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The role of Morrey spaces in the study of Navier–Stokes and Euler equations

Pierre Gilles LEMARIÉ–RIEUSSET
(Laboratoire Analyse et Probabiliés, Université d’Évry)

Abstract : In this survey, we will pay a few words on the solution of the Cauchy problem for the 3D Navier-
Stokes or Euler equations (with a focus on real harmonic analysis methods). Then we will highlight the role of
Morrey spaces in other problems for the Navier-Stokes equations : uniqueness, weak-strong uniqueness, self–similar
solutions, . . .

1. Euler and Navier–Stokes equations.

Euler or Navier–Stokes equations describe rhe motion of a fluid considered as a continuum. Let ρ(x, t) be the
fluid density at time t ∈ IR and point x ∈ IR3 and let ~u(t, x) be the velocity of the fluid. Applying Newton’s law
on the conservation of momentum, we obtain the Cauchy momentum equations :

(1) ρ(∂t~u + ~u.~∇~u) = div σ + ~f

where σ is the stress tensor and ~f represents body forces (per unit volume) acting on the fluid. Besides, the
conservation of mass gives the mass continuity equation

(2) ∂tρ + div (ρ~u) = 0.

We shall consider only the case of homogeneous incompressible fluids for which ρ is constant : the mass
continuity equation then gives that ~u is divergence-free :

(3) div ~u = ∂1u1 + ∂2u2 + ∂3u3 = 0

We shall consider only the case where the fluid is submitted only to stress, with no other forces :

(4) ~f = 0.

The stress tensor σ is usually split in a sum σ = −p Id+T , where p(t, x) is the pressure. −p Id is the isotropic
part of the stress tensor σ : this part tends to change the volume of the stressed body. T is the stress deviator
tensor, which tends to distort the body. We shall consider the following cases for T :

Case of an ideal fluid : In the case of an ideal fluid, there is no viscous effect that distorts the fluid and we
have T = 0. In that case, we obtain the Euler equations :

(5)

 ρ(∂t~u + ~u.~∇~u) = −~∇p

div ~u = 0

Case of a Newtonian fluid : in the case of an incompressible Newtonian fluid with constant viscosity ν > 0,
we have div T = ν∆~u, so that we get the Navier–Stokes equations :

(6)

 ρ(∂t~u + ~u.~∇~u) = ν∆~u− ~∇p

div ~u = 0
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Finally, we shall make the following assumptions :

Lack of border effects : the fluid fills the entire space (x ∈ IR3 with no domain restriction) [for the physical
irrelevance of the assumption, see the introduction of Tartar’s book [TAR 06])

Vanishing at infinity : taking the divergence of (5) or (6), we get the following relationship between p and ~u

(7) ∆p = −ρ
3∑

i=1

3∑
j=1

∂i∂j(uiuj).

Thus, p is determined by ~u up to some harmonic correction. In order to define unambiguously the pressure p, we
shall consider only solutions ~u which vanish (in a loose sense [FUR 00] [LEM 02]) at infinity. In that case, we have :

(8) ~∇p = −ρ
3∑

i=1

3∑
j=1

~∇ 1
∆

∂i∂j(uiuj).

Let us stress that the operator Ti,j,k = ∂k
1
∆∂i∂j is a convolution operator with a kernel Ki,j,k ∈ E ′ + L1.

The Leray projection operator IP is a projection on solenoidal (i.e. divergence-free) vector fields. Formally, we
have

(9) IP~v = ~v − ~∇ 1
∆

div ~v

but the role of singular integrals in this definition makes it difficult to handle with. If ~v is given as a divergence

(10) ~v =
3∑

i=1

∂i ~wi

we find that

(11) IP~v = ~v −
3∑

i=1

3∑
j=1

~∇ 1
∆

∂i∂j(wi,j).

This definition involves the convolution operators Ti,j,k which may be defined on a very large class of Banach
spaces.

We may now formulate the equations we shall study in this survey :

A) Cauchy initial value problem for the Euler equations :
For some initial divergence-free vector field ~u0, find ~u defined on (0, T )× IR3 such that

(12)

 ∂t~u + IP div (~u⊗ ~u) = 0

~u|t=0 = ~u0

B) Cauchy initial value problem for the Navier–Stokes equations :
For some initial divergence-free vector field ~u0, find ~u defined on (0, T )× IR3 such that

(13)

 ρ(∂t~u + IP div (~u⊗ ~u)) = ν∆~u

~u|t=0 = ~u0

With no loss of generality, we may assume that ρ = ν = 1.

There is a huge litterature on the topic of fluid mechanics. Our main references in the rest of the text will be
the books of Chemin and co-workers for the Euler equations [CHE 98] [BAH 11] and the books of Cannone [CAN
95] or Lemarié–Rieusset [LEM 02] for the Navier–Stokes equations.
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2. Solutions to the Euler or Navier–Stokes equations.

There are many ways to solve the Navier–Stokes equations. Classical solutions draw back to Oseen [OSE 27].
The modern way is to use an integral formulation of the Navier–Stokes equations and to look for a fixed–point of
the associated integral transform (through Banach’s contraction principle). More precisely, we define the bilinear
transform B with

(14) B(~u,~v) =
∫ t

0

e(t−s)∆IP div (~u(s, .)⊗ ~v(s, .)) ds

Then we have the following equivalence [FUR 00] [LEM 02] : ~u will be a solution of (13) if and only if it is a
solution of

(15) ~u = et∆~u0 −B(~u, ~u).

In order to find solutions to equations (13) or (15), we then have various strategies :

a) mild solutions : try and find a Banach space ET such that (et∆~u0)0<t<T belongs to ET and B is bounded
from ET × ET to ET ; the, if (et∆~u0)0<t<T is small enough in ET , the Picard-Duhamel iteration ~v(0) = et∆~u0,
~v(n+1) = et∆~u0 − B(~v(n), ~v(n)) will converge in ET to a solution of (15). Following Browder [BRO 64] and Kato
[KAT 65], such solutions are called mild solutions. Mild solutions were fist described by Fujita and Kato in the
context of Sobolev spaces [FUJ 64]; Cannone proposed a systematic treatment in terms of Besov spaces in [CAN
95], and this treatment was generalized to many functional spaces in [LEM 02]

b) weak solutions : when the strategy of mild solutions cannot be applied, one uses arguments based on the
control of energy (Leray’s energy inequality [LER 34] or Scheffer’s local energy inequality [SCH 77 ] [CAF 82] [LEM
02]). We may soften the nonlinearity by choosing a bump function ω ∈ D(IR3 (with

∫
ω dx = 1) and smoothen the

quadratic term ~u⊗ ~u into (ωε ∗ ~u)⊗ ~u (where ωε(x) = ε−3ω(x/ε)) . We may then solve the equations

(16)

 ∂t~u + IP div ((ωε ∗ ~u)⊗ ~u)) = ν∆~u

~u|t=0 = ~u0

or

(17) ~u = et∆~u0 −B(ωε ∗ ~u, ~u).

Usually, the contraction principle works on some time domain (0, Tε) which depends on ε; using energy, we then
prove global existence of the solution and thereafter let ε go to 0. A compactness argument (based on Rellich’s
theorem) provides a weak solution.

c) statistical solutions : we shall pay a few words to the setting of statistical solutions, for which the individual
energy inequality is not enough to grant existence of solutions. Existence of weak solutions is then provided by the
existence of some characteristic function of a probability measure on trajectories, and individual existence is then
assured only generically (for almost every initial value with respect to some initial distribution of random initial
values). See [VIS 88] [FOI 01] or [BAS 06a] for a modern treatment of such solutions.

In order to solve Euler equations, one does not deal directly with equations (12), where the transport term
~u.~∇~u has been altered by the use of Leray’s projection operator. One reintroduces the transport term in the
equations and write (since IP~u = ~u)

(18)

 ∂t~u + ~u.~∇~u = ~u.~∇IP~u− IP div (~u⊗ ~u) =
∑3

i=1[ui, IP∂i]~u

~u|t=0 = ~u0

The now classical way [CHE 98] [BAH 11] for solving (18) is to construct inductively approximations ~vn of the
solution ~u as solutions of the linear transport problem

(19)

 ∂t~vn+1 + ~vn.~∇~vn+1 =
∑3

i=1[vn,i, IP∂i]~vn

~vn+1 |t=0 = ~u0
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(with ~v0(t, x) = ~u0(x)) but the intermediate solutions ~vn are not divergence-free. We shall see below why one
should prefer divergence-free intermediate solutions. We therefore shall prefer the following scheme (as in [PAK
04], [CHN 10] and [LEM 10]) : starting from ~f0 = ~u0, find a solution ~fn+1 of the equation

(20)

 ∂t
~fn+1 + ~fn.~∇~fn+1 =

∑3
i=1[fn,i, IP∂i]~fn+1

~fn+1 |t=0 = ~u0

and check (by induction) that ~∇. ~fn = 0. In order to compute ~fn+1, we define inductively ~gn,k as ~gn,0 = ~u0 and
~gn,k+1 as the solution of the linear transport problem

(21)

 ∂t~gn,k+1 + ~fn.~∇~gn,k+1 =
∑3

i=1[fn,i, IP∂i]~gn,k

~gn,k+1 |t=0 = ~u0

The problem is then to prove the convergence of ~gn,k to ~fn+1 (as k → +∞) and of ~fn to ~u (as n → +∞).

3. Useful operators in order to deal with Euler or Navier–Stokes equations.

Which operators do we need in the study of Euler or Navier–Stokes equations? In order to give some meaning
to equations (12) or (13) we need to use the following operations :
a) differentiation (to compute ∂t~u or ∆~u); this can be dealt with as differentiation in the sense of distributions;
however, the use of a scale of Banach spaces defined in term of regularity may turn to be useful.
b) pointwise product (to compute ~u⊗ ~u) : this can be done if we look for locally (in time and space) square-
integrable solutions. But the use of Banach spaces with more acute description of the pointwise product will be
useful.
c) convolution with L1 functions : the operator IPdiv involves convolutions with distributions which are L1

outside from a compact neighbourhood of the origin. Thus, it will be useful to deal with Banach spaces which
are stable under convolution with functions in L1 : it is more or less equivalent to ask that the norms of the
distributions or the functions in those spaces are invariant through spatial translation of their argument (see [LEM
02]). Since the equations (12) and (13) are invariant through spatial translation (if ~u(t, x) is a solution of (12) or
(13) with initial value ~u0(x), then ~u(t, x− x0) is still a solution of (12) or (13) with initial value ~u0(x− x0)), this
requirement is quite natural.

When we turn to the integral equation (15), we see that we may find some interest in studying the following
operators :
d) heat hernel : when solving the Cauchy problem, the first task is to identify the space where et∆~u0 lives; the
operator f 7→

∫ t

0
e(t−s)∆f(s, .) ds will be very important, as well,.

e) Riesz potentials : factorizing e(t−s)∆IPdiv for 0 ≤ α < 1 as

(22) e(t−s)∆IPdiv = e
t−s
2 ∆IPdiv (−∆)α/2 ◦ e

t−s
2 ∆ ◦ (−∆)−α/2

we find that this is a combination of a Riesz potential (−∆)−α/2, a heat kernel e
t−s
2 ∆ and a convolution with an

integrable kernel (with L1 norm proportional to (t− s)−
1+α

2 ).
f) Riesz transforms : factorizing e(t−s)∆IPdiv as

(23) e(t−s)∆IPdiv = e(t−s)∆∆ ◦ IP(−∆)−1/2div ◦ (−∆)−1/2

we find that this is a combination of a Riesz potential (−∆)−1/2, a matrix IP(−∆)−1/2div of singular integral
operators (in the algebra generated by Riesz transforms) and the kernel e(t−s)∆∆ which appears when dealing with
the well known maximal regularity property for the heat kernel.

A last operator will be very important in the study of the Navier–Stokes equations :
g) Dilation operators : Navier–Stokes equations satisfy a vey useful scaling invariance property : when (~u, p)
is a solution on (0, T ) × IR3 of the Cauchy problem (13) with initial value ~u0, then, for every R > 0 the function
δR(~u)(t, x) = 1

R~u( t
R2 , x

R ) is a solution on (0, R2T ) × IR3 of the Cauchy problem with initial value 1
R~u0( x

R ). This
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scaling property has an important consequence : if X is a functional space on IR3 such that ‖f(x/R)‖X = Rα‖f‖R

and Y is a functional space on (0,+∞) such that ‖g(t/R)‖Y = Rβ , and if

(24) ZT = Yt((0, T ), Xx(IR3)) = {f(t, x) / ‖ 1(0,T )(t)‖f(t, .)‖X ‖Y < +∞}

then, since B(δR(~u), δR(~v) = δR(B(~u,~v)), a necessary condition on α and β for the bilinear operator B to be
bounded from Z3

T × Z3
T to Z3

T is α + 2β ≤ 1 (T < +∞) or α + 2β = 1 (T = +∞).

For the resolution of the Euler equations, one has to analyze the operators linked to the transport equation
(18), or its linearized version (20) (with ~fn+1 as the unknown and ~fn as the parameter. :
h) Bi-lipschitzian homeomorphisms : The advective term, when the advecting vector field is L1

t Lipx, is
treated via the characteritics lines associated to the flow. Moving along the characteristics generate bi-Lipschitzian
homeomorphisms. Thus, we shall analyze the operator f 7→ f ◦X where X is a bi-Lipschitzian homeomorphism.
i) Commutators and singular integrals : if T belongs to the algebra of singular integral operators generated
by the Riesz transforms and if A ∈ Lip(IR3), then the commutators between T∂j (j = 1, . . . , 3) and the pointwise
multiplication operator MA of pointwise multiplication by A are singular integral operators (they are no more
convolution operators but they belong to the class of generalized Calderón–Zygmund operators [CAL 65] [COI 78]
[LEM 02]). But, since ~fn is divergence-free, the operators at stake in equations (18) belong to a smaller class :
if Pjk are the coefficients of the matrix operator IP, and if Tjk =

∑n
i=1[fn,i, Pjk∂i], then Tjk satisfies moreover

Tjk(1) = −T ∗jk(1) = −Pjk(div ~fn) = 0, so that they belong to the algebra studied in [LEM 84]. While generalized
Calderón–Zygmund operators are known to be bounded on Lp spaces for 1 < p < +∞ (and some other spaces
of measurable functions), the operators in the smaller class are bounded on Besov spaces Ḃs

p,q 0 < s < 1 and
1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ [LEM 85] (or Triebel–Lizorkin spaces Ḟ s

p,q for 0 < s < 1 and 1 ≤ p < ∞, 1 ≤ q < ∞ as well
[DEN 05]).
j) Atomic decompositions : When the advecting vector field is divergence-free, the associated homeomorphisms
are measure-preserving for the Lebesgue measure. It is then obvious that if we take an atomic or a molecular
decomposition in the sense of Coifman and Weiss [COI 77] , then it is transported by the flow to a new atomic
or molecular decomposition, respecting the scale of the molecule and moving its center along the characteristics.
Simiarly, a generalized Calderón–Zygmund operator T such that T (1) = T ∗(1) = 0 will preserve the molecules,
keeping their scales and their centers [LEM 84].

As a conclusion of this section, we see that in the study of both the Euler and the Navier–Stokes equations
we may use many operators that are useful in real harmonic analysis, or for analysis in the setting of Besov,
Triebel–Lizorkin spaces, and, in what is the main topic of this conference : Morrey spaces and generalizations.

4. Mild solutions for the Navier–Stokes equations in Lebesgue spaces and related spaces.

In the formalism of mild solutions, we try to solve (15) by the fixed-point algorithm : ~u = limn→∞ ~v(n) with
~v(0) = et∆~u0 and ~v(n+1) = et∆~u0 −B(~v(n), ~v(n)).

The resolution of this fixed-point problem is based on a general tool for bilinear equations in a Banach space :

Lemma 1 :
Let E be a Banach space and B a bounded bilinear operator on E

(25) ‖B(x, y)‖E ≤ C0‖x‖E‖y‖E .

Let x0 ∈ E with ‖x0‖E < 1
4C0

. Then, the equation x = x0 − B(x, x) has at least one solution. More precisely, it
has one unique solution x ∈ E such that ‖x‖E ≤ 1

2C0
.

In 1984, Kato [KAT 84] proved the existence of mild solutions in Lp, p ≥ 3. For p > 3, he used the estimate

(26) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖p ≤ C(t− s)−1/2‖e
t−s
2 ∆(~u⊗ ~v)‖p ≤ Cp(t− s)−

1
2−

3
2p ‖~u‖p‖~v‖p

to prove the boundedness of B on L∞([0, T ], (Lp)3) :

(27) ‖B(~u,~v)(t, .)‖p ≤ Cpt
1
2−

3
2p sup

0<s<t
‖~u(s, .)‖p sup

0<s<t
‖~v(s, .)‖p.
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For the critical case p = 3, inequality (26) becomes

(28) ‖e(t−s)∆IPdiv (~u⊗ ~v)‖3 ≤ C
1

(t− s)
‖~u‖3‖~v‖3.

This is a very unconvenient estimate for dealing with ~u and ~v in L∞([0, T ], (L3)3), since
∫ t

0
ds

t−s diverges at the
endpoint s = t. Kato then used an idea of Weissler [WEI 81], namely to search for the existence of a solution in
a smaller space of mild solutions ; indeed, whereas the bilinear operator B is unbounded on C([0, T ], (L3(IR3))3)
[ORU 98], it becomes bounded on the smaller space {~f ∈ C([0, T ], (L3(IR3))3) / sup0<t<T

√
t‖~f(t, .)‖∞ < ∞}.

Thus, we replace the estimate (28) (which leads to a divergent integral) by the estimates

(29) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖3 ≤ C
1√

t− s
√

s
‖~u‖3

√
s‖~v‖∞

and

(30) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖∞ ≤ C
1√

t− s
min(

1
(t− s)

‖~u‖3‖~v‖3,
1
s

√
s‖~u‖∞

√
s‖~v‖∞)

which lead to two convergent integrals.

Now, we shall see how Kato’s ideas are easily extended to the case of Morrey spaces. First, we fix the notations
for Morrey spaces :

Definition 1 :
For 1 < p ≤ q < ∞, the homogeneous Morrey space Ṁp,q(IR3) is defined as the space of locally p-integrable

functions f such that

(31) sup
x0∈IR3

sup
0<R<∞

R3(1/q−1/p)(
∫
|x−x0|<R

|f(x)|p dx)1/p < ∞;

For p = 1 ≤ q < ∞, the homogeneous Morrey–Campanato space Ṁ1,q(IR3) is defined as the space of locally
bounded measures µ such that

(32) sup
x0∈IR3

sup
0<R<∞

R3( 1
q−1)|µ|(B(x0, R)) < ∞;

The inhomogeneous Morrey spaces Mp,q have the same definitions, except that in (31) and (32) we take the
supremum only on small balls (with radii R ∈ (0, 1)).

Those spaces were introduced by Morrey [MOR 38]; they are usually written as Mp,λ = Ṁp,q with λ = 3(1− p
q ).

Our choice of notation is an easy reminder of the embedding Lq ⊂ Ṁp,q ⊂ Lp
loc for 1 < p ≤ q. Existence of mild

solution in L∞((0, T ), Ṁp,q) has been proved by Kato [KAT 92] and Taylor [TAY 92] for q ≥ 3 (T small enough
if q > 3, T = +∞ if q = 3 and ~u0 is small enough). In the important case of Ṁ2,3, proof using the wavelet
decomposition in Ṁ2,3 was given by Federbush [FED 93]; Cannone replaced the wavelet decomposition by the
Littlewood–Paley decomposition [CAN 95]; both Federbush and Cannone are much more intricate than Kato’s
proof.

We may extend easily the proof to a large class of Banach spaces :

Theorem 1 :
Let E be a Banach space which is continuously embedded into S ′(IR3). Assume that :

a) convolution is bounded from L1 × E to E
b) for some α ∈ [0, 1], we have, for all f ∈ E and all R > 0, ‖f(x/R)‖E = Rα‖f‖E.
c) if u and v belong to E ∩ Cb (where Cb is the space of bounded continuous applications from IR3 to IR), then
e∆(uv) ∈ E and

(33) ‖e∆(uv)‖E ≤ C‖u‖γ
E‖u‖

1−γ
∞ ‖v‖γ

E‖v‖
1−γ
∞

for some constants C > 0 and 1/2 ≤ γ ≤ 1 if α < 1, 1/2 < γ < 1 if α = 1.
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Let ET = L∞t ((0, T ), E) and FT = {f ∈ ET / sup0<t<T tα/2‖f(t, .)‖∞ < +∞} with norms ‖f‖ET
=

sup0<t<T ‖f(t, .)‖E and ‖f‖ET
= sup0<t<T ‖f(t, .)‖E + sup0<t<T tα/2‖f(t, .)‖∞. Then the bilinear operator f 7→

(et∆f)0<t<T is bounded from E to ET and to FT . B defined by (14) is bounded from E3
T×E3

T to E3
T for 0 < T < +∞

if α < 1 and γ = 1, from F 3
T × F 3

T to F 3
T for 0 < T < +∞ if α < 1 and 1/2 ≤ γ ≤ 1 and from F 3

T × F 3
T to F 3

T for
0 < T ≤ +∞ if α = 1 and 1/2 ≤ γ < 1

Remark : assumption a) is roughly equivalent to the stability of the norm of E under spatial shifts of the
argument (supx0∈IR3 ‖f(x− x0)‖E ≤ C‖f‖E) [LEM 02].

Proof : Entirely similar to [KAT 84]. When γ = 1 and α < 1, one uses the estimate

(34) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖E ≤ C(t− s)−1/2‖e
t−s
2 ∆(~u⊗ ~v)‖E ≤ CE(t− s)−

1
2−

α
2 ‖~u‖E‖~v‖E

and thus :

(35) ‖B(~u,~v)(t, .)‖ET
≤ CET

1
2−

α
2 ‖~u(s, .)‖ET

‖~v(s, .)‖ET
.

For 1/2 ≤ γ ≤ 1, we write

(36) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖E ≤ C(t− s)−1/2‖e
t−s
2 ∆(~u⊗ ~v)‖E ≤ CE(t− s)−

1
2−

α(2γ−1)
2 ‖~u‖γ

E‖~v‖
γ
E‖~u‖

1−γ
∞ ‖~v‖1−γ

∞

(37) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖∞ ≤ CE(t− s)−(1+α)/2‖e
t−s
2 ∆(~u⊗ ~v)‖E ≤ C ′E(t− s)−

1
2−αγ‖~u‖γ

E‖~v‖
γ
E‖~u‖

1−γ
∞ ‖~v‖1−γ

∞

and

(38) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖∞ ≤ C(t− s)−1/2‖e
t−s
2 ∆(~u⊗ ~v)‖∞ ≤ C(t− s)−

1
2 ‖~u‖∞‖~v‖∞

If (α, γ) 6= (1, 1), (36) gives

(39) ‖B(~u,~v)(t, .)‖ET
≤ CET

1
2−

α
2 ‖~u(s, .)‖FT

‖~v(s, .)‖FT
.

If α < 1, (38) gives

(40) sup
0<t<T

tα/2‖B(~u,~v)‖∞ ≤ CET
1
2−

α
2 ‖~u(s, .)‖FT

‖~v(s, .)‖FT
.

If α = 1, we use (37) for s < t/2 and (38) for s > t/2, and we get (40). �

Thus, we may find existence of a solution in FT :

Theorem 2 :
Let E be a Banach space which is continuously embedded into S ′(IR3). Assume that :

a) convolution is bounded from L1 × E to E
b) for some α ∈ [0, 1], we have, for all f ∈ E and all R > 0, ‖f(x/R)‖E = Rα‖f‖E.
c) if u and v belong to E ∩ Cb (where Cb is the space of bounded continuous applications from IR3 to IR), then
e∆(uv) ∈ E and

(41) ‖e∆(uv)‖E ≤ C‖u‖γ
E‖u‖

1−γ
∞ ‖v‖γ

E‖v‖
1−γ
∞

for some constants C > 0 and 1/2 ≤ γ ≤ 1 if α < 1, 1/2 < γ < 1 if α = 1.
Let ET = L∞t ((0, T ), E) and FT = {f ∈ ET / sup0<t<T tα/2‖f(t, .)‖∞ < +∞} with norms ‖f‖ET

=
sup0<t<T ‖f(t, .)‖E and ‖f‖ET

= sup0<t<T ‖f(t, .)‖E + sup0<t<T tα/2‖f(t, .)‖∞. Let ~u0 ∈ E3 with div ~u0 = 0.
Then :
i) if α < 1, the integral problem (15) has a solution ~u ∈ F 3

T with T = O(‖~u0‖
− 2

1−α

E ).
ii) if α = 1, there exists a positive εE > 0 such that, if ‖~u0‖E < εE, the integral problem (15) has a solution ~u ∈ F 3

∞
iii) if α = 1 and if ~u0 = ~u1 +~u2 with ~u1 ∈ (E∩L∞)3 and ‖~u2‖E < εE, then the integral problem (15) has a solution

~u ∈ F 3
T with T ≤ C min(‖~u1‖−2

∞ , ‖~u1‖−2(2γ−1)
E ‖~u1‖−4(1−γ)

∞ , ‖~u1‖
− 2γ

1−γ

E ‖~u1‖−2
∞ ).
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Examples :
a) Let us first notice that, if E satisfies a) and is stable under pointwise multiplication with bounded continuous
functions then it satisfies c) with γ = 1/2. If E is stable under such pointwise multiplication, its elements are local
bounded measures and we find (from a) and b)) that E ⊂ Ṁ1,q with q = 3/α. If we want E to satisfy c) with
γ = 1, we should ask the pointwise product to be defined on E × E, and thus E ⊂ Ṁ2,q with q = 3/α. This
explains the special role played by the critical Morrey space Ṁ2,3 [FED 93] [CAN 95] [LEM 07a].
b) Lebesgue spaces : Theorem 2 may be applied to Lp for 3 < p ≤ +∞ (α = 3/p, γ = 1) or p = 3 (α = 1,
γ = 1/2). This is Kato’s theorem [KAT 84].
c) Lorentz spaces : Theorem 2 may be applied to Lp,q for 3 < p ≤ +∞ and 1 ≤ q ≤ +∞ (α = 3/p, γ = 1)
or p = 3 and 1 ≤ p ≤ +∞ (α = 1, γ = 1/2). Solutions in the Lorentz space L3,+∞ have been considered by
Barraza [BAR 96]; Meyer proved that the bilinear operator B is bounded on ET in the case E = L3,∞ (even if it
corresponds to the forbidden case α = γ = 1) [MEY 99] [LEM 02].
d) Morrey spaces : Theorem 2 may be applied to Ṁp,q for 2 ≤ p < +∞ and max(p, 3) < q < +∞ (α = 3/q,
γ = 1) or Ṁp,q for 1 ≤ p < +∞ and max(p, 3) ≤ q < +∞ (α = 3/q, γ = 1/2). This has been proved by Kato
[KAT 92] and Taylor [TAY 92].
e) Lorentz–Morrey spaces : One may replace the Lp norm in the definition of a Morrey space by a Lp,q Lorentz
norm : define

(42) ‖f‖Ṁp,q,r = sup
x0∈IR3

sup
0<R<∞

R3(1/r−1/p)‖1|x−x0|<Rf(x)‖Lp,q

Theorem 2 may be applied to Ṁp,q,r for 2 ≤ p < +∞, 1 ≤≤ +∞ and max(p, 3) < r < +∞ (α = 3/r, γ = 1) or
Ṁp,q,r for 1 ≤ p < +∞, 1 ≤ q ≤ +∞ and max(p, 3) ≤ r < +∞ (α = 3/r, γ = 1/2). Those spaces have been
considered in [LEM 07a].
f) Multiplier spaces : For 1 < p < +∞ and 0 < r < 3/p, let Ḣr

p = (−∆)−r/2Lp be the homogeneous Sobolev
space and let Ẋr

p = M(Ḣr
p 7→ Lp) be the spaces of measurable functions whose pointwide product maps Ḣr

p

boundedly to Lp :

(43) ‖f‖Ẋr
p

= sup
‖g‖Ḣr

p
≤1

‖fg‖p

Theorem 2 may be applied to Ẋr
p for 1 < p < +∞ and 0 < r ≤ 1 and r < 3/p (α = r, γ = 1/2). The case p = 2

has been discussed in [LEM 02]. Those multiplier spaces have been studied by Maz’ya [MAZ 85]

5. Mild solutions for the Navier–Stokes equations in Besov spaces with negative regularity index.

In 1972, Fabes, Jones and Rivière [FAB 72] proved the existence of mild solutions in FT = Lp
t L

q
x, 2/p+3/q ≤ 1

and 2 < p < +∞. They used the estimate

(44) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖q ≤ Cq(t− s)−
1
2−

3
2q ‖~u‖q‖~v‖q

and Young’s inequality for convolution between Lorentz spaces (or the Hardy–Littlewood inequality) to prove the
boundedness of B on Lp([0, T ], (Lq)3) : let 1

r = 1
p + 1

4 (1− 2
p −

3
q ); we have 2 < r ≤ p and, since 1

2 + 3
2q + 2

r − 1 = 1
p ,

(45) ‖B(~u,~v)‖LpLq ≤ Cp,q‖~u‖LrLq‖~v‖LrLq ≤ Cp,qT
2( 1

r−
1
p )‖~u‖LpLq‖~v‖LpLq .

Thus, we find that, if et∆~u0 ∈ (Lp((0,+∞), Lq(IR3)))3, then the integral problem (15) has a local solution in
(Lp((0, T ), Lq(IR3)))3 for T small enough (2/p + 3/q ≤ 1, 2 < p < +∞) or a global solution (T = +∞, if
2/p + 3/q = 1, 2 < p < +∞ and ‖et∆~u0‖LpLq is small enough).

Let us notice that et∆f ∈ Lp((0,+∞), Lq(IR3)) if and only if f belongs to the homogeneous Besov space Ḃ
− 2

p
q,p ,

where the homogeneous space is not defined modulo polynomials but as a subspace of S ′ [LEM 10] :

(46) for −∞ < σ < 3/q, f ∈ Ḃσ
q,p ⇔ f =

∑
j∈ZZ

∆jf in S ′ and (2jσ‖∆jf‖q) ∈ lp

We can replace in the result of Fabes, Jones and Rivière the Lebesgue space Lp
t by the weak Lp space Lp,∗ of

Marcinkiewicz, which is equal to the Lorentz space Lp,∞. If 2/p + 3/q ≤ 1 and 2 < p < +∞ , then B is bounded
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on (Lp,∗((0, T ), Lq(IR3)))3 (for every T < +∞ if 2/p + 3/q ≤ 1; for T = +∞ if 2/p + 3/q = 1); more precisely, let
1
r = 1

p + 1
4 (1− 2

p −
3
q ); we have

(47) ‖B(~u,~v)‖Lp,∞Lq ≤ Cp,qT
2( 1

r−
1
p )‖~u‖Lp,∞Lq‖~v‖Lp∞Lq .

Thus, we find that, if et∆~u0 ∈ (Lp,∞((0,+∞), Lq(IR3)))3, then the integral problem (15) has a local solution in
(Lp,∞((0, T ), Lq(IR3)))3 for T small enough (2/p + 3/q < 1, 2 < p < +∞) or a global solution (T = +∞, if
2/p + 3/q = 1, 2 < p < +∞ and ‖et∆~u0‖Lp,∞Lq is small enough).

Let us notice that, since t 7→ ‖et∆f‖p is non-increasing, et∆f ∈ Lp((0,+∞), Lq(IR3)) if and only if we have

supt>0 t−
1
p ‖et∆f‖q < +∞. This is equivalent to the fact that f belongs to the homogeneous Besov space Ḃ

− 2
p

q,∞. In
that case, it is more convenient to work with GT = {f / sup0<t<T t−

1
p ‖et∆f‖q} instead of FT = Lp,∞

t Lq
x. We find

that, for 0 < t < T ,

(48) ‖B(~u,~v)(t, .)‖q ≤ Ct−
1
p t

1
2 (1− 2

p−
3
q )‖~u‖GT

‖~v‖GT

and that

(49) ‖ 1√
−∆

B(~u,~v)(t, .)‖q ≤ Ct
1
2 t−

1
p t

1
2 (1− 2

p−
3
q )‖~u‖GT

‖~v‖GT

so that

(50) ‖B(~u,~v)(t, .)‖
Ḃ
− 2

p
q,1

≤ C‖B(~u,~v)(t, .)‖1−
2
p

q ‖ 1√
−∆

B(~u,~v)(t, .)‖
2
p
q ≤ Ct

1
2 (1− 2

p−
3
q )‖~u‖GT

‖~v‖GT

Thus, we see that, if ~u0 ∈ X3 where X is a Banach space which is stable under convolution L1 and if Ḃ
− 2

p

q,1 ⊂ X ⊂

B
− 2

p
q,∞, then the integral problem (15) will have a local solution in (GT ∩ L∞t X)3 if 2/p + 3/q < 1 and T is small

enough, or a global solution in (G∞∩L∞t X)3 if 2/p+3/q = 1 and ‖~u0‖X is small enough. We can chooseX = Ḃ
−1
2p

q,r

with 1 ≤ r ≤ +∞ or X = Ḟ
−1
2p

q,r with 1 ≤ r ≤ +∞.
Solutions in GT were first studied by Cannone [CAN 95] and Planchon [PLA 96 ].

Those results are easily extended to the case of Besov-Morrey spaces. Such spaces have been considered by
Kozono and Yamazaki [KOZ 94].

Theorem 3 :
Let 1 ≤ p ≤ q < +∞ and 1 ≤ q ≤ +∞. Ḃσ

Ṁp,q,r
be defined as

(51) for −∞ < σ < 3/q, f ∈ ḂṀp,q,r ⇔ f =
∑
j∈ZZ

∆jf in S ′ and (2jσ‖∆jf‖Mp,q ) ∈ lr

Let E be a Banach space which is continuously embedded into S ′(IR3). Assume that :
a) convolution is bounded from L1 × E to E
b) for some 1 ≤ p ≤ q < +∞ (q > 3) and some σ ∈ (0, 1− 3

q ] we have the embeddings Ḃ−σ

Ṁp,q,1
⊂ E ⊂ Ḃ−σ

Ṁp,q,∞

Let GT = {f / sup0<t<T tσ/2‖f‖Ṁp,q < +∞} and HT = {f ∈ HT / sup0<t<T t
(σ+ 3

q
)

2 }. Let ~u0 ∈ E3 with
div ~u0 = 0. Then :
i) if σ + 3

q < 1 and p > 2, the integral problem (15) has a solution ~u ∈ (GT ∩ L∞(E))3 fot T small enough.
ii) if α + 3

q < 1 and 1 ≤ p < +∞, the integral problem (15) has a solution ~u ∈ (HT ∩L∞(E))3 fot T small enough.
iii) if σ + 3

q = 1 and if ‖~u0‖E is small enough, the integral problem (15) has a global solution ~u ∈ (H∞ ∩L∞(E))3

iv) there exist εE > 0 such that, if σ + 3
q = 1 and if ~u0 = ~u1 + ~u2 with ~u1 ∈ (E ∩ L∞)3 and ‖~u2‖E < εE, then the

integral problem (15) has a solution ~u ∈ (HT ∩ L∞(E))3 fot T small enough.

Example : An interesting example is the case of E = (−∆)σ/2Ṁp,q which satisfies that it is stable under
convolution with L1 and that Ḃ−σ

Ṁp,q,1
⊂ E ⊂ Ḃ−σ

Ṁp,q,∞.
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The limiting case σ = 1 and q = ∞ has been discussed by many authors. The space Ḃ−1
∞,∞ is not well adapted

to the Navier–Stokes equations. It was first stated in [MONS 01] for a model equation, then proved by Bourgain
and Pavlovič [BOU 08] (and by Germain [GERM 08 ] and Yoneda [YON 10] in the case Ḃ−1

∞,q with q > 2). The
greatest (homogeneous) limit space in which one can work is the space BMO−1 =

√
−∆ BMO introduced by

Koch and Tataru [KOC 01] :

Lemma 2 :
Let f ∈ S ′(IR3).. Then the following assertions are equivalent :

a) f =
∑

j∈ZZ ∆jf in S ′ and f belongs to the homogeneous Triebel–Lizorkin space f ∈ Ḟ−1
∞,2.

b) There exists g ∈ BMO such that f =
√
−∆ g

c) There exists ~g ∈ (BMO)3 such that f = div ~g.
d) supt>0 supx0∈IR3 t−3/2

∫ t

0

∫
|x−x0|

√
t
|es∆f(x)|2 dx ds < +∞

BMO is a limit case of Morrey spaces. Recall that Ṁp,q = Mp,λ with λ = 3(1− p
q ). When 1 ≤ p ≤ q < +∞,

we find that λ ∈ [0, 3). We have

(52)
∫

B(x0,R)

|f |p dx ≤ ‖f‖p
Mp,λ

Rλ

Now, if λ = 3 we have Mp,λ = L∞ and if λ > 3 we have Mp,λ = {0}. Campanato [CAM 63] modified the definition
of Morrey-spaces into

(53) f ∈Mp,λ ⇔ sup
x0∈IR3, R>0

R−λ

∫
B(v0,R)

|f(x)−mB(x0,R)f |p dx < +∞

where mB(x0,R)f is the mean value of f on the ball B(x0, R). We have Mp,n = BMO.

Koch and Tataru’s result is the following one :

Theorem 4 :
Let FT be the space of functions on (0, T )× IR3

(54) FT = {f / sup
0<t<T

sup
x0∈IR3

t−3/2

∫ t

0

∫
|x−x0|

√
t

|f(t, x)|2 dx ds < +∞ and sup
0<t<T

sup
x∈IR3

√
t|f(t, x)| < +∞}

with

(55) ‖f‖FT
=

(
sup

0<t<T
sup

x0∈IR3
t−3/2

∫ t

0

∫
|x−x0|

√
t

|f(t, x)|2 dx ds)1/2 + sup
0<t<T

sup
x∈IR3

√
t|f(t, x)|

Let ~u0 ∈ (BMO−1)3 with div ~u0 = 0. Then :
i) if ‖~u0‖BMO−1 is small enough, the integral problem (15) has a global solution ~u ∈ (FT )3

ii) there exists ε > 0 such that, if ~u0 = ~u1 + ~u2 with ~u1 ∈ (BMO−1 ∩ L∞)3 and ‖~u2‖BMO−1 < ε, then the integral
problem (15) has a solution ~u ∈ (FT )3 fot T small enough.

In order to generalize Theorem 4, May and Xiao both considered solutions in Fσ
T defined for 0 < σ < 1 as

(56) Fσ
T = {f / sup

0<t<T
sup

x0∈IR3
t−3/2

∫ t

0

∫
|x−x0|

√
t

|f(t, x)|2(s

t
)σ dx ds < +∞ and sup

0<t<T
sup

x∈IR3

√
t|f(t, x)| < +∞}

Xiao published his result [XIA 07] and explained the connection between Fσ
T and Q-spaces [WU 01], May did not

publish this part of his thesis [MAY 02] since the condition et∆f ∈ Fσ
T reduces to f ∈ (−∆)σ/2Ṁ2,q with q = 3

1−σ .

6. Mild solutions for the Navier–Stokes equations in Besov spaces of positive regulatity index.

The resolution of the Navier–Stokes equations can be performed in Besov spaces of positive regularity index
[CAN 95] [PLA 96 ] or of null regularity index [MEY 99]. In [LEM 02] a general framework is presented which can
be applied to Besov–Morrey spaces.
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The key estimates for studying mild solutions for initial values in such spaces are the following ones :

(57) for 0 < σ < 3/q, ‖fg‖Ḃσ

Ṁp,q,r

≤ C(‖f‖Ḃσ

Ṁp,q,r

‖g‖∞ + ‖g‖Ḃσ

Ṁp,q,r

‖f‖∞)

(58) ‖fg‖Ḃ0
Ṁp,q,∞

≤ C(‖f‖Ḃσ

Ṁp,q,r

‖g‖Ḃ0
∞,1

+ ‖g‖Ḃσ

Ṁp,q,r

‖f‖Ḃ0
∞,1

)

7. Weak solutions : the role of the L2 norm.

In Leray’s theory [LER 34], a weak solution of equations (13) is a solution ~u ∈ L∞t L2
x ∩ L2

t Ḣ
1
x defined on

(0,+∞)× IR3 which satisfies the energy inequality

(59) ‖~u(t, .)‖22 + 2
∫ t

0

‖~∇⊗ ~u‖22 ds ≤ ‖~u0‖22

where the initial value ~u0 is a square-integrable divergence-free vector field. The associated pressure p(t, x) belongs
to L2

t L
3/2
x and can be recovered from ~u by the formula

(60) p = −
3∑

i=1

3∑
j=1

1
∆

∂i∂j(uiuj).

In particular, a Leray solution ~u belongs to L
8/3
t L4

x. If we assume more regularity on the solution ~u (~u ∈ L4
t L

4
x),

then the inequality (59) becomes an equality. Indeed, in that case p ∈ L2
t L

2
x and thus ∂t~u ∈ L2

t Ḣ
−1
x . Thus, we may

write ∂t|~u|2 = 2∂t~u.~u. and find :

(61) ∂t|~u|2 + 2|~∇⊗ ~u|2 =
3∑

i=1

∂i(2~u.∂i~u− (|~u|2 + 2p)ui) + R

where

(62) R = (|~u|2 + 2p) ~∇.~u = 0

When ~u is a Leray solution but does not belong to L4
t L

4
x, we cannot write ∂t|~u|2 = 2∂t~u.~u. Energy equality is

not fullfilled (or, at least, is not known to be fullfilled). If ~uε is the solution of the mollified equations, we have

(63) ∂t|~uε|2 + 2|~∇⊗ ~uε|2 =
3∑

i=1

∂i(2~uε.∂i~uε − |~uε|2ωε ∗ uε,i − 2pεuε,i) + Rε

where

(64) Rε = |~uε|2 ωε ∗ (~∇.~uε) + 2pε
~∇.~uε = 0

By a compactness argument based on Rellich’s theorem (for details, we refer to [LEM 02] chapters 13 and 14),
there is a sequence εk → 0 and a distribution ~u ∈ L∞t L2 ∩L2

t Ḣ
1
x such that ~uεk

converges to ~u weakly in L2
t Ḣ

1
x and

strongly in L2 norm on every compact subset of (0,+∞)× IR3. Thus, we have (in D′((0,+∞)× IR3))

(65) lim
εk→0

∂t~uεk
+ (ωεk

∗ ~uεk
).~∇~uεk

−∆~uεk
+ ~∇pεk

= ∂t~u + ~u.~∇~u−∆~u + ~∇p = 0

and

(66) lim
εk→0

∂t|~uεk
|2 +

3∑
i=1

∂i(−2~uεk
.∂i~uεk

+ |~uεk
|2ωεk

∗ uεk,i + 2pεk
uεk,i) = ∂t|~u|2 +

3∑
i=1

∂i(−2~u.∂i~u + |~u|2ui + 2pui)
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However, there is no reason that |~∇⊗ ~uεk
|2 should converge to |~∇⊗ ~u|2. The best we can get is

(67) lim
εk→0

|~∇⊗ ~uεk
|2 = |~∇⊗ ~u|2 + µ

where µ is a non-negative distribution on (0,+∞)× IR3 (hence a locally finite non-negative measure). This gives

(68) ∂t|~u|2 + 2|~∇⊗ ~u|2 = ∆|~u|2 − ~∇.((|~u|2 + 2p)~u)− µ

This is Scheffer’s local energy inequality [SCH 77 ]. This inequality plays an important part in the study of partial
regularity of weak solutions [CAF 82]. Solutions which satisfy the local energy inequality (68) are called suitable.

Inequality (68) is a key tool to develop a theory of weak solutions for initial values ~u0 with infinite energy
(‖~u0‖2 = +∞). In [LEM 99] [LEM 02] a theory has been developed to exhibit suitable weak solutions associated
to an initial value ~u0 which is uniformly locally square integrable (i.e. supx0∈IR3

∫
|x−x0|≤1

|~u0(x)|2 dx < +∞ or
equivalently ~u0 ∈ (M2,2)3). The basic idea of the proof is to consider the mollified equations (16) and to compute
the L2

uloc norm of ~uε as

(69) ‖~uε‖L2
uloc

= sup
x0∈IR3

‖ϕ0(x− x0)~uε‖2

for some ϕ0 ∈ D(IR3) (with ϕ0 6= 0). In contrast with the finite-energy case, pε cannot be computed as pε =
−

∑3
i=1

∑3
j=1

1
∆∂i∂j(ωε ∗ uε,i uε,j) since the kernel of the convolution operator 1

∆∂i∂j has slow decay at infinity,
hence is not defined on Lp

uloc. But ~∇pε is well defined : the kernel of ∂k
1
∆∂i∂j has enough decay at infinity to operate

on Lp
uloc. Then formulas (63) and (64) remain true. Carefully integrated against test functions ϕ(x) = ϕ2

0(x− x0),
they give a control independent of ε : we start from the identity

(70)
∫

ϕ(x)|~uε(t, x)|2 dx + 2
∫ t

0

∫
ϕ(x)|~∇⊗ ~u(s, x)|2 dx dt =

∫
ϕ(x)|~u0(x)|2 dx + Iε(t)

with

(71) Iε(t) =
∫ ∫ t

0

|~uε(s, x)|2∆ϕ(x) dx ds +
∫ t

0

∫
|~uε|2(ωε ∗ ~uε) ∗ ~∇ϕ dx ds + 2

∫ ∫ t

0

pε~uε.~∇ϕ dx ds

and defining

(72) αε(t) = sup
x0∈IR3

∫
ϕ2

0(x− x0)|~uε(t, x)|2 dx and βε(t) = sup
x0∈IR3

∫ t

0

∫
ϕ2

0(x− x0)|~∇⊗ ~u(s, x)|2 dx dt

we find that

(73) Iε(t) ≤ C(
∫ t

0

αε(s)ds + (
∫ t

0

α3
ε (s) ds)1/4(βε(t) +

∫ t

0

αε(s) ds)3/4)

In [LEM 02], we show that inequalities (70) and (73) provide a control uniform in ε on a time interval (0, T ) with
T = O(min(1, ‖~u0‖−2

L2
uloc

). Then the same compactness argument as in the case of finite-energy initial values allows
us to show that :

Theorem 5
Let ~u0 ∈ (L2

uloc(IR
3))3 be such that ~∇.~u0 = 0. Then, there exists a positive constant C0 (which does not depend

on ~u0) such that, defining T0 = 1
C4

0 sup(1,‖~u0‖2
L2

uloc

)
, the equations (13) have a suitable solution ~u on (0, T0) × IR3

such that for all 0 < t < T0 we have

(74) ‖~u(t, .)‖L2
uloc

≤
√

C0‖~u0‖L2
uloc

(
1− t

T0

)−1/4

and

(75) sup
x0∈IR3

∫ t

0

∫
|x−x0|<1

|~∇⊗ ~u(s, x)|2 dx ds ≤ C0‖~u0‖2L2
uloc

(
1− t

T0

)−1/2
.
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The Morrey norm in Ṁ2,3 may be viewed as a non-scaled version of the norm in L2
uloc :

(76) ‖f‖L2
uloc

= sup
x0∈IR3

‖1B(x0,1)f‖2 and ‖f‖Ṁ2,3 = sup
R>0

R‖f(Rx)‖L2
uloc

A direct consequence of (76) is that, when ~u0 ∈ Ṁ2,3 the Proof of Theorem 5 can be adapted to any scale, hence
will provide a solution on any time interval (0, T ), anf finally (through a diagonal extraction process) a global
solution [LEM 07a] :

Theorem 6
Let ~u0 ∈ (Ṁ2,3(IR3))3 be such that ~∇.~u0 = 0. Then, there exists a positive constant C0 (which does not depend

on ~u0) such that, defining T0 = 1
C4

0 sup(1,‖~u0‖2
Ṁ2,3 )

, equations (13) have a suitable solution ~u on (0,+∞)× IR3 such

that

(77) sup
x0∈IR3, R>0, t>0

1

R +
√

t
T0

∫
|x−x0|<R

|~u(t, x)|2 dx ≤ C0‖~u0‖2Ṁ2,3

and

(78) sup
x0∈IR3, t>0

√
T0

t

∫ t

0

∫
|x−x0|<

√
t

T0

|~∇⊗ ~u(s, x)|2 dx ds ≤ C0‖~u0‖2Ṁ2,3 .

8. Homogeneous statistical solutions.

Statistical solutions for three dimensional Navier–Stokes equations were introduced by Hopf [HOP 52] as a
mathematical model for the statistical theory of turbulent flows. More precisely, we consider spatially homogeneous
statistical solutions (which correspond to homogeneous turbulence), in the sense of Vishik and Fursikov [VIS 88]
[FOI 01].

We consider the Cauchy problem (13) for the Navier–Stokes equations, with (divergence free) initial value ~u0

being a random variable ω 7→ ~u0(ω) defined on some probablity space (Ω, P ) with values in (L2
loc)

3. We define µ0

the distribution law of ~u0 : it is a Borel measure on (L2
loc)

3 defined by

(79) µ0(A) = P ({ω ⊂ Ω / ~u0 ∈ A})

For x0 ∈ IR3, we define τx0 the map f ∈ L2loc 7→ τx0f ∈ L2
loc by τx0f(x) = f(x− x0). We define, for A ⊂ (L2

loc)
3,

τx0A = {τx0(~f) / ~f ∈ A}. We shall say that µ0 is spatially homogeneous if, for every x0 ∈ A and every Borel
set A ⊂ (L2

loc)
3, µ0(τx0A) = µ0(A). We shall be interested in solving (13) for a random ~u0, where ~u0 is locally

square-integrable and divergence-free, and where the distribution law µ0 will be spatially homogeneous and satisfy
the following energy estimate :

(80)
∫

Ω

(
∫

B(0,1)

|~u0(ω, x)|2 dx) dP (ω) < +∞

A statistical solution of (13) on (0, T )× IR3 is a random varianble ~u on (Ω, P ) with values in (L2
loc([0, T ]× IR3))3

such that
a) for P-almost every ω, for every N > 0, ∂t~u(ω, t, x) ∈ (L2((0, T ),H−3(B(0, N)))3

b) for P-almost every ω, ~u(ω, t, x) is a solution of the Cauchy problem (13) with initial value ~u(ω, 0, x)
c) for P-almost every ω, ~u(ω, 0, x) ∈ (L2

loc(IR
3))3 and the variable ω 7→ ~u(ω, 0, x) has the same law as ω 7→ ~u0(ω, x)

Property a) allows us to give some meaning to the mapping ω 7→ ~u(ω, 0, x) : if θ ∈ D(IR) satisfies θ(0) = 1
and θ(t) = 0 for t > T/2, we define ~u(ω, 0, x) as ~u(ω, 0, x) =

∫ T

0
∂t(θ(t)~u(ω, t, x)) dx. (See [BAS 06a] for a more

precise description of those conditions).

The main trouble with spatial homogeneity is the fact that the initial value ~u0, if not identically equal to 0,
cannot be in L2, so that it forbids the use of Leray’s energy inequality. More precisely, if w is a positive continuous
weight on IR3, then we have the following properties :
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i) if
∫

w(x) dx = +∞, then P ({ω ∈ Ω / ~u0(ω, .) 6= 0 and
∫
|~u0(ω, x|2w(x) dx < +∞}) = 0

ii) if (80) is fullfilled, then, if
∫

w(x) dx < +∞, for P-almost every ω, we have
∫
|~u0(ω, x|2w(x) dx < +∞.

In order to use energy estimates, one may consider only periodical solutions. Leray’s method works in the
periodical setting as well and provides weak solutions to the Navier–Stokes equations.

However, one may consider non-periodical solutions. For instance, Vishik and Fursikov describe spatially
homogeneous random initial values ~u0 that are (non-periodical) trigonometric polynomials ~u0 =

∑N
k=1 eiλk.x~ak(ω).

Vishik and Fursikov “solve” (13) in the space L2( 1
(1+|x|)d+ε dx) with ε > 0 : as a matter of fact, one cannot solve

(13) in a deterministic way in such a space, but Vishik and Fursikov can construct a random variable ~u which
solves (13) for P-almost every ω. If we want to be able to exhibit a solution for one special initial value, one has
to consider a smaller space of initial values. A space that is larger than periodical functions but smaller than
L2( 1

(1+|x|)d+ε dx) is the space L2
uloc.

In dimension 2, the space L2
uloc is well adapted to the problem (13) : to any divergence free initial value in

(L2
uloc)

3, one may associate one unique global regular solution to the Cauchy problem [BAS 06b]. In case of ~u0 being
a (non-periodical) trigonometric polynomial, or being almost-periodic in tne sense of Stepanov (i.e. belonging to
the closure of trigonometric polynomials in the L2

uloc norm [BES 54]), we have a solution ~u that is almost-periodic
in the sense of Bohr for every positive t.

In dimension 3, we can construct only local solutions for initial values in L2
uloc . In case of ~u0 being almost-

periodic in tne sense of Stepanov, we don’t even know whether one may find an almost-periodic solution (since the
space of almost-periodic functions in the sense of Stepanov is not closed in L2

uloc for the weak-* topology).

9. Serrin’s uniqueness criterion.

Leray [LER 34] studied the Cauchy initial value problem for equations (13) with a square-integrable initial
value. He proved the existence of weak solutions, which satisfy moreover energy inequality (59). An easy conse-
quence of inequality (59) is then the strong continuity at t = 0 :

(81) lim
t→0+

‖~u− ~u0‖2 = 0.

But it is still not known whether we have continuity for all time t and whether we have uniqueness in the class of
Leray solutions. Serrin’s theorem [SER 62] gives a criterion for uniqueness :

Proposition 1 : (Serrin’s uniqueness theorem)
Let ~u0 ∈ (L2(IR3))3 with div ~u0 = 0. Assume that there exists a solution ~u of the Navier-Stokes equations on

(0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ [0, 1), ~u belongs to (Lσ((0, T ), L3/r))3 with 2/σ = 1− r.

Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution associated to ~u0 on (0, T ).

The limit case r = 1 is dealt with Sohr and Von Wahl’s theorem [WAH 85] (~u belongs to (C([0, T ], L3))3) , or
Kozono and Sohr’s theorem [KOZ 96] (~u ∈ (L∞([0, T ], L3))3).

Serrin’s theorem is quite easy to prove. We sketch the proof for r < 1. Let ~v be another solution associated to
~u0 on (0, T ) (with associated pressure q) such that ~v ∈ L∞((0, T ), (L2(IR3)3)∩L2((0, T ), (Ḣ1(IR3)3) and ~v satisfies
the energy inequality (59). ~u is regular enough to justify the formulae ∂t(|~u|2) = 2~u.∂t~u and ∂t(~u.~v) = ~u.∂t~v+~v.∂t~u.
We then write

(82) ‖~u− ~v‖22 = ‖~v‖22 − ‖~u0‖22 +
∫ t

0

∂t(|~u|2) ds + 2
∫ t

0

∂t(~u.~v) ds.

Now, ~v satisfies the Leray inequality

(83) ‖~v(t)‖22 − ‖~u0‖22 ≤ −2
∫ t

0

‖~∇⊗ ~v‖22 ds,

so that we get the following inequality for ~u− ~v :

(84) ‖~u(t, .)− ~v(t, .)‖22 ≤ −2
∫ t

0

∫
IR3
|~∇⊗ (~u− ~v)|2 dx ds− 2

∫ t

0

∫
IR3

~u.
(
(~u− ~v).~∇

)
(~v − ~u) dx ds
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We then write

(85)

|
∫ t

τ

∫
IR3 ~u.

(
(~u− ~v).~∇

)
(~v − ~u) dx ds|

≤ Cr(
∫ t

τ
‖~u‖

2
1−r

L3/r ds)(1−r)/2(
∫ t

0
‖~v − ~u‖2

Ḣ1 ds)1/2(
∫ t

τ
‖~v − ~u‖

2
r

Ḣr
ds)

r
2

≤ C ′r(
∫ t

τ
‖~u‖

2
1−r

L3/r ds)(1−r)/2(
∫ t

0
‖~v − ~u‖2

Ḣ1 ds)(1+r)/2(supτ<s<t ‖~v − ~u‖22)
(1−r)

2

With help of the Young inequality, we find that

(86) sup
0<s≤t

‖~u− ~v‖22 ≤ Cr(
∫ t

τ

‖~u‖
2

1−r

L3/r ds)1/2 sup
0<s≤t

‖~u− ~v‖22

and we may conclude locally (for t small enough) and then globally by bootstrap.

Thus, the main tool in proving Proposition 1 is the fact that when f ∈ L∞L2 ∩ L2Ḣ1, then f belongs to
L2/rḢr and that the pointwise product is bounded from Ḣr × L3/r to L2. Considering the space Ẋr of pointwise
multipliers from Ḣr to L2 then gives a direct generalization of Proposition 1, as it has been observed in [LEM 02]
[LMA 07] :

Theorem 7 :
Let ~u0 ∈ (L2(IR3))3 with div ~u0 = 0. Assume that there exists a solution ~u of the Navier-Stokes equations on

(0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ [0, 1), ~u belongs to (Lσ((0, T ), Ẋr))3 with 2/σ = 1− r.
Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution associated to ~u0 on (0, T ).

A similar results holds for r = 1 when iii) is replaced by
iii’) ~u belongs to (C([0, T ], X̃1))3, where X̃1 is the closure of the space D of smooth test functions in Ẋ1.

The spaces Ẋr have been characterized by Maz’ya [MAZ 64] in terms of Sobolev capacities. A weaker result
establishes a comparison between the spaces Ẋr and the Morrey–Campanato spaces Ṁ2,p : for 2 < p ≤ 3/r and
0 < r we have

(87) Ṁp,3/r ⊂ Ẋr ⊂ Ṁ2,3/r,

a result first noticed by Fefferman and Phong in the setting of Schrödinger equation [FEF 83] [MAZ 02] [LEM 02].

There are many ways to outperform Theorem 7. The point is to estimate

(88) I(~f,~g,~h) =
∫ t

0

∫
~f.

(
~g.~∇~h

)
ds

with ~f = ~u, ~g = ~h = ~u− ~v. What information can we use on ~g and ~h and what information do we need on ~f?

A) Sobolev regularity of ~g : we use ~h ∈ (L2Ḣ1)3 and ~g ∈ (L
2
r Ḣr)3 (0 ≤ r ≤ 1). In that case, we shall need some

pointwise multiplication that maps Ḣr to L2, hence we shall need ~f ∈ (L
2

1−r Ẋr)3 if 0 < r < 1, f ∈ (C([0, T ], X̃1))3

if r=1 (Theorem 7) or f ∈ (L2L∞)3 if r = 0 (Proposition 1).

B) solenoidality of ~g : we use ~h ∈ (L
2
r Ḣr)3 (0 ≤ r ≤ 1), ~g ∈ (L∞L2)3 and div ~g = 0. In that case, we shall need

to replace direct estimates on pointwise products by estimates on paraproducts : we split ~g.~∇~h into three terms
and write (for 0 < r < 1)

(89)


‖

∑
j∈ZZ ∆j~g.~∇Sj

~h‖Ḃr−1
1,1

≤ Cr‖~g‖2‖~h‖Ḣr

‖div (
∑

j∈ZZ

∑2
k=−2 ∆j~g ⊗∆j+k

~h)‖Ḃr−1
1,1

≤ Cr‖~g‖2‖~h‖Ḣr

‖
∑

j∈ZZ Sj~g.~∇∆jh‖Ḟ r−1
1,2

≤ Cr‖~g‖2‖~h‖Ḣr

Thus, we obtain the following theorem of Kozono and Taniuchi (r = 1) and Germain (0 ≤ r < 1) [KOZ 00] [GERM
06] :
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Theorem 8 :
Let ~u0 ∈ (L2(IR3))3 with div ~u0 = 0. Assume that there exists a solution ~u of the Navier-Stokes equations on

(0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ [0, 1), (−∆)

1−r
2 ~u belongs to (Lσ((0, T ), BMO)3 with 2/σ = 2− r.

Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution associated to ~u0 on (0, T ).
A similar results holds for r = 1 when iii) is replaced by

iii’) ~∇⊗ ~u belongs to (L1((0, T ), L∞)9.

C) Besov regularity of ~g : we use ~h ∈ (L2Ḣ1)3 and ~g ∈ (L
2
r Ḃr

2,1)
3 (0 < r < 1). In that case, we shall need some

pointwise multiplication that maps Ḃr
2,1 to L2, hence we shall need ~f ∈ (L

2
1−r Ẏ r)3 with Ẏ r = M(Ḃr

2,1 7→ L2).
While the structure of the multiplier spaces Ẋr is not easy to describe, the mulitiplier space is much more simple :
for 0 < r < 3/2, we have Ẏ r = Ṁ2,3/r. This is easily proved through a wavelet decomposition for Ḃr

2,1 [LEM 07a].
Theorem 7 now turns into the following one :

Theorem 9 :
Let ~u0 ∈ (L2(IR3))3 with div ~u0 = 0. Assume that there exists a solution ~u of the Navier-Stokes equations on

(0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ [0, 1), ~u belongs to (Lσ((0, T ), Ṁ2,3/r))3 with 2/σ = 1− r.

Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution associated to ~u0 on (0, T ).

Theorem 9 does not include the limit case r = 1, which is still an open question : we don’t know whether a
similar results holds for r = 1 when iii) is replaced by
iii’) ~u belongs to (C([0, T ], M̃2,3))3 where M̃2,3 is the closure of the test functions D in M2,3.

D) Besov regularity of ~h and solenoidality of ~g : we use ~hin(L
2
r Ḃr

2,1)
3 (0 < r < 1), ~g ∈ (L∞L2)3 and

div ~g = 0. We write

(90) ‖div(
∑
j∈ZZ

Sj~g ⊗∆jh‖Ḃr−1
1,1

≤ Cr‖~g‖2‖~h‖Ḃr
2,1

Theorem 8 now turns into the following theorem of Chen, Miao and Zhang [CHN 08] :

Theorem 10 :
Let ~u0 ∈ (L2(IR3))3 with div ~u0 = 0. Assume that there exists a solution ~u of the Navier-Stokes equations on

(0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ [0, 1), ~u belongs to (Lσ((0, T ), Ḃ1−r

∞,∞)3 with 2/σ = 2− r.
Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution associated to ~u0 on (0, T ).

E) Regularity of ~u−~v : : We may now consider what happens if ~u is controlled in a norm of negative regularity.
Following an idea of Chemin [CHE 99] and Lemarié–Rieusset [LEM 07b], Chen, Miao and Zhang [CHN 08] and
May [MAY 10] proved the following theorem :

Theorem 11 :
Let ~u0 ∈ (L2(IR3))3 with div ~u0 = 0. Assume that there exist solutions ~u and ~v of the Navier-Stokes equations

on (0, T )× IR3 (for some T ∈ (0,+∞]) with the same initial value ~u0 such that :
i) ~u,~v ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u,~v ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ (0, 1), ~u belongs to (Lσ((0, T ), Ḃ−r

∞,∞)3 with 2/σ = 1− r.
iv) For some ρ ∈ (0, 1), ~u belongs to (Lτ ((0, T ), Ḃ−ρ

∞,∞)3 with 2/τ = 1− ρ.
Then, ~u = ~v .

One may be tempted to drop the assumption on ~v by noticing that ~u − ~v is more regular than ~u and ~v [FOI
81] [LEM 02]

(91) ~u− ~v ∈ (L1((0, T ), Ḃ3/2
2,1 ))3
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One would get the following result :

Theorem 12 :
Let ~u0 ∈ (L2(IR3))3 with div ~u0 = 0. Assume that there exists a solution ~u of the Navier-Stokes equations on

(0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ (0, 1/2), ~u belongs to (Lσ((0, T ), Ḃ−r

∞,∞)3 with 2/σ = 1− 2r.
Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution associated to ~u0 on (0, T ).

However, Theorem 12 is neither new nor optimal. In Theorems 7 to 12, we are dealing with conditions
~u ∈ (Lσ

t Xx)3 where the norm of X is homogeneous : ‖f(x/R)‖X = Rα‖f‖X . While in Theorems 7 to 11, the
indexes σ and α respect the critical scaling condition α + 2

σ = 1, in Theorem 12 we need a subcritical scaling
condition : α + 2

σ = 1− r < 1. But this subcritical condition is not optimal : if u ∈ L2Ḣ1 ∩ Lσ((0, T ), Ḃ−r
∞,∞ with

σ = 4
2−3r [thus, α + 2

σ = 1 − r
2 ], then, using the generalized Sobolec inequalities of Gérard–Meyer-Oru [GER 97],

we find that u ∈ LpLq with 1/q = r
r+1

1
2 and 1/p = r

r+1
1
2 + 1

r+1
1
σ = 1

2
1

r+1 (1− r
2 ) so that 2/p+3/q = 1 and we may

apply Serrin’s theorem . . .

10. Uniqueness of mild solutions.

In 1984, Kato [KAT 84] proved the existence of mild solutions to problem (13) when ~u0 ∈ (L3)3. However,
the fixed–point algorithm did not work in the space C([0, T ), (L3)3), but in a smaller space (one required that
sup0<t<T

√
t‖~u(t, .)∞ < +∞ and that limt→0

√
t‖~u(t, .)∞ = 0). In 1997, Furioli, Lemarié-Rieusset and Terraneo

[FUR 00] proved uniqueness of mild solutions in C([0, T ∗), (L3)3). They extended their proof to the case of Morrey-
Campanato spaces by using the Besov spaces over Morrey-Campanato spaces described by Kozono and Yamazaki
[KOZ 94] and found that uniqueness holds as well in the class C([0, T ∗), (M̃p,3)3) for p > 2, where M̃p,3 is the closure
of the smooth compactly supported functions in the Morrey-Campanato space Ṁp,3. In his thesis dissertation,
May [MAY 02] [LMA 07] proved a slightly more general result by extending the approach of Monniaux [MON 99]
(i.e. by using the maximal LpLq property of the heat kernel) :

Theorem 13 :
If ~u and ~v are two weak solutions of the Navier-Stokes equations on (0, T ∗)× IR3 such that ~u and ~v belong to

C([0, T ∗), (X̃1)3) and have the same initial value, then ~u = ~v.

May’s result generalizes the results of Furioli, Lemarié–Rieusset and Terraneo, but leaves open the limit case
of Ṁ2,3 :

Open question :
Does uniqueness holds in (C([0, T ∗), M̃2,3))3?

In [LEMM], we considered the following problem of uniqueness :

Definition 2 : (Regular critical space)
A regular critical space is a Banach space X such that we have the continuous embeddings D(IR3) ⊂ X ⊂

L2
loc(IR

3) and such that moreover :
(a) for all x0 ∈ IR3 and for all f ∈ X, f(x− x0) ∈ X and ‖f‖X = ‖f(x− x0)‖X .
(b) for all λ > 0 and for all f ∈ X, f(λx) ∈ X and λ‖f(λx)‖X = ‖f‖X .
(c) D(IR3) is dense in X.

We have the obvious embedding result for a regular critical space X : X is continuously embedded in M̃2,3.
The uniqueness problem is then the following one :

Uniqueness problem :
Let X be a regular critical space. If ~u and ~v are two weak solutions of the Navier-Stokes equations on (0, T ∗)×

IR3 such that ~u and ~v belong to C([0, T ∗), X3) and have the same initial value, then do we have ~u = ~v ?
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In order to deal with that problem, we modified the notions of adapted space for the Navier–Stokes equations
that were introduced by Cannone [CAN 95] Meyer and Muschetti [MEY 99] or Auscher and Tchamitchian [AUS
99] :

Definition 3 : (Fully adapted critical space)
A fully adapted critical Banach space for the Navier–Stokes equations is a Banach space E such that we have

the continuous embeddings D(IR3) ⊂ E ⊂ L2
loc(IR

3) and such that moreover :
(a) for all x0 ∈ IR3 and for all f ∈ E, f(x− x0) ∈ E and ‖f‖E = ‖f(x− x0)‖E.
(b) for all λ > 0 and for all f ∈ E, f(λx) ∈ E and λ‖f(λx)‖E = ‖f‖E.
(c) The closed unit ball of E is a metrizable compact subset of S ′(IR3).
(d) e∆ maps boundedly E to the space M of pointwise multipliers of E
(e) Let F be the Banach space

F = {f ∈ L1
loc / ∃(fn), (gn) ∈ EIN s.t. f =

∑
n∈IN

fngn and
∑
n∈IN

‖fn‖E‖gn‖E < ∞

(normed with ‖f‖F = minf=
∑

n∈IN
fngn

∑
n∈IN ‖fn‖E‖gn‖E). There exists a Banach space of tempered distributions

G such that
i) e∆ maps boundedly F to G
ii) the real interpolation space [F,G]1/2,∞ is continuously embedded into E
iii) for all λ > 0 and for all f ∈ G, f(λx) ∈ G and ‖f(λx)‖G = ‖f‖G.

Hypothesis (c) (together with (a)) shows that E is invariant under convolution with an integrable kernel :

(92) ∀f ∈ E ∀g ∈ L1 f ∗ g ∈ E and ‖f ∗ g‖E ≤ ‖f‖E‖g‖1.

This hypothesis (c) is fulfilled in the case where E is the dual space of a separable Banach space containing S as
a dense subspace.

The following proposition shows why those spaces are called adapted to the Navier–Stokes equations :

Proposition 2 :
Let E be a fully adapted critical space and let M = M(E 7→ E) be the space of pointwise multipliers of E.

For T ∈ (0,+∞), let AT and BT be the spaces defined by

f ∈ AT ⇔ f ∈ L2
loc((0, T )× IR3), sup

0<t<T
‖f(t, .)‖E <∞

and
f ∈ BT ⇔ f ∈ L1

loc((0, T )× IR3), sup
0<t<T

t1/2‖f(t, .)‖M < ∞.

Then B is bounded from (AT )3 × (AT )3 to (AT )3 and from (AT )3 × (BT )3 or (BT )3 × (AT )3 to (AT )3. More
precisely, there exists a constant CE such that, for all T ∈ (0,+∞], all ~u0 ∈ E3, all ~f,~g ∈ (AT )3 and all ~h ∈ (AT )3

we have

(93) sup
t>0

√
t‖et∆~u0‖M ≤ CE‖~u0‖E

(94) ‖B(~f,~g)‖AT
≤ CE‖~f‖AT

‖~g‖AT

and

(95) ‖B(~f,~h)‖AT
+ ‖B(~h, ~f)‖AT

≤ CE‖~f‖AT
‖~h‖BT

.

The basic idea in Furioli, Lemarié-Rieusset and Terraneo [FUR 00] is to split the solutions in tendency and
fluctuation, and to use different estimates on each term. More precisely, we consider two mild solutions ~u =
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et∆~u0 − B(~u, ~u) = et∆~u0 − ~w1 and ~v = et∆~u0 − B(~v,~v) = et∆~u0 − ~w2 in C([0, T ∗), X3) and write ~w = ~u − ~v =
~w2 − ~w1 = −B(~w,~v)−B(~u, ~w), and finally

(96) ~w = B(~w1, ~w) + B(~w, ~w2)−B(et∆~u0, ~w)−B(~w, et∆~u0).

Combining (96) and Proposition 2, we easily get the following uniqueness result :

Theorem 14 :
If X is a regular critical space such that X is boundedly embedded into a a fully adapted critical space E, then

uniqueness holds in (C([0, T ∗), X))3.

Examples of fully adapted spaces :
i) the space of Le Jan and Sznitman [LEJ 94]

E = Ḃ2,∞
PM = {f ∈ S ′(IR3) / f̂ ∈ L1

loc and ξ2f̂(ξ) ∈ L∞}

with F ⊂ Ḃ1,∞
PM and G = Ḃ3,1

PM

ii) the homogeneous Besov space
E = Ḃ3/p−1,∞

p where 1 ≤ p < 3

with F ⊂ Ḃ
3/p−2,∞
p and G = Ḃ

3/p,1
p

iii) the Lorentz space
E = L3,∞

with F = L3/2,∞ and G = L∞

iv) the homogeneous Morrey–Campanato spaces based on Lorentz spaces :

E = Ṁp,3
∗ where 2 < p ≤ 3

with F = Ṁ
p/2,3/2
∗ and G = L∞. The space Ṁp,q

∗ (IR3) is defined for 1 < p ≤ q < ∞ as the space of locally
integrable functions f such that

sup
x0∈IR3

sup
0<R<∞

R3(1/q−1/p)‖1B(x0,R)f‖Lp,∞ < ∞;

the predual of Ṁp,q
∗ (IR3) is then the space of functions f which may be decomposed as a series

∑
n∈IN λnfn with

fn supported by a ball B(xn, Rn) with Rn > 0, fn ∈ Lp/(p−1),1, ‖fn‖Lp/(p−1),1 ≤ R
3(1/q−1/p)
n and

∑
n∈IN |λn| < ∞.

All those examples however give no new information on the uniqueness problem, since we have the embeddings
(for 2 ≤ p < 3 and 2 < q ≤ 3)

(97) Ḃ2,∞
PM ⊂ Ḃ3/p−1,∞

p ⊂ L3,∞ ⊂ Ṁq,3
∗ ⊂ Ẋ1

and thus uniqueness may be dealt with by using May’s theorem (Theorem 13).

We finish this section with an example of a regular space where uniqueness holds but which cannot be dealt
with by using either Theorem 13 or Theorem 14 :

Theorem 15 :
Let X be defined as the space of locally integrable functions f such that

(98) sup
x0∈IR3

sup
0<R<∞

R−1/2‖1B(x0,R)f‖L2,1 < ∞

and let X̃ be the closure of D in X. Then
a) Uniqueness holds in (C([0, T ∗), X̃))3.
b) X̃ is not included in the multiplier space Ẋ1 = M(Ḣ1 7→ L2)
c) there is no fully adapted critical space E such that X̃ ⊂ E.

11. Self–similarity.
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In 1934, Leray [LER 34] proposed to study backward self-similar solutions to the Navier–Stokes equations in
order to try to exhibit solutions that blow up in a finite time. Leray’s self-similar solutions on (0, T ∗) × IR3 are
given by ~u(t, x) = λ(t)~U(λ(t)x) with λ(t) = 1√

2a(T∗−t)
for some positive a.

In 1996, Nečas, Ružička, and Šverák [NRS 96] proved that the only solution ~U ∈ (L3(IR3))3 was ~U = 0. Their
result was extended by Tsai [TSA 98] to the case ~U ∈ (C0(IR3))3 or to the case of solutions ~u with local energy
estimates near the blow-up point: supT0<t<T∗

∫
|x|<1

|~u(t, x)|2 dx < ∞ and
∫ T∗

T0

∫
|x|<1

|~∇ ⊗ ~u(t, x)|2 dx dt < ∞.

Their proof was based on Hopf’s strong maximum principle applied to Π = 1
2 |~U |

2 + P + a ~X.~U , where P is
associated to the pressure p(t, x) by ~∇p(t, x) = λ(t)3(~∇P )(λ(t)x), and where ~X be the identical vector field on IR3:
~X(x) = (x1, x2, x3); another key ingredient was the regularity criterion of Caffarelli, Kohn, and Nirenberg.

In contrast with backward self-similarity, it is easy to construct forward self–similar solutions. In his book
[CAN 95], Cannone gave a very clear strategy for exhibiting self-similar solutions to the Navier–Stokes equations.
We take a shift-invariant Banach space of distributions X whose norm is homogeneous with the good scaling for the
Navier–Stokes equations (‖f(λx)‖X = 1

λ‖f‖X). This implies that X ⊂ Ḃ−1,∞
∞ , or equivalently that for all f ∈ X

we have sup0<t

√
t ||et∆f ||∞ ≤ C||f ||X . We assume that X contains nontrivial homogeneous distributions, and we

try to arrive at a theorem of global existence and uniqueness for solutions of the Navier–Stokes equations. Such a
theorem will provide us with self-similar solutions when the initial data is homogeneous (with a small norm).

We write B(~f,~g) =
∫ t

0
e(t−s)∆IPdiv (~f ⊗ ~g) ds, and we check on which Banach space E based on X and

containing the tendencies et∆~u0 for ~u0 ∈ Xd the bilinear transform B is continuous. The first space we can try
is E = L∞((0,∞), Xd). Of course, the bilinear product uv should be defined for elements of X; hence, we should
assume that X is embedded in L2

loc; we then find that X ⊂ Ṁ2,3. There are many instances of spaces X which
can be treated this way and provide self-similar solutions :
*) homogeneous Besov spaces Ḃs,∞

p where p < 3 and s = 3/p− 1 (Cannone [CAN 95], Chemin [CHE 99], Furioli,
Lemarié-Rieusset and Terraneo [FUR 00])
*) the Lorentz space L3,∞ (Meyer [MEY 99])
*) the space Ḃ2,∞

PM = {f/|ξ|2 f̂ ∈ L∞} used by Le Jan and Sznitman [LEJ 94].

We may use the smoothing effect of et∆ and start from a more singular initial value. Cannone [CAN 95] and
Planchon [PLA 96 ] have shown that it is possible to take ~u0 ∈ Ḃs,∞

p where p ∈ (3,∞) and s = 3/p − 1; then
E = {~f/ sup0<t t1/2−3/2p‖~f(t, .)‖p < ∞} is a good choice.

This latter example can even be generalized by replacing Lp by a Morrey–Campanato space (Kozono and
Yamazaki [KOZ 94]). As a matter of fact, the first instance of self-similar solutions was constructed with help of
Morrey–Campanato spaces (Giga and Miyakawa [GIG 89]).

Thus, we are interested in homogeneous initial values. In particular, we shoukd know when a distribution
is homogeneous. We begin by a simple remark : if T is a distribution on IR3, then the following assertions are
equivalent:
(A) T is homogeneous with degree −1 :

(99) ∀ϕ ∈ D(IR3) ∀λ > 0 〈T (x)|λ3ϕ(λx)〉 = λ〈T (x)|ϕ(x)〉

(B) There exists ω ∈ D′(S2) such that T (x) = ω(σ)r−1 :

(100) 〈T (x)|ϕ(x)〉D′(IR3),D(IR3) = 〈ω(σ)|
∫ ∞

0

ϕ(rσ) r dr〉D′(S2),D(S2)

The distribution ω is then unique. We shall write ω = T |S2 .

We then have the following trace theorems : let T (x) = ω(σ)r−1, then :
i) (Besov spaces [CAN 95]) : for p ∈ [1,+∞], T ∈ Ḃ

3/p−1,∞
p (IR3) ⇔ ω ∈ B

3/p−1,p
p (S2).

ii) (Lorentz space [BAR 96]) : T ∈ L3,∞(IR3) ⇔ ω ∈ L3(S2)
iii) (Morrey spaces [LEM 02]) : if 2 ≤ p < 3, T ∈ Ṁp,3(IR3) ⇔ ω ∈ Lp(S2)
iv) (Morrey spaces [LEM 02]) : if 1 ≤ p < 2, T ∈ Ṁp,3(IR3) ⇔ ω ∈ Mp,2(S2)

Whereas small homogeneous initial value provide us with self-similar solutions, the problem remains open for
large initial value. The case of a large initial value in Ṁ2,3 has been discussed in [LEM 07a] and [LEL 11]. Using
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the energy method in L2
uloc and a scaling argument, one may exhibit global suitable solutions (see Theorem 6).

But, due to the possible lack of uniqueness, we don’t know whether we may find large self–similar solutions. If a
large self-similar suitable solution exist, it is smooth for positive times, due to the Caffareli, Kohn and Nirenberg
regularity criterion [GRU 06] [LEL 11].

12. Euler equations.

We now pay a few words to the resolution of Euler equations (12). In [LEM 10], we solved equations (12)
in an abstract space A1+σ. A1+σ belongs to a scale of Banach spaces As (where s > 0 stands for a regularity
index) which satisfies the following hypotheses:

� Hypothesis (H1) : integrability
As ⊂ L1

loc(IR
3) (continuous embedding)

� Hypothesis (H2) : monotony
For s1 < s2, As2 ⊂ As1

� Hypothesis (H3) : regularity
f ∈ A1+s ⇔ f ∈ As and ~∇f ∈ As (with equivalence of the norms ‖f‖As+1 and ‖f‖As + ‖~∇f‖As)

� Hypothesis (H4) : stability
If a sequence (fn)n∈IN is bounded in As and converges in D′(IR3) then the limit belongs to As and we have

‖ limn→+∞ fn‖As ≤ Cs lim infn→+∞ ‖fn‖As .

� Hypothesis (H5) : invariance
The map (f, g) ∈ D ×As 7→ f ∗ g extends to a bounded bilinear operator from L1 ×As to As.

� Hypothesis (H6) : interpolation
If T is a linear operator which is bounded from As1 to As1 and from As2 to As2 then it is bounded from As

to As for every s ∈ [s1, s2] and ‖T‖L(As,As) ≤ C(s, s1, s2) max(‖T‖L(As1 ,As1 ), ‖T‖L(As2 ,As2 )).

� Hypothesis (H7) : transport by Lipschitz flows
Let ~u ∈ L1((0, T ),Lip) be a divergence-free vector field and let f0 ∈ As for some s ∈ (0, 1). Then the solution

f ∈ C([0, T ], L1
loc) of the transport equation

(101)

 ∂tf + ~u.~∇f = 0

f|t=0 = f0

satisfies sup0≤t≤T ‖f(t, .)‖As ≤ Cse
Cs

∫ T

0
‖~u‖Lip dt‖f0‖As .

� Hypothesis (H8) : singular integrals
Let T be a bounded linear operator from D(IR3) to D′(IR3) (with distribution kernel K(x, y) ∈ D′(IR3 × IR3))

which satisfies the following conditions
• T is bounded on L2 : ‖T (f)‖2 ≤ C0‖f‖2
• outside from the diagonal x = y, K is a continuous function such that |K(x, y)| ≤ C0

1
|x−y|3(1+|x−y|)

• outside from the diagonal, K satisfies |~∇xK(x, y)| ≤ C0|x− y|−4 and |~∇yK(x, y)| ≤ C0|x− y|−4

• T (1) = T ∗(1) = 0 in BMO
Then, T is bounded from As to As for all 0 < s < 1 and ‖T‖L(As,As) ≤ CsC0

We further consider an hypothesis on some σ > 0 :
� Hypothesis (H9) : pointwise products with Aσ

Aσ ⊂ L∞ (continuous embedding) and, for all s ∈ (0, σ], the product (f, g) 7→ fg is a bounded bilinear
operator from Aσ ×As to As.

We then have the following theorem on the Cauchy problem for the Euler equations with initial data in A1+σ :
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Theorem 16 :
Let As be a scale of spaces satisfying hypotheses (H1) to (H8) and let σ > 0 satisfy hypothesis (H9). Let

~v0 ∈ A1+σ be a divergence free vector field. Then there exists a positive T such that the Cauchy problem

(102)


∂t~v + ~v.~∇~v =

∑3
i=1[vi, IP∂i]~v

~v|t=0 = ~v0

div ~v = 0

has a unique solution ~v ∈ C([0, T ], Aσ) such that sup0≤t≤T ‖~v‖Aσ+1 < +∞.

Examples :
*) Besov spaces [CHE 98] : Aσ+1 = B1+σ

p,q with 1 ≤ p ≤ +∞, σ > 3/p and 1 ≤ q ≤ +∞, or with 1 ≤ p < +∞
σ = 3/p and q = 1. (The case of p = +∞, σ = 0 and q = 1 [PAK 04] is not covered by Theorem 16). [Work in the
scale Bs

p,q for 0 < s ≤ 1 + σ].
*) Triebel–Lizorkin spaces [CHN 10] [LEM 10] : Aσ+1 = F 1+σ

p,q with 1 ≤ p, q < +∞ and σ > 3/p. [Work in the
scale F s

p,q for 0 < s ≤ 1 + σ].
*) Besov-Lorentz spaces : Aσ+1 = Bσ+1

Lp,q,r with 1 < p < +∞, 1 ≤ q ≤ +∞, σ > 3/p and 1 ≤ r ≤ +∞ (or σ = 3/p
and r = 1). [Work in the scale Bs

Lp,q,r for 0 < s ≤ 1 + σ]. The case r = +∞ was discussed in [TAK 08].
*) Besov-Morrey spaces : Aσ+1 = Bσ+1

Ṁp,q,r
with 1 < p ≤ q < +∞, σ > 3/q and 1 ≤ r ≤ +∞ (or σ = 3/q and

r = 1). [Work in the scale Bs
Ṁp,q,r

for 0 < s ≤ 1 + σ].

Some other spaces are discussed LEM 10], such as Sobolev-Morrey spaces.
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IR3, C. R. Acad. Sc. Paris 328, série I (1999), pp. 1133–1138.
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