Quasi-geostrophic equations, nonlinear Bernstein inequalities and α -stable processes. Pierre Gilles LEMARIÉ-RIEUSSET & Diego CHAMORRO

Abstract : We prove some functional inequalities for the fractional differentiation operator $(-\Delta)^{\alpha}$ through the formalism of semi-groups. This gives us an estimate of the regularity of Marchand's weak solutions for the dissipative quasi-geostrophic equation.

Keywords : Besov spaces, semi-groups, Bernstein inequalities, quasi-geostrophic equation, stratified Lie groups, α -stable processes

MSC 2000 : 35Q35 58J35

Introduction.

In this paper, we are interested in the regularity of the weak solutions of the dissipative quasi-geostrophic equation (QG_{α}) , a generalization of the quasi-geostrophic equation (QG) which is related to fluid mechanics [PED] and whose mathematical study was initiated by Constantin, Majda and Tabak [CON] in 1994. The quasi-geostrophic equation (QG) describes the evolution of a function $\theta(t, x)$, t > 0, $x \in \mathbb{R}^2$ as

(1)
$$\begin{cases} \partial_t \theta + \vec{u}.\vec{\nabla}\theta = 0\\ \vec{u} = (-R_2\theta, R_1\theta)\\ \theta(0, .) = \theta_0 \end{cases}$$

where R_i is the Riesz transform $R_i = \frac{\partial_i}{\sqrt{-\Delta}}$ (so that the vector field \vec{u} is divergence-free : div $\vec{u} = 0$).

Throughout the paper, we will denote $\sqrt{-\Delta}$ by Λ (this is Calderón's operator). For $0 < \alpha \leq 1$, the dissipative quasi-geostrophic equation (QG_{α}) is the equation (QG) penalized by a dissipative term $-\Lambda^{2\alpha}\theta$:

(2)
$$\begin{cases} \partial_t \theta + \vec{u}.\vec{\nabla}\theta = -\Lambda^{2\alpha}\theta\\ \vec{u} = (-R_2\theta, R_1\theta)\\ \theta(0, .) = \theta_0 \end{cases}$$

In order to deal with irregular solutions, we rewrite the advection term $\vec{u} \cdot \nabla \theta$ as $\operatorname{div}(\theta \ \vec{u})$:

(3)
$$\begin{cases} \partial_t \theta + \operatorname{div}(\theta \ \vec{u}) = -\Lambda^{2\alpha} \theta \\ \vec{u} = (-R_2 \theta, R_1 \theta) \\ \theta(0, .) = \theta_0 \end{cases}$$

In 1995, Resnick [RES] proved the existence of weak solutions of the equation (3) for $\theta_0 \in L^2(\mathbb{R}^2)$; those solutions satisfy the inequality

(4) for
$$t > 0$$
, $\|\theta(t,.)\|_2^2 + 2\int_0^t \int |\Lambda^{\alpha}\theta|^2 dx ds \le \|\theta_0\|_2^2$

so that $\theta \in L^{\infty}_t L^2 \cap L^2_t \dot{H}^{\alpha}$ where \dot{H}^{α} is an homogeneous Sobolev space.

In 2008, Marchand [MAR] studied the case of an initial value $\theta_0 \in L^p$; he proved the existence of weak solutions to equation (3) when $p \ge 4/3$; moreover, when $p \ge 2$, Marchand's solutions satisfy the inequality

(5) for
$$t > 0$$
, $\|\theta(t,.)\|_p^p + p \int_0^t \int \theta |\theta|^{p-2} \Lambda^{2\alpha} \theta \, dx \, ds \le \|\theta_0\|_p^p$

where the double integral gives a nonnegative contribution, as shown by Córdoba's inequality [COR] [JU]

(6)
$$2\int |\Lambda^{\alpha}(|\theta|^{p/2})|^2 dx \le p \int \theta |\theta|^{p-2} \Lambda^{2\alpha} \theta dx.$$

However, the regularity of Marchand's solutions remained unclear.

In this paper, we will establish the regularity of Marchand's solutions in terms of a norm in a Besov space. More precisely, we shall establish a variant of Córdoba's inequality and get that (for $2 \le p < \infty$ and $0 < \alpha < 1$)

(7)
$$\|\theta\|_{\dot{B}_{p}^{2\alpha/p,p}}^{p} \leq C_{p} \int \theta|\theta|^{p-2} \Lambda^{2\alpha} \theta \ dx$$

and (for $2 \le p < \infty$)

(8)
$$\|\theta\|_{\dot{B}^{2/p,\infty}_{p}}^{p} \leq C_{p} \int \theta |\theta|^{p-2} (-\Delta) \theta \ dx$$

where $\dot{B}_p^{2\alpha/p,p}$ and $\dot{B}_p^{2/p,\infty}$ are homogeneous Besov spaces. Our method will gives us a new proof of a nonlinear Bernstein inequality given by Danchin [DAN a] : for $\theta \in L^p(\mathbb{R}^n)$ such that its Fourier transform $\hat{\theta}(\xi)$ is supported in the annulus $1/2 \leq |\xi| \leq 2$, we have, for 1

(9)
$$A\|\theta\|_{p}^{p} \le \|\vec{\nabla}(|\theta|^{p/2})\|_{2}^{2} \le B\|\theta\|_{p}^{p}$$

where the constants A and B are positive and depend only on p and on the dimension n.

Our main tool will be a precise study of the semi-group $e^{-t\Lambda^{2\alpha}}$. This is a symmetric diffusion semi-group (in the sense given by Stein [STE]) and we will use a representation of the semi-group as a barycentric mean of heat kernels through a formula derived from the theory of α -stable processes [ZOL]. For instance, when $\alpha = 1$, we have $e^{-t\Lambda^2} = e^{t\Delta}$ (the heat kernel); for $\alpha = 1/2$, we have $e^{-t\Lambda} = P_t$ the Poisson semi-group. In dimension 1, $e^{-|\xi|}$ is the Fourier transform of $\frac{1}{\pi} \frac{1}{1+x^2}$; we write

(10)
$$\frac{1}{\pi} \frac{1}{1+x^2} = \frac{1}{\pi} \int_0^\infty e^{-\sigma} e^{-\sigma x^2} \, d\sigma = \frac{1}{2\pi} \int_0^\infty e^{-\frac{1}{2\sigma}} e^{-\frac{x^2}{2\sigma}} \, \frac{d\sigma}{\sigma^2}$$

and we get

(11)
$$e^{-|\xi|} = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{1}{2\sigma}} e^{-\sigma \frac{\xi^2}{2}} \frac{d\sigma}{\sigma^{3/2}}$$

and finally

(12)
$$e^{-t\Lambda} = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{1}{2\sigma}} e^{\sigma \frac{t^2}{2}\Delta} \frac{d\sigma}{\sigma^{3/2}}$$

We shall use a generalization of (12) to the case of $e^{-t\Lambda^{2\alpha}}$.

1. One-dimensional stable distributions

The aim of this section is to establish the useful following representation :

Proposition 1 :

For $0 < \alpha < 1$, there exists a probability measure $d\mu_{\alpha}$ concentrated on $[0, +\infty)$ such that for all $x \in \mathbb{R}$ we have

(13)
$$e^{-|x|^{2\alpha}} = \int_0^{+\infty} e^{-\sigma x^2} d\mu_\alpha(\sigma)$$

Corollary 1 :

Let $\Lambda = \sqrt{-\Delta}$ be the Calderón operator on \mathbb{R}^n and $e^{t\Delta}$ be the heat kernel on \mathbb{R}^n . Then the operator $e^{-t\Lambda^{2\alpha}}$ $(t \ge 0, 0 < \alpha < 1)$ may be represented as

(14)
$$e^{-t\Lambda^{2\alpha}} = \int_0^{+\infty} e^{\sigma t^{1/\alpha}\Delta} d\mu_\alpha(\sigma)$$

Proof: We need only to prove the Proposition, the Corollary being obvious. We start from the theory of one-dimensional stable processes. The probability density function $d\mu$ of a random variable X is called α -stable [ZOL] if its characteristic function $\chi(\xi) = E(e^{iX\xi}) = \int e^{ix\xi} d\mu(x)$ is of the form

(15)
$$\chi(\xi) = \begin{cases} e^{im\xi - \sigma^{\alpha}|\xi|^{\alpha} - i\beta\sigma^{\alpha}\xi|\xi|^{\alpha-1}\tan(\pi\alpha/2)} & \text{if } \alpha \neq 1 \\ \\ e^{im\xi - \sigma|\xi| + i\beta\sigma\xi\ln|\xi|} & \text{if } \alpha = 1 \end{cases}$$

The admissible values for the parameters are $0 < \alpha \leq 2$ for the stability index $\alpha, m \in \mathbb{R}$ for the position parameter $m, \sigma \geq 0$ for the scale parameter σ , and $-1 \leq \beta \leq 1$ for the bias parameter β . We will write $X \sim S_{\alpha}(m, \sigma, \beta)$. In the case of $X \sim S_{\alpha}(0, \sigma, 1)$ with $0 < \alpha < 1$, we have $\chi(\xi) = e^{-\sigma^{\alpha}|\xi|^{\alpha}(1+i \operatorname{sgn}(\xi) \tan(\pi\alpha/2))}$. If z^{α} is the holo-

In the case of $X \sim S_{\alpha}(0, \sigma, 1)$ with $0 < \alpha < 1$, we have $\chi(\xi) = e^{-\sigma^{-|\xi|}} (1+i \operatorname{sgn}(\xi) \tan(\pi\alpha/2))$. If z^{α} is the holomorphic function defined on $\mathbb{C}\setminus\mathbb{R}^{-}$ (so that $z^{\alpha} = |z|^{\alpha}e^{i\alpha\operatorname{Arg}(z)}$ where the argument of z is taken in $(-\pi, \pi)$), we find that $(i\xi)^{\alpha} = |\xi|^{\alpha}e^{i\alpha\operatorname{Sgn}(\xi)\pi/2} = \cos(\alpha\pi/2)|\xi|^{\alpha}(1+i\operatorname{sgn}(\xi)\tan(\alpha\pi/2))$. Thus, when $X \sim S_{\alpha}((\cos(\alpha\pi/2))^{-1/\alpha}, 0, 1)$, we have $\chi(\xi) = e^{-(i\xi)^{\alpha}}$. For $z = \eta + i\xi$ with $\eta \ge 0$, we have $|e^{-z^{\alpha}}| = e^{-|z|^{\alpha}\cos(\alpha\operatorname{Arg}(z))} \le 1$; the Paley–Wiener–Schwartz theorem ensures us that the probability density function $d\mu_{\alpha}$ of X is supported on \mathbb{R}^{+} and that, for $z = \xi + i\eta$ with $\eta \ge 0$, we have $e^{(iz)^{\alpha}} = \int_{0}^{+\infty} e^{i\sigma z} d\mu_{\alpha}(\sigma)$. When $z = ix^{2}$, we obtain $e^{-|x|^{2\alpha}} = \int_{0}^{+\infty} e^{-\sigma x^{2}} d\mu_{\alpha}(\sigma)$. Thus, Proposition 1 is proved.

Remark : formula (13) is well known. See for instance Proposition 1.2.12 in [SAM]. Due to a celebrated theorem of Bernstein [BER], it amounts to say that the function $x > 0 \mapsto e^{-|x|^{\alpha}}$ is completely monotone, which is easily checked.

2. Diffusion semi-groups.

In this section, we consider a symmetric diffusion semi-group as considered by Stein in [STE]:

Definition 1 :

A symmetric diffusion semi-group with infinitesimal generator L is a family of operators $(e^{tL})_{t\geq 0}$ such that : i) e^{tL} is self-adjoint for $t \geq 0$

ii) e^{tL} is the convolution operator with a probability density function $p_t(x)$ $(p_t(x) \ge 0$ and $\int p_t(x) dx = 1)$ iii) $e^{tL}e^{sL} = e^{(t+s)L}$ and, for $f \in L^2$, $\lim_{t\to 0^+} ||e^{tL}f - f||_2 = 0$

We then have

iv) $Lf = \lim_{t\to 0} \frac{1}{t}(e^{tL}f - f)$ on a dense subspace of L^2 v) $\partial_t e^{tL}f = L(e^{tL}f)$

For classical results on such semi-groups, we refer to the survey of Bakry [BAK]. A crucial result is that, for a convex function ϕ , we have the Jensen inequality

(16)
$$\phi(e^{tL}f) \le e^{tL}\phi(f)$$

and, by looking at the derivatives of both terms at t = 0,

(17)
$$\phi'(f)Lf \le L(\phi f).$$

When $\phi(t) = t^2$, we get $2fL(f) \leq L(f^2)$: this is the positivity of the square field operator

(18)
$$\Gamma(f,g) = \frac{1}{2}(L(f,g) - fL(g) - gL(f))$$

For $\phi(t) = |t|^{\gamma}$ with $\gamma > 1$, we find $\gamma f |f|^{\gamma-2} L(f) \leq L(|f|^{\gamma})$. For $\gamma = p/2$ with $2 , we multiply the inequality by <math>|f|^{p/2}$ and we integrate ; we thus get

(19)
$$p \int f|f|^{p-2} Lf \, dx \le 2 \int |f|^{p/2} L(|f|^{p/2}) \, dx = -2 \int |\sqrt{-L}(|f|^{p/2})|^2 \, dx.$$

We are now going to generalize (19) by taking into account the sign of f in the RHS of the inequality :

Theorem 1:

Let $(e^{tL})_{t\geq 0}$ be a symmetric diffusion semi-group. Then : i) For $2 \leq p < +\infty$, we have the inequality

(20)
$$p\int f|f|^{p-2}L(f) \, dx \leq \int f|f|^{\frac{p}{2}-1}L(f|f|^{\frac{p}{2}-1}) \, dx = -\int |\sqrt{-L}(f|f|^{\frac{p}{2}-1})|^2 \, dx.$$

ii) For $1 \le p \le 2$, we have the inequality

(21)
$$4\int f|f|^{\frac{p}{2}-1}L(f|f|^{\frac{p}{2}-1}) \, dx = -4\int |\sqrt{-L}(f|f|^{\frac{p}{2}-1})|^2 \, dx \le p\int f|f|^{p-2}L(f) \, dx \le 0.$$

Proof: We use the convex function $\phi(t) = |t|$, and we find $\operatorname{sgn}(f) L(f) \leq L(|f|)$, hence $fL(f) \leq |f|L(|f|)$. We decompose f into $f = f^+ - f^-$ with $f^+ = \frac{f+|f|}{2}$, and we get

(22)
$$f^+L(f^-) + f^-L(f^+) \ge 0$$

Integrating (21) and using the self-adjointness of L gives $\int f^+L(f^-) dx \ge 0$. The case of f^+ and f^- approximating two Dirac masses at separate points gives then that the distribution kernel K of L satisfies $K(x, y) \ge 0$ outside from the diagonal set x = y, and we get finally that

(23)
$$f^{+}L(f^{-}) = \int_{x \neq y} K(x,y)f^{+}(x)f^{-}(y) \, dy \ge 0$$

and similarly $f^{-}L(f^{+}) \geq 0$. In particular, we get that, for $1 \leq p < +\infty$, we have

(24)
$$\int (f^+)^{p-1} L(f^-) + (f^-)^{p-1} L(f^+) \, dx \ge 0$$

On the other hand, we have that $t \mapsto ||e^{tL}||_p^p$ is nonincreasing, so that (by looking at the derivative at t = 0) we have $p \int f|f|^{p-2}Lf \, dx \leq 0$. This inequality together with (24) gives

(25)
$$2\int (f^+)^{p-1}L(f^+) + (f^-)^{p-1}L(f^-) \, dx \le \int f|f|^{p-2}L(f) \, dx \le \int (f^+)^{p-1}L(f^+) + (f^-)^{p-1}L(f^-) \, dx.$$

and, similarly, we have for $g = f|f|^{\frac{p}{2}-1}$, $g^+ = (f^+)^{p/2}$ and $g^- = (f^-)^{p/2}$,

(26)
$$2\int g^{+}L(g^{+}) + g^{-}L(g^{-}) \, dx \leq \int g \, L(g) \, dx \leq \int g^{+}L(g^{+}) + g^{-}L(g^{-}) \, dx.$$

When $p \ge 2$, we write $\|e^{tL}f^+\|_p^p \le \|e^{tL}(g^+)\|_2^2$ and we get (by looking at the derivative at t = 0) that $p \int (f^+)^{p-1} L(f^+) dx \le 2 \int g^+ L(g^+) dx$; we have the same inequality for f^- and g^- . Thus, (25) and (26) give (20).

When $p \leq 2$, we write $\|e^{tL}g^+\|_2^2 \leq \|e^{tL}(f^+)\|_p^p$ and we get that $2\int g^+L(g^+) dx \leq p\int (f^+)^{p-1}L(f^+) dx$; we have the same inequality for f^- and g^- . Thus, (25) and (26) give (21).

3. A. et D. Córdoba's inequality and Besov norms

The semi-group $(e^{-t\Lambda^{2\alpha}})_{t\geq 0}$ is a symmetric diffusion semi-group on \mathbb{R}^n . The positivity of its kernel is a consequence of the positivity of the heat kernel $e^{t\Delta}$ and of the representation formula given by Corollary 1. Thus, Córdoba's inequality (6) is just a special case of inequality (19). In this section, we shall apply Theorem 1 (generalization of (19)) to the semi-group $(e^{-t\Lambda^{2\alpha}})_{t\geq 0}$. Our application will be based on the following easy lemma :

Lemma 1 :

Let $0 < \gamma \leq 1$. Then for all a and b in \mathbb{R} we have

(27)
$$|a|a|^{\gamma-1} - b|b|^{\gamma-1}| \le 2|a-b|^{\gamma}$$

Proof : This is obvious if ab < 0: if uv < 0 then $\max(|u|, |v|) \le |u - v| \le 2\max(|u|, |v|)$. If $ab \ge 0$, we use the fact that $d_{\gamma}(x, y) = |x - y|^{\gamma}$ is a distance on \mathbb{R} and we write $|d_{\gamma}(a, 0) - d_{\gamma}(b, 0)| \le d_{\gamma}(a, b)|$.

We may now prove the following extension of Córdoba's inequality, using norms in homogeneous Sobolev and Besov spaces :

Theorem 2 :

(A) Let $0 < \alpha < 1$ and $2 \le p < +\infty$. Then there is a positive constant $c_{\alpha,p,n} > 0$ such that :

(28)
$$c_{\alpha,p,n} \|f\|_{\dot{B}^{2\alpha/p,p}_{p}}^{p} \leq \|f|f|^{\frac{p}{2}-1}\|_{\dot{H}^{\alpha}}^{2} = \int |\Lambda^{\alpha}(f|f|^{\frac{p}{2}-1})|^{2} dx \leq p \int f|f|^{p-2} \Lambda^{2\alpha}(f) dx$$

(B) Let $2 \leq p < +\infty$. Then there is a positive constant $c_{p,n} > 0$ such that :

(29)
$$c_{p,n} \|f\|_{\dot{B}^{2\alpha/p,\infty}_{p}}^{p} \leq \|f|f|^{\frac{p}{2}-1}\|_{\dot{H}^{1}}^{2} = \int |\vec{\nabla}(f|f|^{\frac{p}{2}-1})|^{2} dx \leq p \int f|f|^{p-2}(-\Delta f) dx$$

(C) Let $0 < \alpha < 1$ and $\max(1, 2\alpha) . Then there is a positive constant <math>C_{\alpha,p,n} > 0$ such that :

(30)
$$0 \le p \int f|f|^{p-2} \Lambda^{2\alpha}(f) \ dx \le 4 \|f|f|^{\frac{p}{2}-1}\|_{\dot{H}^{\alpha}}^2 = 4 \int |\Lambda^{\alpha}(f|f|^{\frac{p}{2}-1})|^2 \ dx \le C_{\alpha,p,n} \|f\|_{\dot{B}^{2\alpha/p,p}_p}^p$$

Proof: First, we apply Theorem 1 to the symmetric diffusion semi-group $(e^{-t\Lambda^{2\alpha}})_{t\geq 0}$: (20) gives the RHS inequalities in (28) and (29), while (21) gives the LHS inequality in (30). Thus, the proof of Theorem 2 is reduced to a comparison between a Besov norm and a Sobolev norm.

Besov norms may be defined in various (more or less) equivalent ways. We shall use the characterization of Besov spaces through moduli of continuity. For $\beta \in (0, 1)$ and $1 \le p < \infty$, the norms of $\dot{B}_p^{\beta, p}$ may be defined as

(31)
$$\|f\|_{\dot{B}^{\beta,p}_{p}} = \left(\int \int \frac{|f(x) - f(y)|^{p}}{|x - y|^{n + p\beta}} \, dx \, dy\right)^{\frac{1}{p}} \text{ and } \|f\|_{\dot{B}^{\beta,\infty}_{p}} = \sup_{h \in \mathbb{R}^{n}, \ h \neq 0} \frac{\|f(x) - f(x + h)\|_{p}}{|h|^{\beta}}$$

Moreover, we have $\dot{H}^{\alpha} = \dot{B}_{2}^{\alpha,2}$. Thus, the Sobolev norm $||f||_{\dot{H}^{\alpha}}$ is equivalent, for $\alpha \in (0,1)$, to $||f||_{\dot{B}_{2}^{\alpha,2}} = \sqrt{\int \int \frac{|f(x) - f(y)|^2}{|x - y|^{n+2\alpha}} dx dy}$. For $\alpha = 1$, the Sobolev norm $||f||_{\dot{H}^1}$ is equivalent to $\sup_{h \in \mathbb{R}^n, h \neq 0} \frac{||f(x) - f(x+h)||_2}{|h|}$. To finish the proof, we use Lemma 1. For $p \geq 2$, we take $\gamma = 2/p$, $a = f(x)|f(x)|^{\frac{p}{2}-1}$, $b = f(y)|f(y)|^{\frac{p}{2}-1}$ and

To finish the proof, we use Lemma 1. For $p \ge 2$, we take $\gamma = 2/p$, $a = f(x)|f(x)|^2$, $b = f(y)|f(y)|^2$ and we get

(32)
$$|f(x) - f(y)|^p \le 2^p |f(x)|f(x)|^{\frac{p}{2}-1} - f(y)|f(y)|^{\frac{p}{2}-1}|^2$$

Using (32) and (31), we then get the LHS inequalities of (28) and (29).

For p < 2, we take $\gamma = p/2$, a = f(x), b = f(y) and we get

(33)
$$|f(x)|f(x)|^{\frac{p}{2}-1} - f(y)|f(y)|^{\frac{p}{2}-1}|^2 \le 4|f(x) - f(y)|^p$$

Using (33) and (31), for $2\alpha/p < 1$, we then get the RHS inequality of (30).

4. Frequency gaps.

 \diamond

Let $1 and <math>f \in L^p(\mathbb{R}^n)$ such that the Fourier transform \hat{f} has no low frequency : $\hat{f}(\xi) = 0$ for $|\xi| \leq A$. Then it is well known that the norm of $e^{t\Delta}f$ decays exponentially :

(34)
$$\|e^{t\Delta}f\|_{p} \leq \frac{1}{c_{p}}e^{-c_{p}tA^{2}}\|f\|_{p}$$

(see for instance Chemin [CHE]). But (34) contains no information for small t's : if $t \leq A^{-2} \frac{1}{c_p} \ln \frac{1}{c_p}$ we have $\|e^{t\Delta}f\|_p \leq \|f\|_p$ and $1 \leq \frac{1}{c_p} e^{-c_p t A^2}$. In this section, we want to prove a more precise estimate :

(35)
$$\|e^{t\Delta}f\|_p \le e^{-c_p tA^2} \|f\|_p$$

We begin with two classical lemmas :

Lemma 2 :

(A) Let $1 \leq p \leq +\infty$ and $g \in L^p(\mathbb{R}^n)$ such that the Fourier transform \hat{g} has no low frequency : $\hat{g}(\xi) = 0$ for $|\xi| \leq A$. Then, for $1 \leq j \leq n$, $\|\frac{\partial_j}{\Delta}g\|_p \leq cA^{-1}\|g\|_p$.

(B) Let $1 \le p \le +\infty$ and $f \in L^p(\mathbb{R}^n)$ such that the Fourier transform \hat{f} has no low frequency : $\hat{f}(\xi) = 0$ for $|\xi| \le A$. Then $||f||_p \le cA^{-1} ||\vec{\nabla}f||_p$.

(C) Let $1 \leq p \leq +\infty$ and $f \in L^p(\mathbb{R}^n)$ such that the Fourier transform \hat{f} has no low frequency : $\hat{f}(\xi) = 0$ for $|\xi| \leq A$. Then there exists $F_j \in L^p$ such that $f = \sum_{j=1}^n \partial_j F_j$ with $||F_j||_p \leq cA^{-1}||f||_p$.

Proof : (A) is obvious : if $\omega \in \mathcal{D}(\mathbb{R}^n)$ is equal to 1 on the ball B(0, 1/4) and to 0 outside from the ball B(0, 1/2), then the function k_j whose Fourier transform \hat{k}_j is equal to $\hat{k}_j(\xi) = -\frac{i\xi_j}{\|\xi\|^2}(1-\omega(\xi))$ satisfies $k_j \in L^1$. We have $\frac{\partial_j}{\Delta}g = A^{n-1}k_j(Ax) * g$, so that $\|\frac{\partial_j}{\Delta}g\|_p \leq \|k_j\|_1 \|g\|_p$. For (B) and (C), we just write $f = -\sum_{i=1}^n \frac{\partial_j}{\partial_i} \partial_i f = -\sum_{i=1}^n \partial_i \frac{\partial_j}{\Delta} f$.

For (B) and (C), we just write
$$j = -\sum_{j=1}^{j} \overline{\Delta} O_j j = -\sum_{j=1}^{j} O_j \overline{\Delta} j$$
.

The following lemma can be found in [KAT] :

Lemma 3 :

Let $1 and f be a <math>\mathcal{C}^1$ function. If $f \in W^{2,p}(\mathbb{R}^n)$, then we have

(36)
$$-\int f|f|^{p-2}\Delta f \, dx = (p-1)\int_{f(x)\neq 0} |\vec{\nabla}f|^2 \, |f|^{p-2} \, dx$$

Proof: For $p \ge 2$, this is obvious. $f|f|^{p-2}$ is \mathcal{C}^1 and $\partial_j(f|f|^{p-2}) = (p-1)|f|^{p-2}\partial_j f$. Thus, (36) is a direct consequence of integration by parts.

For $1 , we approximate <math>f|f|^{p-2}$ by $g_{\epsilon} = f|f^2 + \epsilon^2|^{\frac{p-2}{2}}$ with $\epsilon > 0$. By dominated convergence, we have $-\int f|f|^{p-2}\Delta f \, dx = \lim_{\epsilon \to 0} \int g_{\epsilon}(-\Delta f) \, dx$. We have $\partial_j(g_{\epsilon}) = \partial_j f|f^2 + \epsilon^2|^{\frac{p-2}{2}}(1 + (p-2)\frac{f^2}{f^2 + \epsilon^2})$. We consider $\omega \in \mathcal{D}(\mathbb{R}^n)$ such that $0 \le \omega \le 1$ and $\omega = 1$ on B(0, 1). Then we have

$$(37) - \int \partial_j^2 f g_{\epsilon} = \lim_{R \to +\infty} \int \partial_j f \, \left(\omega(x/R) \partial_j g_{\epsilon} + \frac{1}{R} \partial_j \omega(x/R) g_{\epsilon} \right) \, dx = \int |\partial_j f|^2 |f^2 + \epsilon^2|^{\frac{p-2}{2}} (1 + (p-2)\frac{f^2}{f^2 + \epsilon^2}) \, dx$$

since $|\int |\partial_j f \frac{1}{R} \partial_j \omega(x/R) g_{\epsilon} dx| \leq R^{-1} ||\partial_j \omega||_{\infty} ||f||_{W^{2,p}}^p$ (and thus goes to 0 as R goes to $+\infty$) and since $\partial_j f \partial_j g_{\epsilon} \geq 0$ (remark that $p-1 \leq 1+(p-2)\frac{f^2}{x^2+\epsilon^2} \leq 1$), so that we may apply monotonous convergence to $\int \partial_j f \partial_j g_{\epsilon} \omega(x/R) dx$. We may restrict the domain of the integral in the RHS of (37) to the set of x such that $f(x) \neq 0$, since the set of x such that f(x) = 0 and $\partial_j f(x) \neq 0$ has Lebesgue measure 0. Thus, we have

(38)
$$-\int f|f|^{p-2}\Delta f \ dx = \lim_{\epsilon \to 0^+} \int_{f(x)\neq 0} |\vec{\nabla}f|^2 \ |f^2 + \epsilon^2|^{\frac{p-2}{2}} \ (1 + (p-2)\frac{f^2}{f^2 + \epsilon^2}) \ dx$$

Moreover $\epsilon \mapsto |r^2 + \epsilon^2|^{\frac{p-2}{2}}$ is nonincreasing function of $\epsilon \in [0, +\infty)$ and we may apply again monotonous convergence to see that

(39)
$$\lim_{\epsilon \to 0} \int_{f(x) \neq 0} |\partial_j f|^2 |f^2 + \epsilon^2|^{\frac{p-2}{2}} dx = \int_{f(x) \neq 0} |\partial_j f|^2 |f|^{p-2} dx$$

The inequality $|\vec{\nabla}f|^2 |f^2 + \epsilon^2|^{\frac{p-2}{2}} (1 + (p-2)\frac{f^2}{f^2 + \epsilon^2}) \ge (p-1)|\vec{\nabla}f|^2 |f^2 + \epsilon^2|^{\frac{p-2}{2}}$, together with (38) and (39), gives us that the limit in (39) is finite. The inequality $|\vec{\nabla}f|^2 |f^2 + \epsilon^2|^{\frac{p-2}{2}} (1 + (p-2)\frac{f^2}{f^2 + \epsilon^2}) \le |\vec{\nabla}f|^2 |f^2 + \epsilon^2|^{\frac{p-2}{2}}$, together with (38), gives us by dominated convergence the equality (36).

We may now prove our theorem on frequency gaps :

Theorem 3 :

Let $1 and <math>f \in L^p(\mathbb{R}^n)$ such that the Fourier transform \hat{f} has no low frequency : $\hat{f}(\xi) = 0$ for $|\xi| \leq A$. Then : (A) If $f \in W^{2,p}$, we have the inequality

(40)
$$c_p \|f\|_p^p \le A^{-2} p \int f |f|^{p-2} (-\Delta f) \, dx$$

where the constant $c_p > 0$ depends only on n and p. (B) We have the inequality, for all $t \ge 0$,

(41)
$$\|e^{t\Delta}f\|_p \le e^{-c_p A^2 t} \|f\|_p$$

where the constant $c_p > 0$ depends only on n and p. (C) For $0 < \alpha < 1$ and $t \ge 0$, we have the inequality

(42)
$$\|e^{-t\Lambda^{2\alpha}}f\|_{p} \le e^{-c_{\alpha,p}A^{2\alpha}t}\|f\|_{p}$$

where the constant $c_{\alpha,p} > 0$ depends only on n, α and p.

Proof : We may assume (by a density argument) that f is smooth. In order to prove (A), we shall consider the cases $p \ge 2$ and p < 2: **Case** $p \ge 2$: We use Lemma 2 and write $f = \sum_{j=1}^{n} \partial_j F_j$. Then we have

(43)
$$||f||_p^p = \sum_{j=1}^n \int \partial_j F_j \ f|f|^{p-2} \ dx = -(p-1) \sum_{j=1}^n \int \partial_j fF_j |f|^{p-2} \ dx$$

and by Cauchy-Schwarz

(44)
$$||f||_p^p \le (p-1)\sqrt{\int |\vec{\nabla}f|^2 |f|^{p-2} dx} \sqrt{\int \sum_j |F_j|^2 |f|^{p-2} dx}$$

We conclude with Lemma 2 (C) and Lemma 3.

Case p < 2: We use Lemma 2 (B) and write $||f||_p \leq cA^{-1} ||\vec{\nabla}f||_p$. Moreover, when computing the integral $\int |\vec{\nabla}f|^p dx$, we may restrict the domain of integration to the set of x such that $f(x) \neq 0$. Then we use Hölder inequality to get

(45)
$$\int |\vec{\nabla}f|^p \ dx \le \left(\int_{f(x)\neq 0} |\vec{\nabla}f|^2 |f|^{p-2} \ dx\right)^{p/2} \left(\int_{f(x)\neq 0} |f|^p \ dx\right)^{1-\frac{p}{2}}$$

and we conclude with Lemma 2 (B) and Lemma 3.

Thus, (A) is proved. (B) is a direct consequence of (A) : the derivative of $H(t) = ||e^{t\Delta}f||_p^p$ is equal to $p \int e^{t\Delta}f |e^{t\Delta}f|^{p-2}\Delta(e^{t\Delta}f) dx$ and the the derivative of $K(t) = e^{-c_p A^2 t} ||f||_p^p$ is $-c_p A^2 e^{-c_p A^2 t} ||f||_p^p$. (A) gives that $H'(t) \leq -c_p A^2 H(t)$; thus, we get, for J(t) = H(t) - K(t), $J'(t) \leq -c_p A^2 J(t)$ and $J(t) \leq J(0) e^{-c_p A^2 t} = 0$. Thus, $H(t) \leq K(t)$ and (B) is proved.

(C) is a consequence of (B) and of the representation formulae (13) and (14):

$$(46) \quad \|e^{-t\Lambda^{2\alpha}}f\|_p \le \int_0^\infty \|e^{\sigma t^{1/\alpha}\Delta}f\|_p^p \ d\mu_\alpha(\sigma) \le \int_0^\infty e^{-c_p A^2 \sigma t^{1/\alpha}} \|f\|_p \ d\mu_\alpha(\sigma) = e^{-(c_p A^2 t^{1/\alpha})^\alpha} \|f\|_p = e^{-c_p^\alpha A^{2\alpha}t} \|f\|_p$$

Thus, (C) is proved.

5. Band limited functions.

 \diamond

In this section, we shall estimate the decay of $||e^{-t\Lambda^{2\alpha}}f||_p$ by below :

Theorem 4 :

Let $1 and <math>f \in L^p(\mathbb{R}^n)$ such that the Fourier transform \hat{f} has no high frequency : $\hat{f}(\xi) = 0$ for $|\xi| \ge A$. Then :

(A) For $0 < \alpha \leq 1$, we have the inequality

(47)
$$A^{-2\alpha}p\int f|f|^{p-2}\Lambda^{2\alpha} dx \le c_{\alpha,p}||f||_p^p$$

where the constant $c_{\alpha,p} > 0$ depends only on n and p. (B) For $0 < \alpha < 1$ and $t \ge 0$, we have the inequality

(48)
$$\|e^{-t\Lambda^{2\alpha}}f\|_{p} \ge e^{-c_{\alpha,p}A^{2\alpha}t}\|f\|_{p}$$

where the constant $c_{\alpha,p} > 0$ depends only on n, α and p.

Proof: The case $p \ge 2$ is easy. The Bernstein inequalities give us that $\|\Lambda^{2\alpha}(\theta)\|_p \le cA^{2\alpha}\|\theta\|_p$ and thus (47) is obvious.

When p < 2, we use Theorem 1 (21) (or the LHS of Theorem 2 (30) which is valid for 1) and get that

(49)
$$p \int f|f|^{p-2} \Lambda^{2\alpha}(f) \ dx \le 4 \|f|f|^{\frac{p}{2}-1}\|_{\dot{H}^{\alpha}}^2 \le 4 \|f\|_p^{(1-\alpha)p/2} \|\vec{\nabla}(f|f|^{\frac{p}{2}-1})\|_2^{2\alpha}$$

We approximate $f|f|^{\frac{p-2}{2}}$ by $g_{\epsilon} = f|f^2 + \epsilon^2|^{\frac{p-2}{4}}$ with $\epsilon > 0$. We have $\partial_j g_{\epsilon} = \partial_j f|f^2 + \epsilon^2|^{\frac{p-2}{4}} (1 + \frac{p-2}{2} \frac{f^2}{f^2 + \epsilon^2})$. We have that

(50)
$$\|\vec{\nabla}g_{\epsilon}\|_{2}^{2} = \int_{f(x)\neq0} |\vec{\nabla}f|^{2} |f^{2} + \epsilon^{2}|^{\frac{p-2}{2}} (1 + \frac{p-2}{2} \frac{f^{2}}{f^{2} + \epsilon^{2}})^{2} dx \to_{\epsilon>0} (p-1)^{2} \int_{f(x)\neq0} |\vec{\nabla}f|^{2} |f|^{p-2} dx$$

We use Lemma 3 to get that the limit in (50) is finite; this proves that $\vec{\nabla}(f|f|^{\frac{p}{2}-1}) \in L^2$ and that (using Bernstein inequality)

(51)
$$\|\vec{\nabla}(f|f|^{\frac{p}{2}-1})\|_{2}^{2} = -(p-1)\int f|f|^{p-2}\Delta f \ dx \le cA^{2}\|f\|_{p}^{p}$$

Thus (A) is proved. (B) is a direct consequence of (A) : the derivative of $H(t) = ||e^{-t\Lambda^{2\alpha}}f||_p^p$ is equal to $-p\int e^{-t\Lambda^{2\alpha}}f|e^{-t\Lambda^{2\alpha}}f|^{p-2}\Lambda^{2\alpha}(e^{-t\Lambda^{2\alpha}}f)\,dx$ and the the derivative of $K(t) = e^{-c_{\alpha,p}A^2t}||f||_p^p$ is $-c_{\alpha,p}A^2e^{-c_{\alpha,p}A^2t}||f||_p^p$. (A) gives that $H'(t) \ge -c_{\alpha,p}A^2H(t)$; thus, we get, for J(t) = H(t) - K(t), the inequalities $J'(t) \ge -c_{\alpha,p}A^2J(t)$ and $J(t) \ge J(0)e^{-c_pA^2t} = 0$. Thus, $H(t) \ge K(t)$ and (B) is proved.

6. Danchin's inequality.

In this section, we shall discuss the nonlinear Bernstein inequality given by Danchin [DAN a] [DAN b] : for $\theta \in L^p(\mathbb{R}^n)$ such that its Fourier transform $\hat{\theta}(\xi)$ is supported in the annulus $1/2 \leq |\xi| \leq 2$, we have, for 1

(52)
$$A \|\theta\|_{p}^{p} \leq \|\vec{\nabla}(|\theta|^{p/2})\|_{2}^{2} \leq B \|\theta\|_{p}^{p}$$

where the constants A and B are positive and depend only on p and on the dimension n. Danchin [DAN a] proved it for $p \in 2\mathbb{N}^*$, then Planchon [PLA] proved it for $p \geq 2$ and finally Danchin gave a proof for p > 1 [DAN b]. We shall use our previous results to prove it and generalize it :

Theorem 5:

Let $1 . Let <math>\theta \in L^p(\mathbb{R}^n)$ such that its Fourier transform $\hat{\theta}(\xi)$ is supported in the annulus $1/2 \le |\xi| \le 2$. Then, for $0 < \alpha \le 1$, we have

(53)
$$A\|\theta\|_p^p \le \|\Lambda^{\alpha}(\theta|\theta|^{p/2-1})\|_2^2 \le B\|\theta\|_p^p$$

where the constants A and B are positive and depend only on p, on α and on the dimension n.

Proof : Due to the spectral localization of θ , we have

(54)
$$\|\theta\|_p \sim \|\theta\|_{\dot{B}_p^{2\alpha/p,p}} \sim \|\theta\|_{\dot{B}_p^{2\alpha/p,\infty}}$$

The case $p \geq 2$ is easy. (54) and Theorem 2 give us that $A \|\theta\|_p^p \leq \|\Lambda^{\alpha}(\theta|\theta|^{p/2-1})\|_2^2$. On the other hand, the Bernstein inequalities give us that $\|\Lambda^{2\alpha}(\theta)\|_p \leq Bp^{-1}\|\theta\|_p$ so that, using Theorem 2 again, we have $\|\Lambda^{\alpha}(\theta|\theta|^{p/2-1})\|_2^2 \leq p \int \theta |\theta|^{p-2} \Lambda^{2\alpha}(\theta) dx \leq B \|\theta\|_p^p$.

When $p \leq 2$, we use Theorem 3 : we have $||e^{-t\Lambda^{2\alpha}}f||_p^p \leq e^{-c_{\alpha,p}t}||f||_p^p$. Looking at the derivatives at t = 0 (and using Theorem 2), we get

(55)
$$c_{\alpha,p} \|f\|_p^p \le p \int f |f|^{p-2} \Lambda^{2\alpha} f \, dx \le 4 \int |\Lambda^{\alpha}(f|f|^{\frac{p}{2}-1})|^2 \, dx$$

On the other hand, (49) and (51) give us the converse inequality.

 \diamond

Remark : Theorem 5 has been proved for $p \ge 2$ by Wu [WU] and Chen, Miao and Zhang [CHN].

7. Stratified Lie groups.

Since our method is mainly based on the use of symmetric diffusion semigroups, our results may be adapted to various settings. In this section, we pay a few words to the case of the sublaplacian on a stratified Lie group.

We consider a Lie group G and its Lie algebra \mathcal{G} such that $\mathcal{G} = \bigoplus_{i=1}^{r} \mathcal{G}_{i}$ with $[\mathcal{G}_{i}, \mathcal{G}_{j}] = \mathcal{G}_{i+j}$ if $i+j \leq r$ and $= \{0\}$ if i+j > r. Then $X \in \mathcal{G} \mapsto \exp X$ is a bijection from \mathcal{G} onto G, so that we may identify G and \mathcal{G} . The Lebesgue measure on \mathcal{G} is then a Haar measure on G. We have a modulus on G defined by $|\sum_{i=1}^{r} X_{i}|_{G} = (\sum_{i=1}^{r} |X_{i}|^{2r!/i})^{\frac{1}{2r!}}$ and a dilation operator $\delta_{\lambda}(\sum_{i=1}^{r} X_{i}) = \sum_{i=1}^{r} \lambda^{i} X_{i}$ for $\lambda > 0$. We have $|\delta_{\lambda}x|_{G} = \lambda |x|_{G}$ and $\delta_{\lambda}(x,y) = \delta_{\lambda}(x).\delta_{\lambda}(y)$. We have $d(\delta_{\lambda}(x)) = \lambda \sum_{i=1}^{r} i \dim \mathcal{G}_{i} dx = \lambda^{Q} dx$ where $Q = \sum_{i=1}^{r} i \dim \mathcal{G}_{i}$ is the homogeneous dimension of G.

We fix a basis (Y_1, \ldots, Y_k) of \mathcal{G}_1 , considered as left-invariant vector fields on G. Then the sublaplacian on G is the operator $\mathcal{J} = -\sum_{i=1}^k Y_i^2$. We define the convolution on G by $f * h(x) = \int_G f(xy^{-1})h(y) \, dy = \int_G f(y)h(y^{-1}x) \, dy$. Then $(e^{-t\mathcal{J}})_{t\geq 0}$ is a semi-group of positive self-adjoint convolution operators on G, so that the theory of symmetric diffusion semigroups can be applied.

Moreover, we have Sobolev and Besov spaces on G, studied by Folland [FOL] and Saka [SAK]. For 0 < s < 1and $1 \le p < +\infty$, the norm of the Besov space $\dot{B}_p^{s,p}$ is equivalent to $\|f\|_{\dot{B}_p^{s,p}} = \left(\int \int \frac{|f(x,y)-f(y)|^p}{|y|_G^{Q+sp}} dx dy\right)^{1/p}$. When p = 2, the Besov space $\dot{B}_2^{s,2}$ coincides with the Sobolev space $\dot{H}^s = \mathcal{D}(\mathcal{J}^{s/2})$ (normed by $\|f\|_{\dot{H}^s} = \|\mathcal{J}^{s/2}f\|_2$).

Now, a direct adaptation of Theorem 2 gives :

Theorem 6:

Let $0 < \alpha < 1$ and $2 \leq p < +\infty$. Then there is a positive constant $c_{\alpha,p,G} > 0$ such that :

(56)
$$c_{\alpha,p,G} \|f\|_{\dot{B}_{p}^{2\alpha/p,p}}^{p} \leq \|f|f|^{\frac{p}{2}-1}\|_{\dot{H}^{\alpha}}^{2} = \int |\mathcal{J}^{\alpha/2}(f|f|^{\frac{p}{2}-1})|^{2} dx \leq p \int f|f|^{p-2} \mathcal{J}^{\alpha}(f) dx$$

8. Lie groups of polynomial growth.

In this section, we consider a connected Lie group G and its Lie algebra \mathcal{G} , generated from a set of leftinvariant vector fields $(X_i)_{1 \leq i \leq N}$ (in the sense of Hörmander : \mathcal{G} is generated by the fields X_i and their successive Lie brackets). We condider dx a left-invariant Haar measure on G.

We have a Carnot-Carathéodory metric $\rho(x, y) = |y^{-1}.x|_G$ on G associated to the vector fields X_i [COU]. We note B(x, r) for the ball centered at $x \in G$ and with radius r > 0, and V(r) for the volume of the ball $V(r) = \int_{|y|_G < r} dy$. The volume obeys to two dimensional orders : for r < 1, we have $ar^d \leq V(r) \leq br^d$ for some local dimension d > 0 and positive constants a, b; for $r \geq 1$, either V has a finite dimensional behaviour $ar^D \leq V(r) \leq br^D$ for some D > 0 (the dimension at infinity) or V grows exponentially $e^{ar} \leq V(r) \leq e^{br}$. In the first case, G is called a group with polynomial growth (versus exponential growth in the second case).

first case, G is called a group with polynomial growth (versus exponential growth in the second case). The sublaplacian on G is the operator $\mathcal{J} = -\sum_{i=1}^{N} X_i^2$. We define the convolution on G by $f * h(x) = \int_G f(xy^{-1})h(y) \, dy = \int_G f(y)h(y^{-1}x) \, dy$. Then $(e^{-t\mathcal{J}})_{t\geq 0}$ is a semi-group of positive self-adjoint convolution operators on G, so that the theory of symmetric diffusion semigroups can be applied.

We can define Sobolev and Besov spaces on G [TRI]. When p = 2, the Besov space $\dot{B}_2^{s,2}$ coincides with the Sobolev space $\dot{H}^s = \mathcal{D}(\mathcal{J}^{s/2})$ (normed by $||f||_{\dot{H}^s} = ||\mathcal{J}^{s/2}f||_2$). It is easy to check that Saka's characterization of Besov spaces [SAK] on stratified Lie groups can be extended to the setting of Lie groups with polynomial growth. More precisely, L. Saloff-Coste [SAL] proved the following result :

Proposition 2 :

Let G be a connected Lie group with polynomial growth. For 0 < s < 1 and $1 \le p < +\infty$, the norm of the Besov space $\dot{B}_p^{s,p}$ is equivalent to

(57)
$$||f||_{\dot{B}^{s,p}_{p}} = \left(\int \int \frac{|f(x.y) - f(y)|^{p}}{|y|^{sp}_{G} V(|y|_{G})} dx dy\right)^{1/p}$$

Now, a direct adaptation of Theorem 2 gives :

Theorem 7:

Let \mathcal{J} be the sublaplacian operator on a connected Lie group G with polynomial growth. Let $0 < \alpha < 1$ and $2 \leq p < +\infty$. Then there is a positive constant $c_{\alpha,p,G} > 0$ such that :

(58)
$$c_{\alpha,p,G} \|f\|_{\dot{B}^{2\alpha/p,p}_{p}}^{p} \leq \|f|f|^{\frac{p}{2}-1}\|_{\dot{H}^{\alpha}}^{2} = \int |\mathcal{J}^{\alpha/2}(f|f|^{\frac{p}{2}-1})|^{2} dx \leq p \int f|f|^{p-2} \mathcal{J}^{\alpha}(f) dx$$

References.

[BAK] BAKRY, D., Functional inequalities for Markov semigroups. In *Probability measures on groups: recent directions and trends*, pp. 91–147. Tata Inst. Fund. Res., Mumbai, 2006.

[BER] BERNSTEIN, S. N., Sur les fonctions absolument monotones, Acta Mathematica 52 (1928) pp.1-66

[CON] CONSTANTIN, P., MAJDA, A., TABAK, E., Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, *Nonlinearity*, 7 (1994), 1495–1533.

[CHE] CHEMIN, J.Y., About the Navier–Stokes system, Prépublication du Laboratoire d'Analyse Numérique de Paris 6, 1996.

[CHN] CHEN, Q., MIAO, Ch., ZHANG, Z., A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation, *Commun. Math. Phys.* 271 (2007), 821–838.

[COR] CÓRDOBA, A., CÓRDOBA, D., A maximum principle applied to Quasi-Geostrophic equations, *Commun. Math. Phys.* 249 (2004), 511528.

[COU] COULHON, Th., SALOF–COSTE, L., VAROPOULOS, N. Th., Analysis and geometry on groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, Cambridge, 1992.

[DAN a] DANCHIN, R., Poches de tourbillon visqueuses, J. Math. Pures Appl. 76 (1997) 609-647.

[DAN b] DANCHIN, R., Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations 26 (2001) 1183–1233; Erratum, Comm. Partial Differential Equations 27 (2002) 2531–2532.

[FOL] FOLLAND, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161207.

[JU] JU, N., The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys. 255 (2005), 161-181.

[KAT] KATO, T., Liapunov functions and monotonicity in the Navier–Stokes equation, in: *Functional-analytic methods for partial differential equations (Tokyo, 1989)*, Springer-Verlag, Berlin, 1990, pp. 53–63.

[MAR] MARCHAND, F., Existence and Regularity of Weak Solutions to the Quasi-Geostrophic Equations in the Spaces L^p or $\dot{H}^{-1/2}$, Commun. Math. Phys. 277 (2008), 45–67.

[PED] PEDLOSKY, J., Geophysical Fluid Dynamics, Spinger-Verlag, New York, 1987.

[PLA] PLANCHON, F., Sur une inégalité de type Poincaré, C.R. Acad. Sci. 330 (2000), 21–23.

[RES] RESNICK, S., Dynamical Problem in Nonlinear Advective Partial Differential Equations, Ph. D. thesis, University of Chicago, 1995.

[SAK] SAKA, K., Besov spaces and Sobolev spaces on a nilpotent Lie group, Tohoku Math. J. 31 (1978), 383–437.

[SAL] SALOF-COSTE, L., Analyse sur les groupes de Lie croissance polynômiale, Arkiv Mat. 28 (1990), pp. 315-331.

[SAM] SAMORODNITSKY, G., TAQQU, M.S., Stable Non-Gaussian Random Processes, Chapman & Hall, 1994.

[STE] STEIN, E. M., Topics In Harmonic Analysis Related To The Littlewood-Paley Theory, Princeton University Press, 1970.

[TRI] TRIEBEL, H., Theory of function spaces II, Monogr. in Math. 84, Birkhäuser Verlag, Basel, 1992.

[WU] WU,J., Lower bounds for an integral involving fractional Laplacians and generalized Navier–Stokes equations in Besov spaces, *Commun. Math. Phys.* 263 (2006), 803–831.

[ZOL] ZOLOTAREV, V. M., *One-dimensional stable distributions*, Translations of Mathematical Monographs, vol. 65, A.M.S., 1986.

Pierre Gilles LEMARIÉ-RIEUSSET Equipe Analyse et Probabilités (Université d'Evry) plemarie@univ-evry.fr

Diego CHAMORRO ENSIIE & Equipe Analyse et Probabilités (Université d'Evry)