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Abstract : We prove the div-curl lemma for a general class of functional spaces, stable
under the action of Calderéon—Zygmund operators. The proof is based on a variant of the
renormalization of the product introduced by S. Dobyinsky, and on the use of divergence—
free wavelet bases.

Introduction.

In 1992, Coifman, Lions, Meyer and Semmes published a paper [COILMS 92] where
they gave a new interpretation of the compensated compactness introduced by Murat and
Tartar [MUR 78]. They showed that the functions considered by Murat and Tartar had a
greater regularity than expected : they belonged to the Hardy space H!.

They gave a new version of the div-curl lemma of Murat and Tartar :

Theorem 1 .
Ifl<p<oo,q=p/lp—1), f € (LP(R")? and § € (L7)?, then

—

div sz andcurl G=0 = f.Gge H'

There are many proofs of this result. We shall rely mainly on the proof by S. Dobyin-
sky, based on the renormalization of the product introduced in [DOB 92].

As pointed to me by Prof. Grzegorz Karch, it is easy to see that this result may be
extended to a large class of functional spaces. For instance, we have the straightforward
consequence of Theorem 1, for the case of weak Lebesgue spaces LP'* (better seen as

Lorentz spaces LP°°) and their preduals L9! :

Corollary 1 :
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Proof : All we need is the projection operators that lead to the Helmhotz decomposition
of a vector field : Id = IP +@Q where Q) is the projection onto irrotational vector fields :

- —»]_ -
h = div h
Qh = VL div

and IP the projection operator onto solenoidal vector fields. Those projection operators
are matrix of singular integral operators and thus are bounded on Lebesque spaces L",
1 < r < oco,and, by interpolation, on Lorentz spaces spaces L™, 1 <r < 0o, 1 <t < 4o00.

Let € > 0 such tilat e <minl/p,1/q. We write i = +e, pT :_%_6’ i = %—l—ﬁ
and i = % —e If f e (LP°(RY)4, we can write, for every A > 0, f = @4 + B4 with
HOCAHLP— < CAHfHLPOO and ||Bal|r+ < CAY| fl|Lre. If div f = 0, we have moreover

f=IPf =1Pas+IPF4. On the other hand, if § € (L91)4, we can write § = > jen Aidi
with [|Gjl[ze- |g]lzer < 1 and D75 [Aj] < CHgHLq,l. If curl § = 0, we have moreover

§=0QF =>;en N QF; Let A; = | gng/2 I £7j||2(114{2. We then write
fg= Z \j (Pda,. QgF; + PBa,. QF;)
JjeN
and get (from the div-curl theorem of f Coifman, Lions, Meyer and Semmes)

If-dlar < CX e N [UPEA lr- [ QF | Lov + PB4, 1o+ || QFjll )
< C'N e X jen 1Ml (A5l Gillpos + A7 Gillpo-)
C)| fllre X e N1
C|| fll ooe 1G] £

IN

The proof for the case div ¢ = 0 and curl f 0 is similar. o

In this paper, we aim to find a general class of functional spaces for which the div-curl
lemma still holds. As we may see from the proof of the Corollary 1, singular integral
operators will play a key role in our result. In section 1, we shall introduce Calderon—
Zygmund pairs of functional spaces which will allow us to prove such a general result. In
section 2, we recall basics of divergence—free wavelet bases (as described in the book [LEM
02]). In section 3, we prove our main theorem. Then, in section 4, we give examples of
Calderon—Zygmund pairs of functional spaces.

1. Calderon—Zygmund pairs of Banach spaces.

We begin by recalling the definition of a Calderén—Zygmund operator :
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Definition 1 :

A) A singular integral operator is a continuous linear mapping from D(IR?) to
D'(IRY) whose distribution kernel K (z,y) € D'(R% x RY) (defined formally by the formula
Tf(x) = [K(z,y)f(y) dy) has its restriction outside the diagonal x = y defined by a
locally Lipschitz function with the following size estimates :

i) sup,, |K (2, y)|lz — y|* < 400
i) sup,2,, [V K (2,y)| |z — y| " < +o0
i41) SUDP .z, |§yK(x,y)||m —y|H! < 400

For such an operater T, we define
ITlls10 = 1K (2, )| —y|*|| Lo @ IV K (2, y) [z =y || oo (it IV K (2, ) |2 =y T | oo ()

where K is the distribution kernel of T and Q = R x R* — {(x,y) / = =y}

B) A Calderén—Zygmund operator is a singular integral operator T which may
be extended as a bounded operator on L? : sup,ep o<1 1T(9)]l2 < +oo.
We define CZO as the space of Calderon—Zygmund operators, endowed with the norm :

ITllczo = [Tl cz2,c2)+ |1 T|s10-

We may now define our main tool :

Definition 2 :

A Calderén—Zygmund pair of Banach spaces (X,Y') is pair of Banach spaces such
that :
i) we have the continuous embedding : D(R?) ¢ X ¢ D’ and D(RY) C Y Cc D’
i11) Let Xy be the closure of D in X; then the dual spaceX{ of Xy (i.e. the space of
bounded linear forms on Xg) coincides with Y with equivalence of norms : a distribution
T belongs to Y if and anly if there exist a constant Cp such that for all ¢ € D we have
| (Tle)p o | < Crllellx
iiit) Let Yy be the closure of D in Y ; then the dual space Yy of Yy coincides with X with
equivalence of norms
iv) Every Calderon—Zygmund operator may be extended as a bounded operator on Xy and
on Yy : there exists a constant Cy such that, for every T' € CZO and every ¢ € D, we
have T'(p) € Xo N Yy and

IT(P)llx < CollTllezollellx and [T(#)]ly < CollTllczollelly

By duality, we find that every Calderén—Zygmund operator may be extended as a
bonded operator on X and Y : if T* is defined by the formula

(T(e)[¥)pr,p = (|T*(¥)) D, D1
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then T" € CZO implies T* € CZO and we may define T'(f) on X as the distribution
© = (fIT*(¢))y; v, The two definitions of T' coincides on Xj.

For m € L*°, the operator T,, : ¢ — myp belongs to CZO (with kernel K(z,y) =
m(x)d(x — y)). The stability of X and Y through multiplication by bounded smooth
functions (with the inequalities [|[mf|lx < Co [|[m|leo || fllx and ||mflly < Co [[m]leo || flly)
shows that elements of X and Y are (complex) local measures and that Xy and Y are
embedded into L _.

Our main result is then the following one (to be proved in Section 3) :

Theorem 2 :
Let (X,Y) be a Calderén—Zygmund pair of Banach spaces (X,Y). If f € X¢ and
GeY? then
div f=0andcurl =0 = f.geH'

and . .
divj=0andcurl f=0 = f.geH!

Remark : The distribution fﬁ is well-defined, since f € X¢ : if p € D, then we have
of € X¢ and § € (X})%.

2. Divergence—free wavelet bases.

In this section, we give a short review of properties of divergence-free wavelet bases.
Wavelet theory was introduced in the 1980’s as an efficient tool for signal analysis. Or-
thonormal wavelet bases were first constructed by Y. Meyer [LEMM 86|, G. Battle [BAT 87]
and P.G. Lemarié-Rieusset; a major advance was done with the construction of compactly
supported orthonormal wavelets by I. Daubechies [DAU 92]. Then bi-orthogonal bases were
introduced by A. Cohen, I. Daubechies and J.C. Feauveau [COHDF 92]. Divergence-free
wavelets were introduced by Battle and Federbush [BATF 95|. Compactly divergence-free
wavelets were introduced by P.G. Lemarié-Rieusset [LEM 92]; they are not orthogonal
wavelets [LEM 94|, but have been explored for the numerical analysis of the Navier—Stokes
equations [URB 95] [DER 06].

Let Hgjv—o and Heuri—o be defined as
Haiv—o = {f € (L*)? / div f =0} and Heurmo = {f € (L*)? / curl f =0}.
For a function f € (L?)?, j € Z and k € Z%, we define f; as fjr(x) = 2092 (290 — k).
Let us recall the mains results of [LEM 92] (described as well in the book [LEM 02]). The

idea is to begin with an Hilbertian basis of compactly supported wavelets, associated to
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a multi-resolution analysis (V}),cz of L?(IR). Associated to this multi-resolution analysis
(with orthogonal projection operator II; onto V;), there is a bi-orthogonal multi-resolution
analysis (Vf) (V") with projection Il ;) onto V;~ orthogonally to Vj+ such that L oIl; =
M) © G-

Starting from this one-dimensional setting, we now consider a bi-orthogonal multi-
resolution analysis of (L?(IR%))? (Vj1,...,Vj.4) and (Vits o Vig) where Vi = Vi1 ®
oo @ Vjga with V. =V for k # 1 and Vj 1 = Vj_ and V]:kk; = ijk,l X...Q® ijk,d
with V', = V; for k # [ and Vi = Vj‘L Let P; be the projection operator onto
(Vi1 Vja) orthogonally to (V... ,Vj”:d). Its adjoint P is the projection operator
onto (V/y,..., V) orthogonally to (Vj1,...,Vja). The point is that we have P;(Vf) =

—

V(IL; f) and div (P f) = IT(div f).

J
Those projection operators P; and P; can give an accurate description of Hgjv—o and

chrle :

Proposition 1 :  (Multi-resolution analysis for divergence-free or irrotational vector
fields)

Let N € IN. Then there exists a compact set Kn C R? such that :
A) Multi-resolution analysis : There exists

*) functions G¢ and G in (L2, 1<€¢<d

*) functions QEX and 77/7;‘( in (L?)%, 1< x <d(2% —1)
such that . .
i) the functions e, cﬁg, Yy and ¢35 are supported in the compact Ky

ii) the functions e, Pe ﬁx and J; are of class CN
ii) for 1 € IN¢ with 2?21 l; < N, we have fxld?x dx = fxl@;; dr =0
w) for j, i, inZ, k, k¥ in Z%, &, & in {1,...,d}, and x, X' in {1,...,d(2¢ — 1)}

/6&7]’,]{3.@’21’]"]{:/ dCC = 5k,k’5§,§’ and /wx,j,k'¢;’,j’,k’ dm = 6j,j’5k7k’5x,x’

v) The projection operators P; can be defined on (L?)?® by

Pi(f) =2 D (%) Fesn
kezd 1<£<d
They are bounded on (L?)% and satisfy

Pj OPj+1 = Pj_|_1 OPj = Pj, hrn HPJ']E“Q =0 and hm ||f— ij“g =0.
Jj——0o0 Jj—+oo

vi) The operators Q; defined on (L*)¢ by
Qi(f) = 3. (Pl g P

keZd 1<x<d(2¢-1)
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are bounded on (L?)¢ and satisfy
Qj =Pjt1— P

and

Al D oNQiFB~ [ > > (g, 2

JEZ JEZL keZd 1<x<d(2¢4—-1)

B) Irrotational vector fields : The projection operators P; satisfy :

—

fe (@ and curl f=0= curl Pi(f)=0

Moreover, there exists
*) 24 — 1 functions ¥, € (L?)?, 1 <n < 2%-) with curl 7, =0
*) 29 — 1 functions 55 € (L*)?, 1 <n<2¢—1

such that

i) the functions 7, and Yy, are supported in the compact Kn

i) the functions 7, and 7, are of class cN
iii) for | € IN® with 2?21 li <N, we have [ 23, dx = [2'7} dx =0
) for j, j', imZ, k, k' in Z* and n, ' in {1,...,2¢9 -1},

/,‘_Y’ﬁvj,k'i;’,j’,k’ dr = 5j,j’5k,k’677»77'
vi) The operators S; defined on (L)% by

Sj(f) = Z Z <ﬂ:);;,j,k> Vn.j.k

k€Z® 1<n<24-1
are bounded on (L?)* and satisfy
V.]FE Hcuri=o ij: Q]f?

and

Vi€ Heurmo 2 =~ DD > 1(F1F 12

JEZ ke#d 1<n<2d—1

C) Divergence-free vector fields : The projection operators P; satisfy :

—

fe (! anddiv f=0=div P;(f) =0

Moreover, there exists
*) (d—1)(2¢ — 1) functions &, € (L?)?,
*) (d—1)(2¢ — 1) functions &* € (L*)?,

(d—1)(2% — 1) with div d. =0

1
1 (d—1)(2% - 1)

IA IN

€
€

IAIA
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such that
i) the functions d. and & are supported in the compact Ky
i) the functions @, and @’ are of class C

iii) for 1 € N with Zle li < N, we have [2'd@. dv = [2'a@* dz =0
w) for j, i, in %, k, k' in Z% and €, € in {1,...,(d—1)(2% — 1)},

/&e,j,k-@:',j',k/ dx = 0,7/ Ok k' Oc,er
vi) The operators R; defined on (L?)? by

Ri(fy= > > (Flas ) Ge

keZd 1<e<(d—1)(2¢—1)
are bounded on (L?)¢ and satisfy
Vf € Haiv—o R;f =Q}f

and

Vi€ Haveo [Ifl2 = > > > | (Flae ) 12

JEZ ke 1<e<(d—1)(2¢—1)

We would like now to use those special functions with our spaces X and Y. We begin
with the following lemma :

Lemma 1 : . .

a) If f € XZ, then P;f and P} f converge strongly to 0 in X% as j — —oo and converge
strongly to fm X7 as j — 4o00.

b) Iffe Y{, then ij and P;‘f converge strongly to 0 in Y¢ as j — —oo and converge
strongly to f inY?% as j — +o0.

c) Iffe X, then ij and P]T"f converge *-weakly to 0 in X¢ as j — —oo and converge
*weakly to f in X4 as j — +oo.

d) If f €Y then ij and P;f converge *-weakly to 0 in Y as j — —oo and converge
*_weakly to fm Y? as j — 4o00.

Proof : First, we check that the operators are well defined. If f € CN has a compact
support, then we may write f = f6, with § € D equal to 1 on a neighborhood of the
support of f. Thus, f = T¢(f) and we find that f € XoNYy. Thus, (flg)x,,y is well
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defined for every g € Y, and (f|h)y, x is well defined for every h € X. We may then
consider the operators on X

\_/

Z Z -ﬂ N XYO SpfaLk

keZd 1<£<d

Z Z | Pe.i k)X Yo PE j k-

kez? 1<¢<d

and

\./

— * .
We have sup;cz || Pjllczo = supjez | P} lczo < +oo. Thus, those operators are equicon-
tinuous on X¢9.

To prove a), we need to check the limits only on a dense subspace of X(‘)i. X cannot
be embedded into L' : if f € D with f(O) # 0, then the Riesz transforms R, f are not in
L' but belong to Xo. It means that f € D+ || f||1 is not continuous for the X, norm.
We may find a sequence of functions f,, such that || f,|x converge to 0 and || f,.|1 = 1.
Since |f,| is Lipschitz and compactly supported, we can regularize f, and find a sequence
of smooth compactly supported functions f,, ;. such that all the f, 1, k € IN, are supported
in a compact neighborhood of the support of f,, and converge, as k — 400, uniformly to
| fn]; then, we have convergence in X (since Yy C L) and in L'. Thus, we can find a
sequence of functions f,, which are in D, with f frn dx=1and lim,,, o || fn|lx = 0. This
gives that the set of function f € D with [ f dx = 0 is dense in Xj.

. _ i _ ) * *
We now consider Q; = Pj41 — Py and Q = Py — P;

f) = Z Z <ﬂ _'; k)X, Yo wxuk

keZd 1<x<d(2¢-1)

and

D= Y flsinxye Uhik

keZd 1<x<d(29—-1)

~—

If fe D? and ffdx = 0, we have f: Z1§z§d 3;]52 for some ﬁ € D?. Similarly, we have
Zl<l<d OV, and Py = Zlglgd 3l‘ffx,z for some compactly supported functions of
class CN. Thus, we find that, for f € D¢ with ffdx =0,

1Py i1 f = Pifllx + 1P f = P fllx < Cmin() [|onfllx 27, Z Ifillx27).

=14

Thus, ij and P;f have strong limits in X¢ when j goes to —oc or +oo. If § € D%, we
write f € (L2)4 and § € (L?)?, and see that

lim (P;fl@)xy, = lim (P!fl§)x.y, =0

Jj—+—00 j——oo 7
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and

— —

lim (P, flgxv = lim (P} flg)x v = (fldxv:

j—+oo Jj—+oo

Thus, we have, for f € D? with ffdac =0,

im ([P fllx = lim [|P/f]lx =0
Jj——00 Jj——00

and
i 1P fllx =t (P77 - fllx =0
Thus a) is proved. b) is proved in a similar way. By duality, we get ¢) and d). o

We may now consider the operators :

Rj(f) = Z Z <f|&;k,j,k>X,Yo Ole,j,k

keZd 1<e<(d—1)(2¢—1)

and

SiH=Y" > (fl ) xve Tnik

kcZd 1<n<2d—1

From the identities IP* R} = IP*Q; and Q" S} = Q*Q} which are valid from D4 to Y,
we find by duality that R;IP = Q7P and S; @ = Q; Q on X?. To be able to use those
identities, we shall need the following lemma :

Lemma 2 :

Leth X<, Then :
)IPf=fedivf=0
z'z')([)f: fecul f=0

Proof : First, we check that f € X and Af =0 = f = 0. Take § € D such that
6 > 0, and 0 # 0, and define v = ﬁ x 6. Convolution with the kernel ﬁ is a
Calderén—Zygmund operator, so we get that v € Y. Moreover, if g is a function such that
(1+x2)nT+lg € L>, we find that g = v~ 'gy = T,-1,(7), where the pointwise multiplication
operator T, -1, is a Calderén—Zygmund operator, so we get that g € Yy. This proves that
X Cc &8 Thus, if f € X and Af =0, we find that f is a harmonic polynomial. Moreover
[ 1fly de = <f|Tﬁ (7)) x,v,, hence the integral [ |f|y dz must be finite, and f must be

constant. As the smooth functions with vanishing integral are dense in Yy, we find that
the constant is equal to 0.
Now, we have for a distribution f that

div f =0 V@ e D? with curl 3=0, (f|@) =0;
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thus, we have on X? that div IP f = (0. Similarly, we have for a distribution f that

—

curl =0 V@ e D? with div 3=0, (f|g) =0

thus, we have on X? that curl(l)fz 0.

Conversely, we start from the decomposition Id = IP + @ valid on X“. 4. If div f 0,
then we find that h = f P f @Q f satisfies. div i = 0 “and curl h = 0. But this implies
that Ah = 0, hence h=0We prove similarly that curl f = 0 implies that f =@ f o

3. The proof of the div-curl lemma.

As in [LEM 02], we prove Theorem 2 by adapting the proof given by Dobyinsky [DOB
92]. This proof uses the renormalization of the product through wavelet bases.

If fe X% g€ Y? and if moreover fe Xd or g€ Y¢, we use lemma 1 to get that, in
the distribution sense, we have

f.g= JETOOP f P;g — Pfj.f.P_jg
and thus . . . .
f.9= Prf.Qig+ Q5 f-Pig+Q;f.Q;g
JEX

JEX
B(f,5) =Y _ R;f-P;g
JEXL
and .
C(f,9)= ) R;f.S;g
JEXL

belong to H!.

We make the proof in the case f € Xd (the proof is similar in the case § € Y). We
first check that A and B map (Xg)% x Y4 to H': we use the duality of H' and CMO (the
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closure of Cy in BMO) (see Coifman and Weiss [COIW 77] and Bourdaud [BOU 02]) and
try to prove that the operators

=Y S (hP}f)

JE€EXL

S WAl

JEXL

and

map (Xo)? x CMO to (Xg)<.

In order to prove this, we shall prove that A(.,h) and that B(.h) are matrices of
singular integral operators when h € D and that we have the estimates ||A(.,h)|czo <
C|\hllmo and ||B(.,h)|lczo < C||hllppmo. For B, we may as well study the adjoint

operator
=Y R;(hP;f)
JEXL

First, we estimate the size of the kernels and of their gradients. The kernels Aj(x,y) of
A(.,h) and B;(z,y) of B(.,h)* are given by

=SSN ST S Y @B i) Pe g (v)

JEZ kemd 1<6<d ez 1<n<2d—1

and

Bi(zy)=> > >, >, > A j1(2) (hde g1 e j k) Pe 5.1 (Y)

JE€EZ keZ 1<(<dcZ? 1<e<(d—1)(29-1)

There are only a few terms that interact, because of the localization of the supports : if
Ky C B(0,M), then ( Yn.il) = (hPe jilde ) =0if |l — k| > 2M. Let

C(h) = sup | {hBe j 1| V500
.7€Z7k€Zd71§£§d7l€%d71§7]§2d_1

and
D(h) = sup | (hPe j il e j k)

JEXKEZL1<E<LdIEeZ 1<e<(d—1)(29~1)
Then we have

|An(z,y)| < Z Z CC(h)2' " p(o,n1) (22 — k) 1p0,300) (27 y — k)

JEX ez

and thus ‘
[An(@.y)l <CCh) Y, 29 <C'Ch)|z—y|™

27|y —z|<4M
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and similarly
|Bi(z,y)| < CD(h)|z —y|~*.

In the same way, we have

Vedn(@,y)| + VyAn(z, )| <> > CCh)2 D 1p0an (27 — k) 1po s (27y — k)
JEXL ke

and thus . .
Vodn(z,y)| + [VyAu(z,y)| < CC(h)|x —y| ="

and similarly
VaBu(@,y)| + [VyBu(z,y)| < CD(h)|z —y| =7,
Moreover, the function G ; .7y ;. is supported in B(277k, M277), (|Gf ; A jilloo < C27

and [ g ;A dr = 0 (since Pr@g . = @ and QY1 = Ypj1). Thus, we find
that ||GZ ; x-Vn.jillzr < C, so that

C(h) < CllhllBmo-

. . . — — . — o _ * = .
We have similar estimates for [|@¢ ;1.0 jkllzr (since Pjge ji. = Feji. and QFde jr =
Ae,jks and thus [ G 1.0 ;5 dz = 0), and thus

D(h) < Cllhllsrro-

Thus far, we have proven that A(.,h) and B(., h) are singular integral operators. To
prove L? boundedness, we use the T'(1) theorem of David and Journé [DAVJ 84]. We've
got to check that the operators are weakly bounded (in the sense of the WBP property),
and to compute the images of the function f = 1 through the operators and through their
adjoints.

Let x¢ € IRd, ro > 0 and let fand g be supported in B(zg,79). We want to estimate

(A(f.)|§)p.p and (B(f.h)|§)pr,p. We have (A(f, h)|§)pr pl < 3.cq Aj where

=3 Y Y Y I s (12 |

ke 1<E<d leZd 1<n<2d—1

and similarly [(B(f, k)7 o p < > ez Bj where
=> > > > | {G1Peg0) (MPejaldejn) (FIAE ;) ‘
keZd 1<¢<dcZ 1<e<(d—1)(2¢—1)

We have

A<Cm > > Y > @i (7955,j,k>‘

keZd 1<E6<d |l—k|<2M 1<n<2d—1
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which gives

A <Ch) DT T T fBein) 1D D 1@, | < )2l Il

kezd 1<¢<d leZ 1<n<24—1

and

A <CCh) [0 DT TG 121D >0 1@ 1P

kez? 1<£<d lezd 1<n<2d—1

and thus . . .
Ay <C'C)|1S;dl211P; fll2 < C"C(R)277IV 2|l f]2-

Finally, we get

| (A, 1)|§) D o] COMR) (s o1 28I 2ldll2 + Xosr51 2771Vl £1l2)

<
< C'CR)(I1fllz + ol V £ll2) g1z + rolVgll2)-

Similar computations (based on the inequality ||R;( P2 < €279V fll2) gives as well

(B(f,h)|) .o < CDMB)([Ifll2 + rollV Fll2)(1Fll2 + 70l Vgll2)-

Thus, our operators satisfy the weak boundedness property.

We must now compute the distributions 7°(1) and 7%(1) when 7' is one component of
the matrix of operators A(., h) or of B(.,h). We must prove that, if € D is equal to 1 on
a neighborhood of 0, if Gﬂl,R = (01,1,R,---»0a0,r) With O 1 r = 0,,0(%) and if 1/7 € D¢ with
[ % dz = 0, then we have

. * * Y d
Gl ;ﬂ S3(hP}0) r) € (BMO)
J

(the limit is taken in (D’/IR)¢) and similarly that

: Q. d d
REIEOO PJ (hSJGI,R) € (BMO)
JEXL

Llm Pr(hR;0,r) € (BMO)*

JEZ
and . ]
REIE”J-GZZZRj (hP;f). ) € (BMO)
To check that, we write hy = (h1s---,hay) with hy; = 0k 1h and we consider J € D4 with

[ dx = 0. We have Zjezz HSJ(@E)Hl < +00 and thje_'l,RHoo < [|A]lo |0l o and thus we
get by dominated convergence that
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> [ ik d.

JEZXL

Jim / J. E%s;(hp;ew) dz =
J

> jez Sj 1s a matrix of Calderén—Zygmund operators 1" which satisfy T *(1) = 0, hence
map H! to H!, so that we find

5 / S0 dz) < Cllhl sarolld]

JEX

S*(th*gl,R) € (BMO)?. Similar estimates prove that

and thus limp_, 4 Zje% J

lim /J.R;(hpje“m) dr = Z/Rjﬁ.ﬁl dz.

R—+o00
JEXL

and

1Y [ B de < Cllbllaol| e
JEXL
so that imp_ o0 3. ez Ri(hP;01r) € (BMO)?.
On the other hand, we have

O llocll P11 115580, o
Ol oo min(L,27) min([6]]. 27 R~ 96]l) = O(R1/?)

| [4.P;(hS;0,.r) dx|

IA A

so that limp_, 1 o EJEZ Pj(thO_'lvR) = 0. Similarly, we have limp_, 1 o Zje% P;(hRjG_},R)
= 0.

Thus, we have proved that A and B map X§ x CMO to X¢, and thus that A and B

map XZ& x Y4 to H'. We still have to deal with C’(f, g) = Zje% ij.Sng. We write

Cf.a=> > > > S Gk (Fla ) GegiAngik

JEZ ke 1<n<2¢—1 1€ Zd 1<e<(d—1)(2¢—1)

We have d ;. 7,k = 0 for |k —1| > 2M and ||&c ji.Vn, k2 < C for |[k—1] <2M. Thus,
we are lead to prove that :

IO IS DD S 1@l KAa 01 < CllFllxgglye:

JEZ kT 1<n<24—1 |I—k|<2M 1<e<(d—1)(2¢—1)
For1<n<2?—-1,1<e<(d-1)(2%—-1) and r € Z% with |r| < 2M |, we consider J a
finite subset of Z x Z<¢ and for e; = (¢5,6)(jyes € {—1,1}7 and T¢, the operator

T, (f)= D €ulfla ;) Toik

(4:k)ed
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—

Using again the T(1) theorem, we see that ||T.,|czo < C, so that T.,(f) € X& and

—

JTaPgdo= 3 Guiflapn) @0 < CI gy
(4,k)eJ

—

Now, it is enough to choose €;, 5 as the sign of (f|@ ; ;) (G617, ; ;) and we may conclude.

Thus, Theorem 2 has been proved. o
4. Examples.

We now give some examples of Calderén—Zygmund pairs of Banach spaces (according
to Defiinition 2) :

a) Lebesgue spaces : X = Xy = [P and Y = Yy = L? with 1 < p < 400 and
1/p+1/qg=1.

b) Lorentz spaces : X = Xg=LP" and Y = L9 with 1 < p < 400, 1 <7 < 400,
1/p+1/g=1and 1/r+1/p=1.

c) Weighted Lebesgue spaces : X = Xy = LP(w dx) and Y =Y, = Lq(w_ﬁ dzx)
with 1 < p < 400 and 1/p + 1/q = 1, when the weight w belongs to the Muckenhoupt
class A,.

d) Morrey spaces : We consider the Morrey space L*P defined by
@ @ 1 1/
feL* s sup RG(— [ |f(z)]P dz)"/? < oo
QEQ ‘Q| Q

We are interested in the set of parameters 1 < p < 400 and 0 < a < d/p.

The Zorko space L7? is the closure of D in £*P. Adams and Xiao [ADAX 11]
have proved that £*? is the bidual of £F : H*Y = (LyF)* and L¥P = (H™?)* with
1/p+1/q = 1. One characterization of H*? is the following one : f € H*? if and only
if there is a sequence (\,)nen € I' and a sequence of functions f,, and of cubes @Q,, such
that f, € L%, f, is supported in @, and || f,|l; < Rgi:d/q_d. The norm || f||3e.qa is then
equivalent to inf()\n)’(fn)’f:z M o 2omeN | Anl-

Our Calderén—Zygmund pair is then X = L*P and Y = Yy = H*? with 1 < p < +0o0,
O<a<d/pand 1/p+1/q=1.

e) Multipliers spaces : We can build new examples from the former ones. Indeed, let
X be a Banach space such that

i) we have the continuous embeddings : X7 C X C X; for some Calderén-Zygmund pairs
of Banach spaces (X1,Y7) and (Xo, Y2)
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iii) There is a Banach space A such that D is dense in A and the dual space A* of A
coincides with X with equivalence of norms

iii) Every Calderén-Zygmund operator may be extended as a bounded operator on X :
I7(H)x < ClTlczolfllx-

Then, if X is the closure of D in X and Y = X{, (X,Y) is a Calderén-Zygmund
pairs of Banach space (and A = Yj).

This is easy to prove. First, let notice that every Calderon—Zygmund operator can be
extended on X5, hence de defined on X; the extra information is that it is bounded from
X to X. Moreover, we have D C X; o C Xy with continuous embeddings, so that t every
Calderén—Zygmund operator maps Xg to Xy, hence by duality maps Y to Y. Moreover,
from X9 C Xo C Xa0, we get Yo C Y C Y;. We will conclude if we prove A =Y} ; but
we see easily (since truncate and convolution operators are Calderén-Zygmund operators)
that Xg is *-weakly dense in X and that A is embedded into Y with equivalence of norms
(due to hahn—Banach theorem). Thus, A =Y.

We may apply this to the space X = X*P of pointwise multipliers from potential
spaceH; (I1<p<+4o00,0<s<d/p):

i) we have the continuous embeddings for p; > p : L5P* C X®P C L%P (Fefferman-Phong
inequality) [FEF 83]

iii) X*P is the dual space of Y*7 defined by : f € Y4 if and only if there is a sequence
(An)nen € ! and a sequence of functions f,, and g,, with f,, € H;, gn € LY, an||Hp < 1and

lgnllq < 1. The norm || f||y=.q is then equivalent to inf(An),(fn),(gn)J:Z Mo g 2omeN [Anl.

iii) Every Calder6n—Zygmund operator may be extended as a bounded operator on X :
IT(Hllx < ClT|lczollfllx- This is due to a theorem of Verbitsky [MAZV 95].
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