¥); such functions f belong to
Lyax(RY) = MrE (IRY). They correspond to integer values of 3 = d — k in
our construction.

In order to illustrate those cases, let us consider the function

1
f 2na 1 5
% (1+n)r
for 0 < o and 0 < v. When 8 = d — k with & € IN*, we may choose
KB = [0, 5:]F x [0,1]7%. In that case, we find that f is of the same order

13



of magnitude as ml[m]d with ' = (x1,...,x%). Thus, we see that

our examples are straightforward generalizations of the classical counterex-
amples.
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