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Abstract : We prove the div-curl lemma for a general class of functional spaces, stable
under the action of Calderón–Zygmund operators. The proof is based on a variant of the
renormalization of the product introduced by S. Dobyinsky, and on the use of divergence–
free wavelet bases.

Introduction.

In 1992, Coifman, Lions, Meyer and Semmes published a paper [COILMS 92] where
they gave a new interpretation of the compensated compactness introduced by Murat and
Tartar [MUR 78]. They showed that the functions considered by Murat and Tartar had a
greater regularity than expected : they belonged to the Hardy space H1.

They gave a new version of the div-curl lemma of Murat and Tartar :

Theorem 1
If 1 < p <∞, q = p/(p− 1), ~f ∈ (Lp(IRd))d and ~g ∈ (Lq)d, then

div ~f = 0 and curl ~g = ~0 ⇒ ~f.~g ∈ H1

There are many proofs of this result. We shall rely mainly on the proof by S. Dobyin-
sky, based on the renormalization of the product introduced in [DOB 92].

As pointed to me by Prof. Grzegorz Karch, it is easy to see that this result may be
extended to a large class of functional spaces. For instance, we have the straightforward
consequence of Theorem 1, for the case of weak Lebesgue spaces Lp,∗ (better seen as
Lorentz spaces Lp,∞) and their preduals Lq,1 :

Corollary 1 :
If 1 < p <∞, q = p/(p− 1), ~f ∈ (Lp,∞(IRd))d and ~g ∈ (Lq,1)d, then

div ~f = 0 and curl ~g = ~0 ⇒ ~f.~g ∈ H1

and
div ~g = 0 and curl ~f = ~0 ⇒ ~f.~g ∈ H1
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Proof : All we need is the projection operators that lead to the Helmhotz decomposition
of a vector field : Id = IP + IQ where IQ is the projection onto irrotational vector fields :

IQ~h = ~∇ 1

∆
div ~h

and IP the projection operator onto solenoidal vector fields. Those projection operators
are matrix of singular integral operators and thus are bounded on Lebesque spaces Lr,
1 < r <∞,and, by interpolation, on Lorentz spaces spaces Lr,t, 1 < r <∞, 1 ≤ t ≤ +∞.

Let ε > 0 such that ε < min 1/p, 1/q. We write 1
p+

= 1
p + ε, 1

p−
= 1

p − ε,
1
q+

= 1
q + ε

and 1
q−

= 1
q − ε. If ~f ∈ (Lp,∞(IRd))d, we can write, for every A > 0, ~f = ~αA + ~βA with

‖~αA‖Lp− ≤ CA‖~f‖Lp,∞ and ‖~βA‖Lp+ ≤ CA−1‖~f‖Lp,∞ . If div ~f = 0, we have moreover
~f = IP~f = IP~αA + IP~βA. On the other hand, if ~g ∈ (Lq,1)d, we can write ~g =

∑
j∈IN λj~gj

with ‖~gj‖Lq− ‖~g‖Lq+ ≤ 1 and
∑
j∈IN |λj | ≤ C‖~g‖Lq,1 . If curl ~g = 0, we have moreover

~g = IQ~g =
∑
j∈IN λj IQ~gj . Let Aj = ‖ ~gj‖1/2Lq−

‖ ~gj‖−1/2
Lq+

. We then write

~f.~g =
∑
j∈IN

λj (IP~αAj . IQ~gj + IP~βAj . IQ~gj)

and get (from the div-curl theorem of f Coifman, Lions, Meyer and Semmes)

‖~f.~g‖H1 ≤ C
∑
j∈IN |λj |(‖IP~αAj‖Lp− ‖ IQ~gj‖Lq+ + ‖IP~βAj‖Lp+‖ IQ~gj‖Lq− )

≤ C ′‖~f‖Lp,∞
∑
j∈IN |λj | (Aj‖ ~gj‖Lq+ +Aj

−1‖ ~gj‖Lq− )

= C ′‖~f‖Lp,∞
∑
j∈IN |λj |

≤ C ′′‖~f‖Lp,∞‖~g‖Lq,1

The proof for the case div ~g = 0 and curl ~f = ~0 is similar. �

In this paper, we aim to find a general class of functional spaces for which the div-curl
lemma still holds. As we may see from the proof of the Corollary 1, singular integral
operators will play a key role in our result. In section 1, we shall introduce Calderòn–
Zygmund pairs of functional spaces which will allow us to prove such a general result. In
section 2, we recall basics of divergence–free wavelet bases (as described in the book [LEM
02]). In section 3, we prove our main theorem. Then, in section 4, we give examples of
Calderòn–Zygmund pairs of functional spaces.

1. Calderón–Zygmund pairs of Banach spaces.

We begin by recalling the definition of a Calderón–Zygmund operator :
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Definition 1 :
A) A singular integral operator is a continuous linear mapping from D(IRd) to

D′(IRd) whose distribution kernel K(x, y) ∈ D′(IRd× IRd) (defined formally by the formula
Tf(x) =

∫
K(x, y)f(y) dy) has its restriction outside the diagonal x = y defined by a

locally Lipschitz function with the following size estimates :
i) supx 6=y |K(x, y)||x− y|d < +∞
ii) supx6=y |~∇xK(x, y)||x− y|d+1 < +∞
iii) supx 6=y |~∇yK(x, y)||x− y|d+1 < +∞

For such an operater T , we define

‖T‖SIO=‖K(x, y)|x−y|d‖L∞(Ω)+‖~∇xK(x, y)|x−y|d+1‖L∞(Ω)+‖~∇yK(x, y)|x−y|d+1‖L∞(Ω)

where K is the distribution kernel of T and Ω = IRd × IRd − {(x, y) / x = y}

B) A Calderón–Zygmund operator is a singular integral operator T which may
be extended as a bounded operator on L2 : supϕ∈D, ‖ϕ‖2≤1 ‖T (ϕ)‖2 < +∞.

We define CZO as the space of Calderón–Zygmund operators, endowed with the norm :

‖T‖CZO = ‖T‖L(L2,L2)+ ‖T‖SIO.

We may now define our main tool :

Definition 2 :
A Calderón–Zygmund pair of Banach spaces (X,Y ) is pair of Banach spaces such

that :
i) we have the continuous embedding : D(IRd) ⊂ X ⊂ D′ and D(IRd) ⊂ Y ⊂ D′
iii) Let X0 be the closure of D in X; then the dual spaceX∗0 of X0 (i.e. the space of
bounded linear forms on X0) coincides with Y with equivalence of norms : a distribution
T belongs to Y if and anly if there exist a constant CT such that for all ϕ ∈ D we have
| 〈T |ϕ〉D′,D | ≤ CT ‖ϕ‖X
iiii) Let Y0 be the closure of D in Y ; then the dual space Y ∗0 of Y0 coincides with X with
equivalence of norms
iv) Every Calderón–Zygmund operator may be extended as a bounded operator on X0 and
on Y0 : there exists a constant C0 such that, for every T ∈ CZO and every ϕ ∈ D, we
have T (ϕ) ∈ X0 ∩ Y0 and

‖T (ϕ)‖X ≤ C0‖T‖CZO‖ϕ‖X and ‖T (ϕ)‖Y ≤ C0‖T‖CZO‖ϕ‖Y

By duality, we find that every Calderón–Zygmund operator may be extended as a
bonded operator on X and Y : if T ∗ is defined by the formula

〈T (ϕ)|ψ〉D′,D = 〈ϕ|T ∗(ψ)〉D,D′ ,
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then T ∈ CZO implies T ∗ ∈ CZO and we may define T (f) on X as the distribution
ϕ 7→ 〈f |T ∗(ϕ)〉Y ∗0 ,Y0 . The two definitions of T coincides on X0.

For m ∈ L∞, the operator Tm : ϕ 7→ mϕ belongs to CZO (with kernel K(x, y) =
m(x)δ(x − y)). The stability of X and Y through multiplication by bounded smooth
functions (with the inequalities ‖mf‖X ≤ C0 ‖m‖∞ ‖f‖X and ‖mf‖Y ≤ C0 ‖m‖∞ ‖f‖Y )
shows that elements of X and Y are (complex) local measures and that X0 and Y0 are
embedded into L1

loc.

Our main result is then the following one (to be proved in Section 3) :

Theorem 2 :
Let (X,Y ) be a Calderón–Zygmund pair of Banach spaces (X,Y ). If ~f ∈ Xd

0 and
~g ∈ Y d, then

div ~f = 0 and curl ~g = ~0 ⇒ ~f.~g ∈ H1

and
div ~g = 0 and curl ~f = ~0 ⇒ ~f.~g ∈ H1

Remark : The distribution ~f.~g is well-defined, since ~f ∈ Xd
0 : if ϕ ∈ D, then we have

ϕ~f ∈ Xd
0 and ~g ∈ (X∗0 )d.

2. Divergence–free wavelet bases.

In this section, we give a short review of properties of divergence-free wavelet bases.
Wavelet theory was introduced in the 1980’s as an efficient tool for signal analysis. Or-
thonormal wavelet bases were first constructed by Y. Meyer [LEMM 86], G. Battle [BAT 87]
and P.G. Lemarié-Rieusset; a major advance was done with the construction of compactly
supported orthonormal wavelets by I. Daubechies [DAU 92]. Then bi-orthogonal bases were
introduced by A. Cohen, I. Daubechies and J.C. Feauveau [COHDF 92]. Divergence-free
wavelets were introduced by Battle and Federbush [BATF 95]. Compactly divergence-free
wavelets were introduced by P.G. Lemarié–Rieusset [LEM 92]; they are not orthogonal
wavelets [LEM 94], but have been explored for the numerical analysis of the Navier–Stokes
equations [URB 95] [DER 06].

Let Hdiv=0 and Hcurl=0 be defined as

Hdiv=0 = {~f ∈ (L2)d / div ~f = 0} and Hcurl=0 = {~f ∈ (L2)d / curl ~f = 0}.

For a function ~f ∈ (L2)d, j ∈ ZZ and k ∈ ZZd, we define ~fj,k as ~fj,k(x) = 2jd/2 ~f(2jx− k).
Let us recall the mains results of [LEM 92] (described as well in the book [LEM 02]). The
idea is to begin with an Hilbertian basis of compactly supported wavelets, associated to
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a multi-resolution analysis (Vj)j∈ZZ of L2(IR). Associated to this multi-resolution analysis
(with orthogonal projection operator Πj onto Vj), there is a bi-orthogonal multi-resolution
analysis (V +

j ) (V −j ) with projection Π(j) onto V −j orthogonally to V +
j such that d

dx ◦Πj =

Π(j) ◦ d
dx .

Starting from this one-dimensional setting, we now consider a bi-orthogonal multi-
resolution analysis of (L2(IRd))d (Vj,1, . . . , Vj,d) and (V ∗j,1, . . . , V

∗
j,d) where Vj,k = Vj,k,1 ⊗

. . . ⊗ Vj,k,d with Vj,k,l = Vj for k 6= l and Vj,k,k = V −j and V ∗j,k = V ∗j,k,1 ⊗ . . . ⊗ V ∗j,k,d
with V ∗j,k,l = Vj for k 6= l and V ∗j,k,k = V +

j Let Pj be the projection operator onto
(Vj,1, . . . , Vj,d) orthogonally to (V ∗j,1, . . . , V

∗
j,d). Its adjoint P ∗j is the projection operator

onto (V ∗j,1, . . . , V
∗
j,d) orthogonally to (Vj,1, . . . , Vj,d). The point is that we have Pj(~∇f) =

~∇(Πjf) and div (P ∗j
~f) = Π∗j (div ~f).

Those projection operators Pj and P ∗j can give an accurate description of Hdiv=0 and
Hcurl=0 :

Proposition 1 : (Multi-resolution analysis for divergence-free or irrotational vector
fields)

Let N ∈ IN. Then there exists a compact set KN ⊂ IRd such that :

A) Multi-resolution analysis : There exists
*) functions ~ϕξ and ~ϕ∗ξ in (L2)d, 1 ≤ ξ ≤ d
*) functions ~ψχ and ~ψ∗χ in (L2)d, 1 ≤ χ ≤ d(2d − 1)

such that
i) the functions ~ϕξ, ~ϕ

∗
ξ , ~ψχ and ~ψ∗χ are supported in the compact KN

ii) the functions ~ϕξ, ~ϕ
∗
ξ , ~ψχ and ~ψ∗χ are of class CN

iii) for l ∈ INd with
∑d
i=1 li ≤ N , we have

∫
xl ~ψχ dx =

∫
xl ~ψ∗χ dx = 0

iv) for j, j′, in ZZ, k, k′ in ZZd, ξ, ξ′ in {1, . . . , d}, and χ, χ′ in {1, . . . , d(2d − 1)}∫
~ϕξ,j,k.~ϕ

∗
ξ′,j,k′ dx = δk,k′δξ,ξ′ and

∫
~ψχ,j,k. ~ψ

∗
χ′,j′,k′ dx = δj,j′δk,k′δχ,χ′

v) The projection operators Pj can be defined on (L2)d by

Pj(~f) =
∑
k∈ZZd

∑
1≤ξ≤d

〈~f |~ϕ∗ξ,j,k〉 ~ϕξ,j,k.

They are bounded on (L2)d and satisfy

Pj ◦ Pj+1 = Pj+1 ◦ Pj = Pj , lim
j→−∞

‖Pj ~f‖2 = 0 and lim
j→+∞

‖~f − Pj ~f‖2 = 0.

vi) The operators Qj defined on (L2)d by

Qj(~f) =
∑
k∈ZZd

∑
1≤χ≤d(2d−1)

〈~f |~ψ∗χ,j,k〉 ~ψχ,j,k
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are bounded on (L2)d and satisfy

Qj = Pj+1 − Pj

and

‖~f‖2 ≈
√∑
j∈ZZ

‖Qj ~f‖22 ≈
√∑
j∈ZZ

∑
k∈ZZd

∑
1≤χ≤d(2d−1)

| 〈~f |~ψ∗χ,j,k〉 |2

B) Irrotational vector fields : The projection operators Pj satisfy :

~f ∈ (L2)d and curl ~f = 0⇒ curl Pj(~f) = 0

Moreover, there exists
*) 2d − 1 functions ~γη ∈ (L2)d, 1 ≤ η ≤ 2d−) with curl ~γη = 0
*) 2d − 1 functions ~γ∗η ∈ (L2)d, 1 ≤ η ≤ 2d − 1

such that
i) the functions ~γη and ~γ∗η are supported in the compact KN

ii) the functions ~γη and ~γ∗η are of class CN

iii) for l ∈ INd with
∑d
i=1 li ≤ N , we have

∫
xl~γη dx =

∫
xl~γ∗η dx = 0

iv) for j, j′, in ZZ, k, k′ in ZZd and η, η′ in {1, . . . , 2d − 1},∫
~γη,j,k.~γ

∗
η′,j′,k′ dx = δj,j′δk,k′δη,η′

vi) The operators Sj defined on (L2)d by

Sj(~f) =
∑
k∈ZZd

∑
1≤η≤2d−1

〈~f |~γ∗η,j,k〉 ~γη,j,k

are bounded on (L2)d and satisfy

∀~f ∈ Hcurl=0 Sj ~f = Qj ~f

and

∀~f ∈ Hcurl=0 ‖~f‖2 ≈
√∑
j∈ZZ

∑
k∈ZZd

∑
1≤η≤2d−1

| 〈~f |~γ∗η,j,k〉 |2

C) Divergence-free vector fields : The projection operators Pj satisfy :

~f ∈ (L2)d and div ~f = 0⇒ div P ∗j (~f) = 0

Moreover, there exists
*) (d− 1)(2d − 1) functions ~αε ∈ (L2)d, 1 ≤ ε ≤ (d− 1)(2d − 1) with div ~αε = 0
*) (d− 1)(2d − 1) functions ~α∗ε ∈ (L2)d, 1 ≤ ε ≤ (d− 1)(2d − 1)

6



such that
i) the functions ~αε and ~α∗ε are supported in the compact KN

ii) the functions ~αε and ~α∗ε are of class CN

iii) for l ∈ INd with
∑d
i=1 li ≤ N , we have

∫
xl~αε dx =

∫
xl~α∗ε dx = 0

iv) for j, j′, in ZZ, k, k′ in ZZd and ε, ε′ in {1, . . . , (d− 1)(2d − 1)},∫
~αε,j,k.~α

∗
ε′,j′,k′ dx = δj,j′δk,k′δε,ε′

vi) The operators Rj defined on (L2)d by

Rj(~f) =
∑
k∈ZZd

∑
1≤ε≤(d−1)(2d−1)

〈~f |~α∗ε,j,k〉 ~αε,j,k

are bounded on (L2)d and satisfy

∀~f ∈ Hdiv=0 Rj ~f = Q∗j
~f

and

∀~f ∈ Hdiv=0 ‖~f‖2 ≈
√∑
j∈ZZ

∑
k∈ZZd

∑
1≤ε≤(d−1)(2d−1)

| 〈~f |~α∗ε,j,k〉 |2

We would like now to use those special functions with our spaces X and Y . We begin
with the following lemma :

Lemma 1 :
a) If ~f ∈ Xd

0 , then Pj ~f and P ∗j
~f converge strongly to 0 in Xd as j → −∞ and converge

strongly to ~f in Xd as j → +∞.

b) If ~f ∈ Y d0 , then Pj ~f and P ∗j
~f converge strongly to 0 in Y d as j → −∞ and converge

strongly to ~f in Y d as j → +∞.

c) If ~f ∈ Xd, then Pj ~f and P ∗j
~f converge *-weakly to 0 in Xd as j → −∞ and converge

*-weakly to ~f in Xd as j → +∞.

d) If ~f ∈ Y d, then Pj ~f and P ∗j
~f converge *-weakly to 0 in Y d as j → −∞ and converge

*-weakly to ~f in Y d as j → +∞.

Proof : First, we check that the operators are well defined. If f ∈ CN has a compact
support, then we may write f = fθ, with θ ∈ D equal to 1 on a neighborhood of the
support of f . Thus, f = Tf (θ) and we find that f ∈ X0 ∩ Y0. Thus, 〈f |g〉X0,Y is well
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defined for every g ∈ Y , and 〈f |h〉Y0,X is well defined for every h ∈ X. We may then
consider the operators on Xd :

Pj(~f) =
∑
k∈ZZd

∑
1≤ξ≤d

〈~f |~ϕ∗ξ,j,k〉X,Y0
~ϕξ,j,k

and

P ∗j (~f) =
∑
k∈ZZd

∑
1≤ξ≤d

〈~f |~ϕξ,j,k〉X,Y0
~ϕ∗ξ,j,k.

We have supj∈ZZ ‖Pj‖CZO = supj∈ZZ ‖P ∗j ‖CZO < +∞. Thus, those operators are equicon-

tinuous on Xd.

To prove a), we need to check the limits only on a dense subspace of Xd
0 . X0 cannot

be embedded into L1 : if f ∈ D with f̂(0) 6= 0, then the Riesz transforms Rjf are not in
L1 but belong to X0. It means that f ∈ D 7→ ‖f‖1 is not continuous for the X0 norm.
We may find a sequence of functions fn such that ‖fn‖X converge to 0 and ‖fn‖1 = 1.
Since |fn| is Lipschitz and compactly supported, we can regularize fn and find a sequence
of smooth compactly supported functions fn,k such that all the fn,k, k ∈ IN, are supported
in a compact neighborhood of the support of fn and converge, as k → +∞, uniformly to
|fn|; then, we have convergence in X (since Y0 ⊂ L1

loc) and in L1. Thus, we can find a
sequence of functions fn which are in D, with

∫
fn dx = 1 and limn→+∞ ‖fn‖X = 0. This

gives that the set of function f ∈ D with
∫
f dx = 0 is dense in X0.

We now consider Qj = Pj+1 − Pj and Q∗j = P ∗j+1 − P ∗j :

Qj(~f) =
∑
k∈ZZd

∑
1≤χ≤d(2d−1)

〈~f |~ψ∗χ,j,k〉X,Y0
~ψχ,j,k

and

Q∗j (
~f) =

∑
k∈ZZd

∑
1≤χ≤d(2d−1)

〈~f |~ψχ,j,k〉X,Y0
~ψ∗χ,j,k.

If ~f ∈ Dd and
∫
~f dx = 0, we have ~f =

∑
1≤l≤d ∂l

~fl for some ~fl ∈ Dd. Similarly, we have

ψ∗χ =
∑

1≤l≤d ∂l
~Ψ∗χ,l and ψχ =

∑
1≤l≤d ∂l

~Ψχ,l for some compactly supported functions of

class CN . Thus, we find that, for ~f ∈ Dd with
∫
~f dx = 0,

‖Pj+1
~f − Pj ~f‖X + ‖P ∗j+1

~f − P ∗j ~f‖X ≤ C min(
∑
l=1d

‖∂l ~f‖X2j ,
d∑
i=1

‖~fl‖X2−j).

Thus, Pj ~f and P ∗j
~f have strong limits in Xd

0 when j goes to −∞ or +∞. If ~g ∈ Dd, we

write ~f ∈ (L2)d and ~g ∈ (L2)d, and see that

lim
j→−∞

〈Pj ~f |~g〉X,Y0
= lim
j→−∞

〈P ∗j ~f |~g〉X,Y0
= 0
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and

lim
j→+∞

〈Pj ~f |~g〉X,Y0
= lim
j→+∞

〈P ∗j ~f |~g〉X,Y0
= 〈~f |~g〉X,Y0

.

Thus, we have, for ~f ∈ Dd with
∫
~f dx = 0,

lim
j→−∞

‖Pj ~f‖X = lim
j→−∞

‖P ∗j ~f‖X = 0

and

lim
j→+∞

‖Pj ~f − ~f‖X = lim
j→+∞

‖P ∗j ~f − ~f‖X = 0

Thus a) is proved. b) is proved in a similar way. By duality, we get c) and d). �

We may now consider the operators :

Rj(~f) =
∑
k∈ZZd

∑
1≤ε≤(d−1)(2d−1)

〈~f |~α∗ε,j,k〉X,Y0 ~αε,j,k

and

Sj(~f) =
∑
k∈ZZd

∑
1≤η≤2d−1

〈~f |~γ∗η,j,k〉X,Y0
~γη,j,k.

From the identities IP∗R∗j = IP∗Qj and IQ∗S∗j = IQ∗Q∗j which are valid from Dd to Y d0 ,

we find by duality that RjIP = Q∗j IP and Sj IQ = Qj IQ on Xd. To be able to use those
identities, we shall need the following lemma :

Lemma 2 :
Let ~f ∈ Xd. Then :

i) IP~f = ~f ⇔ div ~f = 0

ii) IQ~f = ~f ⇔ curl ~f = 0

Proof : First, we check that f ∈ X and ∆f = 0 ⇒ f = 0. Take θ ∈ D such that
θ ≥ 0, and θ 6= 0, and define γ = 1

(1+x2)
n+1
2

∗θ. Convolution with the kernel 1

(1+x2)
n+1
2

is a

Calderón–Zygmund operator, so we get that γ ∈ Y0. Moreover, if g is a function such that

(1+x2)
n+1
2 g ∈ L∞, we find that g = γ−1gγ = Tγ−1g(γ), where the pointwise multiplication

operator Tγ−1g is a Calderón–Zygmund operator, so we get that g ∈ Y0. This proves that
X ⊂ S ′. Thus, if f ∈ X and ∆f = 0, we find that f is a harmonic polynomial. Moreover∫
|f |γ dx = 〈f |T f

|f|
(γ)〉X,Y0

, hence the integral
∫
|f |γ dx must be finite, and f must be

constant. As the smooth functions with vanishing integral are dense in Y0, we find that
the constant is equal to 0.

Now, we have for a distribution ~f that

div ~f = 0⇔ ∀~ϕ ∈ Dd with curl ~ϕ = 0, 〈~f |~ϕ〉 = 0;
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thus, we have on Xd that div IP~f = 0. Similarly, we have for a distribution ~f that

curl ~f = 0⇔ ∀~ϕ ∈ Dd with div ~ϕ = 0, 〈~f |~ϕ〉 = 0;

thus, we have on Xd that curl IQ~f = 0.
Conversely, we start from the decomposition Id = IP + IQ valid on Xd. If div ~f = 0,

then we find that ~h = ~f − IP~f = IQ~f satisfies. div ~h = 0 and curl ~h = 0. But this implies
that ∆~h = 0, hence ~h = 0 We prove similarly that curl ~f = 0 implies that f = IQ~f . �

3. The proof of the div-curl lemma.

As in [LEM 02], we prove Theorem 2 by adapting the proof given by Dobyinsky [DOB
92]. This proof uses the renormalization of the product through wavelet bases.

If ~f ∈ Xd, ~g ∈ Y d and if moreover ~f ∈ Xd
0 or ~g ∈ Y d0 , we use lemma 1 to get that, in

the distribution sense, we have

~f.~g = lim
j→+∞

P ∗j .
~f .Pj~g − P ∗−j . ~f .P−j~g

and thus
~f.~g =

∑
j∈ZZ

P ∗j .
~f .Qj~g +Q∗j

~f.Pj~g +Qj ~f.Q
∗
j~g.

If moreover div ~f = 0 and curl ~g = 0, we use lemma 2 to get that

~f.~g =
∑
j∈ZZ

P ∗j
~f.Sj~g +Rj ~f.Pj~g +Rj ~f.Sj~g.

We shall prove that the three terms

A(~f,~g) =
∑
j∈ZZ

P ∗j
~f.Sj~g,

B(~f,~g) =
∑
j∈ZZ

Rj ~f.Pj~g

and
C(~f,~g) =

∑
j∈ZZ

Rj ~f.Sj~g

belong to H1.

We make the proof in the case ~f ∈ Xd
0 (the proof is similar in the case ~g ∈ Y d0 ). We

first check that A and B map (X0)d×Y d to H1: we use the duality of H1 and CMO (the

10



closure of C0 in BMO) (see Coifman and Weiss [COIW 77] and Bourdaud [BOU 02]) and
try to prove that the operators

A(~f, h) =
∑
j∈ZZ

S∗j (hP ∗j
~f)

and
B(~f, h) =

∑
j∈ZZ

P ∗j (hRj ~f)

map (X0)d × CMO to (X0)d.

In order to prove this, we shall prove that A(., h) and that B(.h) are matrices of
singular integral operators when h ∈ D and that we have the estimates ‖A(., h)‖CZO ≤
C‖h‖BMO and ‖B(., h)‖CZO ≤ C‖h‖BMO. For B, we may as well study the adjoint
operator

B∗(~f, h) =
∑
j∈ZZ

R∗j (hPj
~f)

First, we estimate the size of the kernels and of their gradients. The kernels Ah(x, y) of
A(., h) and B∗h(x, y) of B(., h)∗ are given by

Ah(x, y) =
∑
j∈ZZ

∑
k∈ZZd

∑
1≤ξ≤d

∑
l∈ZZd

∑
1≤η≤2d−1

~γ∗η,j,l(x)〈h~ϕ∗ξ,j,k|~γη,j,l〉~ϕξ,j,k(y)

and

B∗h(x, y) =
∑
j∈ZZ

∑
k∈ZZd

∑
1≤ξ≤d

∑
l∈ZZd

∑
1≤ε≤(d−1)(2d−1)

~α∗ε,j,l(x)〈h~ϕξ,j,l|~αε,j,k〉~ϕ∗ξ,j,k(y)

There are only a few terms that interact, because of the localization of the supports : if
KN ⊂ B(0,M), then 〈h~ϕ∗ξ,j,k|~γη,j,l〉 = 〈h~ϕξ,j,l|~αε,j,k〉 = 0 if |l − k| > 2M . Let

C(h) = sup
j∈ZZ,k∈ZZd,1≤ξ≤d,l∈ZZd,1≤η≤2d−1

| 〈h~ϕ∗ξ,j,k|~γη,j,l〉|

and
D(h) = sup

j∈ZZ,k∈ZZd,1≤ξ≤d,l∈ZZd,1≤ε≤(d−1)(2d−1)

| 〈h~ϕξ,j,l|~αε,j,k〉|

Then we have

|Ah(x, y)| ≤
∑
j∈ZZ

∑
k∈ZZd

CC(h)2jd1B(0,M)(2
jx− k)1B(0,3M)(2

jy − k)

and thus
|Ah(x, y)| ≤ CC(h)

∑
2j |y−x|≤4M

2jd ≤ C ′C(h)|x− y|−d

11



and similarly
|Bh(x, y)| ≤ CD(h)|x− y|−d.

In the same way, we have

|~∇xAh(x, y)|+ |~∇yAh(x, y)| ≤
∑
j∈ZZ

∑
k∈ZZd

CC(h)2j(d+1)1B(0,M)(2
jx− k)1B(0,3M)(2

jy − k)

and thus
|~∇xAh(x, y)|+ |~∇yAh(x, y)| ≤ CC(h)|x− y|−d−1

and similarly
|~∇xBh(x, y)|+ |~∇yBh(x, y)| ≤ CD(h)|x− y|−d−1.

Moreover, the function ~ϕ∗ξ,j,k.~γη,j,l is supported in B(2−jk,M2−j), ‖~ϕ∗ξ,j,k.~γη,j,l‖∞ ≤ C2jd

and
∫
~ϕ∗ξ,j,k.~γη,j,l dx = 0 (since P ∗j ~ϕ

∗
ξ,j,k. = ~ϕ∗ξ,j,k. and Qj~γη,j,l = ~γη,j,l). Thus, we find

that ‖~ϕ∗ξ,j,k.~γη,j,l‖H1 ≤ C, so that

C(h) ≤ C‖h‖BMO.

We have similar estimates for ‖~ϕξ,j,l.~αε,j,k‖H1 (since Pj ~ϕξ,j,l. = ~ϕξ,j,l. and Q∗j ~αε,j,k =

~αε,j,k, and thus
∫
~ϕξ,j,l.~αε,j,k dx = 0), and thus

D(h) ≤ C‖h‖BMO.

Thus far, we have proven that A(., h) and B(., h) are singular integral operators. To
prove L2 boundedness, we use the T (1) theorem of David and Journé [DAVJ 84]. We’ve
got to check that the operators are weakly bounded (in the sense of the WBP property),
and to compute the images of the function f = 1 through the operators and through their
adjoints.

Let x0 ∈ IRd, r0 > 0 and let ~f and ~g be supported in B(x0, r0). We want to estimate

〈A(~f, h)|~g〉D′,D and 〈B(~f, h)|~g〉D′,D. We have 〈A(~f, h)|~g〉D′,D| ≤
∑
j∈ZZAj where

Aj =
∑
k∈ZZd

∑
1≤ξ≤d

∑
l∈ZZd

∑
1≤η≤2d−1

∣∣ 〈~g|~γ∗η,j,l〉 〈h~ϕ∗ξ,j,k|~γη,j,l〉 〈~f |~ϕξ,j,k〉 ∣∣∣
and similarly |〈B(~f, h)|~g〉D′,D ≤

∑
j∈ZZBj where

Bj =
∑
k∈ZZd

∑
1≤ξ≤d

∑
l∈ZZd

∑
1≤ε≤(d−1)(2d−1)

∣∣ 〈~g|~ϕξ,j,l〉 〈h~ϕξ,j,l|~αε,j,k〉 〈~f |~α∗ε,j,k〉 ∣∣∣
We have

Aj ≤ C(h)
∑
k∈ZZd

∑
1≤ξ≤d

∑
|l−k|≤2M

∑
1≤η≤2d−1

∣∣ 〈~g|~γ∗η,j,l〉 〈~f |~ϕξ,j,k〉 ∣∣∣
12



which gives

Aj ≤ C(h)
∑
k∈ZZd

∑
1≤ξ≤d

| 〈~f |~ϕξ,j,k〉 |
∑
l∈ZZd

∑
1≤η≤2d−1

| 〈~g|~γ∗η,j,l〉 | ≤ CC(h)2jd‖~f‖1‖~g‖1

and

Aj ≤ C C(h)

√∑
k∈ZZd

∑
1≤ξ≤d

| 〈~f |~ϕξ,j,k〉 |2
√∑
l∈ZZd

∑
1≤η≤2d−1

| 〈~g|~γ∗η,j,l〉 |2

and thus
Aj ≤ C ′C(h)‖Sj~g‖2‖P ∗j ~f‖2 ≤ C ′′C(h)2−j‖~∇~g‖2‖~f‖2.

Finally, we get

| 〈A(~f, h)|~g〉D′,D| ≤ CC(h)(
∑

2jr0≤1 2jdrd0‖~f‖2‖~g‖2 +
∑

2jr0>1 2−j‖~∇~g‖2‖~f‖2)

≤ C ′C(h)(‖~f‖2 + r0‖~∇~f‖2)(‖~g‖2 + r0‖~∇g‖2).

Similar computations (based on the inequality ‖Rj(~f)‖2 ≤ C2−j‖~∇~f‖2) gives as well

|〈B(~f, h)|~g〉D′,D| ≤ CD(h)(‖~f‖2 + r0‖~∇~f‖2)(‖~g‖2 + r0‖~∇g‖2).

Thus, our operators satisfy the weak boundedness property.

We must now compute the distributions T (1) and T ∗(1) when T is one component of
the matrix of operators A(., h) or of B(., h). We must prove that, if θ ∈ D is equal to 1 on

a neighborhood of 0, if ~θl,R = (θ1,l,R, . . . , θd,l,R) with θk,l,R = δk,lθ(
x
R ) and if ~ψ ∈ Dd with∫

ψ dx = 0, then we have

lim
R→+∞

∑
j∈ZZ

S∗j (hP ∗j
~θl,R) ∈ (BMO)d

(the limit is taken in (D′/IR)d) and similarly that

lim
R→+∞

∑
j∈ZZ

Pj(hSj~θl,R) ∈ (BMO)d

lim
R→+∞

∑
j∈ZZ

P ∗j (hRj~θl,R) ∈ (BMO)d

and
lim

R→+∞

∑
j∈ZZ

R∗j (hPj
~θl,R) ∈ (BMO)d

To check that, we write ~hl = (h1,l, . . . , hd,l) with hk,l = δk,lh and we consider ~ψ ∈ Dd with∫
ψ dx = 0. We have

∑
j∈ZZ ‖Sj(~ψ)‖1 < +∞ and ‖hP ∗j ~θl,R‖∞ ≤ ‖h‖∞‖θ‖∞ and thus we

get by dominated convergence that
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lim
R→+∞

∫
~ψ.
∑
j∈ZZ

S∗j (hP ∗j
~θl,R) dx =

∑
j∈ZZ

∫
Sj ~ψ.~hl dx.

∑
j∈ZZ Sj is a matrix of Calderón–Zygmund operators T which satisfy T ∗(1) = 0, hence

map H1 to H1, so that we find

|
∑
j∈ZZ

∫
Sj ~ψ.~hl dx| ≤ C‖h‖BMO‖~ψ‖H1

and thus limR→+∞
∑
j∈ZZ S

∗
j (hP ∗j

~θl,R) ∈ (BMO)d. Similar estimates prove that

lim
R→+∞

∫
~ψ.R∗j (hPj

~θl,R) dx =
∑
j∈ZZ

∫
Rj ~ψ.~hl dx.

and

|
∑
j∈ZZ

∫
Rj ~ψ.~hl dx| ≤ C‖h‖BMO‖~ψ‖H1

so that limR→+∞
∑
j∈ZZR

∗
j (hPj

~θl,R) ∈ (BMO)d.
On the other hand, we have

|
∫
~ψ.Pj(hSj~θl,R) dx| ≤ C‖h‖∞‖Pj ~ψ‖1‖Sj~θl,R‖∞

≤ C~ψ‖h‖∞min(1, 2j) min(‖θ‖∞, 2−jR−1‖~∇θ‖∞) = O(R−1/2)

so that limR→+∞
∑
j∈ZZ Pj(hSj

~θl,R) = 0. Similarly, we have limR→+∞
∑
j∈ZZ P

∗
j (hRj~θl,R)

= 0.

Thus, we have proved that A and B map Xd
0 ×CMO to Xd

0 , and thus that A and B

map Xd
0 × Y d to H1. We still have to deal with C(~f,~g) =

∑
j∈ZZRj

~f.Sj~g. We write

C(~f,~g) =
∑
j∈ZZ

∑
k∈ZZd

∑
1≤η≤2d−1

∑
l∈ZZd

∑
1≤ε≤(d−1)(2d−1)

〈~g|~γ∗η,j,k〉 〈~f |~α∗ε,j,l〉 ~αε,j,l.~γη,j,k

We have ~αε,j,l.~γη,j,k = 0 for |k− l| > 2M and ‖~αε,j,l.~γη,j,k‖H1 ≤ C for |k− l| ≤ 2M . Thus,
we are lead to prove that :∑

j∈ZZ

∑
k∈ZZd

∑
1≤η≤2d−1

∑
|l−k|≤2M

∑
1≤ε≤(d−1)(2d−1)

| 〈~g|~γ∗η,j,k〉| |〈~f |~α∗ε,j,l〉| ≤ C‖~f‖Xd0 ‖~g‖Y d .

For 1 ≤ η ≤ 2d − 1, 1 ≤ ε ≤ (d− 1)(2d − 1) and r ∈ ZZd with |r| ≤ 2M , we consider J a
finite subset of ZZ× ZZd and for εJ = (εj,k)(j,k)∈J ∈ {−1, 1}J and TεJ the operator

TεJ (~f) =
∑

(j,k)∈J

εj,k〈~f |~α∗ε,j,k+r〉 ~γ∗η,j,k

14



Using again the T (1) theorem, we see that ‖TεJ‖CZO ≤ C, so that TεJ (~f) ∈ Xd
0 and∫

TεJ (~f).~g dx =
∑

(j,k)∈J

εj,k〈~f |~α∗ε,j,k+r〉 〈~g|~γ∗η,j,k〉 ≤ C‖~f‖Xd0 ‖~g‖Y d

Now, it is enough to choose εj,k as the sign of 〈~f |~α∗ε,j,k+r〉 〈~g|~γ∗η,j,k〉 and we may conclude.

Thus, Theorem 2 has been proved. �

4. Examples.

We now give some examples of Calderón–Zygmund pairs of Banach spaces (according
to Defiinition 2) :

a) Lebesgue spaces : X = X0 = Lp and Y = Y0 = Lq with 1 < p < +∞ and
1/p+ 1/q = 1.

b) Lorentz spaces : X = X0 = Lp,r and Y = Lq,ρ with 1 < p < +∞, 1 ≤ r < +∞,
1/p+ 1/q = 1 and 1/r + 1/ρ = 1.

c) Weighted Lebesgue spaces : X = X0 = Lp(w dx) and Y = Y0 = Lq(w−
1
p−1 dx)

with 1 < p < +∞ and 1/p + 1/q = 1, when the weight w belongs to the Muckenhoupt
class Ap.

d) Morrey spaces : We consider the Morrey space Lα,p defined by

f ∈ Lα,p ⇔ sup
Q∈Q

RαQ(
1

|Q|

∫
Q

|f(x)|p dx)1/p <∞

We are interested in the set of parameters 1 < p < +∞ and 0 < α ≤ d/p.
The Zorko space Lα,p0 is the closure of D in Lα,p. Adams and Xiao [ADAX 11]

have proved that Lα,p is the bidual of Lα,p0 : Hα,q = (Lα,p0 )∗ and Lα,p = (Hα,q)∗ with
1/p + 1/q = 1. One characterization of Hα,p is the following one : f ∈ Hα,q if and only
if there is a sequence (λn)n∈IN ∈ l1 and a sequence of functions fn and of cubes Qn such

that fn ∈ Lq, fn is supported in Qn and ‖fn‖q ≤ R
α+d/q−d
Qn

. The norm ‖f‖Hα,q is then
equivalent to inf(λn),(fn),f=

∑
λnfn

∑
n∈IN |λn|.

Our Calderón–Zygmund pair is then X = Lα,p and Y = Y0 = Hα,q with 1 < p < +∞,
0 < α ≤ d/p and 1/p+ 1/q = 1.

e) Multipliers spaces : We can build new examples from the former ones. Indeed, let
X be a Banach space such that
i) we have the continuous embeddings : X1 ⊂ X ⊂ X2 for some Calderón–Zygmund pairs
of Banach spaces (X1, Y1) and (X2, Y2)
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iii) There is a Banach space A such that D is dense in A and the dual space A∗ of A
coincides with X with equivalence of norms
iii) Every Calderón–Zygmund operator may be extended as a bounded operator on X :
‖T (f)‖X ≤ C‖T‖CZO‖f‖X .

Then, if X0 is the closure of D in X and Y = X∗0 , (X,Y ) is a Calderón–Zygmund
pairs of Banach space (and A = Y0).

This is easy to prove. First, let notice that every Calderón–Zygmund operator can be
extended on X2, hence de defined on X; the extra information is that it is bounded from
X to X. Moreover, we have D ⊂ X1,0 ⊂ X0 with continuous embeddings, so that t every
Calderón–Zygmund operator maps X0 to X0, hence by duality maps Y to Y . Moreover,
from X1,0 ⊂ X0 ⊂ X2,0, we get Y2 ⊂ Y ⊂ Y1. We will conclude if we prove A = Y0 ; but
we see easily (since truncate and convolution operators are Calderón-Zygmund operators)
that X0 is *-weakly dense in X and that A is embedded into Y with equivalence of norms
(due to hahn–Banach theorem). Thus, A = Y0.

We may apply this to the space X = Xs,p of pointwise multipliers from potential
space Ḣs

p (1 < p < +∞, 0 < s < d/p) :
i) we have the continuous embeddings for p1 > p : Ls,p1 ⊂ Xs,p ⊂ Ls,p (Fefferman-Phong
inequality) [FEF 83]
iii) Xs,p is the dual space of Y s,q defined by : f ∈ Y s,q if and only if there is a sequence
(λn)n∈IN ∈ l1 and a sequence of functions fn and gn with fn ∈ Ḣs

p , gn ∈ Lq, ‖fn‖Ḣsp ≤ 1 and

‖gn‖q ≤ 1. The norm ‖f‖Y s,q is then equivalent to inf(λn),(fn),(gn),f=
∑

λnfngn

∑
n∈IN |λn|.

iii) Every Calderón–Zygmund operator may be extended as a bounded operator on X :
‖T (f)‖X ≤ C‖T‖CZO‖f‖X . This is due to a theorem of Verbitsky [MAZV 95].
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vecteurs à divergence nulle, Comptes Rendus Acad. Sci. Paris, Série I, 319 (1994) pp.
811-813.
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