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Abstract

We prove that the interval on which the Picard iterates converge to a solution of the Cauchy problem for the 3D Navier–Stokes equations does
not depend on the norm in which the convergence is estimated.
c© 2008 Elsevier B.V. All rights reserved.
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1. Kato’s mild solutions

In this paper, we consider the following Cauchy problem for the 3D Navier–Stokes equations: given Eu0 ∈ (L3(R3))3 with
E∇.Eu0 = 0, find a solution Eu ∈ C([0, T ], (L3(R3))3) of the equations∂t Eu = ∆Eu − (Eu. E∇)Eu − E∇ p

E∇.Eu = 0
Eu(0, .) = Eu0

(1)

where p is the (unknown) pressure, whose action is to maintain the divergence of Eu to be 0 (this divergence free condition expresses
the incompressibility of the fluid).

In order to solve Eq. (1), we follow Kato [1] and use the Leray–Hopf operator P which is the orthogonal projection operator on
divergence-free vector fields. We thus consider the following Navier–Stokes equations on Eu(t, x):{

∂t Eu = ∆Eu − P E∇ · (Eu ⊗ Eu)
Eu(0, .) = Eu0.

(2)

Solving the Cauchy problem associated to the initial value Eu0 then amounts to solve the integral equation

Eu = et∆
Eu0 −

∫ t

0
e(t−s)∆P E∇.(Eu ⊗ Eu) ds. (3)

In order to solve (3), we define the bilinear operator, B, by

B( Ef , Eg)(t) =

∫ t

0
e(t−s)∆P E∇.( Ef ⊗ Eg) ds. (4)
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We then define the sequence Eu(n) by

Eu(0) = et∆
Eu0 and Eu(n+1)

= et∆
Eu0 − B(Eu(n), Eu(n)) (5)

and the sequence Ew(n) by

Ew(n) = Eu(n+1)
− Eu(n). (6)

For every n ∈ N, we have Eu(n) ∈ C([0,+∞), (L3(R3))3) and it is well-known that for some positive T we have∑
n∈N

sup
0<t<T

‖ Ew(n)(t, .)‖3 < ∞ (7)

so that the sum

Eu = et∆
Eu0 +

∞∑
n=0

Ew(n) (8)

belongs to C([0, T ], (L3(R3))3) and is a solution to the Cauchy problem (1). The solution Eu is then known to be smooth.
In this paper, we shall discuss the convergence of the series (8). In order to ensure the convergence of the series, one usually

works with weaker norms than the L3 norm (L3 is embedded into Besov spaces [2,3] or in the space B M O−1 considered by Koch
and Tataru [4]). In order to get regularity estimates, one tries to get a contractive estimate in a new norm and this is usually done
by taking a smaller value of T . Thus, the series

∑
w(n) may be convergent on an interval [0, T ] which should depend on the norm

in which the terms w(n) are estimated. We shall prove that the interval of convergence does not depend on most norms that are
usually used to describe Kato’s solutions. Some of those results were previously obtained in [5–7], where they were described as
persistency results.

2. Size of the solutions

In 1984, Kato [1] proved the existence of mild solutions in L p, p ≥ 3. His construction of mild solutions relies on the fact that
the operator e(t−s)∆P E∇ is a matrix of convolutions operators (in the x variable) whose kernels Ki, j (t − s, x) are controlled by

|Ki, j (t − s, x)| ≤ C
1

(
√

t − s + ‖x‖)4
. (9)

For p > 3, he used the estimate

‖e(t−s)∆P E∇.( Ef ⊗ Eg)‖p ≤ C p(t − s)−
1
2 −

3
2p ‖ Ef ‖p‖Eg‖p (10)

to prove the boundedness of B on L∞([0, T ], (L p)3):

‖B( Ef , Eg)(t, .)‖p ≤ C pt
1
2 −

3
2p sup

0<s<t
‖ Ef (s, .)‖p sup

0<s<t
‖Eg(s, .)‖p. (11)

For the critical case p = 3, inequality (10) becomes

‖e(t−s)∆P E∇.( Ef ⊗ Eg)‖3 ≤ C
1

(t − s)
‖ Ef ‖3‖Eg‖3. (12)

This is a very inconvenient estimate for dealing with Ef and Eg in L∞([0, T ], (L3)3), since
∫ t

0
ds

t−s diverges at the endpoint s = t .
Kato then used an idea of Weissler [8], namely to use the smoothing properties of the heat kernel (when applied to Eu0 ∈ (L3)3) to
search for the existence of a solution in a smaller space of mild solutions ; indeed, whereas the bilinear operator B is unbounded on
C([0, T ], (L3(R3))3) [9], it becomes bounded on the smaller space { Ef ∈ C([0, T ], (L3(R3))3) / sup0<t<T

√
t‖ Ef (t, .)‖∞ < ∞}.

Thus, we replace the estimate (12) (which leads to a divergent integral) by the estimates

‖e(t−s)∆P E∇.( Ef ⊗ Eg)‖3 ≤ C
1

√
t − s

√
s
‖ Ef ‖3

√
s‖Eg‖∞ (13)

and

‖e(t−s)∆P E∇.( Ef ⊗ Eg)‖∞ ≤ C
1

√
t − s

min
(

1
(t − s)

‖ Ef ‖3‖Eg‖3,
1
s

√
s‖ Ef ‖∞

√
s‖Eg‖∞

)
(14)

which lead to two convergent integrals.
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We begin by checking that the introduction of this second norm does not bear any restriction on the interval of convergence for
the series (8):

Theorem 1. Let Eu0 ∈ (L3(R3))3 with E∇.Eu0 = 0. Let the sequence Eu(n) be defined by

Eu(0) = et∆
Eu0 and Eu(n+1)

= et∆
Eu0 − B(Eu(n), Eu(n)) (15)

and the sequence Ew(n) by

Ew(n) = Eu(n+1)
− Eu(n). (16)

Let T ∈ (0,+∞]. Then the following assertions are equivalent:∑
n∈N

sup
0<t<T

‖ Ew(n)(t, .)‖3 < ∞, (17)

∑
n∈N

sup
0<t<T

√
t‖ Ew(n)(t, .)‖∞ < ∞. (18)

Proof. In inequality (13), we have stressed on the role of the L3 norm of Ef and the L∞ norm of Eg, but we could as well have used
the L∞ norm of Ef and the L3 norm of Eg. We change (13) in a more symmetrical inequality in Ef and Eg:

‖e(t−s)∆P E∇.( Ef ⊗ Eg)‖3 ≤ C
1

√
t − s

√
s

√
‖ Ef ‖3‖Eg‖3

√
s‖ Ef ‖∞

√
s‖Eg‖∞. (19)

This gives

sup
0<t<T

‖B( Ef , Eg)‖3 ≤ C
√

sup
0<t<T

‖ Ef ‖3 sup
0<t<T

‖Eg‖3 sup
0<t<T

√
t‖ Ef ‖∞ sup

0<t<T

√
t‖Eg‖∞. (20)

In order to estimate sup0<t<T
√

t‖B( Ef , Eg)‖∞, we write∫ t/2

0
‖e(t−s)∆P E∇.( Ef ⊗ Eg)‖∞ ds ≤ C

∫ t/2

0

1

(t − s)3/2
‖ Ef ‖3‖Eg‖3 ds, (21)

so that

√
t
∫ t/2

0
‖e(t−s)∆P E∇.( Ef ⊗ Eg)‖∞ ds ≤ C sup

0<t<T
‖ Ef ‖3 sup

0<t<T
‖Eg‖3. (22)

On the other hand, we have∫ t

t/2
‖e(t−s)∆P E∇.( Ef ⊗ Eg)‖∞ ds ≤ C

∫ t

t/2

√
t

√
t − s

√
s

min

(
‖ Ef ‖3‖Eg‖3

(t − s)
,

√
s‖ Ef ‖∞

√
s‖Eg‖∞

s

)
ds, (23)

so that, writing

λ =

√√√√√√ sup
0<t<T

‖ Ef ‖3 sup
0<t<T

‖Eg‖3

sup
0<t<T

√
t‖ Ef ‖∞ sup

0<t<T

√
t‖Eg‖∞

(24)

and

Φ(λ) =

∫ 1

0

1
√

s(1 − s)
min

(
λ

1 − s
,

1
λs

)
ds, (25)

we get
√

t
∫ t

t/2 ‖e(t−s)∆P E∇.( Ef ⊗ Eg)‖∞ ds√
sup

0<t<T
‖ Ef ‖3 sup

0<t<T
‖Eg‖3 sup

0<t<T

√
t‖ Ef ‖∞ sup

0<t<T

√
t‖Eg‖∞

≤ CΦ(λ). (26)

We can easily check that

sup
λ>0

Φ(λ) < ∞. (27)
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Now, we write

Ew(n+1)
= B(Eu(n), Eu(n))− B(Eu(n+1), Eu(n+1)) = −B(Eu(n), Ew(n))− B( Ew(n), Eu(n+1)). (28)

We define:

αn = sup
0<t<T

‖ Ew(n)‖3, An = sup
0<t<T

‖Eu(n)‖3 (29)

and

βn = sup
0<t<T

√
t‖ Ew(n)‖∞, Bn = sup

0<t<T

√
t‖Eu(n)‖∞. (30)

From (20), we get

αn+1 ≤ C
√
αn

√
βn(

√
An Bn +

√
An+1 Bn+1) (31)

and thus

αn+1 ≤ C
√
αn

√
βn

√√√√A0 +

n∑
p=0

αp

√√√√B0 +

n∑
p=0

βp. (32)

Similarly, from (22) and (26), we get

βn+1 ≤ Cαn(An + An+1)+ C
√
αnβn(An Bn + An+1 Bn+1) (33)

and thus

βn+1 ≤ Cαn

(
A0 +

n∑
p=0

αp

)
+ C

√
αn

√
βn

√√√√A0 +

n∑
p=0

αp

√√√√B0 +

n∑
p=0

βp. (34)

We may finish the proof, by using the following lemma: �

Lemma 1. Let (γn), (δn) and (εn) be three sequences of nonnegative real numbers such that:

∞∑
n=0

γn < ∞ and
∞∑

n=0

δn < ∞ (35)

and

∀n ∈ N εn+1 ≤ γn +

√√√√εnδn

n∑
p=0

εp. (36)

Then, we have

∞∑
n=0

εn < ∞. (37)

Proof. We write

εn+1 ≤ γn +
1
2
εn +

1
2
δn

n∑
p=0

εp. (38)

This gives, for n0 ∈ N and n ≥ n0

n+1∑
p=0

εp ≤ ε0 +

n∑
p=0

γp +
1
2

n∑
p=0

εp +
1
2

n0∑
p=0

δp

n0∑
p=0

εp +
1
2

n∑
p=n0+1

δp

n∑
p=0

εp. (39)

Choosing n0 such that

∞∑
n0+1

δp < 1/2, (40)
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we get

∞∑
p=0

εp ≤ 4

(
ε0 +

∞∑
p=0

γp +
1
2

n0∑
p=0

δp

n0∑
p=0

εp

)
. (41)

Thus, Lemma 1 and Theorem 1 are proved. �

Remark. If we work with the Lorentz space L3,∞ instead of the Lebesgue space L3, then we don’t need Weissler’s trick
of using the smoothing properties of the heat kernel to get mild solutions, since the bilinear operator B is bounded on
C∗([0, T ], (L3,∞(R3))3) [10] (where C∗([0, T ], (L3,∞(R3))3) is the space of bounded maps from [0, T ] to (L3)3 which are strongly
continuous on (0, T ] and are *-weakly continuous at t = 0). However, we may do the same computations as in the proof of
Theorem 1 and see that the solution in C∗([0, T ], (L3,∞(R3))3) provided by the Picard–Duhamel iterates Eu(n) inherits the good
behaviour of the L∞ norm.

3. Convergence in weaker norms

In the study of mild solutions for the Navier–Stokes equations, weaker norms than the L3 or the L∞ norms have been introduced
to prove either existence or stability of mild solutions. The weakest norm to be controlled in order to provide existence of mild
solutions is the bmo−1 norm of the initial value Eu0 (where bmo−1 is the space introduced by Koch and Tataru [4]), while stability
is described through the control of the norm of the solution Eu(t, .) in the Besov space B−1,∞

∞ [11] (following ideas of Kozono and
co-workers [12,13]). We recall basic definitions and facts about Besov spaces in the appendix.

Recall that f ∈ bmo−1 if and only if, for all positive T , we have

sup
0<t<T

sup
x0∈R3

t−3/2
∫ t

0

∫
B(x0,

√
t)

|es∆ f |
2 dx ds < ∞. (42)

Once again, the introduction of those new norms does not bear any restriction on the interval of convergence for the series (8):

Theorem 2. Let Eu0 ∈ (L3(R3))3 with E∇.Eu0 = 0. Let the sequence Eu(n) be defined by

Eu(0) = et∆
Eu0 and Eu(n+1)

= et∆
Eu0 − B(Eu(n), Eu(n)) (43)

and the sequence Ew(n) by

Ew(n) = Eu(n+1)
− Eu(n). (44)

Let T ∈ (0,+∞). Then the following assertions are equivalent:∑
n∈N

sup
0<t<T

‖ Ew(n)(t, .)‖3 < ∞, (45)

∑
n∈N

sup
0<t<T

(
√

t‖ Ew(n)(t, .)‖∞ + sup
x0∈R3

t−3/4

√∫ t

0

∫
B(x0,

√
t)

| Ew(n)(s, x)|2 dx ds

)
< ∞, (46)

∑
n∈N

sup
0<t<T

‖ Ew(n)(t, .)‖B−1,∞
∞

< ∞. (47)

Remark. Assertions (45) and (47) are equivalent as well to the convergence of the series
∑

n∈N sup0<t<T ‖ Ew(n)(t, .)‖bmo−1 , since
we have the continuous imbeddings L3

⊂ bmo−1
⊂ B−1,∞

∞ .

Proof. In the same way as for proving Theorem 1, we write

Ew(n+1)
= B(Eu(n), Eu(n))− B(Eu(n+1), Eu(n+1)) = −B(Eu(n), Ew(n))− B( Ew(n), Eu(n+1)). (48)

We define:

αn = sup
0<t<T

‖ Ew(n)‖3, An = sup
0<t<T

‖Eu(n)‖3, (49)

βn = sup
0<t<T

√
t‖ Ew(n)‖∞, Bn = sup

0<t<T

√
t‖Eu(n)‖∞, (50)

γn = sup
0<t<T

sup
x0∈R3

t−3/4

√∫ t

0

∫
B(x0,

√
t)

| Ew(n)(s, x)|2 dx ds, (51)
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Cn = sup
0<t<T

sup
x0∈R3

t−3/4

√∫ t

0

∫
B(x0,

√
t)

|Eu(n)(s, x)|2 dx ds, (52)

and

δn = sup
0<t<T

‖ Ew(n)‖B−1,∞
∞

, Dn = sup
0<t<T

‖Eu(n)‖B−1,∞
∞

. (53)

The fact that (45) ⇒ (46) is obvious, since γn ≤ Cαn . The fact that (46) ⇒ (47) is easily checked: the operator P E∇. is bounded
from (L∞)3×3 to (B−1,∞

∞ )3, so we shall deal with L∞ norms. We have∥∥∥∥∥
∫ t/2

0
e(t−s)∆ f (s, .) ds

∥∥∥∥∥
∞

≤ Ct−3/2 sup
x0∈R3

∫ t

0

∫
B(x0,

√
t)

| f (s, x)| dx ds, (54)

and ∥∥∥∥∫ t

t/2
e(t−s)∆ f (s, .) ds

∥∥∥∥
∞

≤ C sup
0<s<t

s‖ f (s, .)‖∞. (55)

From (48), (54) and (55), we get

δn+1 ≤ Cγn(Cn + Cn+1)+ Cβn(Bn + Bn+1) ≤ 2Cγn

(
C0 +

n∑
p=0

γp

)
+ 2Cβn

(
B0 +

n∑
p=0

βp

)
. (56)

The proof that (47) ⇒ (45) is not so easy. We use the fact that, for f ∈ B−1,∞
∞ , we have

√
t‖et∆ f ‖∞ ≤ C(1 +

√
t)‖ f ‖B−1,∞

∞

. (57)

We write

Ew(n+1)(t, .) = e
t
2 ∆ Ew(n+1)(t/2, .)+ Ev(n)(t, .), (58)

where

Ev(n)(t, .) = −

∫ t
2

0
e(

t
2 −s)∆P E∇.V (n)(t/2 + s, .) ds, (59)

and

V (n)
= Eu(n) ⊗ Ew(n) + Ew(n) ⊗ Eu(n+1). (60)

We then write

‖ Ew(n+1)(t, .)‖∞ ≤ ‖e
t
2 ∆ Ew(n+1)(t/2, .)‖∞ + ‖Ev(n)(t, .)‖∞, (61)

hence

‖ Ew(n+1)(t, .)‖∞ ≤ C

(
1 +

√
t

√
t

‖ Ew(n+1)
(

t

2
, .

)
‖B−1,∞

∞

+

√
‖Ev(n)(t, .)‖B1,∞

∞

‖Ev(n)(t, .)‖B−1,∞
∞

)
. (62)

Moreover, we easily check that

‖Ev(n)(t, .)‖B−1,∞
∞

= ‖ Ew(n+1)(t, .)− e
t
2 ∆ Ew(n+1)(t/2, .)‖B−1,∞

∞

, (63)

hence

‖Ev(n)(t, .)‖B−1,∞
∞

≤ ‖ Ew(n+1)(t, .)‖B−1,∞
∞

+ ‖ Ew(n+1)(t/2, .)‖B−1,∞
∞

, (64)

while, on the other hand, we have

‖Ev(n)(t, .)‖B1,∞
∞

≤ C(1 +
√

t) sup
t/2<s<t

‖V (n)(t, .)‖∞, (65)

(more precisely, it is easy to check that the high frequency term ‖(I d − S0)Ev
(n)(t, .)‖B1,∞

∞

is controled by supt/2<s<t ‖V (n)(t, .)‖∞

uniformly in t , while the low frequency term ‖S0Ev(n)(t, .)‖B1,∞
∞

is controled by
√

t supt/2<s<t ‖V (n)(t, .)‖∞ uniformly in t), hence

‖Ev(n)(t, .)‖B1,∞
∞

≤ C
1 +

√
t

t
sup

0<s<t

√
s‖ Ew(n)‖∞( sup

0<s<t

√
s‖Eu(n)‖∞ + sup

0<s<t

√
s‖Eu(n+1)

‖∞). (66)
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Finally, we get that

βn+1 ≤ C(1 +
√

T )(δn+1 +
√
δn+1βn(Bn + Bn+1)), (67)

and thus

βn+1 ≤ C(1 +
√

T )

δn+1 +

√√√√δn+1βn

(
B0 +

n∑
p=0

βp

) . (68)

We then conclude the proof by using Lemma 1. �

4. Regularity of the solution

It is well-known that the solutions of the Navier–Stokes equations which belong to C([0, T ]), (L3(R3))3 are indeed smooth on
(0, T ]. This regularity is first established in the space variable, then extended to the time variable by differentiating the equations.
In the case of the Picard–Duhamel iterates, this can be seen very easily:

Theorem 3. Let Eu0 ∈ (L3(R3))3 with E∇.Eu0 = 0. Let the sequence Eu(n) be defined by

Eu(0) = et∆
Eu0 and Eu(n+1)

= et∆
Eu0 − B(Eu(n), Eu(n)) (69)

and the sequence Ew(n) by

Ew(n) = Eu(n+1)
− Eu(n). (70)

Let T ∈ (0,+∞) and σ > 0. Then the following assertions are equivalent:∑
n∈N

sup
0<t<T

‖ Ew(n)(t, .)‖3 < ∞, (71)

∑
n∈N

sup
0<t<T

t
1+σ

2 ‖ Ew(n)(t, .)‖Bσ,∞∞
< ∞. (72)

Proof. We shall use the well-known inequality

‖ f g‖Bτ,∞∞
≤ Cτ‖ f ‖Bτ,∞∞

‖g‖∞ + ‖ f ‖∞‖g‖Bτ,∞∞
(73)

for τ > 0 (which is easily checked by using the decomposition of the products into paraproducts). If max(0, σ − 1) < τ < σ , we
get ∥∥∥∥∫ t

t/2
e(t−s)∆P E∇. Ef ⊗ Eg ds

∥∥∥∥
Bσ,∞∞

≤ C(1 + t)t
τ+1−σ

2 sup
t/2<s<t

(‖ f ‖Bτ,∞∞
‖g‖∞ + ‖ f ‖∞‖g‖Bτ,∞∞

), (74)

(more precisely, the high frequency term ‖(I d − S0)
∫ t

t/2 e(t−s)∆P E∇. Ef ⊗ Eg ds‖Bσ,∞∞
‖B1,∞

∞

‖ is controled by t
τ+1−σ

2 supt/2<s<t

‖(‖ f ‖Bτ,∞∞
‖g‖∞ + ‖ f ‖∞‖g‖Bτ,∞∞

)‖∞ uniformly in t , while, on the other hand, the low frequency term ‖S0
∫ t

t/2 e(t−s)∆P E∇. Ef ⊗

Eg ds‖Bσ,∞∞
‖B1,∞

∞

‖ is controled by
√

t supt/2<s<t ‖(‖ f ‖Bτ,∞∞
‖g‖∞ + ‖ f ‖∞‖g‖Bτ,∞∞

)‖∞ uniformly in t ; of course, we have
√

t + t
τ+1−σ

2 ≤ C(1 + t)t
τ+1−σ

2 for all t > 0). We have the interpolation inequality

‖ f ‖Bτ,∞∞
≤ ‖ f ‖

1−
τ
σ

∞ ‖ f ‖

τ
σ

Bσ,∞∞

. (75)

We then define:

αn = sup
0<t<T

√
t‖ Ew(n)‖∞, An = sup

0<t<T

√
t‖Eu(n)‖∞, (76)

and

βn = sup
0<t<T

t
1+σ

2 ‖ Ew(n)‖Bσ,∞∞
, Bn = sup

0<t<T
t

1+σ
2 ‖Eu(n)‖Bσ,∞∞

. (77)

We write again

Ew(n+1)(t, .) = e
t
2 ∆ Ew(n+1)(t/2, .)+ Ev(n)(t, .) (78)
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where

Ev(n)(t, .) = −

∫ t
2

0
e(

t
2 −s)∆P E∇.V (n)(t/2 + s, .) ds, (79)

and

V (n)
= Eu(n) ⊗ Ew(n) + Ew(n) ⊗ Eu(n+1). (80)

We then find (using (74) and (75))

βn+1 ≤ Cαn+1 + C(1 + T )
(
(An + An+1)α

1−
τ
σ

n β
τ
σ

n + αn(A
1−

τ
σ

n B
τ
σ

n + A
1−

τ
σ

n+1 B
τ
σ

n+1)
)
. (81)

If A = A0 +
∑

∞

p=0 αp, we find

βn+1 ≤ Cαn+1 + C(1 + T )

Aα
1−

τ
σ

n β
τ
σ
n + αn A1−

τ
σ

(
B0 +

n∑
p=0

βp

) τ
σ

 , (82)

and we conclude (through the Young inequality):

βn+1 ≤ Cαn+1 +
1
2
βn + C(A(1 + T ))

σ
σ−τ αn +

1
2
αn

(
B0 +

n∑
p=0

βp

)
+ C Aαn (83)

which is enough to grant (as in Lemma 1) that the convergence of
∑

n αn implies the convergence of
∑

n βn . Thus, we have proved
that (71) ⇒ (72).

To prove the converse, we use Kato’s theorem to get that, for some small δ > 0, we have

∞∑
n=0

sup
0<t<δ

√
t‖ Ew(n)(t, .)‖∞ < ∞, (84)

and we use the embedding Bσ,∞∞ ⊂ L∞ (for σ > 0) to get

αn ≤ sup
0<t<δ

√
t‖ Ew(n)(t, .)‖∞ + Cδ−σ/2βn (85)

which is enough to conclude that the convergence of
∑

n βn implies the convergence of
∑

n αn . �

5. Serrin’s exponents

Serrin’s theorems on uniqueness or regularity of weak solutions deals with a solution Eu which is L p
t Lq

x with 2/p +3/q = 1 [14].
When Eu is a mild solution on [0, T ] associated to Eu0 ∈ (L3)3, then Eu ∈ (L p([0, T ]), Lq)3 for 2/p + 3/q = 1 and p ≥ 3; the
fluctuation Ew = Eu − et∆

Eu0 belongs to (L p([0, T ]), Lq)3 for 2/p + 3/q = 1 (and p ≥ 2)(for a discussion of the regularity of the
fluctuation, see [15]).

This can be checked directly on the Picard–Duhamel iterates:

Theorem 4. Let Eu0 ∈ (L3(R3))3 with E∇.Eu0 = 0. Let the sequence Eu(n) be defined by

Eu(0) = et∆
Eu0 and Eu(n+1)

= et∆
Eu0 − B(Eu(n), Eu(n)) (86)

and the sequence Ew(n) by

Ew(n) = Eu(n+1)
− Eu(n). (87)

Let T ∈ (0,+∞] and p, q such that p ≥ 2 and 2/p + 3/q = 1. Then the following assertions are equivalent:∑
n∈N

sup
0<t<T

‖ Ew(n)(t, .)‖3 < ∞, (88)

∑
n∈N

‖ Ew(n)‖L p((0,T ),Lq ) < ∞. (89)
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Proof. From the Bernstein inequalities, we get the following embeddings for 2/p + 3/q = 1 and p ≥ 3:

L3
⊂ Ḃ0,3

3 ⊂ Ḃ3/q−1,3
q ⊂ Ḃ−2/p,p

q (90)

and thus

‖et∆ f ‖L p((0,+∞),Lq ) ≤ C‖ f ‖3. (91)

If 3 ≤ p < ∞, 2/p + 3/q = 1, 1/q = 1/r − 1/3, we use the L p Lq maximal regularity of the heat kernel to get∥∥∥∥∫ t

0
e(t−s)∆

√
−∆F(s, .) ds

∥∥∥∥
L p((0,T ),Lq )

≤ C‖F‖L p((0,T ),Lr ) (92)

and thus

‖B( Ef , Eg)‖L p((0,T ),Lq ) ≤ C
√

sup
0<t<T

‖ Ef ‖3 ‖ Ef ‖L p((0,T ),Lq ) sup
0<t<T

‖Eg‖3 ‖Eg‖L p((0,T ),Lq ). (93)

In the same way as for proving Theorem 1, we then write

Ew(n+1)
= B(Eu(n), Eu(n))− B(Eu(n+1), Eu(n+1)) = −B(Eu(n), Ew(n))− B( Ew(n), Eu(n+1)). (94)

We define:

αn = sup
0<t<T

‖ Ew(n)‖3, An = sup
0<t<T

‖Eu(n)‖3, (95)

and

βn = ‖ Ew(n)‖L p((0,T ),Lq ), Bn = ‖Eu(n)‖L p((0,T ),Lq ). (96)

From (93), we get

βn+1 ≤ C
√
αn

√
βn(

√
An Bn +

√
An+1 Bn+1) (97)

and thus

βn+1 ≤ C
√
αn

√
βn

√√√√A0 +

n∑
p=0

αp

√√√√B0 +

n∑
p=0

βp. (98)

Due to Lemma 1, we may conclude that the convergence (88) implies the convergence (89) when p ≥ 3.
Now, we prove the convergence (89) for 2 ≤ p < 3. It is enough to prove it for p = 2, since we have, for 2 < p < ∞ and

2/p + 3/q = 1,

‖ f ‖L p((0,T ),Lq ) ≤

(
sup

0<t<T
‖ f ‖3

)3/q

‖ f ‖
1−3/q
L2((0,T ),L∞)

≤
3
q

sup
0<t<T

‖ f ‖3 +
q − 3

q
‖ f ‖L2 L∞ . (99)

We use the Lr Ls maximal regularity for r = 3/2 and s = 9/2 and for r = 3 and s = 9/4 and we find

‖
√

−∆B( Ef , Eg)‖L3/2((0,T ),L9/2) ≤ C‖ Ef ‖L3((0,T ),L9)‖Eg‖L3((0,T ),L9), (100)

and

‖
√

−∆B( Ef , Eg)‖L3((0,T ),L9/4) ≤ C‖ Ef ‖L3((0,T ),L9) sup
0<t<T

‖Eg‖3. (101)

We use the inequality

‖ f ‖∞ ≤ C‖ f ‖
Ḃ2/3,1

9/2
≤ C ′

‖ f ‖
1/2

Ḃ1,∞
9/2

‖ f ‖
1/2

Ḃ1/3,∞
9/2

≤ C ′′
‖
√

−∆ f ‖
1/2
9/2‖

√
−∆ f ‖

1/2
9/4 (102)

and thus

‖B( Ef , Eg)‖L2((0,T ),L∞) ≤ C‖ Ef ‖L3((0,T ),L9)

√
‖Eg‖L3((0,T ),L9) sup

0<t<T
‖Eg‖3. (103)

Thus, if we define:

αn = sup
0<t<T

‖ Ew(n)‖3, An = sup
0<t<T

‖Eu(n)‖3, (104)

βn = ‖ Ew(n)‖L3((0,T ),L9), Bn = ‖Eu(n)‖L3((0,T ),L9) (105)
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and

γn = ‖ Ew(n)‖L2((0,T ),L∞), (106)

we find from (94) and (103)

γ0 ≤ C B3/2
0 A1/2

0 and γn+1 ≤ C(Bn
√
αnβn + βn

√
An+1 Bn+1), (107)

so that the convergence of
∑

n αn (and, hence, of
∑

n βn) implies the convergence of
∑

n γn .
We now prove the converse. We first notice that, for 1/r + 3/(2σ) = 1 and f ∈ Lr ((0, T ), Lσ ), we have

sup
0<t<T

‖

∫ t

0
e(t−s)∆

√
−∆ f (s, .) ds‖Ḃ−1,∞

∞

≤ C‖ f ‖Lr ((0,T ),Lσ ). (108)

This is checked by using the Littlewood–Paley decomposition: we write∥∥∥∥∆ j

∫ t

0
e(t−s)∆

√
−∆ f (s, .) ds

∥∥∥∥
∞

≤ C
∫ t

0
min

(
2 j (1+

3
σ
),

1
√

t − s1+
3
σ

)
‖ f (s, .)‖σ ds (109)

and we conclude by checking (using the equality 1 − 1/r = 3/(2σ) that∫ t

0
min

(
2

j
(

1+
3
σ

)
,

1
√

t − s1+
3
σ

) r
r−1

ds

 r−1
r

≤ C2 j . (110)

From (108), we get for 2/p + 3/q = 1

sup
0<t<T

∥∥∥∥∫ t

0
e(t−s)∆

√
−∆( f g) ds

∥∥∥∥
Ḃ−1,∞

∞

≤ C‖ f ‖L p((0,T ),Lq )‖g‖L p((0,T ),Lq ), (111)

and

sup
0<t<T

∥∥∥∥∫ t

0
e(t−s)∆

√
−∆( f g) ds

∥∥∥∥
Ḃ−1,∞

∞

≤ C‖ f ‖L p((0,T ),Lq ) sup
0<t<T

‖g(t, .)‖3. (112)

Now, we define:

αn = ‖ Ew(n)‖L p((0,T ),Lq ), An = ‖Eu(n) − et∆
Eu0‖L p((0,T ),Lq ), (113)

and

βn = sup
0<t<T

‖ Ew(n)‖Ḃ−1,∞
∞

. (114)

From (94), (111) and (112), we get

βn+1 ≤ Cαn(‖Eu0‖3 + An) ≤ Cαn

(
‖Eu0‖3 +

n∑
p=0

αp

)
. (115)

This proves the convergence of (88) (due to Theorem 2). �

Remark. We used the norm of the homogeneous space Ḃ−1,∞
∞ and not the norm of the inhomogeneous space B−1,∞

∞ as in
Theorem 2, because we wanted to include the value T = +∞ in the theorem. If we dealt with the nonhomogeneous Besov
space, we would find different exponents for t for the low frequencies and the high frequencies (see formulas (65) and (74), for
example), and we could not have results valid uniformly on (0,+∞).

Appendix. Besov spaces

In this appendix, we recall some basic facts on Besov spaces we used throughout the paper. Proofs and further references to Besov
spaces can be found in the book [6] (or in the books [16–18]). First, we introduce the well-known Littlewood–Paley decomposition
of distributions into dyadic blocks of frequencies:

Definition 1. Let ϕ0 ∈ D(R3) be a non-negative radial function such that |ξ | ≤
1
2 ⇒ ϕ0(ξ) = 1 and |ξ | ≥ 1 ⇒ ϕ0(ξ) = 0.

Let ψ0 be defined as ψ0(ξ) = ϕ0(ξ/2) − ϕ0(ξ). Let S j and ∆ j be defined as the Fourier multipliers F(S j f ) = ϕ0(ξ/2 j )F f and
F(∆ j f ) = ψ0(ξ/2 j )F f . The distribution ∆ j f is called the j-th dyadic block of the Littlewood–Paley decomposition of f .
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1344 P.G. Lemarié-Rieusset / Physica D 237 (2008) 1334–1345

For all N ∈ Z and all f ∈ S ′(R3) we have

f = SN f +

∑
j≥N

∆ j f in S ′(R3). (116)

This equality is called the Littlewood–Paley decomposition of the distribution f . If moreover limN→−∞ SN f = 0 in S ′, then the
equality

f =

∑
j∈Z

∆ j f (117)

is called the homogeneous Littlewood–Paley decomposition of f .

Then we define the Besov spaces Bs,p
q :

Definition 2. Let p, q ∈ [1,+∞] and s ∈ R.
(a) The Besov space Bs,p

q (R3) is the Banach space of distributions f ∈ S ′(R3) such that, for all j ∈ NS j f ∈ L p and such that
(2 js

‖ ∆ j f ) j∈N ∈ lq , normed with

‖ f ‖Bs,p
q

= ‖S0 f ‖p +

(
+∞∑
j=0

2 jsq
‖∆ j f ‖

q
p

)1/q

. (118)

(b) For s < 3/p, the homogeneous Besov space Ḃs,p
q (R3) is the Banach space of distributions f ∈ S ′(R3) such that

f =
∑

j∈Z∆ j f in S ′(R3) and such that, for all j ∈ Z, ∆ j f ∈ L p with (2 js
‖ ∆ j f ) j∈Z ∈ lq , normed with

‖ f ‖Ḃs,p
q

=

(
+∞∑

j=−∞

2 jsq
‖∆ j f ‖

q
p

)1/q

. (119)

We have the obvious embeddings

Bs,p
q ⊂ Ḃs,p

q for 0 < s < 3/p and Ḃs,p
q ⊂ Bs,p

q for s < 0 (120)

and

for 1 ≤ q1 ≤ q2 ≤ +∞, Bs,p
q1 ⊂ Bs,p

q2 and Ḃs,p
q1 ⊂ Ḃs,p

q2 . (121)

An important result of harmonic analysis states that

for 1 < p < +∞, Ḃ0,p
min(p,2) ⊂ L p

⊂ Ḃ0,p
max(p,2). (122)

The Bernstein inequalities on L p norms state that there exists constants C p1,p2 for 1 ≤ p1 ≤ p2 ≤ +∞ such that

for j ∈ Z and for f ∈ S ′(R3), ‖S j f ‖p2 ≤ C p1,p2 2
3 j ( 1

p1
−

1
p2
)
‖S j f ‖p1 (123)

which implies that, for 1 ≤ q ≤ +∞ and s ∈ R,

for 1 ≤ p1 ≤ p2 ≤ +∞, Bs,p1
q ⊂ B

s−3( 1
p1

−
1
p2
),p2

q and Ḃs,p1
q ⊂ Ḃ

s−3( 1
p1

−
1
p2
),p2

q . (124)

The Bernstein inequalities on derivatives state that there exists constants Cα for α ∈ N3 such that

for j ∈ Z, 1 ≤ p ≤ ∞ and for f ∈ S ′(R3),

∥∥∥∥ ∂α∂xα
S j f

∥∥∥∥
p

≤ Cα2 j |α|
‖S j f ‖p (125)

which implies that ∂α

∂xα is a bounded map from Bs,p
q to Bs−|α|,p

q and from Ḃs,p
q to Ḃs−|α|,p

q . Similarly, we find that ∂α

∂xα is a bounded

map from L∞ to Ḃ−|α|,∞
∞ .

The Riesz transforms operate boundedly on the dyadic blocks: there exists a constant C0 and constants C p for 1 < p < +∞

such that, for all j ∈ Z and all f ∈ S ′(R3), for k = 1, . . . , 3

for 1 < p < +∞, ‖Rk S j f ‖p ≤ C p‖S j f ‖p (126)

and

for 1 ≤ p ≤ +∞, ‖Rk∆ j f ‖p ≤ C0‖∆ j f ‖p. (127)

In particular, we see easily that the operator P E∇. is bounded from (L∞)3×3 to (B−1,∞
∞ )3.
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A useful criterion to check whether a distribution f belongs to a Besov space is the following one: if s > 0, 1 ≤ p ≤ +∞ and
1 ≤ q ≤ +∞, f =

∑
j∈N f j where the Fourier transforms f̂ j are supported in balls B(0,C2 j ) (where C doesn’t depend on j)

and if (2 js
‖ f j‖p) j∈N ∈ lq , then f belongs to Bs,p

q . A similar criterion holds for all s ∈ R, if we request that, for j > 0, the Fourier
transforms f̂ j are supported in coronas {ξ ∈ R3 / γ 2 j

≤ ‖ξ‖ ≤ C2 j
} (where γ > 0 doesn’t depend on j). Due to this criterion,

one is lead to split a product f g = (S0 f +
∑

j∈Z∆ j f )(S0g +
∑

j∈Z∆ j g) into pieces well localized in frequency

f g = π( f, g)+ π(g, f )+ R( f, g) (128)

where the paraproduct π( f, g) contains the terms whose frequency is determined mainly by g

π( f, g) =

+∞∑
j=2

S j−2 f ∆ j g, (129)

the paraproduct π(g, f ) similarly contains the terms whose frequency is determined mainly by f and R( f, g) is the remainder

R( f, g) = S0 f S2g + ∆0 f S3g + ∆1 f S4g +

+∞∑
j=2

+2∑
l=−2

∆ j f ∆ j+l g. (130)

This decomposition and the criterion allows one to check very easily the well-known inequality

‖ f g‖Bs,p
q

≤ Cs,p,q(‖ f ‖Bs,p
q

‖g‖∞ + ‖ f ‖∞‖g‖Bs,p
q
), (131)

for s > 0, 1 ≤ p ≤ +∞ and 1 ≤ q ≤ +∞.
Besov spaces may be characterized through the heat kernel:

Lemma 2. Let 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞ and s < 0.
(a) Let T > 0. f ∈ S ′(R3) belongs to Bs,p

q (R3) if and only if et∆ f ∈ L p for all t > 0 and t |s|/2‖et∆ f ‖p ∈ Lq((0, T ), dt
t ).

Moreover, the norm of Bs,p
q is equivalent to the norm ‖eT∆ f ‖p +

(∫ T
0 tq|s|

‖et∆
‖

q
p

dt
t

)1/q
.

(b) f ∈ S ′(R3) belongs to Ḃs,p
q (R3) if and only if et∆ f ∈ L p for all t > 0 and t |s|/2‖et∆ f ‖p ∈ Lq((0,∞), dt

t ). The norm of

Ḃs,p
q is equivalent to

(∫
+∞

0 tq|s|
‖et∆

‖
q
p

dt
t

)1/q
.
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