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Abstract

In the present paper we find new constructions of orthonormal mul-
tiresolution analyses on the triangle ∆. In the first one, we describe
a direct method to define an orthonormal multiresolution analysis R
which is adapted for the study of the Sobolev spaces Hs

0(∆) (s ∈ N).
In the second one, we add boundary conditions for constructing an
orthonormal multiresolution analysis which is adapted for the study of
the Sobolev spaces Hs(∆) (s ∈ N). The associated wavelets preserve
the original regularity and are easy to implement.
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1 Introduction

Wavelets are functions generated from one basis function by dilations and
translations. Wavelet concepts have unfolded their full computational ef-
ficiency mainly in harmonic analysis (for the study of Calderon-Zygmund
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operators) and in signal analysis. The wavelet expansions induce isomor-
phisms between function and sequence spaces. It means that certain Sobolev
or Besov norms of functions are equivalent to weighted sequence norms for
the coefficients in their wavelet expansions. The wavelets have cancellation
properties that are usually expressed in terms of vanishing polynomial mo-
ments. The combination of the two previous properties of wavelets provides
a rigorous analysis of adaptative schemes for elliptic problems. Moreover,
nonlinear approximation is an important concept related to adaptative ap-
proximation.

The search for wavelet bases on a bounded domain has been an active
field for many years, since the beginning of the nineties. Several strategies
for dealing with complex domain geometries as manifolds have been explored
in wavelet literature (see [5] and [8]). There are basically two approaches
domain decomposition into cube patches and multilevel decomposition of fi-
nite element spaces. The first approach was introduced by Z. Ciesielski and
T. Figiel in 1982 (see [3] and [4]) to construct spline bases of generalized
Sobolev spaces W k

p (M) (k ∈ Z and 1 < p < ∞) where M is a compact
Riemannian manifold. This method is based on a characterization of func-
tion spaces on manifolds as products of corresponding local function spaces
subject to certain complementary boundary conditions. It was adapted
to the wavelet setting to construct generalized multiresolution analyses on
bounded domains. The decomposition method turns out to have principal
limitations and it does not induce Sobolev Spaces Hs when |s| ≥ 3/2. The
basic difficulty is that function spaces as Sobolev or Besov spaces on com-
pact Riemannian manifolds (with or without boundary) are usually defined
in terms of open covering and associated charts, not in terms of partitions
of the manifold. The second approach can be more tempting if one wants
to combine properties of wavelet bases (cancellation, dilation, translation)
with the structural simplicity of finite element spaces.

In 1992, A. Jouini and P.G. Lemarié constructed in [13] biorthogonal
wavelet bases on two-dimensional manifold Ω; these bases were adapted for
the study of Sobolev spaces H1(Ω) and H1

0 (Ω). In 1997, the decomposition
method was used by C. Cohen, W. Dahmen and R. Schneider in ([5], [7] and
[8]) to construct biorthogonal wavelet bases (ψλ, ψ̃λ)λ∈∇ of L2(Ω) where Ω
is a bounded domain of Rd (d ∈ N∗); these bases were shown to be bases
of Sobolev spaces Hs(Ω) for −3

2 < s < 3
2 . There are related constructions

as well by C. Canuto and coworkers in [2] and by R. Masson in [17]. All
these constructions are based on the decomposition method by gluing scaling
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functions and wavelets across the interfaces of adjacent subdomains. These
bases are continuous but not differentiable; there is a slight difficulty in their
presentation, due to notational burden. Moreover, it is often unclear how
to get other regularity Sobolev estimates than for −3

2 < s < 3
2 . In 2003,

A. Jouini and P.G. Lemarié presented in [14] two elementary constructions
of orthogonal and biorthogonal wavelet bases on the L-shaped domain L.
In the first one, they used a direct method and in the second one, they
used a decomposition method. These bases have simple expressions and the
specific geometry of the domain allows to get higher regularity namely the
study of the Sobolev spaces Hk(L) (k ∈ Z). Recently, in 2008, A. Jouini
and M. Kratou used decomposition method to construct in [11] biorthog-
onal wavelet bases on a compact Riemannian manifold with dimension n
(or an open bounded set of Rn), n ∈ N∗. The central problem was to con-
struct extension operators which are straightforward, relatively simple and
are adapted to the scale. This construction of biorthogonal analyses differed
from the previous one in the sense that these analyses are generated by a
finite number of simple basic functions and had better stability constants.
They were also adapted for the study of the Sobolev spaces H1 and H1

0 .

The construction of wavelet bases on the triangle has not been exten-
sively discussed in the literature. Nevertheless, the triangle is used in wavelet
theory to define triangulation of resolution 2−j for general domains in the
two-dimensional case. However, we do not have on the triangle regular bases
with compact support and which are simple to implement. The central
problem is to construct wavelet spaces. Moreover, we do not have general
criteria available in literature that tell under which circumstances one has
norm equivalences and how to conclude stability on a special domain as the
triangle.

In this paper, we use a direct method to construct two orthogonal mul-
tiresolution analyses on a triangle ∆ which are adapted to higher regularity
analysis. The scaling spaces are constructed in an elementary way. Our
construction does not involve domain decomposition at all but uses bound-
ary adaptation for fairly general lipschitz domains. The main contribution
offered in this paper which differs from the other constructions is the realiza-
tion of global higher regularity by more elementary techniques than perhaps
those involved in ([5], [8] and [11]).
Section 2 is devoted to the description of multiresolution analyses on the
interval. We develop two ways for constructing wavelet bases which will be
useful for the remainder of the work.
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In section 3, we shall use a direct method based on the results described
in ([12] and [18]) to define two orthonormal multiresolution analyses on a
triangle ∆.
In section 4, we prove a regularity lemma which gives uniform estimates for
extension operators on the scaling spaces. This Lemma is very important
to establish norm equivalences in Sobolev spaces on the triangle.
In the last section, we study and construct in the first part the associ-
ated wavelet bases on the triangle ∆. This construction is complicated and
technical due to the geometry of the domain. In the second part and as
applications, we characterize regular spaces namely Sobolev spaces Hs

0(∆)
and Hs(∆) (s ∈ N) in terms of discrete norm equivalences. At the end of
this work, we consider the cases N = 1 (Haar basis) and N = 2. These ex-
amples permit to illustrate the constructions of wavelet bases of this paper
and to explain clearly the relation between the support of the wavelet and
the geometry of the domain.

We recall that all bases constructed in this work have compact support
and the same regularity as for Daubechies bases [9].

NOTATIONS. We denote by
-MRA : Multiresolution analysis
-OMRA : Orthogonal multiresolution analysis.

2 Multiresolution analysis on the interval

Let us recall that I. Daubechies constructed in [9] an orthogonal multireso-
lution analysis Vj(R) of L2(R) satisfying the following properties:

• V0(R) has an orthonormal basis ϕ(x − k), k ∈ Z, where ϕ the scaling
function with compact support.
• ϕ(x

2 ) =
∑2N−1

k=0 akϕ(x − k), the sequence of real numbers (ak) satisfies
a0 6= 0 and a2N−1 6= 0. Moreover, we have ϕ̂(2ξ) = M0(e−iξ)ϕ̂(ξ) where
M0(e−iξ) =

∑2N−1
k=0 ake

−kiξ and “ f̂ ” is the classical Fourier transform of f
on R.
• Vj(R) has an orthonormal basis ϕj,k(x) = 2

j
2ϕ(2jx− k), j, k ∈ Z.

• Suppϕ = [0, 2N − 1] .
• ϕ has Sobolev regularity HsN with sN = (1− ln 3

ln 4)N + o(N).
• The associated wavelet ψ is defined by
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ψ̂(2ξ) = e−i(2N−1)ξM0(e−iξ)ϕ̂(ξ).

• W0(R) (the orthogonal complement of V0(R) in V1(R)) has an orthonor-
mal basis ψ(x − k), k ∈ Z and Wj(R) has an orthonormal basis ψj,k(x) =
2

j
2ψ(2jx− k), j, k ∈ Z.
• The moments of the related wavelet ψ satisfy

∫
xkψ(x)dx = 0 for

0 ≤ k ≤ N − 1.

It is well known that we can have orthonormal wavelet bases which
allow synthesis of more general functional spaces than L2(R). Such a fact
was not true by restriction to a subset of R as simple as the set [0,1]. The
problem is that, in bounded domains, classical invariance by dilation and
translation are preserved for dilation, on the other hand they lose in part
their meaning for translation. Moreover, the multiresolution analysis of I.
Daubechies is orthogonal in L2(R), but if we take its restriction to [0, 1],
we do not get an orthogonal multiresolution analysis in L2([0, 1]). If we
consider the functions ϕj,k(x)/[0,1], we have a linearly independent system
but not orthogonal. However, if we consider the functions ψj,k(x)/[0,1], we get
a linearly dependent system (see [18]). Then, the construction of orthogonal
multiresolution analyses in [0, 1] (or biorthogonal) is technical specially near
the boundaries 0 and 1.

In the following, we consider the OMRA Vj(R) of I. Daubechies and we
denote

Vj([0, 1]) = Span{ϕj,k/[0,1], ϕj,k ∈ Vj(R)} (2.1)

and
vj([0, 1]) = Span{ϕj,k, suppϕj,k ⊂ [0, 1]}. (2.2)

Remark 2.1 If I is a bounded interval of R, the space Vj(I) is defined as
the space of restrictions to I of elements of Vj(R). More precisely, we may
keep only the indexes k such that (2−jk, 2−j(k + 2N − 1)) ∩ I 6= ∅.

Recall the following important result.

lemma 2.1 Let f be a scaling function with minimal support, then the re-
strictions (f(x− k)/[0,1] 6= 0) are linearly independent.

This Lemma is proved in [15]. This result states in particular that the
restrictions ϕ(x− k)/[0,1] are linearly independent for 2− 2N ≤ k ≤ 0.
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Remark 2.2 Let I = [α, β]. For j ∈ Z, let αj the smallest integer which is
greater than 2jα − 2N + 1 and let βj the greatest integer which is smaller
than 2jβ. The functions (ϕj,k)/I , αj ≤ k ≤ βj are linearly independent, and
thus they are a basis for Vj(I).

Remark 2.3 Under the assumptions of Remark 2.2, there exists a constant
c(j, I) such that for all sequences (λk)αj≤k≤βj

we have the inequality

c(j, I)
∑

αj≤k≤βj

|λk|2 ≤
∫ β

α
|
∑
k∈Z2

λkϕj,k|2dx ≤
∑

αj≤k≤βj

|λk|2. (2.3)

If α or β is not a dyadic number, we may have lim infj→+∞c(j, I) = 0: we
have c(j, I) ≤ min(

∫ 2−jαj

α |ϕ|2dx,
∫ β
2−jβj

|ϕ|2dx). On the other hand, when α
and β are dyadic numbers, c(j, I) does not depend on j when j is big enough.

The existence of an orthonormal basis of L2([0, 1]) allowing the char-
acterization of regular function on the interval [0,1] and having simple al-
gorithms was treated by Y. Meyer in [18]. Starting from the orthogonal
multiresolution analysis of I. Daubechies, Y. Meyer introduced the orthogo-
nal projection operators Pj from L2([0, 1]) onto Vj([0, 1]) and Qj = Pj+1−Pj

and he showed that the ranges of Vj = ImPj and Wj = ImQj have elemen-
tary Hilbertian bases. This is based on the remark that, while Vj+1([0, 1]) is
generated by the restrictions of the scaling functions ϕj,k and the wavelets
ψj,k, −2N + 2 ≤ k ≤ 2j − 1, the restrictions of the extreme wavelets ψj,k,
−2N + 2 ≤ k ≤ −N and 2j − 2N + 1 ≤ k ≤ 2j − 1 belong to Vj([0, 1]),
so their elimination gives a generating system of (2j+1 + 2N − 2) vectors of
Vj+1([0, 1]), hence we have the following Meyer’s Lemma.

lemma 2.2 Let j0 be the smallest integer satisfying 2j0 ≥ 4N − 4. Then,
for j ≥ j0, the functions ϕj,k/[0,1], 2 − 2N ≤ k ≤ 2j − 1, (which form a
Riesz basis for Vj([0, 1])) and the functions ψj,k/[0,1], −N + 1 ≤ k ≤ 2j −N,
constitute a Riesz basis for Vj+1([0, 1]).

Clearly, the inclusion Vj(R) ⊂ Vj+1(R) gives Vj([0, 1]) ⊂ Vj+1([0, 1]).
Thus, we may define Wj([0, 1]) = (Vj([0, 1]))⊥∩Vj+1([0, 1]). A Riesz basis for
Vj([0, 1]) is given by the restriction of functions ϕj,k, −2N +2 ≤ k ≤ 2j − 1;
this basis can be split into three subfamilies: the functions located at the
border 0 ((ϕj,k)/[0,1], −2N + 2 ≤ k ≤ −1), the functions which have their
support included in [0, 1] (ϕj,k, 0 ≤ k ≤ 2j−2N+1) and the functions located
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at the border 1 ((ϕj,k)/[0,1], 2j − 2N + 2 ≤ k ≤ 2j − 1). Orthonormalization
of the first family and the third one then gives an orthonormal basis φj,k,

−2N + 2 ≤ k ≤ 2j − 1 with φj,k = 2
j
2ϕ(2jx − k) for 0 ≤ k ≤ 2j − 2N + 1,

φj,k = 2
j
2ϕ

[q]
l (2jx) for 1 ≤ q ≤ 2N−2 and k = −q and φj,k = 2

j
2ϕ

[q]
r (2j(x−1))

for 1 ≤ q ≤ 2N − 2 and k = 2j − 2N + q+1, where the functions ϕ[q]
l have a

compact support in [0,+∞) and the functions ϕ[q]
r have a compact support

in (−∞, 0] .
The Riesz basis for Vj([0, 1]) may then be completed into a Riesz basis

for Vj+1([0, 1]) by adding the restrictions of the wavelets ψj,k, −N+1 ≤ k ≤
2j−N. This new set may be split into three subfamilies, the functions located
at the border 0 ((ψj,k)/[0,1], −N + 1 ≤ k ≤ −1), the functions which have
their support included in [0, 1] (ψj,k, 0 ≤ k ≤ 2j−2N +1) and the functions
located at the border 1 ((ψj,k)/[0,1], 2j − 2N + 2 ≤ k ≤ 2j −N). The second
family already belongs to Wj([0, 1]), while we need corrections on the first
and third ones. We then get an orthonormal basis$j,k, −N+1 ≤ k ≤ 2j−N
for Wj([0, 1]), with $j,k = 2

j
2ψ(2jx − k) for 0 ≤ k ≤2j − 2N + 1, $j,k =

2
j
2ψ

[q]
l (2jx) for 1 ≤ q ≤ N − 1 and k = −q and $j,k = 2

j
2ψ

[q]
r (2j(x− 1)) for

1 ≤ q ≤ N − 1 and k = 2j − 2N + q + 1, where the functions ψ[q]
l have a

compact support in [0,+∞) and the functions ψ[q]
r have a compact support

in (−∞, 0].
Meyer’s basis on the interval is theoretically important and constitutes

a fundamental starting point for other constructions. Cohen, Daubechies,
Vial and Jawerth constructed at 1992 in [6] a multiresolution analysis on
the interval in such manner that they got a polynomial extension outside
the interval. Jouini and Lemarié defined at 1993 in [12] a multiresolution
analysis on the interval as the following.

Definition 2.1 A sequence {Vj}j≥j0 of closed subspaces of L2([0, 1]) is called
a MRA on L2([0, 1]) associated with Vj(R) if we have

i) ∀j ≥ j0, vj([0, 1]) ⊂ Vj ⊂ Vj([0, 1])

ii) ∀j ≥ j0, Vj ⊂ Vj+1.

Starting again from the orthogonal multiresolution analysis of I. Daubechies,
they proposed a new wavelet space Wj([0, 1]) by reviewing the collection of
the functions on the border. More precisely, we have the second important
result from [12].
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Proposition 2.1 Let j0 be the smallest integer satisfying 2j0 ≥ 4N−4. For
j ≥ j0, we denote

Xj = Span{ψj,k, 0 ≤ k ≤ 2j − 2N + 1;ϕj+1,2k+1,
0 ≤ k ≤ N − 2;ϕj+1,2k, 2j − 2N + 2 ≤ k ≤ 2j −N}. (2.4)

Then,

i) dim Xj = 2j

ii) there exists an integer J such that ∀j ≥ J , Vj+1 = Vj ⊕Xj.

It is clear that we can realize orthogonality by using Gram-Schmidt.

3 The spaces vj(∆) and Vj(∆)

As usually in wavelet theory, we define Vj(R2) the multiresolution analysis
associated to the separable scaling function ϕ ⊗ ϕ : Vj(R2) is the tensor
product Vj(R2) = Vj(R)⊗̂Vj(R). For a generic domain Ω, we cannot expect
a simple description of the space Vj(Ω): even in the univariate case and
in the case of an elementary interval, we have difficulties in estimating the
bases. On the other hand, for very simple cases, we get an easy description.
As an example, if we consider the unit cube [0, 1]n, then, by using Lemma
2.1 and tensor product, we get a direct basis of Vj([0, 1]n) (see [14]).

The next domain we shall consider is the triangle ∆ = {(x, y) ∈ [−1, 1]×
[0, 1], y ≤ 1− |x|}. In the following, we study a multiresolution analysis on
∆ without boundary conditions.

Definition 3.1 The space vj(∆) is defined as the space of elements of
Vj(R2) with support in ∆.

We can describe directly an orthonormal basis of vj(∆).

Proposition 3.1 For 2j ≥ 4N−4, vj(∆) has the following basis: the family
ϕj,k1⊗ϕj,k2 with −2j +2N−1 ≤ k1 ≤ −N, 0 ≤ k2 ≤ k1+2j−2N+1 and the
family ϕj,k1⊗ϕj,k2 with −N+1 ≤ k1 ≤ 2j−4N+2, 0 ≤ k2 ≤ −k1+2j−4N+2.

If we look at our domain and the support of the scaling function, we can
split these families into the following sets:
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i) left functions: ϕj,k1 ⊗ ϕj,k2 with −2j + 2N − 1 ≤ k1 ≤ −N and
0 ≤ k2 ≤ k1 + 2j − 2N + 1

ii) right functions: ϕj,k1 ⊗ ϕj,k2 with −N + 1 ≤ k1 ≤ 2j − 4N + 2 and
0 ≤ k2 ≤ −k1 + 2j − 4N + 2.

The orthogonal projection operator on vj(∆) is written P 0
j and the pro-

jection operator Q0
j on wj(∆) = (vj(∆))⊥ ∩ vj+1(∆) is given by Q0

j =
P 0

j+1 − P 0
j . Thus, P 0

j is given by

P 0
j f =

∑−N
k1=−2j+2N−1

∑k1+2j−2N+1
k2=0 < f/ϕj,k1 ⊗ ϕj,k2 > ϕj,k1 ⊗ ϕj,k2

+
∑2j−4N+2

k1=−N+1

∑−k1+2j−4N+2
k2=0 < f/ϕj,k1 ⊗ ϕj,k2 > ϕj,k1 ⊗ ϕj,k2 .

(3.1)

Our main goal below will be a study of regular functions on the tri-
angle with trace on the border. We introduce now the second orthogonal
multiresolution analysis on the triangle ∆ with boundary conditions. This
point poses no problem for generator basic functions of scaling spaces.

Definition 3.2 The space Vj(∆) is defined as the space of restrictions to ∆
of elements of Vj(R2).

We have an obvious generating family of Vj(∆).

Proposition 3.2 For 2j ≥ 4N − 4, Vj(∆) has the following basis: the
family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2j − 2N + 2 + p, 0 ≤ p ≤ 2j − 2 and
−2N + 2 ≤ k2 ≤ p; the family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2N + 1 + p,
0 ≤ p ≤ 2N − 1 and −2N + 2 ≤ k2 ≤ 2j − 1 and the family ϕj,k1 ⊗ ϕj,k2/∆

with k1 = 1 + p, 0 ≤ p ≤ 2j − 2 and −2N + 2 ≤ k2 ≤ 2j − 2− p.

It is clear that Lemma 2.1 and Remark 2.2 prove that the system de-
scribed in Proposition 3.2 is linearly independent. Then, the spaces Vj(∆)
define an orthogonal multiresolution analysis on ∆. The orthogonal projec-
tion operator on Vj(∆) is written Pj and the projection operator Qj on
Wj(∆) = (Vj(∆))⊥ ∩ Vj+1(∆) is given by Qj = Pj+1 − Pj .

We shall now give a precise description of Pj by giving an orthonormal
basis for Vj(∆).

If we look at our domain, we can split these families into the following
sets:
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i) left functions: ϕj,k1⊗ϕj,k2/∆ with k1 = −2j−2N+2+p, 0 ≤ p ≤ 2j−2
and −2N + 2 ≤ k2 ≤ p

ii) center functions: ϕj,k1⊗ϕj,k2/∆ with k1 = −2N+1+p, 0 ≤ p ≤ 2N−1
and −2N + 2 ≤ k2 ≤ 2j − 1

iii) right functions: ϕj,k1 ⊗ ϕj,k2/∆ with k1 = 1 + p, 0 ≤ p ≤ 2j − 2 and
−2N + 2 ≤ k2 ≤ 2j − 2− p.

See that the number of left functions is equal to the number of right
functions and this is due to symmetry of our domain. If we look now at
the supports of these functions, we can split these families into the following
sets:

i) interior functions: ϕj,k1 ⊗ ϕj,k2/∆ with −2j + 2N − 1 ≤ k1 ≤ −N and
0 ≤ k2 ≤ k1+2j−2N+1; ϕj,k1⊗ϕj,k2/∆ with −N+1 ≤ k1 ≤ 2j−4N+2
and 0 ≤ k2 ≤ −k1 + 2j − 4N + 2

ii) edge functions: ϕj,k1⊗ϕj,k2/∆ with −2j−2N+3 ≤ k1 ≤ −2j +2N−2
and 1 ≤ k2 ≤ k1 + 2j + 2N − 2; ϕj,k1 ⊗ ϕj,k2/∆ with −2j + 2N −
1 ≤ k1 ≤ 2j − 4N + 2 and 2 − 2N ≤ k2 ≤ −1; ϕj,k1 ⊗ ϕj,k2/∆ with
−2j +2N−1 ≤ k1 ≤ −2N and k1+2j−2N+2 ≤ k2 ≤ k1+2j +2N−2;
ϕj,k1 ⊗ ϕj,k2/∆ with −2N + 1 ≤ k1 ≤ −N − 1 and k1 + 2j − 2N + 2 ≤
k2 ≤ −k1 + 2j − 4N + 1; ϕj,k1 ⊗ ϕj,k2/∆ with −N + 2 ≤ k1 ≤ 0
and −k1 + 2j − 4N + 3 ≤ k2 ≤ k1 + 2j − 2N ; ϕj,k1 ⊗ ϕj,k2/∆ with
1 ≤ k1 ≤ 2j − 4N + 2 and −k1 + 2j − 4N + 3 ≤ k2 ≤ −k1 + 2j − 1;
ϕj,k1⊗ϕj,k2/∆ with 2j−4N+3 ≤ k1 ≤ 2j−2 and 1 ≤ k2 ≤ −k1+2j−1

iii) exterior corner functions: ϕj,k1 ⊗ ϕj,k2/∆ with −2j − 2N + 2 ≤ k1 ≤
−2j +2N − 2 and 2− 2N ≤ k2 ≤ 0; ϕj,k1 ⊗ϕj,k2/∆ with 2j − 4N +3 ≤
k1 ≤ 2j − 1 and 2− 2N ≤ k2 ≤ 0

iv) interior corner functions: ϕj,k1⊗ϕj,k2/∆ with −2N+1 ≤ k1 ≤ −N and
−k1 +2j−4N +2 ≤ k2 ≤ 2j−1; ϕj,k1 ⊗ϕj,k2/∆ with −N +1 ≤ k1 ≤ 0
and k1 + 2j − 2N + 1 ≤ k2 ≤ 2j − 1.

Orthonormalization of the border functions (edge and corner functions)
gives an orthonormal basis φj,k1,k2/∆ for Vj(∆) where (k1, k2) ∈ Mj (to
simplify notations) and cardMj = dimVj(∆) = 22j + (6N − 5)2j + (2N −
2)2. All these functions are regular (same regularity as Daubechies scale
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function). Thus, we have the orthogonal projection operator Pj onto Vj(∆)
as

Pjf =
∑

(k1,k2)∈Mj

< f/φj,k1,k2/∆ > φj,k1,k2/∆. (3.2)

4 A regularity lemma

We prove in this section some technical lemmas which will be useful in
regularity analysis for functions defined on ∆.

lemma 4.1 Let w1, w2 be two square integrable compactly supported func-
tions on R2. Then the operator f →

∑
k∈Z2 < f/w1(. − k) > w2(. − k) is

bounded on L2(R).

Proof. Let L ∈ N be such that the supports of w1 and w2 are contained
in (−L,L)2. Then we have∫ ∣∣∑

k∈Z2 λkw2(x− k)
∣∣2 dx ≤ 4L2

∫ ∑
k∈Z2 |λkw2(x− k)|2 dx

= 4L2 ‖w2‖2
2

∑
k∈Z2 |λk|2

and∑
k∈Z2

∣∣∫ f(y)w1(y − k)dy
∣∣2 ≤ ‖w1‖2

2

∑
k∈Z2

∫
|f(y)|2 1(−L,L)2(y − k)dy

≤ 4L2 ‖w1‖2
2 ‖f‖

2
2.

Thus, the lemma is obvious.

Definition 4.1 Let ∆ = {(x, y) ∈ [−1, 1]× [0, 1], y ≤ 1− |x|}. Let us con-
sider, for 2j ≥ 4N−4, the basis for Vj(∆) given by the family (φj,k1,k2/∆)(k1,k2)∈Mj

described in (3.2). Then we define the extension operator Ej from Vj(∆) to
Vj(R2) by the formula

Ejf =
∑

(k1,k2)∈Mj

< f/φj,k1,k2/∆ >∆ φ
j,k1,k2

, (4.1)

where < f/g >∆=
∫
∆ fgdx.

We establish now the first main result of this section. In fact, the fol-
lowing lemma is very useful for analyzing regular functions on the triangle.

lemma 4.2 Let ∆ = {(x, y) ∈ [−1, 1] × [0, 1], y ≤ 1 − |x|}. There exists
a positive constant α such that for all j such that 2j ≥ 4N − 4 and all
f ∈ Vj(∆):

‖Ejf‖2
L2(R2) ≤ α‖f ‖2

L2(∆). (4.2)
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Proof. We divide [0, 1]× [0, 1] into four triangles defined by: for 0 ≤ η ≤
3, T η = {(x, y) ∈ [0, 1]×[0, 1]/(−1)η(x−y) ≥ 0 and (−1)E( η

2
)(x+y−1) ≥ 0}.

We triangulate R2 such that

R2 =
⋃

0≤η≤3

⋃
(k1,k2)∈Z2

T η
j,k1,k2

where
T η

j,k1,k2
= {(x, y)/(2jx− k1, 2jy − k2) ∈ T η}.

This triangulation is adapted to our triangle ∆ = {(x, y) ∈ [−1, 1] ×
[0, 1], y ≤ 1− |x|} because we have

∆ =
⋃

T η
j,k1,k2

⊂∆

T η
j,k1,k2

.

We put φj,k1,k2(x, y) = 2jϕ(2jx − k1)ϕ(2jy − k2) and φk1,k2 = φ0,k1,k2 .
Let us write∫ ∫

∆ |
∑

(k1,k2)∈Z2 αk1,k2φj,k1,k2 |2dxdy
=

∑
T η

j,l1,l2
⊂∆

∫ ∫
T η

j,l1,l2

|
∑

(k1,k2)∈Z2 αk1,k2φj,k1,k2 |2dxdy;
then,∫ ∫

T η
j,l1,l2

|
∑

(k1,k2)∈Z2 αk1,k2φk1,k2 |2dxdy
=

∫ ∫
T η |

∑
(k1,k2)∈Z2 αk1,k2φk1−l1,k2−l2 |2dxdy.

Let Cη be the set of indexes (k1, k2) such that the support of φk1,k2

has an intersection of non vanishing measure with T η, Cη
j,k1,k2

the set of
indexes (l1, l2) such that the support of φj,l1,l2 has an intersection of non
vanishing measure with T η

j,k1,k2
and Cj the set of indexes (k1, k2) such that

the support of φj,k1,k2 has an intersection of non vanishing measure with ∆.
We have Cj =

⋃
T η

j,k1,k2
⊂∆C

η
j,k1,k2

. The family (φk1,k2|T η)(k1,k2)∈Cη is linearly
independent. Then, there exists a positive constant γ such that we have∫ ∫

T η

|
∑

(k1,k2)∈Z2

βk1,k2φk1,k2 |2dxdy ≥ γ
∑

(k1,k2)∈Cη

|βk1,k2 |2;

hence,∫ ∫
T η

j,l1,l2

|
∑

(k1,k2)∈Z2 αk1,k2φj,k1,k2 |2dxdy ≥
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γ
∑

(k1,k2)∈Cn |αk1+l1,k2+l2 |2 =
γ

∑
(k1,k2)∈Cη

j,l1,l2

|αk1,k2 |2

and then∫ ∫
∆ |

∑
(k1,k2)∈Z2 αk1,k2φj,k1,k2 |2dxdy ≥ γ

∑
T η

j,l1,l2
⊂∆

∑
(k1,k2)∈Cη

j,l1,l2

|αk1,k2 |2

≥ γ
∑

(k1,k2)∈Cj
|αk1,k2 |2.

We will make crucial use of the projection operators on the scaling spaces.
In fact, combining Lemma 4.1 with Lemma 4.2 yields the following result
which is very important for regularity criterion.

Theorem 4.1 Let ∆ = {(x, y) ∈ [−1, 1] × [0, 1], y ≤ 1 − |x|} and j0 ∈ N
such that 2j0 ≥ 4N−4. Let (Vj(R2))j∈Z be a regular multiresolution analysis
of L2(R2). We assume that there exists a projection operator Aj onto Vj(R2)
such that

i) Aj+1oAj = AjoAj = Aj

ii) ‖F‖2
Hs(R2) ≈ ‖A0f‖2

L2(R2) +
∑

j≥0 22js‖Aj+1F −AjF‖2
L2(R2).

If Pj is a projection operator from L2(∆) onto Vj(∆) such that, for a
constant β and j ≥ j0, Pj satisfies:

‖Pjf‖2
L2(∆) ≤ β‖f‖2

L2(∆) (4.3)

then, we have

∀f ∈ Hs(∆), ‖f‖2
Hs( ∆ ) ≈ ‖Pj0f‖2

L2(∆) +
∑
j≥j0

22js‖Pj+1f −Pjf‖2
L2(∆).

(4.4)

Proof. We write f = F/∆ and F = (F −AjF ) +AjF . We have

‖Pj+1f − Pjf‖2
L2(∆) = ‖(Pj+1 − Pj)(F −AjF )/∆‖2

L2(∆)

≤ β‖F −AjF‖2
L2(∆)
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where β is a positive constant independent of j. Then, we have∑
j≥j0

22js‖Pj+1f − Pjf‖2
L2(∆) ≤ β

∑
j≥j0

22js‖F −AjF‖2
L2(∆)

≤ β
∑
j≥j0

22js‖F −AjF‖2
L2(R2)

≤ β
∑
j≥j0

22js‖
∑

p≥j+1

(Ap −Ap−1)F‖2
L2(R2)

≤ β
∑
j≥j0

{
∑

p≥j+1

2(j−p)s22ps‖(Ap −Ap−1)F‖2
L2(R2)}

2.

It’s a convolution `1o`2 ⊂ `2, then we get the first inequality. To prove the
reverse inequality, we write f = F/∆ and F = E0(P0f)+

∑
j≥0Ej+1(Pj+1f−

Pjf) where Ej is the extension operator described in Definition 4.1. Then,
we have:

‖f‖2
Hs(∆) ≤ ‖F‖2

Hs(R2) ≈ ‖A0f‖2
L2(R2) +

∑
j≥0

22js‖Aj+1F −AjF‖2
L2(R2)

and
Aj+1F −AjF =

∑
l≥j

(Aj+1 −Aj)El+1(Pl+1f − Plf).

Then, we get for a constant M :

22js‖Aj+1F −AjF‖2
L2(R2) ≤

∑
l≥j

2js‖(Aj+1 −Aj)El+1(Pl+1f − Plf)‖2
2

≤
∑
l≥j

Mα‖Pl+1f − Plf‖2
L2(∆)2

ls2(j−l)s.

It’s a convolution `2o`1 ⊂ `2. The same remarks as above give the result.
Thus, Theorem 4.1 is proved.

Lemma 4.2 and Theorem 4.1 are the bases for our strategy: in order
to get tool for regularity analysis of functions defined on the triangle, we
shall try to define nice equicontinuous families of projection operators on
the spaces Vj(∆).

5 The spaces wj(∆) and Wj(∆)

We have dimvj(∆) = 22j − (6N − 5)2j + 9N2 − 15N + 6. Then, we get that
dimwj(∆) = 3× 22j − (6N − 5)2j . We denote by
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Kj = {(k1, k2) ∈ Z2,−2j +2N−1 ≤ k1 ≤ −N and 0 ≤ k2 ≤ k1 +2j−2N+1
or −N + 1 ≤ k1 ≤ 2j − 4N + 2 and 0 ≤ k2 ≤ −k1 + 2j − 4N + 2} (5.1)

and

Lj+1 = {(2k1, 2k2), (k1, k2) ∈ Kj} ∪ {(2k1 + 2N − 1, 2k2), (k1, k2) ∈ Kj}
∪{(2k1, 2k2 + 2N − 1), (k1, k2) ∈ Kj}
∪{(2k1 + 2N − 1, 2k2 + 2N − 1), (k1, k2) ∈ Kj}. (5.2)

Observe that we can expect a simple description of the space vj(∆) which
will be expressed by vj(∆) = vect{ϕj,k1 ⊗ ϕj,k2 , (k1, k2) ∈ Kj}. Let xj(∆)
be a supplement of vj(∆) into vj+1(∆), then xj(∆) has the following basis:
ϕj,k1 ⊗ψj,k2 with (k1, k2) ∈ Kj ; ψj,k1 ⊗ϕj,k2 with (k1, k2) ∈ Kj ; ψj,k1 ⊗ψj,k2

with (k1, k2) ∈ Kj and ϕj+1,k1 ⊗ ϕj+1,k2 with (k1, k2) ∈ Kj+1 \ Lj+1. We
have exactly 3× 22j − (6N − 5)2j functions which are linearly independent.
To prove this result, it is enough to take their restrictions to every square
in ∆ and apply Proposition 2.1. We split the family into the following sets:

i) interior wavelets: ϕj,k1 ⊗ ψj,k2 , ψj,k1 ⊗ ϕj,k2 and ψj,k1 ⊗ ψj,k2 with
−2j +2N − 1 ≤ k1 ≤ −N and 0 ≤ k2 ≤ k1 +2j − 2N +1 or −N +1 ≤
k1 ≤ 2j − 4N + 2 and 0 ≤ k2 ≤ −k1 + 2j − 4N + 2

ii) interior corner wavelets: ϕj+1,k1 ⊗ϕj+1,k2 with (k1, k2) ∈ Kj+1 \Lj+1.

Orthonormalization of the interior corner wavelets gives an orthonormal
basis $j,k1,k2 for wj(∆) where (k1, k2) ∈ Kj+1 \ Kj . Thus, We define the
orthogonal projection operator Q0

j onto wj(∆) as

Q0
jf =

∑
(k1,k2)∈Kj+1\Kj

< f/$j,k1,k2 > $j,k1,k2 . (5.3)

We can now establish the first main result of this section.

Theorem 5.1 Let 2j0 ≥ 4N − 4. Then:

a) for f ∈ L2(∆), we have ‖f‖2
L2(∆) = ‖P 0

j0
f‖2

L2(∆) +
∑j=∞

j=j0
‖Q0

jf‖2
L2(∆),

b) for f ∈ Hs
0(∆), we have ‖f‖2

Hs(∆) ≈ ‖P 0
j0
f‖2

L2(∆)+
∑j=∞

j=j0
4sj‖Q0

jf‖2
L2(∆).

Proof. a) is a classical result in wavelet theory.
b) follows from Lemma 4.2 and Theorem 4.1.
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We study now the space Wj(∆). The construction of wavelets here is
more complicated due to boundary conditions and the specific geometry of
the triangle. We have dimVj(∆) = 22j +(6N−5)2j +(2N−2)2. Then we get
that dimWj(∆) = 3×22j +(6N−5)2j . Let Xj(∆) be a supplement of Vj(∆)
into Vj+1(∆), then Xj(∆) contains the following functions: ϕj,k1 ⊗ ψj,k2

with (k1, k2) ∈ Kj ; ψj,k1 ⊗ ϕj,k2 with (k1, k2) ∈ Kj and ψj,k1 ⊗ ψj,k2 with
(k1, k2) ∈ Kj . We have exactly 3(22j− (6N−5)2j +9N2−15N+6) (interior
wavelets) functions which are linearly independent. We must add 4(6N −
5)2j − 3(9N2 − 15N + 6) functions (edge wavelets). It is very important
to observe that the tensorization of Meyer’s Lemma (Lemma 2.2) gives a
basis for the supplement of Vj into Vj+1 in the cases of a cube or a L-shaped
domain (see [10] and [14]). But, it gives in our case only a generating system
of Vj+1(∆) which is not linearly independent. In fact, let us consider the
following sets:

i) the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = −2j − 2N + 2 + p, N − 1 ≤ p ≤
2j − 2 and −N + 1 ≤ k2 ≤ p−N + 1; the family ϕj,k1 ⊗ ψj,k2/∆ with
k1 = −2N + 1 + p, 0 ≤ p ≤ 2N − 1 and −N + 1 ≤ k2 ≤ 2j −N and
the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = 2 − N + p, N − 1 ≤ p ≤ 2j − 2
and −N + 1 ≤ k2 ≤ −p+ 2j − 2

ii) the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = −2j − 2N + 2 + p, N − 1 ≤
p ≤ 2j − 2 and −2N + 2 ≤ k2 ≤ p; the family ψj,k1 ⊗ ϕj,k2/∆ with
k1 = −2N + 1 + p, 0 ≤ p ≤ 2N − 1 and −2N + 2 ≤ k2 ≤ 2j − 1 and
the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = −N + 2 + p, N − 1 ≤ p ≤ 2j − 2
and −2N + 2 ≤ k2 ≤ −p+ 2j +N − 3

iii) the family ψj,k1 ⊗ ψj,k2/∆ with k1 = −2j − 2N + 2 + p, N − 1 ≤ p ≤
2j − 2 and −N + 1 ≤ k2 ≤ p−N + 1; the family ψj,k1 ⊗ ψj,k2/∆ with
k1 = −2N + 1 + p, 0 ≤ p ≤ 2N − 1 and −N + 1 ≤ k2 ≤ 2j −N and
the family ψj,k1 ⊗ ψj,k2/∆ with k1 = −N + 2 + p, N − 1 ≤ p ≤ 2j − 2
and −N + 1 ≤ k2 ≤ −p+ 2j − 2.

Thus, we get (3.22j + (10N − 7) 2j − 3N2 + 3N) functions which are more
than dimWj (∆) (some of these functions are in Vj (∆)). Then, by using
incomplete basis theorem, we get the following result.

Theorem 5.2 Let 2j0 ≥ 4N − 4. Then:

a) there exist (3 × 22j + (6N − 5)2j) functions Ψj,k1,k2 such that the
functions φj,k1,k2/∆ for Vj(∆) where (k1, k2) ∈ Mj and Ψj,k1,k2 where
(k1, k2) ∈Mj+1 \Mj , form an orthonormal basis for Vj+1(∆),
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b) for f ∈ L2(∆), we have ‖f‖2
L2(∆) = ‖Pj0f‖2

L2(∆) +
∑j=∞

j=j0
‖Qjf‖2

L2(∆),

c) for f ∈ Hs(∆), we have ‖f‖2
Hs(∆) ≈ ‖Pj0f‖2

L2(∆)+
∑j=∞

j=j0
4sj‖Qjf‖2

L2(∆).

Proof. a) We consider interior wavelets ϕj,k1 ⊗ ψj,k2 , ψj,k1 ⊗ ϕj,k2 and
ψj,k1 ⊗ ψj,k2 with −2j + 2N − 1 ≤ k1 ≤ −N and 0 ≤ k2 ≤ k1 + 2j − 2N + 1
or −N + 1 ≤ k1 ≤ 2j − 4N + 2 and 0 ≤ k2 ≤ −k1 + 2j − 4N + 2, and we
complete this system from the collection described above (edge and corner
wavelets). Next, we apply Gram-Schmidt to edge and corner wavelets.
b) is a classical result in wavelet theory.
c) follows from Lemma 4.2 and Theorem 4.1.

To illustrate Theorem 5.2, we study two particular cases (N = 1 and
N = 2). We consider the Haar basis (which corresponds to the case N =
1). Proposition 3.2 shows that Vj(∆) has the following basis: the family
ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2j + p, 0 ≤ p ≤ 2j − 1 and 0 ≤ k2 ≤ p and the
family ϕj,k1 ⊗ ϕj,k2/∆ with k1 = p, 0 ≤ p ≤ 2j − 1 and 0 ≤ k2 ≤ 2j − 1− p.
We can split these families into the following sets:

i) interior functions: ϕj,k1⊗ϕj,k2/∆ with −2j+1 ≤ k1 ≤ −1 and 0 ≤ k2 ≤
k1+2j−1; ϕj,k1⊗ϕj,k2/∆ with 0 ≤ k1 ≤ 2j−2 and 0 ≤ k2 ≤ −k1+2j−2

ii) edge functions: ϕj,k1⊗ϕj,k2/∆ with −2j+1 ≤ k1 ≤ −2 and k2 = k1+2j ;
ϕj,k1 ⊗ ϕj,k2/∆ with 1 ≤ k1 ≤ 2j − 2 and k2 = 2j − 1− k1

iii) exterior corner functions: ϕj,k1 ⊗ ϕj,k2/∆ with k1 = −2j and k2 = 0;
ϕj,k1 ⊗ ϕj,k2/∆ with k1 = 2j − 1 and k2 = 0

iv) interior corner functions: ϕj,k1 ⊗ ϕj,k2/∆ with −1 ≤ k1 ≤ 0 and k2 =
2j − 1.

Orthonormalization of the border functions (edge and corner functions) gives
an orthonormal basis for Vj(∆) where dimVj(∆) = 22j + 2j . We study now
the space Wj(∆). The construction of wavelets here is more simple due to
small support of the Haar basis. We have dimWj(∆) = 3 × 22j + 2j . Let
Xj(∆) be a supplement of Vj(∆) into Vj+1(∆), thenXj(∆) has the following
Riesz basis:

i) the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = −2j + p, 0 ≤ k2 ≤ p and 0 ≤ p ≤
2j − 1 and the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = p, 0 ≤ k2 ≤ 2j − p− 1
and 0 ≤ p ≤ 2j − 1
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ii) the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = −2j + p, 0 ≤ k2 ≤ p and 0 ≤ p ≤
2j − 1 and the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = p, 0 ≤ k2 ≤ 2j − 1− p
and 0 ≤ p ≤ 2j − 1

iii) the family ψj,k1 ⊗ ψj,k2/∆ with k1 = −2j + p, 0 ≤ k2 ≤ p − 1 and
the family ψj,k1 ⊗ ψj,k2/∆ with k1 = p − 1, 0 ≤ k2 ≤ 2j − p − 1 and
1 ≤ p ≤ 2j − 1.

We have exactly (3× 22j + 2j) functions which are linearly independent be-
cause the third collection has a support in the interior of ∆ and the boundary
functions are in the sets i) and ii).

We study now the case N = 2. Proposition 3.2 shows that Vj(∆) has the
following basis : the family ϕj,k1⊗ϕj,k2/∆ with k1 = −2j +p, −2 ≤ p ≤ 2j−4
and −2 ≤ k2 ≤ p + 2, the family ϕj,k1 ⊗ ϕj,k2/∆ with −3 ≤ k1 ≤ 0 and
−2 ≤ k2 ≤ 2j − 1 and the family ϕj,k1 ⊗ϕj,k2/∆ with k1 = p, 1 ≤ p ≤ 2j − 1
and −2 ≤ k2 ≤ 2j − 1− p. Orthonormalization of the border functions gives
an orthonormal basis for Vj(∆) where dimVj(∆) = 22j + 7 × 2j + 4. We
describe now a basis of the associated space Wj(∆). The construction of
wavelets here is different from the case of the Haar basis (N = 1). We have
dimWj(∆) = 3 × 22j + 7 × 2j . Let Xj(∆) be a supplement of Vj(∆) into
Vj+1(∆), then Xj(∆) has the following Riesz basis:

i) the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = −2j + p, −1 ≤ k2 ≤ p + 1 and
−1 ≤ p ≤ 2j − 4, the family ϕj,k1 ⊗ ψj,k2/∆ with −3 ≤ k1 ≤ 0
and −1 ≤ k2 ≤ 2j − 2 and the family ϕj,k1 ⊗ ψj,k2/∆ with k1 = p,
−1 ≤ k2 ≤ 2j − p− 2 and 1 ≤ p ≤ 2j − 2

ii) the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = −2j + p, −2 ≤ k2 ≤ p + 2 and
−1 ≤ p ≤ 2j − 4, the family ψj,k1 ⊗ ϕj,k2/∆ with −3 ≤ k1 ≤ 0 and
−2 ≤ k2 ≤ 2j − 1 and the family ψj,k1 ⊗ ϕj,k2/∆ with k1 = p, −2 ≤
k2 ≤ 2j − 1− p and 1 ≤ p ≤ 2j − 2

iii) the family ψj,k1 ⊗ ψj,k2/∆ with k1 = −2j + p, 0 ≤ k2 ≤ p − 1 and
1 ≤ p ≤ 2j − 4, the family ψj,k1 ⊗ ψj,k2/∆ with −3 ≤ k1 ≤ 0 and
0 ≤ k2 ≤ 2j − 4, the family ψj,k1 ⊗ ψj,k2/∆ with k1 = p, 0 ≤ k2 ≤
2j − 4 − p and 1 ≤ p ≤ 2j − 4 and the family ψj,k1 ⊗ ψj,k2/∆ where
(k1, k2) ∈ {(−2j + 1,−1), (−2, 2j − 3), (−1, 2j − 3), (2j − 4,−1)}.

We have exactly (3× 22j + 7× 2j) functions which are linearly independent
due to Proposition 2.1.
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Remark 5.1 The cases N = 1 and N = 2 illustrate clearly Theorem 5.2.
The general idea consists to take near wavelets which satisfy Proposition 2.1
or Lemma 2.2.

Remark 5.2 Starting from the OMRA of I. Daubechies and using the method
of ”integration and derivation” introduced by P.G. Lemarié in [16], we can
describe in the same way biorthogonal wavelet bases on the triangle.

6 Conclusion

We have constructed in this paper two elementary multiresolution analyses
on the triangle ∆. In the first one, we used a direct method based on Propo-
sition 2.1 to define an orthonormal multiresolution analysis on ∆ which is
adapted to scales to provide orthogonal wavelet bases with compact support
in ∆. This analysis is adapted for the study of the Sobolev spaces Hs

0(∆)
(s ∈ N). In the second one, we construct an orthonormal multiresolution
analysis on ∆ satisfying boundary conditions. These bases are associated
to simple algorithms and are adapted for the study of regular spaces on ∆.
Lemma 4.2 and Theorem 4.1 permit to get the norm equivalences in the two
cases.
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