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Introduction.

In this paper, we are interested in the regularity of the weak solutions of the dissipative quasi-geostrophic
equation (QG,), a generalization of the quasi-geostrophic equation (QG) which is related to fluid mechanics
[PED] and whose mathematical study was initiated by Constantin, Majda and Tabak [CON] in 1994. The quasi-
geostrophic equation (QG) describes the evolution of a function 6(¢,x), t > 0, x € IR? as

0,0 + 1.V =0
(1) @ = (—Rq0, R10)
0(0,.) = 6,

where R; is the Riesz transform R; = \/% (so that the vector field 4 is divergence-free : div @ = 0).

Throughout the paper, we will denote v/—A by A (this is Calderén’s operator). For 0 < o < 1, the dissipative
quasi-geostrophic equation (QG,,) is the equation (QG) penalized by a dissipative term —A2%6 :

0.0 + T.VO = —A220
(2) U = (—R20, R10)
0(0,.) = 6,

In order to deal with irregular solutions, we rewrite the advection term .V as div(f @) :

0,0 + div(0 i) = —A2%9
(3) i = (—Ro0, R10)
0(0,.) = 6,

In 1995, Resnick [RES] proved the existence of weak solutions of the equation (3) for 6y € L?>(IR?) ; those solutions
satisfy the inequality

t
(4) for ¢ >0, [6(t)3+2 [ [ A0 dz ds < o]
0

so that § € L°L> N LH® where H® is an homogeneous Sobolev space.
In 2008, Marchand [MAR] studied the case of an initial value 8y € LP; he proved the existence of weak solutions
to equation (3) when p > 4/3; moreover, when p > 2, Marchand’s solutions satisfy the inequality

t
(5) for t >0, |0(t,.)[5 —|—p/0 /9]9\7’_21&2“9 dx ds < |00}

where the double integral gives a nonnegative contribution, as shown by Cérdoba’s inequality [COR] [JU]
(6) 2/ IA®(|0]P/2)|? da gp/9|9|p2A2ae dx.

However, the regularity of Marchand’s solutions remained unclear.
In this paper, we will establish the regularity of Marchand’s solutions in terms of a norm in a Besov space.
More precisely, we shall establish a variant of Cérdoba’s inequality and get that (for 2 < p < oo and 0 < o < 1)

(7) 61" < Cp/9|9|p_2A20‘0 dx

52a/p,p
By
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and (for 2 <p < o0)
®) 1013 < Cy [ 018172(=2)8

2 52/p,00 . . .
where B2*/P? and B2/"* are homogeneous Besov spaces. Our method will gives us a new proof of a nonlinear

Bernstein inequality given by Danchin [DAN a] : for # € LP(IR") such that its Fourier transform (¢) is supported
in the annulus 1/2 < [£]| < 2,we have, for 1 < p < oo

(9) All0lIE < IV (OP7)II5 < BIIO|IS
where the constants A and B are positive and depend only on p and on the dimension n.

Our main tool will be a precise study of the semi-group e~tA*" . This is a symmetric diffusion semi-group (in

the sense given by Stein [STE]) and we will use a representation of the semi-group as a barycentric mean of heat
kernels through a formula derived from the theory of a-stable processes [ZOL]. For instance, when o« = 1, we have

o—tAZ _ A (the heat kernel); for o = 1/2, we have e ** = P, the Poisson semi-group. In dimension 1, e~ !¢l is the

Fourier transform of %ﬁ, we write
11 L[~ 1 2 d
(10) = = —/ e e do = — e 5% 2
ml+a22 7 ) o Jo )
and we get
1 4 2 do
V2r Jo o3/2
and finally
1 > 1 t2 do
(12) e t :—27r | e 20602 m

We shall use a generalization of (12) to the case of =A™

1. One-dimensional stable distributions
The aim of this section is to establish the useful following representation :

Proposition 1 :
For 0 < a < 1, there exists a probability measure dju, concentrated on [0, 400) such that for all x € R we have

2c +OO 2
(13) el = / 7 dj1o (o)
0

Corollary 1 : .
Let A = /—A be the Calderén operator on R"™ and e*® be the heat kernel on IR"™. Then the operator e *A"
(t>0,0<a<1)may be represented as

—tA2® e ot/ A
(14) et = / "B (o)
0

Proof : We need only to prove the Proposition, the Corollary being obvious. We start from the theory of
one-dimensional stable processes. The probability density function du of a random variable X is called a-stable
[ZOL] if its characteristic function x (&) = E(e!X¢) = [ €' du(x) is of the form

eimE— (€7 —iBoElE|* T tan(ra/2)  if o £ |
(15) x(§) =

eimé—ol€|+iBot n [¢| ifa=1
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The admissible values for the parameters are 0 < a < 2 for the stability index o, m € IR for the position parameter
m, o > 0 for the scale parameter o, and —1 < # < 1 for the bias parameter 5. We will write X ~ S, (m, 0o, 3).
In the case of X ~ S,(0,0,1) with 0 < o < 1, we have y(£) = e~ €7 (1+i SEN(E) tan(ra/2)) "If » i5 the holo-

morphic function defined on C\IR™ (so that z* = |Z|aeiaA1“g(z) where the argument of z is taken in (—m, 7)), we find
that (i€)® = |£|*e'S8MET/2 = cos(am/2)[€]*(1 + isgn(€) tan(am/2)). Thus, when X ~ S, ((cos(an/2))~1/*,0,1),
we have y(€) = e (9", For z = 5+ i€ with 5 > 0, we have |e=*"| = ¢~I#|” cos(@AI&(2)) < 1: the Paley-Wiener—
Schwartz theorem ensures us that the probability density function du, of X is supported on R* and that, for

z = £ +in with n > 0, we have e(*?)” = f+oo 9% due (). When z = iz2, we obtain e~ = O+OO —oa* d,ua( ).

Thus, Proposition 1 is proved. o
Remark : formula (13) is well known. See for instance Proposition 1.2.12 in [SAM]. Due to a celebrated theorem
of Bernstein [BER], it amounts to say that the function z > 0 — e~ 1#1" is completely monotone, which is easily
checked.
2. Diffusion semi-groups.

In this section, we consider a symmetric diffusion semi-group as considered by Stein in [STE] :
Definition 1 :
A symmetric diffusion semi-group with infinitesimal generator L is a family of operators (e'*);>q such that :

i) et is self-adjoint fort >0

i) e’ is the convolution operator with a probability density function pi(z) (pt:(z) >0 and [ pi(z) dz =1)

iii) etlest = et and, for f € L?, limy_,o+ ||et“f — f]la =0
We then have

w) Lf = limy_ i( e!l'f — f) on a dense subspace of L?

v) Ot f = L(ettf)

For classical results on such semi-groups, we refer to the survey of Bakry [BAK]. A crucial result is that, for
a convex function ¢, we have the Jensen inequality

(16) oe"f) < e o(f)

and, by looking at the derivatives of both terms at t = 0,

(17) ¢ (f)Lf < L(of).
When ¢(t) = t2, we get 2fL(f) < L(f?) : this is the positivity of the square field operator
(18) L(f.0) = 5(L(f.0) ~ FL(9) ~ 4L(})

For ¢(t) = [t|” with v > 1, we find vf|f|""2L(f) < L(|f|?). For v = p/2 with 2 < p < +oc0, we multiply the
inequality by |f[P/? and we integrate ; we thus get

(19) p / fIFP2Lf de <2 / |FIP/2L(| f1P/?) da = —2 / IV=L(|f|P/?)]* dx.

We are now going to generalize (19) by taking into account the sign of f in the RHS of the inequality :

Theorem 1 :
Let (e'1)1>0 be a symmetric diffusion semi-group. Then :
i) For 2 < p < 400, we have the inequality

(20) / FFP2L(f) de < / AFE LA d / WL de.

i1) For 1 < p < 2, we have the inequality

(21) /f|f| L(FIf15Y ——4/|¢_ I dw<p/f|f|p 2L(f) dx < 0.
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Proof : We use the convex function ¢(t) = |t|,and we find sgn(f) L(f) < L(|f|), hence fL(f) < |f|L(|f]). We

decompose f into f = f* — f~ with f™ = f+2‘f|, and we get

(22) L)+ L) 20

Integrating (21) and using the self-adjointness of L gives [ fTL(f~) dx > 0. The case of f* and f~ approximating
two Dirac masses at separate points gives then that the distribution kernel K of L satisfies K(z,y) > 0 outside
from the diagonal set x = y, and we get finally that

(23) frL(f7) = ) K(z,y)f*(x)f (y) dy = 0

and similarly f~L(f") > 0. In particular, we get that, for 1 < p < +oo, we have
(21) [P L) de o

On the other hand, we have that ¢ — |[e'"||? is nonincreasing, so that (by looking at the derivative at t = 0) we
have p [ f|f[P72Lf dz < 0. This inequality together with (24) gives

(25) 2/(f+)p_1L(f+) +(fPTIL(fT) do < /f]f|p_2L(f) dr < /(f*)p‘lL(f+) +(fTPTIL(fT) da.
and, similarly, we have for g = f|f|2~1, gt = (f1)?/2 and g~ = (f)P/2,
(26) 2/9+L(g+) +g L(g7) de < /g L(g) dz < /9+L(9+) +g L(g7) dx.

When p > 2, we write [[e!sfF[E < [lei(g")||]3 and we get (by looking at the derivative at ¢ = 0) that
p[(fT)PTLL(fT) do <2 [ gt L(g") dz; we have the same inequality for f~ and g~. Thus, (25) and (26) give (20).
When p < 2, we write |le'Pg™[|5 < [le™(f1)||5 and we get that 2 [ gt L(g™) dz < p [(f1)P7'L(fT) dx; we
have the same inequality for f~ and g~. Thus, (25) and (26) give (21). o

3. A. et D. Cérdoba’s inequality and Besov norms
The semi-group (e_tAm)tZO is a symmetric diffusion semi-group on IR". The positivity of its kernel is a

consequence of the positivity of the heat kernel e*® and of the representation formula given by Corollary 1. Thus,
Coérdoba’s inequality (6) is just a special case of inequality (19). In this section, we shall apply Theorem 1

(generalization of (19)) to the semi-group (e~*A™" )t>0. Our application will be based on the following easy lemma :

Lemma 1 :
Let 0 <~ < 1. Then for all a and b in IR we have

(27) lala[*™" = b|p| " | < 2|a —b]”

Proof : This is obvious if ab < 0 : if uv < 0 then max(|ul,|v|) < |u —v| < 2max(|ul,|v|). If ab > 0, we use the
fact that d,(x,y) = |v — y|” is a distance on IR and we write |d,(a,0) — d,(b,0)| < d(a,b)]|. o

We may now prove the following extension of Cérdoba’s inequality, using norms in homogeneous Sobolev and
Besov spaces :

Theorem 2 :
(A) Let 0 < v < 1 and 2 < p < +oo. Then there is a positive constant cqo ppn > 0 such that :

(28) Capallfzerns < IFIF1E Iy = / A (FIFETDI de <p / FIFPZ2AZ(F) da
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(B) Let 2 < p < 4+o00. Then there is a positive constant c, , > 0 such that :

(29) epnllf I sa0rm < LALFIE 2, =/W(f|f\§—1>|2 dx Sp/f|f|p—2<—Af> dx

(C) Let 0 < a < 1 and max(1,2«) < p < 2. Then there is a positive constant Cq, pn > 0 such that :

(30) 0<p / FIFP-2A2(F) da < Al FIF1E0E = 4 / AS(FIAE P de < Copn

|f||%127a/p,p

Proof : First, we apply Theorem 1 to the symmetric diffusion semi-group (e_tAQQ)tZO : (20) gives the RHS
inequalities in (28) and (29), while (21) gives the LHS inequality in (30). Thus, the proof of Theorem 2 is reduced
to a comparison between a Besov norm and a Sobolev norm.

Besov norms may be defined in various (more or less) equivalent ways. We shall use the characterization of
Besov spaces through moduli of continuity. For g € (0,1) and 1 < p < oo, the norms of Bg,p may be defined as

|f(z) = F(y)lP : 1f(z) = fl@+h)llp
31 B,p = / dx dy)? and 2B00 =  SUP
(31) 1715 ( |z — y[r+PP v) 17115 h€R™, h£0 ||
Moreover, we have H® = BZ?. Thus, the Sobolev norm | fll o is equivalent, for a € (0,1), to ||f||B§,2 =

\/ff ‘fix yﬁfféf dz dy. For a = 1, the Sobolev norm || f|| ;1 is equivalent to sup,cgn_ o ”f(m)_";(lx’%)”z.

To finish the proof, we use Lemma 1. For p > 2, we take v = 2/p, a = f(z)|f(z)|2~, b= f(y)|f(y)|2 " and
we get

(32) f@) = f@IP < 2P| f@)f (@) = f)lf )27

Using (32) and (31), we then get the LHS inequalities of (28) and (29).
For p < 2, we take v = p/2, a = f(x), b = f(y) and we get

(33) F@)F@)E = F@IF@IF P < 4lf(2) = fy)P
Using (33) and (31), for 2a/p < 1, we then get the RHS inequality of (30). o
4. Frequency gaps.

Let 1 < p < 400 and f € LP(IR"™) such that the Fourier transform f has no low frequency : f(€) = 0 for
€] < A. Then it is well known that the norm of e*® f decays exponentially :

1 a2
(34) le fllp < —e= I £llp

p

(see for instance Chemin [CHE]). But (34) contains no information for small ¢’s : if ¢ < A‘Q% ln% we have

e fll, < |If]lp and 1 < ie*CPtAQ. In this section, we want to prove a more precise estimate :

(35) e fllp < e I £1l

We begin with two classical lemmas :

Lemma 2 :

(A) Let 1 < p < +o00 and g € LP(IR") such that the Fourier transform ¢ has no low frequency : g(§) = 0 for
. 0, _

&l < A. Then, for 1 <j <n, [[Zgll, < cA gl )

(B) Let 1 < p < 400 and f € LP(IR") such that the Fourier transform f has no low frequency :

€] < A. Then || fll, < cATHV £l

(C) Let 1 < p < +oo and f € LP(IR"™) such that the Fourier transform f has no low frequency : f(&) = 0 for
€| < A. Then there ewists Fj € LP such that f = 37, 9;F; with || Fjll, < cA™Y|fllp-

s

(&) =0 for
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Proof: (A)isobvious: if w € D(R") is equal to 1 on the ball B(0,1/4) and to 0 outside from the ball B(0,1/2),

then the function k; whose Fourier transform k; is equal to k;(£) = — 0 5” (1 — w(&)) satisfies k; € L'. We have
Zg = A""1k;(Ax) * g, so that | Zgllp < Ikl ||ng
For (B) and (C), we just write f = —ZJ ) A@ f= —ZJ 19 %f_ o

The following lemma can be found in [KAT] :

Lemma 3 :
Let 1 < p < 400 and f be a C* function. If f € W2P(IR"), then we have

o p—2 T = . = r2 p—2 T
(36) / FIFP2Af do = (p—1) /f@#o'vf' P2

Proof : For p > 2, this is obvious. f|f|P=2 is C! and 9;(f|f|P~2) = (p — 1)|f|P720;f. Thus, (36) is a direct
consequence of integration by parts.
For 1 < p < 2, we approximate f|f|?~2 by g. = f|f% + 62]p_52 with € > 0. By dominated convergence, we
p— 2
have — [ f|fIP72Af do = lim_o [ g.(—~Af) dz. We have 9;(gc) = 0 f|f2 + €2|"= (1 + (p — 2)#) We consider
w € D(IR™) such that 0 <w <1 and w =1 on B(0,1). Then we have

f2

f2+62)d

(37) /82fg€— llm /8f (x/R)0 ]g€+ 3 w(x/R)ge) dx—/|8f| 172+ €7 (1+(p 2)

since | [ 0; f 50;w(x/R)ge dx| < R_1||8 Wllooll flI}y2.» (and thus goes to 0 as R goes to +00) and since 9; f0;ge > 0

(remark that p—1 < 1+ (p—2) L — —— < 1), so that we may apply monotonous convergence to [ d;f9;g.w(x/R) dz.
We may restrict the domain of the integral in the RHS of (37) to the set of  such that f(x) # 0, since the set of
x such that f(z) =0 and 0; f(x) # 0 has Lebesgue measure 0. Thus, we have

2

(38) - [arearae=gim [ @R IR 04025l @
f()# Fite

Moreover € +— |r? + 62\1%2

convergence to see that

is nonincreasing function of € € [0,400) and we may apply again monotonous
(39) lim 0, F21f% + " da:—/ 0, f 21172 da
=0 Jf(@)#0 F(@)#0

The inequality |V f|2 |f2 + €22 (1 +(p— Q)Pf—jg) > (p—DI|VS? |f2+ 2|z | together with (38) and (39),
gives us that the limit in (39) is finite. The inequality |V f|2 [f2 + €2|"=° (14 (p — 2)f2f—j62) < VS22 +e|" 7,
together with (38), gives us by dominated convergence the equality (36). o

We may now prove our theorem on frequency gaps :
Theorem 3 : R X
Let 1 < p < 400 and f € LP(R"™) such that the Fourier transform f has no low frequency : f(§) = 0 for

§] < A. Then :
(A) If f € W?P, we have the inequality

(40) &lIfIE < A72p / FIFP2(-Af) da

where the constant ¢, > 0 depends only on n and p.
(B) We have the inequality, for all t > 0,

(41) e fllp < e £l
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where the constant ¢, > 0 depends only on n and p.
(C) For 0 < a <1 and t > 0, we have the inequality

_ 2a —co 2a
(42) le™™ ™ fllp < e x| £l
where the constant cq, > 0 depends only on n, a and p.

Proof : We may assume (by a density argument) that f is smooth. In order to prove (A), we shall consider the
cases p > 2and p < 2:
Case p > 2: We use Lemma 2 and write f = 2?21 0;F;. Then we have

(43 515 =3" [ 1112 do =~ =1 [ 0155511172 o
j=1 J=1

and by Cauchy—Schwarz

(449) 171 < (o 1>¢ ViR dx\/ [ 1Bl da

We conclude with Lemma 2 (C) and Lemma 3.
Case p < 2 : We use Lemma 2 (B) and write ||f]|, < CA_1||6f||p. Moreover, when computing the integral

S \ﬁ f|P dx, we may restrict the domain of integration to the set of = such that f(z) # 0. Then we use Holder
inequality to get

(45) J1sran< ([ @R an [ gy an)
F(z)#0 F(z)#0

and we conclude with Lemma 2 (B) and Lemma 3.
Thus, (A) is proved. (B) is a direct consequence of (A) : the derivative of H(t) = |[e'®f| is equal to

p [ A flet fIP2A (et f) dx and the the derivative of K (t) = e~ 4"t f||8 is —c,A%e~»4"!| f||2. (A) gives that
H'(t) < —c, A2H(t); thus, we get, for J(t) = H(t) — K(t), J'(t) < —c,A2J(t) and J(t) < J(0)e~4’t = 0. Thus,
H(t) < K(t) and (B) is proved.

(C) is a consequence of (B) and of the representation formulae (13) and (14) :

0 o0
_t A2 1/ _ 2 1/ _ 241/ aya _a A2«
(46) [l £, < / 12 FI2 dpia (o) < / A £ dpa(0) = e~ @A FL = S A £,

Thus, (C) is proved. o
5. Band limited functions.
In this section, we shall estimate the decay of ||e_tA2af||p by below :
Theorem 4 : X )
Let 1 < p < 400 and f € LP(IR") such that the Fourier transform f has no high frequency : f(§) = 0 for

€| > A. Then :
(A) For 0 < a <1, we have the inequality

(47) A2 / FIFIP2A% di < co £

where the constant co, > 0 depends only on n and p.
(B) For 0 < o <1 and t > 0, we have the inequality

_ 2 _ 2
(48) le™™ 2 fllp > e cr A £l
where the constant c,,, > 0 depends only on n, a and p.
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Proof : The case p > 2 is easy. The Bernstein inequalities give us that [[A**(0)|, < cA%*||6]|, and thus (47) is
obvious.
When p < 2, we use Theorem 1 (21) (or the LHS of Theorem 2 (30) which is valid for 1 < p < 2) and get that

(49) /flflp 2A2(f) da < A||FIF12 5. < ANFIS P2V LR YI3

L?Ve ap}pl)rommate flf1= S by g = f|f? + 62]1%2 with € > 0. We have d;g9. = 9, f|f* + 62\%(1 + pT_QfgijQ). We
ave that

- 2 2
I B

P oo (=D [ VPP s
f(@)#0

We use Lemma 3 to get that the limit in (50) is finite; this proves that V(f|f|2~!) € L? and that (using Bernstein
inequality)

(51) ISGIEDIE = (- 1) / FIFIP2Af da < cA?| £

Thus (A) is proved. (B) is a direct consequence of (A) : the derivative of H(t) = [le ™" f b is equal to
—p [ et fletA P2 A20 (e~ tA £ dz and the the derivative of K (t) = e~C¢erA” HIFNP is —copA®eCe A I
(A) gives that H’( ) > —capA?H(t); thus, we get, for J(t) = H(t) — K(t),the mequahtles J(t) > —capA?J(t) and
J(t) > J(0)e=4*t = 0. Thus, H(t) > K(t) and (B) is proved. 3

6. Danchin’s inequality.

In this section, we shall discuss the nonlinear Bernstein inequality given by Danchin [DAN a] [DAN b] : for
0 € LP(IR™) such that its Fourier transform 6(¢) is supported in the annulus 1/2 < [£| < 2,we have, for 1 < p < oo

(52) Alols < IV (10172115 < BlI6ll:
where the constants A and B are positive and depend only on p and on the dimension n. Danchin [DAN a] proved
it for p € 2IN*, then Planchon [PLA] proved it for p > 2 and finally Danchin gave a proof for p > 1 [DAN b]. We
shall use our previous results to prove it and generalize it :
Theorem 5 : X

Let 1 < p < +oo. Let § € LP(IR"™) such that its Fourier transform 0(&) is supported in the annulus 1/2 < |¢| <
2. Then, for 0 < a <1, we have
(53) Allolly < llA*@lo> 13 < Bl
where the constants A and B are positive and depend only on p, on o and on the dimension n.
Proof : Due to the spectral localization of 6, we have

(54) 1911y ~ 1101 g20/20 ~ (18] 2000

The case p > 2 is easy. (54) and Theorem 2 give us that Al]} < |A*(0]0|P/>~1)||3. On the other
hand, the Bernstein inequalities give us that [|[A2¥(6), < Bp~ 0|, so tha,t using Theorem 2 again, we have
|AS(O16]9/2 )13 < p [ 0167222 (9) dr < Blol3-

When p < 2, we use Theorem 3 : we have ||e=*A™" flIp < e=cert| f||P. Looking at the derivatives at t = 0 (and
using Theorem 2) we get

(55) carllfly <p [ 71772021 do <o [ A (AEDP do

On the other hand, (49) and (51) give us the converse inequality. o
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Remark : Theorem 5 has been proved for p > 2 by Wu [WU] and Chen, Miao and Zhang [CHN].
7. Stratified Lie groups.

Since our method is mainly based on the use of symmetric diffusion semigroups, our results may be adapted
to various settings. In this section, we pay a few words to the case of the sublaplacian on a stratified Lie group.

We consider a Lie group G and its Lie algebra G such that G = ®]_,G; with [G;,G;] = G4, if i+j < r and = {0}
if14+ 7 >r. Then X € G— exp X is a bijection from G onto G, so that we may identify G and G. The Lebesgue
measure on § is then a Haar measure on G. We have a modulus on G defined by | Y7, Xile = Oi_, |Xi)? /iy
and a dilation operator 5,\(Z: LX) =Y NX; for A > 0. We have |6 z|¢ = Mz|g and 8 (z.y) = dr().0x(y).

We have d(dx(x)) = Aot M Gi g AQ g where Q =Y ;_, ¢ dim G, is the homogeneous dimension of G.
We fix a basis (Y7,...,Yx) of Gy, considered as left-invariant vector fields on G Then the sublaplacian

on (G is the operator J = —Zle Y. We define the convolution on G by f x h(x fG (y) dy =

Jo f()h(y~'x) dy. Then (e="7);>¢ is a semi-group of positive self-adjoint convolutlon operators on G S0 that the

theory of symmetric diffusion semigroups can be applied.
Moreover, we have Sobolev and Besov spaces on G, studied by Folland [FOL] and Saka [SAK]. For 0 < s < 1

_ (ff Ly =fw® 4. dy)l/p' When

S wETT

p = 2, the Besov space Bj” coincides with the Sobolev space H® = D(js/Q) (normed by || f| 5. = |75/ f]l2)-
Now, a direct adaptation of Theorem 2 gives :

and 1 < p < 400, the norm of the Besov space B;’p is equivalent to

Theorem 6 :
Let 0 <a<1 and 2 < p < +oo. Then there is a positive constant cq,pc > 0 such that :

(56) CapGllflgzarms < 112 /IJQ/2 FIFEDI? da Sp/flflp_QJa(f) dx

8. Lie groups of polynomial growth.

In this section, we consider a connected Lie group G and its Lie algebra G, generated from a set of left-
invariant vector fields (X;)1<;<n (in the sense of Héormander : G is generated by the fields X; and their successive
Lie brackets). We condider dz a left-invariant Haar measure on G.

We have a Carnot-Carathéodory metric p(z,y) = |y~ t.z|g on G associated to the vector fields X; [COUJ.
We note B(z,r) for the ball centered at € G and with radius » > 0, and V(r) for the volume of the ball
V(r) = f|y|<;<r dy. The volume obeys to two dimensional orders : for r < 1, we have ar? < V(r) < br? for
some local dimension d > 0 and positive constants a, b; for » > 1, either V' has a finite dimensional behaviour

D <V(r) <brP for some D > 0 (the dimension at infinity) or V grows exponentially e*” < V(r) < €. In the
first case, G is called a group with polynomial growth (versus exponential growth in the second case).

The sublaplacian on G is the operator J = —Zf\il X?2. We define the convolution on G by f * h(z) =
Jo f( hy) dy = [, f(y)h(y~'z) dy. Then (e7*)i>o is a semi-group of positive self-adjoint convolution
operators on G, so that the theory of symmetric diffusion semigroups can be applied.

We can define Sobolev and Besov spaces on G [TRI]. When p = 2, the Besov space 35’2 coincides with the
Sobolev space H* = D(J*/?) (normed by | f||z. = ||T*/?f|l2). It is easy to check that Saka’s characterization of
Besov spaces [SAK] on stratified Lie groups can be extended to the setting of Lie groups with polynomial growth.
More precisely, L. Saloff-Coste [SAL] proved the following result :

Proposition 2 :
Let G be a connected Lie group with polynomial growth. For 0 < s <1 and 1 < p < +o0, the norm of the
Besov space ByP is equivalent to

_ f(zy) = f(y)I” 1/p
(57) llsge = ([ [P via e '

Now, a direct adaptation of Theorem 2 gives :



Theorem 7 :
Let J be the sublaplacian operator on a connected Lie group G with polynomial growth. Let 0 < a < 1 and
2 < p < +oo. Then there is a positive constant cq p,c > 0 such that :

(58) Con el gesns < WIS = [ 172105 do <p [ f1AP27°(0) do
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