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ABSTRACT

We reprove various existence theorems of regular solutions for the Euler equations, using classical tools of real
harmonic analysis such as singular integrals, atomic decompositions or maximal functions.
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Introduction.

This paper contains no actually new theorem. It aims to give a new proof of well-established results of existence
of solutions to the Euler equations in spaces such as Besov spaces or Triebel–Lizorkin spaces. Following the seminal
work of J.Y. Chemin [CHM 98], a large number of papers were written on that topic, mainly based on the use of
the Littlewood–Paley decomposition. This approach is very efficient, especially in the critical case of B1

∞,1 [PAK
04], but can lead to tedious computations, as in the case of Triebel–Lizorkin spaces [CHN 09].

In this paper, we shall try not to use the Littlewood–Paley decomposition where it can be avoided . More
precisely, we shall relax our computations and get rid of the computation of the Littlewood–Paley decomposition
of the solution, and replace it by some more or less classical lemmas on transport equations, singular integral
operators, atomic decompositions, and interpolation. This will allow us to recover existence results in Besov spaces
and in Triebel–Lizorkin spaces.

1. A general scheme for solving Euler equations.

We consider a divergence-free vector field ~v0 = (v0,1, . . . , v0,d) on IRd :

(1) div ~v0 =
d∑

i=1

∂iv0,i = 0

and the associated Cauchy problem for the Euler equations

(2)


∂t~v + ~v.~∇~v = ~∇p

div ~v = 0

~v|t=0 = ~v0

~v is assumed to be a bounded Lipschitz vector field (more precisely, we shall consider v ∈ (L∞((0, T ),Lip))d, where
Lip is the space of bounded functions with bounded derivatives).

If we take the divergence of those equations, we find that

(3) ∆p =
d∑

i=1

d∑
j=1

∂i∂j(vivj)

so that

(4) ~∇p =
d∑

i=1

d∑
j=1

~∇∂i∂j

∆
(vivj) + ~∇q with ∆q = 0.
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For ~v ∈ (Lip)d and div ~v = 0,
∑d

i=1

∑d
j=1

~∇∂i∂j

∆ (vivj) is a well-defined distribution and may be written as the
gradient of a distribution : if ~K is the kernel of the convolution operator 1

∆
~∇, then we have | ~K(x)| ≤ C|x|1−d

and |∂i∂j
~K(x)|−d−1 [ for |x| 6= 0], so that we may write, taking ϕ ∈ D be equal to 1 on the ball |x| ≤ 1, that∑d

i=1

∑d
j=1

~∇∂i∂j

∆ (vivj) =
∑d

i=1

∑d
j=1(ϕ ~K) ∗ (∂jvi∂ivj) +

∑d
i=1

∑d
j=1 ∂i∂j((1 − ϕ) ~K) ∗ (vivj) and hence we get

that
∑d

i=1

∑d
j=1

~∇∂i∂j

∆ (vivj) belongs to (L∞)d. We shall consider only cases where q = 0 (excluding the action of
harmonic polynomials).

The Euler equations we shall consider will then be

(5)


∂t~v + ~v.~∇~v =

∑d
i=1

∑d
j=1

~∇∂i∂j

∆ (vivj)

div ~v = 0

~v|t=0 = ~v0

Throughout the paper, we shall look for existence of solutions in (L∞((0, T ), E)d, where E will be a Banach
space embedded into Lip; we are not looking for differentiabilty with respect to t, hence the equations will be
satisfied in a weak sense (in the distribution sense). The spaces E we shall consider will be actually embedded
in a smaller space : E ⊂ B1

∞,1 ⊂ Lip. It is known that, when ~v0 belongs to (B1
∞,1)

d, then (5) has a solution
~v ∈ (C([0, T ), B0

∞,1)∩L∞((0, T ), B1
∞,1))

d and that this solution is unique [PAK 04] (see [BAH 11] for a larger class
of uniqueness obtained by Danchin : ~v ∈ (C([0, T ), B0

∞,∞) ∩ L1((0, T ), B1
∞,∞))d ). Thus, we shall be interested in

the problem of proving existence of solutions keeping the regularity of the initial value ~v0 ∈ Ed, and pay no special
interest in the uniqueness issue (as it has been settled by Danchin [BAH 11]).

While in dimension d = 2, the study of the equations is easy through the control of the vorticity ω = curl ~u
(classical results are [WOL 33 ] and [YUD 63]), the equations are more difficult to deal with when d ≥ 3. We shall
now rewrite equations (5) in a more convenient way for further study. We consider the Leray projection operator
IP on the solenoidal vector fields :

(6) IP~f = ~f − ~∇ 1
∆

div ~f ;

this is not defined for all distributions, but at least it is well defined on vector fields of the form
∑d

i=1 ∂i~ui where
the ~ui are bounded vector fields. For ~w =

∑d
i=1 ∂i(vi~v) = ~v.~∇~v = ~v.IP~∇~v, we find that

(7)
d∑

i=1

d∑
j=1

~∇∂i∂j

∆
(vivj) = ~w − IP~w =

d∑
i=1

viIP∂i~v − IP∂i(vi~v)

so that we get finally

(8)


∂t~v + ~v.~∇~v =

∑d
i=1[vi, IP∂i]~v

~v|t=0 = ~v0

div ~v = 0

Equations (8) are the Euler equations we shall study in the rest of the paper.

We shall consider the following linear equations associated to the non-linear problem (8)

(9)

 ∂t
~f + ~v.~∇~f =

∑d
i=1[vi, IP∂i]~f

~f|t=0 = ~v0

In equations (9), we see two parts. The left-hand part ∂t
~f+~v.~∇~f is a transport equation through the vector field ~v;

this can be solved through the use of characteristic curves when ~v ∈ L1
tLip. The right-hand part

∑d
i=1[vi, ∂iIP]~f is a

sum of Calderón’s commutators (commutators between pointwise multiplication and singular convolution operators
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with homogeneous kernels of exponent −d− 1); those commutators are generalized Calderón–Zygmund operators
when the multipliers vi are Lipschitz functions. Thus, the same kind of minimal regularity on ~v is required to deal
with both parts of the equations (9).

Let us pay now a few words on those two aspects of the equation. The characteristic curves are defined by
s 7→ Xt,x(s) where Xt,x is the solution of

(10)


d
dsXt,x(s) = ~v(s,Xt,x(s))

Xt,x(t) = x

But, for a divergence-free vector field ~v ∈ L1
tLip, the homeomorphism x 7→ Xt,x(s) is bi-lipschitzian and preserves

the Lebesgue measure, so that it operates on many function spaces. For instance, we have the following lemma :

Lemma 1 :
Let s 7→ Xt,x(s) be the characteristic curves associated to a divergence-free vector field ~v ∈ L1([0, T ], (Lip)d).

Then there exists two constants C0 and C1 such that, for g ∈ BMO and 0 ≤ s ≤ t ≤ T , we have

(11) ‖g(Xt,x(s))‖BMO ≤ C0‖g‖BMO e
C1

∫ t

s
‖~∇⊗~v‖∞ dσ

.

Proof :
For a measure-preserving bi-Lipschitzian homeomorphism X, we have for any ball B = B(x0, r0) and any

constant λ

(12)
1
|B|

∫
B

|g(X(x))−mB(g(X))| dx ≤ 2
1
|B|

∫
B

|g(X(x))− λ| dx = 2
1
|B|

∫
X(B)

|g(y)− λ| dy

Let M be the Lipschitz constant of X (M = supx6=y
‖X(x)−X(y)‖

‖x−y‖ ) and B1 = B(X(x0),Mr0), λ = mB1g. We have
X(B) ⊂ B1 so that (12) gives

(13)
1
|B|

∫
B

|g(X(x))−mB(g(X))| dx ≤ 2
Md

|B1|

∫
B1

|g(y)−mB1g| dx ≤ 2Md‖g‖BMO

Thus, we have (11). �

A Calderón commutator is a commutator between an operator MA of pointwise multiplication by a function
A and a singular convolution operator TK with a homogeneous distribution K of exponent −d− 1 which is smooth
outside from {0}. The distribution kernel of [MA, TK ] is given by L(x, y) = (A(x)−A(y))K(x−y). If A is Lipschitz,
then [MA, TK ] is a generalized Calderón–Zygmund operator [CAL 65] [MEY 97] [LEM 02] : T is bounded on L2

and its kernel satisfies, outside from the diagonal x = y,

(14)


supx6=y |x− y|d|L(x, y)| < +∞

supx6=y |x− y|d+1|~∇xL(x, y)| < +∞

supx6=y |x− y|d+1|~∇yL(x, y)| < +∞

The operator IP is a matrix of scalar operators (Pj,k)1≤j,k≤d and thus
∑d

i=1[vi, IP∂i] is a matrix of Calderón–
Zygmund operators Tj,k =

∑d
i=1[vi, Pj,k∂i]. But the operators Tj,k enjoy further interesting properties. Indeed, we

have

(15) Tj,k(1) = −
d∑

i=1

Pj,k∂ivi = Pj,k(div ~v) = 0

and similarly T ∗j,k(1) = 0, so that they operate as well on many function spaces. For instance, a Calderón–Zygmund
operator T maps boundedly L∞ to BMO, but it maps as well boundedly BMO to BMO if and only if T (1) = 0
[LEM 84]. Thus, we have the following lemma :
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Lemma 2 :
If ~v ∈ (Lip)d and div ~v = 0, then there exists a constant C2 such that, for every g ∈ BMO, we have

(16) ‖
d∑

i=1

[vi, Pj,k∂i]g‖BMO ≤ C2‖~∇⊗ ~v‖∞‖g‖BMO

Combining Lemmas 1 and 2, we easily get (by an unusual proof) the following (well-known) result about the
conservation of the solenoidal character of the vector fields for solutions of equations (9) [BAH 11] :

Proposition 1 :
Let ~f ∈ (L∞((0, T ),Lip)d be a solution of the system

(17)

 ∂t
~f + ~v.~∇~f =

∑d
i=1[vi, IP∂i]~f

~f|t=0 = ~v0

where ~v ∈ (L1((0, T ),Lip)d, div ~v = 0, ~v0 ∈ (Lip)d and div ~v0 = 0. Then, we have : div ~f = 0.

Proof :
We are going to prove that ~f = IP~f in BMO. Indeed, we have

(18)

 ∂tIP~f + IP(~v.~∇)~f = IP
∑d

i=1[vi, IP∂i]~f = IP(~v.~∇)IP~f − IP(~v.~∇)~f

IP~f|t=0 = ~v0

and

(19)

 ∂t
~f + ~v.~∇~f =

∑d
i=1[vi, IP∂i]~f = ~v.~∇IP~f − IP(~v.~∇)~f

~f|t=0 = ~v0

so that

(20)

 ∂t(~f − IP~f) + ~v.~∇(~f − IP~f) = IP(~v.~∇)IP~f − IP(~v.~∇)~f =
∑d

i=1[vi, IP∂i](~f − IP~f)

~f − IP~f|t=0 = 0

and thus

(21) ~f − IP~f =
∫ t

0

( d∑
i=1

[vi, IP∂i](~f − IP~f)
)
(s,Xt,x(s)) ds

where X is the solution of

(22)


d
dsXt,x(s) = ~v(s,Xt,x(s))

Xt,x(t) = x

Using Lemmas 1 and 2, we find that

(23) ‖~f − IP~f‖BMO ≤ C0C2

∫ t

0

e
C1

∫ t

s
‖~∇⊗~v‖∞ dσ‖~∇⊗ ~v‖∞‖~f − IP~f‖BMO ds

which is enough (due to the Gronwall lemma) to grant that ‖~f − IP~f‖BMO = 0. �

Proposition 1 will lead us to choose our way of constructing solutions to equations (8). The classical way
[CHM 98] [BAH 11] is to construct inductively approximations ~hn of the solution ~v as solutions of the problem

(24)

 ∂t
~hn+1 + ~hn.~∇~hn+1 =

∑d
i=1[hn,i, IP∂i]~hn

~hn+1 |t=0 = ~v0
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but the intermediate solutions ~hn are not divergence-free, so that the operator Tn =
∑d

i=1[hn,i, IP∂i] on the left-
hand side of (24) doesn’t satisfy Tn(1) = T ∗n(1) = 0. Thus, we shall prefer the following scheme (as in [CHN
09]) :

The scheme we shall follow to sove the Euler equations is then the following one : starting from ~f0 = ~v0, we
shall try to find a solution ~fn+1 ∈ L∞t Lip of the equation

(25)

 ∂t
~fn+1 + ~fn.~∇~fn+1 =

∑d
i=1[fn,i, IP∂i]~fn+1

~fn+1 |t=0 = ~v0

If this can be done, we will have (by induction) ~∇. ~fn = 0.
In order to compute ~fn+1, we define inductively ~gn,k as ~gn,0 = ~v0 and

(26)

 ∂t~gn,k+1 + ~fn.~∇~gn,k+1 =
∑d

i=1[fn,i, IP∂i]~gn,k

~gn,k+1 |t=0 = ~v0

The problem is now to prove the convergence of ~gn,k to ~fn+1 (as k → +∞) and of ~fn to ~v (as n→ +∞).

2. The abstract theory : the Cauchy problem in As.

In this section, we are going to solve equations (8) in an abstract space A1+σ. A1+σ will belong to a scale of
Banach spaces As (where s > 0 stands for a regularity index) which satisfies the following hypotheses:

� Hypothesis (H1) : integrability
As ⊂ L1

loc(IR
d) (continuous embedding)

� Hypothesis (H2) : monotony
For s1 < s2, As2 ⊂ As1

� Hypothesis (H3) : regularity
f ∈ A1+s ⇔ f ∈ As and ~∇f ∈ As (with equivalence of the norms ‖f‖As+1 and ‖f‖As + ‖~∇f‖As)

� Hypothesis (H4) : stability
If a sequence (fn)n∈IN is bounded in As and converges in D′(IRd) then the limit belongs to As and we have

‖ limn→+∞ fn‖As ≤ Cs lim infn→+∞ ‖fn‖As . (This is usually checked by using the theorem of Banach–Steinhaus,
when As is a dual to a Banach space of functions in which D is densely and continuously embedded)

� Hypothesis (H5) : invariance
The map (f, g) ∈ D × As 7→ f ∗ g extends to a bounded bilinear operator from L1 × As to As. (Due to

hypothesis (H4), it is equivalent to the invariance through translations : there exists a constant Cs such that for
all x0 ∈ IRd and f ∈ As we have ‖f(x− x0)‖As ≤ Cs‖f‖As).

� Hypothesis (H6) : interpolation
If T is a linear operator which is bounded from As1 to As1 and from As2 to As2 then it is bounded from As

to As for every s ∈ [s1, s2] and ‖T‖L(As,As) ≤ C(s, s1, s2) max(‖T‖L(As1 ,As1 ), ‖T‖L(As2 ,As2 )).

� Hypothesis (H7) : transport by Lipschitz flows
Let ~u ∈ L1((0, T ),Lip) be a divergence-free vector field and let f0 ∈ As for some s ∈ (0, 1). Then the solution

f ∈ C([0, T ], L1
loc) of the transport equation

(27)

 ∂tf + ~u.~∇f = 0

f|t=0 = f0

satisfies sup0≤t≤T ‖f(t, .)‖As ≤ Cse
Cs

∫ T

0
‖~u‖Lip dt‖f0‖As .

� Hypothesis (H8) : singular integrals
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Let T be a bounded linear operator from D(IRd) to D′(IRd) (with distribution kernel K(x, y) ∈ D′(IRd× IRd))
which satisfies the following conditions

• T is bounded on L2 : ‖T (f)‖2 ≤ C0‖f‖2
• outside from the diagonal x = y, K is a continuous function such that |K(x, y)| ≤ C0

1
|x−y|d(1+|x−y|)

• outside from the diagonal, K satisfies |~∇xK(x, y)| ≤ C0|x− y|−d−1 and |~∇yK(x, y)| ≤ C0|x− y|−d−1

• T (1) = T ∗(1) = 0 in BMO
Then, T is bounded from As to As for all 0 < s < 1 and ‖T‖L(As,As) ≤ CsC0

We further consider an hypothesis on some σ > 0 :
� Hypothesis (H9) : pointwise products with Aσ

Aσ ⊂ L∞ (continuous embedding) and, for all s ∈ (0, σ], the product (f, g) 7→ fg is a bounded bilinear
operator from Aσ ×As to As.

We then have the following theorem on the Cauchy problem for the Euler equations with initial data in A1+σ :

Theorem 1 :
Let As be a scale of spaces satisfying hypotheses (H1) to (H8) and let σ > 0 satisfy hypothesis (H9). Let

~v0 ∈ A1+σ be a divergence free vector field. Then there exists a positive T such that the Cauchy problem

(28)


∂t~v + ~v.~∇~v =

∑d
i=1[vi, IP∂i]~v

~v|t=0 = ~v0

~∇.~v = 0

has a unique solution ~v ∈ C([0, T ], Aσ) such that sup0≤t≤T ‖~v‖Aσ+1 < +∞.

Proof :

Step 1 : Study of the operator
∑d

i=1[ui, IP∂i]

IP is a matrix of singular integral operators Pj,k = δj,kId + RjRk where Rj is the j-th Riesz transform
Rj = ∂j√

−∆
. We shall prove :

Lemma 3
Let ~u ∈ A1+σ with div ~u = 0. Then the operator

∑d
i=1[ui, Pj,k∂i] is bounded on As for every s ∈ (0, 1 + σ]

and we have ‖
∑d

i=1[ui, Pj,k∂i]f‖As ≤ Cs,σ‖f‖As‖~u‖A1+σ .

Proof :
The operator Ti,j,k = [ui, Pj,k∂i] is an example of the famous Calderón commutators [CAL 65] [LEM 02]

between a Lipschitz function and an operator of order 1. The operator Pj,k∂i is a convolution operator with a
distribution Ki,j,k whose restriction to IRd\{0} is a smooth function which is homogeneous of homogeneity order
−d − 1. The distribution kernel of Ti,j,k is given (outside from the diagonal x = y) by the function Li,j,k(x, y) =
(ui(x) − ui(y))Ki,j,k(x − y). Since ui ∈ A1+σ ⊂ Lip, we have that |Li,j,k(x, y)| ≤ Cσ‖ui‖A1+σ

1
|x−y|d(1+|x−y|) and

|~∇xLi,j,k(x, y)| + |~∇yLi,j,k(x, y)| ≤ Cσ‖ui‖A1+σ |x − y|−d−1. Moreover, Calderón’s theorem states that Ti,j,k is
bounded on L2 with operator norm bounded by C‖~∇ui‖∞ ≤ Cσ‖ui‖A1+σ .

The next step is to compute Ti,j,k(1) = T ∗i,j,k(1). We have Ti,j,k(1) = −Pj,k(∂iui). Thus,
∑d

i=1 Ti,j,k(1) =
Pj,k(div ~u) = 0. Thus, we can apply (H8) and we get Lemma 3 for 0 < s < 1.

Now, we consider s such that 1+s ≤ 1+σ and such that
∑d

i=1[ui, Pj,k∂i] is bounded on As. We take f ∈ A1+s

and try to estimate g =
∑d

i=1[ui, Pj,k∂i]f in As+1. Due to (H3), we must estimate ‖g‖As and, for l = 1, . . . , d,
‖∂lg‖As . We just write

(29) ∂lg =
d∑

i=1

[ui, Pj,k∂i]∂lf +
d∑

i=1

[∂lui, Pj,k∂i]f
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so that we find

(30) ‖g‖As+1 ≤ Cs

(
‖

d∑
i=1

[ui, Pj,k∂i]‖L(As,As)‖f‖As+1 +
d∑

l=1

‖
d∑

i=1

[∂lui, Pj,k∂i]f‖As

)
.

We thus need to estimate ‖
∑d

i=1[∂lui, Pj,k∂i]f‖As . This will be done by distinguishing the low frequencies and the
high frequencies. If S0f is the low-frequency block in the Littlewood–Paley decomposition f = S0f +

∑+∞
j=1 ∆jf ,

then we write (using the fact that ~u is divergence-free)

(31)
∑d

i=1[∂lui, Pj,k∂i]f = A+B + C +D =∑d
i=1 ∂luiS0Pj,k∂if −

∑d
i=1 ∂iS0Pj,k(∂luif) +

∑d
i=1 ∂lui(Id−S0)Pj,k∂if −

∑d
i=1(Id−S0)Pj,k(∂lui∂if)

(Id − S0)Pj,k satisfies the assumptions of (H8), hence is bounded on every Aτ with 0 < τ < 1; since it is a
convolution operator, hence commutes with derivatives, we use (H3) and find that it is bounded on every Aτ with
0 < τ /∈ IN and finally for every positive τ (by (H6)). Thus, using (H9), we find that ‖C‖As + ‖D‖As is controlled
by ‖u‖A1+σ‖f‖A1+s . Moreover, ∂iS0Pj,k has an integrable kernel; we then use the embedding As+1 ⊂ As (by (H2))
and (H5) to get that ‖A‖As + ‖B‖As is controlled by ‖u‖A1+σ‖f‖As and thus by ‖u‖A1+σ‖f‖A1+s .

Thus, by induction, we get Lemma 3 for 0 < s ≤ 1 + σ, s /∈ IN; the case s ∈ IN and 0 < s < 1 + σ then follows
by interpolation; if σ ∈ IN, we obtain the final case s = 1 + σ by induction from s = σ to s = 1 + σ one more time.
�

Step 2 : Transport equations in As

In this section, we shall prove :

Lemma 4
Let ~u ∈ L1([0, T ], A1+σ) with div ~u = 0. Let f0 ∈ As for some s ∈ (0, 1 + σ]. Then the solution f ∈

C([0, T ], L1
loc) of the transport equation

(32)

 ∂tf + ~u.~∇f = 0

f|t=0 = f0

satisfies sup0≤t≤T ‖f(t, .)‖As ≤ Cs,σe
Cs,σ

∫ T

0
‖~u(t,.)‖A1+σ dt‖f0‖As

Proof :
As for Lemma 3, we shall prove the lemma for 0 < s < 1, then we shall prove that it holds for 1 + s ≤ 1 + σ

when it holds for s; this will give that the lemma is valid for 0 < s < 1 + σ, s 6∈ IN; then interpolation will give the
case 0 < s < 1 + σ, s ∈ IN and, if σ ∈ IN, a final induction gives the case s = 1 + σ.

The case 0 < s < 1 is a direct consequence of (H7) since we have (by (H2), (H3) and (H9)) the embedding
A1+σ ⊂ Lip.

Now, let us assume that Lemma 4 is valid for some s ∈ (0, σ] and let us assume that f0 ∈ A1+s. In particular,
f0 is uniformly locally in W 1,1 and since ~u is a Lipschitz vector field, we find that f as well is uniformly locally in
W 1,1 and that its derivatives (∂1f, . . . , ∂df) are solutions of the system

(33) for j = 1, . . . , d, ∂t∂jf + ~u.~∇∂jf = −
d∑

k=1

∂juk∂kf

Thus, writing M~u = (∂juk)1≤j,k≤d and τ 7→ Xt,x(τ) the characteristic curves associated to the vector field ~u, we

find that H(t, x) =

 ∂1f
...

∂df

 is solution of the fixed-point problem

(34) H(t, x) = H(0, Xt,x(0)) +
∫ t

0

M~u(τ,Xt,x(τ))H(τ,Xt,x(τ)) dτ
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For λ > 0, let Lλ be the operator K 7→ LλK = S with S(t, x) =
∫ t

0
e−λ(t−τ)M~u(τ,Xt,x(τ))K(τ,Xt,x(τ)) dτ . Lλ

maps L∞((0, T ), (L1
uloc)

d) into itself (where L1
uloc is the space of uniformly locally integrable functions, normed by

‖f‖L1
uloc

= supx0∈IRd

∫
|x−x0|<1

|f(x)| dx) and we have

(35) ‖LλK‖L∞L1
uloc

≤ C‖K‖L∞L1
uloc

sup0<t<T

∫ t

0

e−λ(t−τ)‖~u‖Lip e
C

∫ t

τ
‖~u‖Lip dθ

dτ = Cλ,~u‖K‖L∞L1
uloc

The solution H of (34) may be written as H = eλtK where K is solution of

(36) K(t, x) = e−λtH(0, Xt,x(0)) + LλK

For λ large enough, we have Cλ,~u < 1 and Lλ is a contraction on L∞((0, T ), (L1
uloc)

d).
Further, we may apply the induction hypothesis and (H9) to see that Lλ maps L∞((0, T ), (As)d) into itself

and that we have

(37) ‖LλK‖L∞As ≤ C‖K‖L∞As sup
0<t<T

∫ t

0

e−λ(t−τ)‖~u‖A1+σ e
C

∫ t

τ
‖~u‖A1+σ dθ

dτ = Dλ,~u‖K‖L∞L1
uloc

For λ large enough, we have Dλ,~u < 1 and Lλ is a contraction on L∞((0, T ), (As)d). Since H(0, x) =

 ∂1f0
...

∂df0


belongs to (L1

uloc ∩As)d, we get that H(0, Xt,x(0)) belongs to L∞((0, T ), (L1
uloc)

d) ∩ L∞((0, T ), (As)d) and finally
that H itself belongs to L∞((0, T ), (As)d). This proves that f ∈ L∞A1+s.

We then control the size of ‖f‖A1+s through the Gronwall lemma. �

Step 3 : Equation (26)

We are now going to prove theorem 1, by approximating the solution ~v by the inductively defined ~fn (equation
(25)) and ~gn,k (equation (26)). We shall prove by induction that we can find a time T such that for all n and k we
have

(38) sup
0<t<T

‖~fn‖A1+σ ≤ 4C0‖~v0‖A1+σ and sup
0<t<T

‖~gn,k‖A1+σ ≤ 4C0‖~v0‖A1+σ

where C0 is the constant C1+σ,σ in Lemma 4. Recall that we defined inductively ~gn,k as ~gn,0 = ~v0 and

(39)

 ∂t~gn,k+1 + ~fn.~∇~gn,k+1 =
∑d

i=1[fn,i, IP∂i]~gn,k

~gn,k+1 |t=0 = ~v0

We assume that ~fn is divergence free and that sup0<t<T ‖~fn‖A1+σ ≤ 4C0‖~v0‖A1+σ and sup0<t<T ‖~gn,k‖A1+σ ≤
4C0‖~v0‖A1+σ . Now, using τ 7→ X

(n)
t,x (τ) the characteristic curves associated to the vector field ~fn, we have the

following expression for ~gn,k+1 :

(40) ~gn,k+1 = ~v0(X
(n)
t,x (0)) +

∫ t

0

( d∑
i=1

[fn,i, IP∂i]~gn,k

)
(τ,X(n)

t,x (τ)) dτ

We write δ0 = C0‖~v0‖A1+σ . Using Lemmas 3 and 4, we find that, for some constant D0 which depends neither on
~v0, nor on n or k, nor on T ,

(41) sup
0<t<T

‖~gn,k+1‖A1+σ ≤ δ0e
4C0Tδ0 + C0D0Te

4C0Tδ0(4δ0)2

so that the induction is valid if T is small enough to ensure that

(42) e4C0Tδ0(1 + 16C0D0δ0T ) < 4.
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Step 4 : Equation (25)

If we consider the operator Ln defined by Ln~g = ~h with

(43) ~h(t, x) =
∫ t

0

( d∑
i=1

[fn,i, IP∂i]~g
)
(τ,X(n)

t,x (τ)) dτ

we have

(44) sup
0<t<T

‖Ln~g‖A1+σ ≤ 4C0δ0D0Te
4C0Tδ0 sup

0<t<T
‖~g‖A1+σ

so that Ln is a contraction on L∞((0, T ), (A1+σ)d) (under condition (42)). Thus, ~gn,k converges to the fixed point
~fn+1 = ~v0(X

(n)
t,x (0)) + Ln

~fn+1. We find that ~fn+1 is a solution of (25) (so that ~fn+1 is divergence free) and that
sup0<t<T ‖~fn+1‖A1+σ ≤ 4C0‖~v0‖A1+σ .

Step 5 : Equation (8)

The last step in the proof of Theorem 1 is to check the convergence of ~fn to a solution ~v of equation (8). Let
~kn = ~fn+1 − ~fn. We have

(45) ∂t
~kn+1 + ~fn+1.~∇~kn+1 = −~kn.~∇fn+1 +

d∑
i=1

[fn+1,i, IP∂i]~kn+1 +
d∑

i=1

[kn,i, IP∂i]~fn+1

with

(46)

∑d
i=1[∂lkn,i, Pj,k∂i]h =∑d

i=1 ∂lkn,i, S0Pj,k∂ih−
∑d

i=1 ∂iS0Pj,k(∂lkn,ih)
+

∑d
i=1 ∂lkn,i(Id−S0), Pj,k∂ih−

∑d
i=1(Id−S0)Pj,k(∂lkn,i∂ih)

This gives

(47) ~kn+1 =
∫ t

0

(
− ~kn.~∇fn+1 +

d∑
i=1

[fn+1,i, IP∂i]~kn+1 +
d∑

i=1

[kn,i, IP∂i]~fn+1

)
(τ,X(n+1)

t,x (τ)) dτ

hence (by Lemmas 3 and 4, and hypotheses (H5), (H8) and (H9)) we find that, for some constant D1 which depends
neither on ~v0, nor on n or T , we have

(48) sup
0<t<T

‖~kn+1‖Aσ ≤ D1e
D14δ0TT (4δ0 sup

0<t<T
‖~kn‖Aσ + 4δ0 sup

0<t<T
‖~kn+1‖Aσ )

If T is small enough to grant that

(49) 4δ0D1e
D14δ0TT < 1/4

we find that

(50) sup
0<t<T

‖~kn+1‖Aσ ≤ 1
3

sup
0<t<T

‖~kn‖Aσ

so that
∑

n∈IN sup0<t<T ‖~fn+1 − ~fn‖Aσ < +∞.
Let us remark that ∂t

~fn is bounded in Aσ, so that ~fn belongs to C[0, T ], (Aσ)d) and converges strongly in
C[0, T ], (Aσ)d) to some vector field ~v. This vector field is divergence-free. Moreover, due to the stability hypothesis
(H4), we have that sup0<t<T ‖~v‖Aσ+1 < +∞.

Now, we check that ~v is a solution to (8). We must prove the convergence in D′ of ~fn.~∇~fn+1 to ~v.~∇~v and
of

∑d
i=1[fn,i, IP∂i]~fn+1 to

∑d
i=1[vi, IP∂i]~v. This is quite easy, since ~fn converges strongly to ~v in L∞ and ∂i

~fn

converges *-weakly to ∂i~v in L∞. This gives by interpolation strong convergence in Bα,∞
∞ for all α ∈ (1/2, 1), from

which we get the required convergence. �
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3. The scale of Besov spaces.

We may apply quite directly Theorem 1 to the case of an intitial value ~v0 in a Besov space :

Theorem 2 :
Let ~v0 ∈ B1+σ

p,q be a divergence free vector field. Assume that 1 ≤ p ≤ +∞, and that σ > d/p and 1 ≤ q ≤ +∞,
or that σ = d/p and q = 1. Then there exists a positive T such that the Cauchy problem

(51)


∂t~v + ~v.~∇~v =

∑d
i=1[vi, IP∂i]~v

~v|t=0 = ~v0

~∇.~v = 0

has a unique solution ~v ∈ C([0, T ], Bσ
p,q) such that sup0≤t≤T ‖~v‖B1+σ

p,q
< +∞.

Proof :
We introduce the scale of Besov spaces Bs

p,q for 0 < s ≤ 1+σ and we check that this scale satisfies hypotheses
(H1) to (H9) :

� Hypothesis (H1) : integrability : for s > 0, Bs
p,q ⊂ Lp ⊂ L1

loc(IR
d)

� Hypothesis (H2) : monotony : For s1 < s2, Bs2
p,q ⊂ Bs1

p,q

� Hypothesis (H3) : regularity : f ∈ B1+s
p,q ⇔ f ∈ Bs

p,q and ~∇f ∈ Bs
p,q

�Hypothesis (H4) : stability : If a sequence (fn)n∈IN is bounded in Bs
p,q and converges in D′(IRd) then the limit

belongs to Bs
p,q and we have ‖ limn→+∞ fn‖Bs

p,q
≤ lim infn→+∞ ‖fn‖Bs

p,q
. (Bs

p,q is the dual space of the closure of
D in B−s

p/(p−1),q/(q−1)).

� Hypothesis (H5) : invariance : for all x0 ∈ IRd and f ∈ Bs
p,q we have ‖f(x− x0)‖Bs

p,q
= ‖f‖Bs

p,q
.

� Hypothesis (H6) : interpolation
To prove that (H6) is fullfilled, we may use the real interpolation functor, as we have, for s1 < s < s2 ∈ IR,

that Bs
p,q = [Bs1

p,q, B
s2
p,q]θ,q with θ = s−s1

s2−s1
[BER 76].

� Hypothesis (H7) : transport by Lipschitz flows
Let ~u ∈ L1((0, T ),Lip) be a divergence-free vector field and let S(t) be the operator that maps f0 ∈ Lp to the

solution f ∈ C([0, T ], L1
loc) (f(t, x) =

(
S(t)f0

)
(x))of the transport equation

(52)

 ∂tf + ~u.~∇f = 0

f|t=0 = f0

We have ‖S(t)f0‖p = ‖f0‖p. Moreover, we have, when f0 ∈ W 1,p, ∂jS(t)f0 =
∑d

k=1 S(t)∂kf0 ∂jXk,t,x(0). so that

sup0≤t≤T ‖f(t, .)‖W 1,p ≤ Ce
C

∫ T

0
‖~u‖Lip dt‖f0‖W 1,p . The case of the Bs

p,q norm follows by interpolation, since, for
0 < s < 1, we have Bs

p,q = [Lp,W 1,p]θ,q with θ = s.

� Hypothesis (H8) : singular integrals
Let T be a bounded linear operator from D(IRd) to D′(IRd) (with distribution kernel K(x, y) ∈ D′(IRd× IRd))

which satisfies the following conditions
• T is bounded on L2 : ‖T (f)‖2 ≤ C0‖f‖2
• outside from the diagonal x = y, K is a continuous function such that |K(x, y)| ≤ C0

1
|x−y|d(1+|x−y|)

• outside from the diagonal, K satisfies |~∇xK(x, y)| ≤ C0|x− y|−d−1 and |~∇yK(x, y)| ≤ C0|x− y|−d−1

• T (1) = T ∗(1) = 0 in BMO
Then, T is bounded from Bs

p,q to Bs
p,q for all 0 < s < 1 and ‖T‖L(Bs

p,q,Bs
p,q) ≤ CsC0 [LEM 85].

� Hypothesis (H9) : pointwise products with Bσ
p,q

It is well known that, for any positive s, Bs
p,q ∩L∞ is a Banach algebra [BER 76] [LEM 02]. For σ > n/p and

1 ≤ q ≤ +∞, or for for σ = n/p and q = 1, we have Bσ
p,q ⊂ L∞ (continuous embedding). Thus, the pointwise
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product (f, g) 7→ fg is a bounded bilinear operator from Bσ
p,q × E to E when E = Bσ

p,q and when E = Lp, hence,
by interpolation, when E = Bs

p,q for any s ∈ (0, σ] (since, for 0 < s < σ, Bs
p,q = [Lp, Bσ

p,q]θ,q with θ = s/σ).

Thus, we find that Theorem 2 is only a corollary of Theorem 1. �

4. The scale of Triebel-Lizorkin spaces.

We may as well apply quite directly Theorem 1 to the case of an intitial value ~v0 in a Triebel–Lizorkin space.
Let us recall that Besov spaces may be defined through the Littlewood–Paley decomposition as

(53) f ∈ Bs
p,q ⇔ f ∈ S ′, S0f ∈ Lp and (2js‖∆jf‖p)j∈IN ∈ lq

Similarly, for 1 ≤ p, q < +∞, the Triebel–Lizorkin space F s
p,q [BER 76] may be defined as :

(54) f ∈ F s
p,q ⇔ f ∈ S ′, S0f ∈ Lp and

( ∑
j∈IN

2jsq|∆jf |q
)1/q ∈ Lp

We may prove easily the following Theorem (announced in [CHA 02] and fully proved in [CHN 09] for p > 1) :

Theorem 3 :
Let ~v0 ∈ F 1+σ

p,q be a divergence free vector field. Assume that 1 ≤ p, q < +∞, and that σ > d/p. Then there
exists a positive T such that the Cauchy problem

(55)


∂t~v + ~v.~∇~v =

∑d
i=1[vi, IP∂i]~v

~v|t=0 = ~v0

~∇.~v = 0

has a unique solution ~v ∈ C([0, T ], F σ
p,q) such that sup0≤t≤T ‖~v‖F 1+σ

p,q
< +∞.

Proof :
We introduce the scale of Triebel–Lizorkin spaces F s

p,q for 0 < s ≤ 1 + σ and we check that this scale satisfies
hypotheses (H1) to (H9) :

� Hypothesis (H1) : integrability : for s > 0, F s
p,q ⊂ Lp ⊂ L1

loc(IR
d)

� Hypothesis (H2) : monotony : For s1 < s2, F s2
p,q ⊂ F s1

p,q

� Hypothesis (H3) : regularity : f ∈ F 1+s
p,q ⇔ f ∈ F s

p,q and ~∇f ∈ F s
p,q

� Hypothesis (H4) : stability : If a sequence (fn)n∈IN is bounded in F s
p,q and converges in D′(IRd) then the

limit belongs to F s
p,q and we have ‖ limn→+∞ fn‖F s

p,q
≤ lim infn→+∞ ‖fn‖F s

p,q
: it is enough to check that we have

the pointwise convergence of ∆jfn to ∆jf (where f is the limit of fn) and then to conclude by applying twice
Fatou’s lemma.

� Hypothesis (H5) : invariance : for all x0 ∈ IRd and f ∈ F s
p,q we have ‖f(x− x0)‖F s

p,q
= ‖f‖F s

p,q
.

� Hypothesis (H6) : interpolation
To prove that (H6) is fullfilled, we may use the complex interpolation functor, as we have, for s1 < s < s2 ∈ IR,

that F s
p,q = [F s1

p,q, F
s2
p,q]θ with θ = s−s1

s2−s1
[BER 76].

� Hypothesis (H7) : transport by Lipschitz flows
Let ~u ∈ L1((0, T ),Lip) be a divergence-free vector field and let S(t) be the operator that maps f0 ∈ Lp to the

solution f ∈ C([0, T ], L1
loc) (f(t, x) =

(
S(t)f0

)
(x))of the transport equation

(56)

 ∂tf + ~u.~∇f = 0

f|t=0 = f0

11



Indeed, we write again f(t, x) = f0(Xt,x(0)); x 7→ Xt,x(0) is a bi-Lipschitzian homeomorphism and the partial

derivatives ∂j(Xt,x(0) are controlled in L∞ norm by Ce
C

∫ t

0
‖~u‖Lip dτ . Thus, we must prove that F s

p,q is stable
under composition with a bi-Lipschitzian homeomorphism X when 0 < s < 1. This is easy to check, using the
characterization of F s

p,q through finite differences [TRI 83]: for 1 ≤ p, q < +∞ and for 0 < s < 1, we have :

(57) f ∈ F s
p,q ⇔ f ∈ Lp and (

∫ 1

0

∫
|h|<t

t−d−sq|f(x)− f(x+ h)|q dh dt)1/q ∈ Lp

(with equivalence of norms). Let J be the Jacobian matrix of X, K(x) = ‖J(x)‖op = sup|y|≤1 |J(x)y|. We have

(58) ‖f ◦X‖p ≤ ‖ det J−1‖
1
p
∞‖f‖p

whereas

(59)
∫
|h|<t

|f(X(x))− f(X(x+ h))|q dh ≤ ‖det J−1‖∞
∫
|k|<‖K‖∞t

|f(X(x))− f(X(x) + k)|q dk.

We make a change of variable k = ‖K‖∞h and we write g(x) = f(‖K‖∞x), we then get

(60)
∫
|h|<t

|f(X(x))− f(X(x+ h))|q dh ≤ ‖det J−1‖∞‖K‖d
∞

∫
|h|<t

|g(‖K‖−1
∞ X(x))− g(‖K‖−1

∞ X(x) + h)|q dh

A further change of variable y = ‖K‖−1
∞ X(x)) gives us that the norm of f ◦X in F s

p,q is controlled by ‖f‖p+‖g‖F s
p,q

.
And we easily control the norm of g by the norm of f in F s

p,q, so that we may conclude.

� Hypothesis (H8) : singular integrals
Let T be a bounded linear operator from D(IRd) to D′(IRd) (with distribution kernel K(x, y) ∈ D′(IRd× IRd))

which satisfies the following conditions
• T is bounded on L2 : ‖T (f)‖2 ≤ C0‖f‖2
• outside from the diagonal x = y, K is a continuous function such that |K(x, y)| ≤ C0

1
|x−y|d(1+|x−y|)

• outside from the diagonal, K satisfies |~∇xK(x, y)| ≤ C0|x− y|−d−1 and |~∇yK(x, y)| ≤ C0|x− y|−d−1

• T (1) = T ∗(1) = 0 in BMO
Then, T is bounded from F s

p,q to F s
p,q for all 0 < s < 1 and ‖T‖L(F s

p,q,F s
p,q) ≤ CsC0.

Indeed, the boundedness of such an operator T on the homogeneous space Ḟ s
p,q has been proved by several

authors (for p > 1, we may quote [FRA 88] [FRA 89]; for p = 1, see [DEN 05]). Now, the norm of F s
p,q is equivalent

(for s > 0) to the sum of the norm in Ḟ s
p,q and the norm of Bs/2

p,q , so that boundedness on Ḟ s
p,q and on B

s/2
p,q gives

boundedness on F s
p,q.

� Hypothesis (H9) : pointwise products with Fσ
p,q

It is well known that, for any positive s, F s
p,q ∩L∞ is a Banach algebra [BER 76]. Moreover, if 0 < s < ε < 1,

then the pointwise product (f, g) 7→ fg is a bounded bilinear operator from Bε
∞,∞ × F s

p,q to F s
p,q [RUN 96]. For

σ > n/p, we have Fσ
p,q ⊂ L∞ (continuous embedding), and more precisely Fσ

p,q ⊂ B
σ−d/p
∞,∞ . Thus, the pointwise

product (f, g) 7→ fg is a bounded bilinear operator from Fσ
p,q × E to E when E = Fσ

p,q and when E = F s
p,q with

0 < s < min(1, σ − d/p), hence, by interpolation, when E = F s
p,q for any s ∈ (0, σ].

Thus, we find that Theorem 3 is only a corollary of Theorem 1. �

5. Atoms and molecules.

The continuity of singular integrals on Triebel–Lizorkin spaces can be proved in an “elementary” way by proving
that this class of operators preserve the localization and the scale of so-called “molecules” (see in particular [DEN
05] and [HOF 92]). The preservation of molecules is the basis for the construction of an algebra of singular integral
operators introduced by Y. Meyer [MEY 85] and the author [LEM 84].

We define Aε (0 < ε ≤ 1) as the following class of Calderòn–Zygmund operators : a bounded linear operator T
from D(IRd) to D′(IRd) (with distribution kernel K(x, y) ∈ D′(IRd × IRd)) belongs to Aε if it fullfills the following
conditions :
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• T is bounded on L2 : ‖T (f)‖2 ≤ C0‖f‖2
• outside from the diagonal x = y, K is a continuous function such that |K(x, y)| ≤ C0

1
|x−y|d(1+|x−y|)

• outside from the diagonal, K satisfies |K(x, y)−K(z, y)| ≤ C0|x− z|ε( 1
|x−y|d+ε + 1

|z−y|d+ε )
• outside from the diagonal, K satisfies |K(x, y)−K(x, z)| ≤ C0|y − z|ε( 1

|x−y|d+ε + 1
|x−z|d+ε )

• T (1) = T ∗(1) = 0 in BMO
We shall define a norm on Aε by taking ‖f‖Aε

as the infimum of the constants C0 which satisfies the above
four inequalities.

Now, we define an α-molecule f centered at x = x0 at scale r (what we shall write as f ∈ Mα(x0, r)) by the
following requirements : f ∈Mα(x0, r) if it fullfills the following conditions :

• |f(x)| ≤ rα

(r+|x−x0|)d+α

• |f(x)− f(y)| ≤
( |x−y|

r

)α( rα

(r+|x−x0|)d+α + rα

(r+|y−x0|)d+α )
•

∫
IRd f(x) dx = 0

We shall use the following result of [LEM 84] :

Theorem 4 :
A) If 0 < β < α ≤ ε ≤ 1 and if T ∈ Aε, then there exists a positive λ > 0 such that for every x0 ∈ IRd and every
r > 0 we have for every f ∈Mα(x0, r) that λT (f) ∈Mβ(x0, r).
B) Let 0 < ε < β ≤ α ≤ 1. If T is a bounded linear operator on L2 and if there exists a positive λ > 0 such that
for every x0 ∈ IRd and every r > 0 we have for every f ∈Mα(x0, r) that λT (f) ∈Mβ(x0, r), then T ∈ Aε.
C) The set Aε = ∪η<εAη is an algebra of Calderón–Zygmund operators.

Using this theory of molecules, or using the characterization of Aε by the matrix of T ∈ Aε in a wavelet basis,
we have the following theorem of Meyer [MEY 97] :

Theorem 5 :
If 0 < ε ≤ 1 and if T ∈ Aε, then, for 0 < α < ε, the operator (−∆)α/2 ◦ T ◦ (−∆)−α/2 belongs to Aε−α.

Moreover, if α < β < ε and 0 < γ < β − α, ‖(−∆)α/2 ◦ T ◦ (−∆)−α/2‖Aγ ≤ Cα,β,γ‖T‖Aβ

6. Sobolev spaces over the Morrey–Campanato spaces and Lorentz spaces.

Theorem 5 will give us a new way of establishing well-posedness of the Euler equations. Indeed, we introduce
a class BCZ of Banach spaces by the following conditions : we will say that a Banach space B of functions defined
on IRd belongs to BCZ if it fullfills the following requirements :

� Hypothesis (K1) : integrability
B ⊂ L1

loc(IR
d) (continuous embedding)

� Hypothesis (K2) : stability
If a sequence (fn)n∈IN is bounded in B and converges in D′(IRd) then the limit belongs to B and we have

‖ limn→+∞ fn‖B ≤ Cs lim infn→+∞ ‖fn‖B .

� Hypothesis (K3) : invariance
The map (f, g) ∈ D ×B 7→ f ∗ g extends to a bounded bilinear operator from L1 ×B to B.

� Hypothesis (K4) : pointwise product
The map (f, g) 7→ fg is a bounded bilinear operator from L∞ ×B to B.

� Hypothesis (K5) : bi-Lipschitzian homeomorphisms
If X is a bi-Lipschitzian measure-preserving homeomorphism, if J is its Jacobian matrix, then for every f ∈ B

we have f ◦X ∈ B and moreover, for two positive constants C and D which don’t depend neither on X nor on f ,
we have ‖f ◦X‖B ≤ C(1 + ‖J‖∞)D‖f‖B .

� Hypothesis (K6) : singular integrals
For every ε ∈ (0, 1] and every T ∈ Aε, T is bounded from B to B and ‖T‖L(B,B) ≤ C‖T‖Aε

� Hypothesis (K7) : high frequencies control
there exists some κ ∈ IR such that B ⊂ Bκ

∞,∞.
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We shall define the Sobolev space W k,B for k ∈ IN as the space of the functions f ∈ B such that, for all
α ∈ INd with |α| ≤ k, we have ∂αf ∈ B. We may prove a variant of Theorem 1 :

Theorem 6 :
Let B ∈ BCZ such that B ⊂ Bκ

∞,∞. Let N ∈ IN such that N + κ > 0. Let ~v0 ∈ WN+1,B be a divergence free
vector field. Then there exists a positive T such that the Cauchy problem

(61)


∂t~v + ~v.~∇~v =

∑d
i=1[vi, IP∂i]~v

~v|t=0 = ~v0

~∇.~v = 0

has a unique solution ~v ∈ C([0, T ],WN,B) such that sup0≤t≤T ‖~v‖W N+1,B < +∞.

Proof :
Let us first remark that , for f ∈ S ′, we have f ∈W k,B ⇔ (Id−∆)k/2f ∈ B, due to hypothesis (K6). We thus

introduce the scale of Banach spaces Bs = (Id −∆)s/2B for 0 ≤ s ≤ 1 +N and we check that this scale satisfies
hypotheses (H1) to (H9) :

� Hypothesis (H1) : integrability : for s > 0, Bs ⊂ B0 = B ⊂ L1
loc(IR

d)

� Hypothesis (H2) : monotony : For s1 < s2, Bs2 ⊂ Bs1 (since (Id−∆)
s1−s2

2 is a convolution operator with
a kernel in L1

� Hypothesis (H3) : regularity : f ∈ B1+s ⇔ f ∈ Bs and ~∇f ∈ Bs (owing to (K6))

� Hypothesis (H4) : stability : If a sequence (fn)n∈IN is bounded in Bs and converges in D′(IRd) then the limit
belongs to Bs and we have ‖ limn→+∞ fn‖Bs ≤ lim infn→+∞ ‖fn‖Bs . (Just check that (Id−∆)s/2fn converges in
S ′ to (Id−∆)s/2f , where f = limn→+∞ fn, and then apply (K2)).

� Hypothesis (H5) : invariance : it is obvious since we can commute convolution operators.

� Hypothesis (H6) : interpolation
To prove that (H6) is fullfilled, we may use the complex interpolation functor, as it is easy to check that we

have, for 0 ≤ s1 < s < s2, that Bs = [Bs1 , Bs2 ]θ with θ = s−s1
s2−s1

.

� Hypothesis (H7) : transport by Lipschitz flows
Let ~u ∈ L1((0, T ),Lip) be a divergence-free vector field and let S(t) be the operator that maps f0 ∈ B to the

solution f ∈ C([0, T ], L1
loc) (f(t, x) =

(
S(t)f0

)
(x))of the transport equation

(62)

 ∂tf + ~u.~∇f = 0

f|t=0 = f0

Due to (K5), we have ‖S(t)f0‖B ≤ Ce
C

∫ T

0
‖~u‖Lip dt‖f0‖B . Moreover, we have, when f0 ∈ W 1,B , ∂jS(t)f0 =∑d

k=1 S(t)∂kf0 ∂jXk,t,x(0). so that (using (K4) and (K5)), we get

(63) sup
0≤t≤T

‖f(t, .)‖W 1,B ≤ Ce
C

∫ T

0
‖~u‖Lip dt‖f0‖W 1,B

The case of the Bs norm follows by interpolation, for 0 < s < 1.

� Hypothesis (H8) : singular integrals
Let T be a bounded linear operator from D(IRd) to D′(IRd) (with distribution kernel K(x, y) ∈ D′(IRd× IRd))

which satisfies the following conditions
• T is bounded on L2 : ‖T (f)‖2 ≤ C0‖f‖2
• outside from the diagonal x = y, K is a continuous function such that |K(x, y)| ≤ C0

1
|x−y|d(1+|x−y|)

• outside from the diagonal, K satisfies |~∇xK(x, y)| ≤ C0|x− y|−d−1 and |~∇yK(x, y)| ≤ C0|x− y|−d−1

• T (1) = T ∗(1) = 0 in BMO
Then, T is bounded from Bs to Bs for all 0 < s < 1 and ‖T‖L(Bs,Bs) ≤ CsC0 : indeed, it is easy to check that, for
positive s, (−∆s/2 is well defined on B and that f ∈ Bs ⇔ f ∈ B and (−∆)s/2f ∈ B (with equivalence of norms

14



‖(Id −∆)s/2f‖B and ‖f‖B + ‖(−∆)s/2f‖B). Now, if T ∈ A1 and 0 < s < 1, we find that ‖Tf‖B ≤ C‖f‖B (due
to (K6)) and that ‖(−∆)s/2Tf‖B = ‖

(
(−∆)s/2 ◦ T ◦ (−∆)−s/2

)
(−∆)s/2f‖B ≤ C‖(−∆)s/2f‖B (due to Theorem 5

and (K6)).

� Hypothesis (H9) : pointwise products with BN

From (K6) and (K4), we find that, for f and g in BN ⊂ L∞, we control (−∆)Nz/2f (−∆)N(1−z)/2g in B0

when Re z = 0 or Re z = 1. By complex interpolation, we find that we control (−∆)z/2f (−∆)(1−z)/2g in B0 when
0 ≤ Re z ≤ 1. In particular, we find that, for f and g in BN and α and β in INd with |α| + |β| = N , we control
∂αf∂βg in B0. This proves that the pointwise product (f, g) 7→ fg is bounded from BN × BN to BN . On the
other hand, we have (from (K4)) that the pointwise product is bounded from BN × B0 to B0. By interpolation,
it is bounded from BN ×Bs to Bs for 0 ≤ s ≤ N .

Thus, we find that Theorem 6 is only a corollary of Theorem 1. �

Example 1 : Lebesgue spaces.
For 1 < p < +∞, Lp ∈ BCZ . Thus, theorem 6 gives again Theorem 3 in the case of WN+1,p with N ∈ IN and

N > d/p. (Recall that WN+1,p = FN+1
p,2 ).

Example 2 : Lorentz spaces.
For 1 < p < +∞ and 1 ≤ q ≤ +∞, the Lorentz space Lp,q belongs to BCZ . Hypotheses (K1) to (K7) are

easy to check, since, for 1 < p1 < p < p2 < +∞, we have Lp,q = [Lp1 , Lp2 ]θ,q with θ = p−p1
p2−p1

. Theorem 6 gives
the existence of a solution to the Euler equations, when the initial value belongs to WN+1,Lp,q

with 1 < p < +∞,
1 ≤ q ≤ +∞, N ∈ IN and N > d/p.

Example 3 : homogeneous Morrey–Campanato spaces.
For a ball B = B(x0, r), we define 1B the characteristic function of B and |B| the Lebesgue measure of

B. The homogeneous Morrey–Campanato space Ṁp,q is then defined, for 1 < p < +∞ and p ≤ q ≤ +∞ by
f ∈ Ṁp,q ⇔ supB |B|1/q−1/p‖1Bf‖p < +∞ (with norm ‖f‖Ṁp,q = supB |B|1/q−1/p‖1Bf‖p). It is easy to check
that, for 1 < p ≤ q < +∞, we have Ṁp,q ∈ BCZ . Theorem 6 gives the existence of a solution to the Euler equations,
when the initial value belongs to WN+1,Ṁp,q

with 1 < p ≤ q < +∞, N ∈ IN and N > d/q.

Example 4 : homogeneous Lorentz–Morrey–Campanato spaces.
The homogeneous Lorentz-Morrey–Campanato space Ṁp,q,r is then defined, for 1 < p < +∞, p ≤ q ≤ +∞ and

1 ≤ r ≤ +∞, by f ∈ Ṁp,q,r⇔ supB |B|1/q−1/p‖1Bf‖Lp,r < +∞ (with norm ‖f‖Ṁp,q,r =supB |B|1/q−1/p‖1Bf‖Lp,r ).
It is easy to check that, for 1 < p ≤ q < +∞ and 1 ≤ r ≤ +∞, we have Ṁp,q,r ∈ BCZ . Theorem 6 gives the
existence of a solution to the Euler equations, when the initial value belongs to WN+1,Ṁp,q,r

with 1 < p ≤ q < +∞,
1 ≤ r ≤ +∞, N ∈ IN and N > d/q.

Example 5 : multiplier spaces Ẋr.
For 0 < r < d/2, the homogeneousSobolev space Ḣr is defined, by f ∈ Ḣr ⇔ f ∈ L

2d
d−2r and (−∆)r/2f ∈

L2. Then the space Ẋr is defined as the space of pointwise multipliers from Ḣr to L2 [LEM 02] : ‖f‖Ẋr =
sup‖g‖Ḣr≤1 ‖fg‖2. Those spaces were first studied by Maz’ya [MAZ 84] [MAZ 85]. It is easy to check that, for
0 < r < 1, we have Ẋr ∈ BCZ . Hypotheses (K1) to (K4) are quite obvious. For (K5), we may write the norm in
Ḣr (for 0 < r < 1) as ‖f‖Ḣr =

( ∫ ∫ |f(x)−f(y)|2
|x−y|n+2r dx dy

)1/2 and thus check easily that Ḣr (as well as L2) is stable

under bi-Lipschitzian changes of variable; thus, Ẋr is stable as well under bi-Lipschitzian changes of variable and
(K5) is fullfilled. The stability of Ẋr under the action of a Calderón–Zygmund operator has been established by
Verbitsky in [MAZ 95], and thus (K6) is fullfilled. Moreover, (K7) is obvious, since Ẋr ⊂ B−r

∞,∞. Theorem 6 then
gives the existence of a solution to the Euler equations, when the initial value belongs to WN+1,Ẋr

with 0 < r < 1,
N ∈ IN and N ≥ 1.

7. Besov spaces over the Lorentz spaces or the Morrey–Campanato spaces.

In [LEM 02], we developed a theory of Besov spaces over shift-invariant Banach spaces of local measures. A
shift-invariant Banach space of local measures is a space E which is the dual of a space E∗ such that :
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i) D is dense in E∗

ii) the norm of E∗ is invariant through space translation : ‖f(x− x0)‖E∗ = ‖f‖E∗

iii) E∗ is stable through space dilation : for all λ > 0, sup‖f‖E∗≤1 ‖f(λx)‖E∗ < +∞
iv) the pointwise product (f, g) 7→ fg is a bounded map from Cb × E∗ to E∗.

Then, for s ∈ IR and 1 ≤ q ≤ +∞, the Besov space Bs
E,q is defined as the interpolation space Bs

E,q =
[(Id − ∆)−s1/2E, (Id − ∆)s2/2E]θ,q for s1 < s < s2 and θ = s−s1

s2−s1
. It does not depend on s1 nor s2 and can be

characterized through the Littlewood–Paley decomposition as

(64) f ∈ Bs
E,q ⇔ f ∈ S ′, S0f ∈ E and (2js‖∆jf‖E)j∈IN ∈ lq

One more time, we may easily apply Theorem 1 to solve the Euler equations in some generalized Besov spaces :

Theorem 7 :
Let E be a shift–invariant Banach space of local measures and assume moreover that E ∈ BCZ . Let σ > 0 and

1 ≤ q ≤ +∞ be such that Bσ
E,q ⊂ L∞. Let ~v0 ∈ B1+σ

E,q be a divergence free vector field. Then there exists a positive
T such that the Cauchy problem

(65)


∂t~v + ~v.~∇~v =

∑d
i=1[vi, IP∂i]~v

~v|t=0 = ~v0

~∇.~v = 0

has a unique solution ~v ∈ C([0, T ], Bσ
E,q) such that sup0≤t≤T ‖~v‖B1+σ

E,q
< +∞.

Proof :
We introduce the scale of Banach spaces Bs

E,q for 0 < s ≤ 1+σ and we check that this scale satisfies hypotheses
(H1) to (H9). Hypotheses (H1) to (H5) are obvious (integrability, monotony, regularity, stability and invariance).

� Hypothesis (H6) : interpolation
To prove that (H6) is fullfilled, we may use the real interpolation functor, as it is easy to check that we have,

for 0 ≤ s1 < s < s2, that Bs
E,q = [Bs1

E,q, B
s2
E,q]θ,q with θ = s−s1

s2−s1
.

� Hypothesis (H7) : transport by Lipschitz flows
This is a direct consequence of the same property for the scale Bs = (Id −∆)−s/2E, since for 0 < s1 < s <

s2 < 1 we have Bs
E,q = [(Id−∆)−s1/2E, (Id−∆)s2/2E]θ,q.

� Hypothesis (H8) : singular integrals
This is again a direct consequence of the same property for the scale Bs = (Id−∆)−s/2E

� Hypothesis (H9) : pointwise products with Bσ
E,q

In [LEM 02] we have shown that, for any positive s, Bs
E,q ∩ L∞ is a Banach algebra. Thus, the pointwise

product (f, g) 7→ fg is a bounded bilinear operator from Bσ
E,q × F to F when F = Bσ

E,q and when F = E, hence,
by interpolation, when F = Bs

E,q for any s ∈ (0, σ] (since, for 0 < s < σ, Bs
E,q = [E,Bσ

E,q]θ,q with θ = s/σ).

Thus, we find that Theorem 7 is only a corollary of Theorem 1. �

Example 1 : Lorentz spaces.
Theorem 7 gives the existence of a solution to the Euler equations, when the initial value belongs to Bσ+1

Lp,q,r

with 1 < p < +∞, 1 ≤ q ≤ +∞, σ > d/p and 1 ≤ r ≤ +∞ (or σ = d/p and r = 1). The case r = +∞ was
discussed in [TAK 08].

Example 2 : homogeneous Morrey–Campanato spaces.
While the Sobolev spaces built on Ṁp,q are known as Q-spaces [WU 03], the Besov spaces are known as

Kozono-Yamazaki spaces [KOZ 94]. Theorem 7 gives the existence of a solution to the Euler equations, when the
initial value belongs to Bσ+1

Ṁp,q,r
with 1 < p ≤ q < +∞, σ > d/q and 1 ≤ r ≤ +∞ (or σ = d/q and r = 1). Such a

result was announced in [TAN].
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Example 4 : homogeneous Lorentz–Morrey–Campanato spaces.
Similarly, Theorem 7 gives the existence of a solution to the Euler equations, when the initial value belongs

to Bσ+1

Ṁp,q,r,t
with 1 < p ≤ q < +∞, 1 ≤ r ≤ +∞, σ > d/q and 1 ≤ t ≤ +∞ (or σ = d/q and t = 1).

8. Related equations.

Theorem 1 can be adapted to deal with other equations that are quite close to the Euler equations.

Example 1 : the ideal MHD equations. The ideal MHD equations introduce a new variable b : now, we
consider two divergence-free vector fields ~v0 = (v0,1, . . . , v0,d) and ~b0 on IRd and we try to solve the following
Cauchy problem :

(66)



∂t~v + ~v.~∇~v = ~∇p− 1
2
~∇|~b|2 +~b.~∇~b

∂t
~b+ ~v.~∇~b = ~b.~∇~v

div ~v = 0, div ~b = 0

~v|t=0 = ~v0, ~b|t=0 = ~b0

One more time, we consider only solutions for which we can get rid of the pressure term (here, ~∇(p − 1
2 |~b|

2)) by
use of the Leray projection operator IP, and we write

(67)



∂t~v +
∑

i=1d IP∂i(vi~v − bi~b) = 0

∂t
~b+

∑d
i=1 IP∂i(vi

~b− bi~v) = 0

~v|t=0 = ~v0, ~b|t=0 = ~b0

div ~v = 0, div ~b = 0

Following [CHN 09], we introduce the new unknown quantities ~α = ~v +~b and ~β = ~v −~b and we find that

(68)



∂t~α+
∑

i=1d IP∂i(βi~α) = 0

∂t
~β +

∑d
i=1 IP∂i(αi

~β) = 0

~α|t=0 = ~v0 +~b0, ~β|t=0 = ~v0 −~b0

div ~α = 0, div ~β = 0

and finally

(69)



∂t~α+ ~β.~∇~α =
∑

i=1d [βi, IP∂i]~α

∂t
~β + ~α.~∇.~β =

∑d
i=1[αi, IP∂i]~β

~α|t=0 = ~v0 +~b0, ~β|t=0 = ~v0 −~b0

div ~α = 0, div ~β = 0

The resolution of (69) follows exactly the same lines as the resolution of the Euler equations and we find easily
the following theorem :

Theorem 8 :
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Let As be a scale of spaces satisfying hypotheses (H1) to (H8) and let σ > 0 satisfy hypothesis (H9). Let
~v0 ∈ A1+σ and ~b0 ∈ A1+σ be two divergence free vector fields. Then there exists a positive T such that the Cauchy
problem

(70)



∂t~v +
∑

i=1d IP∂i(vi~v − bi~b) = 0

∂t
~b+

∑d
i=1 IP∂i(vi

~b− bi~v) = 0

~v|t=0 = ~v0, ~b|t=0 = ~b0

div ~v = 0, div ~b = 0

has a unique solution (~v,~b) in C([0, T ], Aσ) such that sup0≤t≤T ‖~v‖Aσ+1 + ‖~b‖A1+σ < +∞.

Examples :
Theorem 8 gives existence of solutions in the following cases :

� A1+σ = B1+σ
p,q , Aσ = Bσ

p,q, 1 ≤ p ≤ +∞, σ > d/p, 1 ≤ q ≤ +∞ (Theorem 2)

� A1+σ = B1+σ
p,q , Aσ = Bσ

p,q, 1 ≤ p < +∞, σ = d/p, q = 1 (Theorem 2)

� A1+σ = F 1+σ
p,q , Aσ = Fσ

p,q, 1 ≤ p < +∞, σ > d/p, 1 ≤ q < +∞ (Theorem 3)

� A1+σ = W 1+σ,Lp,q

, Aσ = W σ,Lp,q

, 1 < p < +∞, σ ∈ IN, σ > d/p, 1 ≤ q ≤ +∞ (Theorem 6)

� A1+σ = W 1+σ,Ṁp,q

, Aσ = W σ,Ṁp,q

, 1 < p ≤ q < +∞, σ ∈ IN, σ > d/q (Theorem 6)

� A1+σ = W 1+σ,Ṁp,q,r

, Aσ = W σ,Ṁp,q,r

, 1 < p ≤ q < +∞, σ ∈ IN, σ > d/q, 1 ≤ r ≤ +∞ (Theorem 6)

� A1+σ = B1+σ
Lp,q,r, A

σ = Bσ
Lp,q,r, 1 < p < +∞, σ > d/p, 1 ≤ q ≤ +∞, 1 ≤ r ≤ +∞ (Theorem 7)

� A1+σ = B1+σ

Ṁp,q,r
, Aσ = Bσ

Ṁp,q,r
, 1 < p ≤ q < +∞, σ > d/q, 1 ≤ r ≤ +∞ (Theorem 7)

� A1+σ = B1+σ

Ṁp,q,r,t
, Aσ = Bσ

Ṁp,q,r,t
, 1 < p ≤ q < +∞, σ > d/q, 1 ≤ r ≤ +∞, 1 ≤ t ≤ +∞ (Theorem 7)

Example 2 : the quasi-geostrophic equation.
The quasi-geostrophic equation (QG) is related to fluid mechanics [PED 87] ; its mathematical study was

initiated by Constantin, Majda and Tabak [CON 94] in 1994. The quasi-geostrophic equation (QG) describes the
evolution of a function θ(t, x), t > 0, x ∈ IR2 as

(71)

 ∂tθ + ~u.~∇θ = 0
~u = (−R2θ,R1θ)
θ(0, .) = θ0

where Ri is the Riesz transform Ri = ∂i√
−∆

(so that the vector field ~u is divergence-free : div ~u = 0).
The same formalism as for Euler equations will provide solutions, except that we don’t need hypothesis (H8)

any longer (since there is no right-hand term in equations (71)), but that we need A1+σ to be stable under the
Riesz transforms, in order to ensure that ~u is still Lipschitzian. Thus, we get the following theorem :

Theorem 9 :
Let As be a scale of spaces satisfying hypotheses (H1) to (H7) and let σ > 0 satisfy hypothesis (H9). Assume

moreover that the Riesz transforms are bounded on A1+σ. Let θ0 ∈ A1+σ. Then there exists a positive T such that
the Cauchy problem

(72)

 ∂tθ + ~u.~∇θ = 0
~u = (−R2θ,R1θ)
θ(0, .) = θ0

has a unique solution θ in C([0, T ], Aσ) such that sup0≤t≤T ‖θ‖A1+σ < +∞.

Examples :
Theorem 9 gives existence of solutions in the following cases :
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� A1+σ = B1+σ
p,q , Aσ = Bσ

p,q, 1 < p < +∞, σ > 2/p, 1 ≤ q ≤ +∞ (Theorem 2)

� A1+σ = B1+σ
p,q , Aσ = Bσ

p,q, 1 < p < +∞, σ = 2/p, q = 1 (Theorem 2)

� A1+σ = F 1+σ
p,q , Aσ = Fσ

p,q, 1 < p < +∞, σ > 2/p, 1 ≤ q < +∞ (Theorem 3)

� A1+σ = W 1+σ,Lp,q

, Aσ = W σ,Lp,q

, 1 < p < +∞, σ ∈ IN, σ > 2/p, 1 ≤ q ≤ +∞ (Theorem 6)

� A1+σ = W 1+σ,Ṁp,q

, Aσ = W σ,Ṁp,q

, 1 < p ≤ q < +∞, σ ∈ IN, σ > 2/q (Theorem 6)

� A1+σ = W 1+σ,Ṁp,q,r

, Aσ = W σ,Ṁp,q,r

, 1 < p ≤ q < +∞, σ ∈ IN, σ > 2/q, 1 ≤ r ≤ +∞ (Theorem 6)

� A1+σ = B1+σ
Lp,q,r, A

σ = Bσ
Lp,q,r, 1 < p < +∞, σ > 2/p, 1 ≤ q ≤ +∞, 1 ≤ r ≤ +∞ (Theorem 7)

� A1+σ = B1+σ

Ṁp,q,r
, Aσ = Bσ

Ṁp,q,r
, 1 < p ≤ q < +∞, σ > 2/q, 1 ≤ r ≤ +∞ (Theorem 7)

� A1+σ = B1+σ

Ṁp,q,r,t
, Aσ = Bσ

Ṁp,q,r,t
, 1 < p ≤ q < +∞, σ > 2/q, 1 ≤ r ≤ +∞, 1 ≤ t ≤ +∞ (Theorem 7)

9. The critical case.

Thus far, there are two hypotheses we did not really use. In all our examples, our spaces As for 0 < s < 1
were stable under transportation by a vector field in L1Lip (even if the vector field was not divergence-free in
hypothesis (H7)) and were stable as well under the action of a Calderón–Zygmund operator T satisfying T (1) = 0
(even if T ∗(1) 6= 0 in hypothesis (H8)). (Even for Theorem 5, T ∗(1) = 0 is not required, as we shall see in the
following section.) Those conditions are crucial only in the critical case σ = 0 (initial value in B1

∞,1 [PAK 04]).

The main lemma is then the following one :

Lemma 5 :
If ~f ∈ B0

∞,1 is a divergence-free vector field and if g ∈ B1
∞,1, then ~f.~∇g ∈ B0

∞,1.

Proof :
This is easily proved by paradifferential calculus. Using the Littlewood–Paley decomposition of ~f and of g, we

write

(73) ~f.~∇g = S0
~f.~∇g + (~f − S0

~f).~∇S0g +
∑
j∈IN

∑
k∈IN,|j−k|≥3

∆jf.~∇∆kg +
∑
j∈IN

∑
k∈IN,|j−k|≤2

d∑
i=1

∂i(∆jfi∆kg)

and we easily estimate each of the four terms in the right-hand side of (73) : we use the well-known fact that if
h =

∑∞
j=0 hj where the Fourier transform of hj is supported in an annulus a2j ≤ |ξ| ≤ b2j (or a ball if a = 0)

and if s ∈ IR, then ‖h‖Bs
p,q

is controlled by Ca,b,s,p,q‖2js‖hj‖p‖lq if a > 0 or if s > 0 and a = 0; ∆j
~f.~∇∆kg

has its Fourier transform supported in an annulus (with radius of order 2max(j,k)) if |k − j| ≥ 3; if |j − k| ≤ 2,
we can only say that the Fourier transform is supported in a ball with radius of order 2j . Thus, we cannot
estimate the term

∑
j∈IN

∑
k∈IN,|j−k|≤2 ∆j

~f.~∇∆kg directly in B0
∞,1 (this is a serious obstruction : as a matter

of fact, B0
1,∞ is not an algebra) and we have to use the fact that ~f is divergence free to rewrite this term as

div (
∑

j∈IN

∑
k∈IN,|j−k|≤2 ∆kg∆j

~f) and estimate
∑

j∈IN

∑
k∈IN,|j−k|≤2 ∆kg∆j

~f in B1
∞,1. �

We shall get generalizations of Lemma 3 and Lemma 4 as easy consequences of Lemma 5.

Lemma 6
Let ~u ∈ B1

∞,1 with div ~u = 0. Then the operator
∑d

i=1[ui, Pj,k∂i] is bounded on Bs
∞,1 for every s ∈ [0, 1] and

we have ‖
∑d

i=1[ui, Pj,k∂i]f‖Bs
∞,1

≤ Cs,σ‖f‖Bs
∞,1
‖~u‖B1

∞,1
.

Proof :
We already know that the operator Tj,k =

∑d
i=1[ui, Pj,k∂i] is bounded on Bs

p,q for 0 < s < 1, 1 ≤ p ≤ +∞
and 1 ≤ q ≤ +∞. Since T ∗j,k = −Tj,k, we get by duality that Tj,k is bounded on Bs

p,q for −1 < s < 0, 1 ≤ p ≤ +∞
and 1 ≤ q ≤ +∞. By interpolation, it is true as well for s = 0.

19



Thus, Tj,k is bounded on Bs
∞,1 for 0 ≤ s < 1. We take f ∈ B1

∞,1 and try to estimate g =
∑d

i=1[ui, Pj,k∂i]f in
B1
∞,1. We must equivalently estimate ‖g‖B0

∞,1
and, for l = 1, . . . , d, ‖∂lg‖B0

∞,1
. We just write

(74) ∂lg =
d∑

i=1

[ui, Pj,k∂i]∂lf +
d∑

i=1

[∂lui, Pj,k∂i]f

so that we find

(75) lg ‖B1
∞,1

≤ C
(
‖Tj,k‖L(B0

∞,1,B0
∞,1)

‖f‖B1
∞,1

+
d∑

l=1

‖
d∑

i=1

[∂lui, Pj,k∂i]f‖B0
∞,1

)
.

We thus need to estimate ‖
∑d

i=1[∂lui, Pj,k∂i]f‖B0
∞,1

. We write

(76)
∑d

i=1[∂lui, Pj,k∂i]f = A+B + C +D =
∂l~u.Pj,k

~∇S0f −
∑d

i=1 ∂iS0Pj,k(∂luif) + ∂l~u.~∇(Id−S0)Pj,kf −
∑d

i=1(Id−S0)Pj,k(∂l~u.~∇f)

A and B are obviously controlled in B0
∞,1 norm. On the other hand, (Id − S0)Pj,k is bounded on B1

∞,1 and on
B0
∞,1, so that Lemma 5 gives the control of C and D. �

Lemma 7
Let ~u ∈ L1([0, T ], B1

∞,1) with div ~u = 0. Let f0 ∈ Bs
∞,1 for some s ∈ [0, 1]. Then the solution f of the

transport equation

(77)

 ∂tf + ~u.~∇f = 0

f|t=0 = f0

satisfies sup0≤t≤T ‖f(t, .)‖Bs
∞,1

≤ Cse
Cs

∫ T

0
‖~u(t,.)‖

B1
∞,1

dt
‖f0‖Bs

∞,1

Proof :
Let τ 7→ Xt,x(τ) be the characteristic curves associated to the vector field ~u. The solution of (77) is given by

f(t, x) = f0(Xt,x(0)). We already that, for 0 ≤ t ≤ T , the mapping f0 7→ f0(Xt,x(0)) is an isomorphism on Bs
p,q

for 0 < s < 1, 1 ≤ p ≤ +∞ and 1 ≤ q ≤ +∞. But writing for f0 ∈ B−s
∞,1 and g0 ∈ B1

1,∞

(78)
d

dt

∫
f0(Xt,x(0))g0(Xt,x(0))dx =

∫
g~u.~∇f + f~u.~∇g dx = 0

we find by a duality argument that the mapping f0 7→ f0(Xt,x(0)) is as well an isomorphism on B−s
∞,1 for 0 < s < 1.

The case s = 0 follows by interpolation.
Now, let us assume that f0 ∈ B1

∞,1 ⊂ Lip. We write that its derivatives (∂1f, . . . , ∂df) are solutions of the
system

(79) for j = 1, . . . , d, ∂t∂jf + ~u.~∇∂jf = −∂j~u.~∇f

Thus, , we find that H(t, x) =

 ∂1f
...

∂df

 is solution of the fixed-point problem

(80) H(t, x) = H(0, Xt,x(0))+
∫ t

0

(
(~∇⊗~u).S0H

)
(τ,Xt,x(τ)) dτ+

∫ t

0

(
(~∇⊗~u).~∇(Id−S0)

1
∆

div H
)
(τ,Xt,x(τ)) dτ

This problem has a unique solution in L∞((0, T ), (B0
∞,1)

d) and we finally get that f ∈ L∞t B1
∞,1. We then control

the size of ‖f‖B1
∞,1

through the Gronwall lemma. �

Owing to Lemmas 6 and 7, we get easily the following theorem of [PAK] :
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Theorem 10 :
Let ~v0 ∈ B1

∞,1 be a divergence free vector field. Then there exists a positive T such that the Cauchy problem

(81)


∂t~v + ~v.~∇~v =

∑d
i=1[vi, IP∂i]~v

~v|t=0 = ~v0

~∇.~v = 0

has a unique solution ~v ∈ C([0, T ], B0
∞,1) such that sup0≤t≤T ‖~v‖B1

∞,1
< +∞.

Proof :
We can follow the same lines as for Theorem 1 (or Theorem 2). Now, the only thing we have to check is the

convergence of ~fn to ~v. Recall the identity satisfied by ~kn = ~fn+1 − ~fn :

(82) ~kn+1 =
∫ t

0

(
− ~kn.~∇fn+1 +

d∑
i=1

[fn+1,i, IP∂i]~kn+1 +
d∑

i=1

[kn,i, IP∂i]~fn+1

)
(τ,X(n+1)

t,x (τ)) dτ

We see that we have to control the term ‖
∑d

i=1[kn,i, IP∂i]~fn+1‖B0
∞,1

by ‖~kn‖B0
∞,1
‖~fn+1‖B1

∞,1
. We have no problem

for |
∑d

i=1 kn,iIP∂iS0
~fn+1 nor for

∑d
i=1 S0IP∂i(kn,i

~fn+1). Lemma 5 gives an easy control for ~kn.~∇(Id− S0)IP~fn+1

as well as for (Id− S0)IP(~kn.~∇~fn+1). �

The case of the MHD equations is similar to the Euler equations :

Theorem 11 :
Let ~v0 ∈ B1

∞,1 and ~b0 ∈ B1
∞,1 be two divergence–free vector fields. Then there exists a positive T such that the

Cauchy problem

(83)



∂t~v +
∑

i=1d IP∂i(vi~v − bi~b) = 0

∂t
~b+

∑d
i=1 IP∂i(vi

~b− bi~v) = 0

~v|t=0 = ~v0, ~b|t=0 = ~b0

div ~v = 0, div ~b = 0

has a unique solution (~v,~b) in C([0, T ], B0
∞,1) such that sup0≤t≤T ‖~v‖B1

∞,1
+ ‖~b‖B1

∞,1
< +∞.

We cannot hope to solve the quasi–geostrophic equation in the critical space, since it is not stable under the
Riesz transforms. But we may just add a slight further requirement to get a solution :

Theorem 12 :
Let θ0 ∈ B1

∞,1 ∩ Lp with 1 < p < +∞. Then there exists a positive T such that the Cauchy problem

(84)

 ∂tθ + ~u.~∇θ = 0
~u = (−R2θ,R1θ)
θ(0, .) = θ0

has a unique solution θ in C([0, T ], B0
∞,1) such that sup0≤t≤T ‖θ‖B1

∞,1
+ ‖θ‖p < +∞.

10. Relaxing unnecessary hypotheses.

As a matter of fact, the spaces As (0 < s < 1) considered in Theorems 2, 3, 6 and 7 were stable under more
general singular integral operators : they satisfy more precisely the following hypothesis
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� Hypothesis (H10) : singular integrals
Let T be a bounded linear operator from D(IRd) to D′(IRd) (with distribution kernel K(x, y) ∈ D′(IRd× IRd))

which satisfies the following conditions
• T is bounded on L2 : ‖T (f)‖2 ≤ C0‖f‖2
• outside from the diagonal x = y, K is a continuous function such that |K(x, y)| ≤ C0

1
|x−y|d(1+|x−y|)

• outside from the diagonal, K satisfies |~∇xK(x, y)| ≤ C0|x− y|−d−1 and |~∇yK(x, y)| ≤ C0|x− y|−d−1

• T (1) = 0 in BMO
Then, T is bounded from As to As for all 0 < s < 1 and ‖T‖L(As,As) ≤ CsC0

For As = Bs
p,q, see [LEM 85]. For As = F s

p,q, see [DEN 05]. For As = (Id−∆)−s/2E with E = Lp,q, E = Ṁp,q

or E = Ṁp,q,r, we shall use a variant of Theorem 5 (see Lemma 8 below). For As = Bs
E,t with E = Lp,q, E = Ṁp,q

or E = Ṁp,q,r, this is a consequence of the case of (Id−∆)−s/2E (by interpolation).

Lemma 8
Let T be a bounded linear operator from D(IRd) to D′(IRd) (with distribution kernel K(x, y) ∈ D′(IRd × IRd))

which satisfies the following conditions
• T is bounded on L2 : ‖T (f)‖2 ≤ C0‖f‖2
• outside from the diagonal x = y, K is a continuous function such that |K(x, y)| ≤ C0

1
|x−y|d

• outside from the diagonal, K satisfies |~∇xK(x, y)| ≤ C0|x− y|−d−1 and |~∇yK(x, y)| ≤ C0|x− y|−d−1

• T (1) = 0 in BMO
Then, for 0 < α < 1, the operator (−∆)α/2 ◦ T ◦ (−∆)−α/2 belongs to A1−α.

Proof :
Let Tα = (−∆)α/2 ◦ T ◦ (−∆)−α/2. We know from [LEM 84] that Tα is bounded on L2. The problem is to

estimate its kernel. This could be done through a molecular approach : if (ψε,j,k)1≤ε≤2d−1,j∈ZZ,k∈ZZd is an Hilbertian
wavelet basis of L2, then the kernel of Tα is given in D′(IRd × IRd) by

(86) Kα(x, y) =
2d−1∑
ε=1

∑
j∈ZZ

∑
k∈ZZd

Tα(ψε,j,k)(x)ψε,j,k(y)

However, we will prove Lemma 8 by using Theorem 5. We have b = T ∗(1) ∈ BMO. Using the homogeneous
Littlewood–Paley decomposition, we introduce the operator πb : f 7→

∑
j∈ZZ Sj−2(f∆jb). πb is a Calderón–

Zygmund operator such that πb(1) = 0 and π∗b (1) = b. Thus, we may write T = πb + S with S(1) = S∗(1) = 0.
We know, by Theorem 5, that (−∆)α/2 ◦ S ◦ (−∆)−α/2 belongs to A1−α. We must estimate the kernel Lα of
(−∆)α/2 ◦ πb ◦ (−∆)−α/2. If Sj is the convolution operator with F−1ϕ(2−jξ), ∆j the convolution operator with
F−1(ψ(2−jξ)), and if ω = F−1(|ξ|αϕ) and Ω = F−1(|ξ|−α

∑3
k=−3 ψ(2kξ)), then we have

(87) Lα(x, y) =
∑
j∈ZZ

∫
IRd

2jdω(2j(x− z))∆jb(z)2jdΩ(2j(z − y)) dz.

It is then a classical computation to estimate the size and the regularity of Lα. �

11. Maximal solutions.

Due to uniqueness of solutions in Theorem 1, we may define Tσ(~v0) the maximal existence time for a solution
in A1+σ :

(88) Tσ(~v0) = sup{T > 0 / ∃~v ∈ (L∞((0, T ), A1+σ))d solution of (8)}.

If we have ~v0 ∈ (A1+σ)d (under the hypotheses of Theorem 1), then we have

(90) Tσ(~v0) < +∞⇒ sup
0<t<Tσ(~v0)

‖~v‖A1+σ = +∞
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Under very slight further assumptions, it is easy to check that Tσ(~v0) does not actually depend on σ.

Theorem 13 :
Let As be a scale of spaces satisfying hypotheses (H1) to (H8). Assume that there exists a Banach space E

and a σ0 > 0 such that, for all σ > σ0, σ satisfies hypothesis (H9) and the following hypothesis :
� Hypothesis (H11) : Aσ ⊂ E and

(91) ‖fg‖Aσ ≤ Cσ(‖f‖E‖g|Aσ + ‖g‖E‖g‖Aσ )

Then, for σ0 < σ < τ and ~v0 ∈ A1+τ , we have Tσ(~v0) = Tτ (~v0).

Proof :
By induction on τ . We prove that if it is true for τ = σ + k (for some k ∈ IN), then it is true for σ + k < τ ≤

σ + k + 1. We estimate ‖~v‖A1+τ as ‖~v‖Aτ +
∑d

i=1 ‖∂i~v‖Aτ . We write

(92) ∂t∂i~v + ~v.~∇.∂i~v =
d∑

j=1

[vj , IP∂j ]∂i~v − S0IPdiv (∂i~v ⊗ ~v)− IP(Id− S0)(∂i~v.~∇~v)

We then get

(93) ‖∂i~v(t, .)‖Aτ ≤ Ce
D

∫ τ

0
‖~v(s,.)‖

Aσ+k ds(‖∂i~v0‖Aτ +
∫ t

0

‖∂i~v(s, .)⊗ ~v(s, .)‖Aτ + ‖∂i~v(s, .).~∇~v(s, .)‖Aτ ds)

and finally

(93) ‖~v(t, .)‖A1+τ ≤ Ce
D

∫ τ

0
‖~v(s,.)‖

Aσ+k ds(‖~v0‖A1+τ +
∫ t

0

‖~v(s, .)‖E‖~v(s, .)‖A1+τ ds)

and we conclude with Gronwall’s lemma. �

Conclusion.

Except for Lemma 5, we made no use of the paradifferential calculus. Of course, our tools are deeply related to
the paradifferential calculus. However, we avoid the rigidity of the Littlewood–Paley decomposition and in a way
replaced it by a molecular approach. Indeed, a Littlewood-Paley decomposition is stable neither through a transport
equation nor under the action of a singular integral operator. On the other hand, a molecular decompostion will
be stable, since a molecuke is preserved under a transport equation (moving the center along the characteristic
curve and deforming the profile of the molecule, but without altering too much its scale), or through the action of
a singular integral operator (with roughly speaking the same center and the same scale, but with a deformation of
the profile). Similarly, a wavelet decomposition is not preserved, but transformed into a vaguelette decomposition
[LEM 02]. In a way, it means that the equations we have studied in this paper could be numerically approximated
by the method of travelling wavelets proposed in [BAS 90].
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