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Abstract

We prove that the interval on which the Picard iterates converge to a solution of the Cauchy problem for the 3D Navier—Stokes equations does
not depend on the norm in which the convergence is estimated.
© 2008 Elsevier B.V. All rights reserved.
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1. Kato’s mild solutions

_ In this paper, we consider the following Cauchy problem for the 3D Navier—Stokes equations: given o € (L*(R?)? with
V.iig = 0, find a solution # € C([0, T1, (L3 (R?))3) of the equations

0 )

where p is the (unknown) pressure, whose action is to maintain the divergence of u to be 0 (this divergence free condition expresses
the incompressibility of the fluid).

In order to solve Eq. (1), we follow Kato [1] and use the Leray—Hopf operator P which is the orthogonal projection operator on
divergence-free vector fields. We thus consider the following Navier—Stokes equations on i (¢, x):

il = Al — PV - (il ® if) 2
u(0,.) = up.
Solving the Cauchy problem associated to the initial value ¢ then amounts to solve the integral equation
t
i = ey — / eIAPY (i @ ii) ds. 3)
0
In order to solve (3), we define the bilinear operator, B, by
- ! - -
BU.B0 = [ P e s @)
0
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We then define the sequence ™ by
i =iy and "t =e'diy — BG™, u™) 5)
and the sequence w™ by
D — oD _ s (©6)
For every n € N, we have u™ e C([0, +00), (L3(R?))?) and it is well-known that for some positive 7 we have

> sup [, )3 < oo ™

neN 0<t<T

so that the sum
o
i = e'%iig+ Y w™ (8)

belongs to C([0, T], (L3(R3))3) and is a solution to the Cauchy problem (1). The solution # is then known to be smooth.

In this paper, we shall discuss the convergence of the series (8). In order to ensure the convergence of the series, one usually
works with weaker norms than the L3 norm (L3 is embedded into Besov spaces [2,3] or in the space BM O~! considered by Koch
and Tataru [4]). In order to get regularity estimates, one tries to get a contractive estimate in a new norm and this is usually done
by taking a smaller value of 7. Thus, the series Y w™ may be convergent on an interval [0, 7] which should depend on the norm
in which the terms w™ are estimated. We shall prove that the interval of convergence does not depend on most norms that are
usually used to describe Kato’s solutions. Some of those results were previously obtained in [5—7], where they were described as
persistency results.

2. Size of the solutions

In 1984, Kato [1] proved the existence of mild solutions in L?, p > 3. His construction of mild solutions relies on the fact that
the operator e=)APY is a matrix of convolutions operators (in the x variable) whose kernels K; ;(t — s, x) are controlled by

1

|K; j(t —5,x) < C—F—np—"—. )
o (WJi—=s+ [x)*
For p > 3, he used the estimate
(t-9)Ap (T 3 =35
lle PV.(f@8Ilp <Cpt—s) 2 ||f|| lelp (10)
to prove the boundedness of B on L*°([0, T], (LP)3):
- 1_3 - -
I1B(f, ) Ip < Cpt2 2 sup [ f(s, )p sup lIg(s, )p- (11)
O<s<t O<s<t
For the critical case p = 3, inequality (10) becomes
1
I VAPY.(F @ B3 < C—Ilfllsllglls (12)

(t—19)
This is a very inconvenient estimate for dealing with f and g in L>([0, T], (L?)%), since fo tds diverges at the endpoint s = .

Kato then used an idea of Weissler [8], namely to use the smoothing properties of the heat kernel (when applied to iig € (L3)3) to
search for the existence of a solution in a smaller space of mild solutions ; indeed, whereas the bilinear operator B is unbounded on
c(o, 11, (L3(R3)) ) [9], it becomes bounded on the smaller space {f e C([0, T, (LS(R3)) )/ SUPg;<T f||f(t oo < 00}.
Thus, we replace the estimate (12) (which leads to a divergent integral) by the estimates

1 IAPY.(F @ B)lls < ch||f||3f||g||w (1)

and

S o 1 1
(Z—S)A - .

e PV.(f ® <C———min| ——

I ( &)lloo s <(l‘ 5

which lead to two convergent integrals.

| - .
I£131gll3, ;ﬁ”f”ooﬁ”g”oo) (14)
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We begin by checking that the introduction of this second norm does not bear any restriction on the interval of convergence for
the series (8):

Theorem 1. Let iig € (L3(R3))3 with V.iig = 0. Let the sequence i™ be defined by

i =e%iy and @Y =iy — BG™, @) (15)
and the sequence w'™ by

o™ = o+ _ 50 (16)

Let T € (0, 400]. Then the following assertions are equivalent:

> sup 9™, )5 < oo, (17)
neN O0<t<T
Y sup Vil ™, )l < oo, (18)
neNO<t<T

Proof. In inequality (13), we have stressed on the role of the L3 norm of f and the L* norm of g, but we could as well have used
the L*> norm of f and the L3 norm of g. We change (13) in a more symmetrical inequality in f and g:

1" VAPV.(F @ D)5 < c\/_f\/||f||3||g||3f||f||oof||g||oo (19)
This gives

sup ||B<f,§>||35C\/ sup [ flls sup [IZls sup v7llflloo SUp ~7lZlloo. (20)

O<t<T O<t<T O<t<T O0<t<T 0<t<T

In order to estimate supy_; .1 ﬁ”B(f, &) loo, We write

t/2 Aws 2 t/2 1 R
/ e Pv.(f®g>||oodssc/ ——7 1 /11181l ds, e3))
0 0o (t—s)?¥
so that
02 A .
Vi / Il EPY.(f ® Dlloods < C sup [ fl3 sup [1g]ls. (22)
0 0<t<T 0<t<T

On the other hand, we have

t - o ! 7
/ 1eT9APY (7 @ 7)o ds < C/ \/_ min I|f||3||g||3, V51 Flloon/5 118l S, 23)
1/2 /2 A/t — s\/_ @ —ys) s
so that, writing
sup [ flls sup [IZll3
O<t<T O<t<T (24)
sup V7l flloo Sup v7l1glloo
O<t<T O<t<T
and
! 1 , A1
d(A) = min ,— | ds, (25)
0 /sl —ys) 1—s Xs
we get
V[ 1e9APY(f @ §)lloo ds - o0 o6

\/SUP If15 sup lIglls sup V7l flloo sup V7llglloo
0

<t<T 0<t<T 0<t<T 0<t<T
We can easily check that

sup (1) < oo. 27
A>0



P.G. Lemarié-Rieusset / Physica D 237 (2008) 1334—1345

Now, we write

@t — B(ft(”), ﬁ(")) _ B(ﬁ(’l+1), ﬁ(ﬂ+1)) — —B(ﬁ("), J)(n)) _ B(II)("), ﬁ("+1)).

We define:

ap = sup [0P]3, A, = sup [[i™];
O0<t<T O<t<T

and

Bn= sup ViMoo,  By= sup 1|i"|c.
O<t<T O<t<T

From (20), we get

Up+1 =< C\/an\/,gn(\/Aan + \/An+an+l)
and thus

n n
i1 < CVey/B, [Ao+ Y ap [Bo+ Y Bp.
p=0 p=0

Similarly, from (22) and (26), we get

Bri1 < Can(An + Ans1) + CV/nBr(AuBy + Api1Bus1)

and thus

n n n
Bn+1 < Cay, <A0+Zap>+Cﬁn\/En A()-i-ZOtp Bo-i—Zﬂp.
p=0 p=0 p=0

‘We may finish the proof, by using the following lemma: O

Lemma 1. Let (), (8,) and (€,) be three sequences of nonnegative real numbers such that:

o o0
Z Yp <00 and Zén < 00
n=0 n=0

and

VneN €1 <ynt

n
€,6n Z €p-
p=0
Then, we have

00
E €, < 00.
n=0

Proof. We write
1 1 1
€ntl1 < VYn + zen + zan ;)ep-

This gives, for ng € Nand n > no
n+1 n 1 n 1 ng ng 1 n n
SezarSneiSerifefo ) 5 ate
p=0 p=0 p=0 p=0 p=0 p=nop+1 p=0

Choosing ng such that

o0
> 8, <1/2,

n0+1

1337

(28)

(29)

(30)

€19

(32)

(33)

(34)

(35)

(36)

(37

(38)

(39)

(40)
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we get

0o 00 1 2o ng

];)ep§4<eo+pzzoyp+§pz:08ppzzoep). 41)
Thus, Lemma 1 and Theorem 1 are proved. [

Remark. If we work with the Lorentz space L>* instead of the Lebesgue space L3, then we don’t need Weissler’s trick
of using the smoothing properties of the heat kernel to get mild solutions, since the bilinear operator B is bounded on
C.([0, T1, (L>*°(R3))3) [10] (Where C, ([0, T1, (L>*°(R?))3) is the space of bounded maps from [0, T'] to (L) which are strongly
continuous on (0, T] and are *-weakly continuous at t = 0). However, we may do the same computations as in the proof of
Theorem 1 and see that the solution in C, ([0, T, (L3*°(R3))?) provided by the Picard—Duhamel iterates u™ inherits the good
behaviour of the L° norm.

3. Convergence in weaker norms

In the study of mild solutions for the Navier—Stokes equations, weaker norms than the L3 or the L norms have been introduced
to prove either existence or stability of mild solutions. The weakest norm to be controlled in order to provide existence of mild
solutions is the bmo—! norm of the initial value iz (where bmo~! is the space introduced by Koch and Tataru [4]), while stability
is described through the control of the norm of the solution i (¢, .) in the Besov space Bo_ol’oo [11] (following ideas of Kozono and
co-workers [12,13]). We recall basic definitions and facts about Besov spaces in the appendix.

Recall that f € bmo~! if and only if, for all positive T, we have

t
sup sup t_3/2/ / |eSAf|2dxds < 0. (42)
0 JB(xo.v/1)

0<r<T xpeR?
Once again, the introduction of those new norms does not bear any restriction on the interval of convergence for the series (8):
Theorem 2. Let iig € (L3(R3))3 with V.iig = 0. Let the sequence u™ be defined by
00 =ediy and @tV =e%iig — B@G™, 0 ™) 43)
and the sequence '™ by
D™ = G _ o, (44)

Let T € (0, 400). Then the following assertions are equivalent:

> sup B )l < oo, (45)
nEN0<t<T

t
> sup (VEIB ™, )l + sup ;—3/4\/ f f [ (s, x)[>dx ds | < oo, (46)
n€N0<t<T XOER3 0 B(XO;\/;)
> sup [0, )] g1 < 0. (47)
neN 0<t<T o

Remark. Assertions (45) and (47) are equivalent as well to the convergence of the series Y, cn SUPg<; <7 W™ (£, )l o1, since
we have the continuous imbeddings L3 € bmo~! C B;ol’oo.

Proof. In the same way as for proving Theorem 1, we write

@t — B(ﬁ(")’ ﬁ(")) _ B(ﬁ("+1)7 ﬁ("+1)) — _B(ﬁ(")’ 17)(")) _ B(ﬁ)("), ﬁ(nJr]))_ (48)
We define:
ap= sup [0z, A= sup @], (49)
0<t<T O<t<T
Bo= sup Villo" o,  By= sup v1[i"™ o, (50)
O<t<T O0<t<T

t
Yo = sup sup /4 // [ (s, x)|? dx ds, (51)
0<t<T xyeR3 0 JBxo.v0)
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t
Cp= sup sup /4 // [ (s, x)|? dx ds,
0<t<T xgeR3 0 JB(xg,v/1)

and

Sn=sup 0" ly100,  Dy= sup [ 10
O<t<T O<t<T

1339

(52)

(53)

The fact that (45) = (46) is obvious, since y, < Cay,. The fact that (46) = (47) is easily checked: the operator PV. is bounded

from (L%°)3*3 to (Bo_ol’oo)3, so we shall deal with L° norms. We have

)2
/ =94 £(s, )ds| < Ct73? sup / / | £ (s, x)| dx ds,
0 ~ xpeR3 B(x0./1)

and

< C sup s f(s,)loo.

00 O<s<t

t
/ =94 £(5. ) ds
/2

From (48), (54) and (55), we get

n n
Op41 = Cyu(Cy + Cpy1) + CBu(By + Buy1) < 2Cyy (CO + Z Vp) +2CBy, (B() + Z ﬂp) .
p=0

p=0

The proof that (47) = (45) is not so easy. We use the fact that, for f € Bo_ol’oo, we have

Ville'? flloo = CL+ VDI fll oo
We write
BV, ) =2 2B /2, ) + 57, ),

where

r
i@, ) = — /02 TTIAPY v (172 + 5, ) ds,
and
VO — ™ @ 5™ 4 5™ g FetD.
We then write
1B, )loo < 23DV (172, ) oo + 15 (1, )lloos

hence

I+ o
1BV (2, Dl ( f[ <"+1>( )||B_1w+\/||v<n>(z Mg 130,

Moreover, we easily check that

15® (@, Ml goroe = 10"V, ) = 2 2B @72, )] g,
hence

1B, I pore < 1BV @ Dl oo + 10TV @2, )l g1,
while, on the other hand, we have

131, )l groe < CA+VD sup IV (1, )loo,

t/2<s<t

)||Bgol,oo>.

(54)

(55)

(56)

(57

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(more precisely, it is easy to check that the high frequency term ||(/d — So)v™ (¢, .) || Bl is controled by sup, ;» ;. [V () oo

uniformly in ¢, while the low frequency term || Sov ™ (¢, .)|| ploo is controled by /f SUp; 25 |l V@ (t, )]0 uniformly in ), hence

1+ /1

15 )l g < €

O<s<t O<s<t O<s<t

< C——— sup /s ool sup V5[l floo + sup 5lli" P lec).

(66)
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Finally, we get that

Bus1 < C(1+VT)Snt1 + vSus1B0(By + But1)), (67)
and thus
But1 < CA+VT) [ 801+ [S0r1Bs (Bo +y ﬂp> : (68)
p=0

We then conclude the proof by using Lemma 1. [
4. Regularity of the solution

It is well-known that the solutions of the Navier-Stokes equations which belong to C([0, T']), (L3(R?))3 are indeed smooth on
(0, T']. This regularity is first established in the space variable, then extended to the time variable by differentiating the equations.
In the case of the Picard—-Duhamel iterates, this can be seen very easily:

Theorem 3. Let iig € (L3(R3))3 with V.iig = 0. Let the sequence ii™ be defined by

0 =ediy and @V =g — BG™, u™) (69)
and the sequence w'™ by

o™ = zot+h _ ) (70)

Let T € (0, 400) and o > 0. Then the following assertions are equivalent:

> sup 9™, )5 < oo, (71)
nEN0<t<T

3 sup 13 [B (1, ]| o < oo (72)
nEN0<t<T *®

Proof. We shall use the well-known inequality

18l < Collllgzelglloo + 1 loollg 2o (73)

for r > 0 (which is easily checked by using the decomposition of the products into paraproducts). If max(0,0 — 1) < 7 < o, we
get
T+1—

(more precisely, the high frequency term |[(Id — Sp) ft’/2 e(”S)AIP’%.f ® §ds||Bgo,oc | gioo |l is controled by 72 . SUP; 2 <5<

+l—0
=C+nr 2 sup ([ fllgzeeligloo + I1fllecllgll pzoo), (74)

B t/2<s<t

t
/ APV £  gds
t/2

||(||f||Bgéoo llglloo + ||f||oo||g||B;§<>)||oo uniformly in ¢, while, on the other hand, the low frequency term || Sy ftt/z e(t_‘)A]P’%.f ®
g ds|| gz [l g1 || is controled by Vi osupp o 1AL f gz liglloo + 11 flloollgll gzee)lloo uniformly in #; of course, we have

A+ t”éﬂ <C(l+1) e for all + > 0). We have the interpolation inequality

1-z z
£z < 1 flloe * If I g.00- (75)
We then define:
= sup VI[P oo,  Ap= sup VI[E™ |00, (76)
O<t<T O0<t<T
and
4o 4o
Bo= sup t T DM | goco, By = sup t 2 i gooo. (77)
O<t<T o O0<t<T o0

We write again

DDy = e85 D 2, ) + 5™, ) (78)
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where

t
2 -
3, ) = —/ eEIAPY VD (/2 45, ) ds, (79)
0
and
v — 5™ o p®™ L p® g G0 th, (80)
We then find (using (74) and (75))

1—-Z T - T -2
Brst = Cotart + CL+T) ((An + Ay * BT +an(An * BY + A, 7 BL,)).- 81)

IFA= A+ oo, wefind

n o
- X _z
Bt < Canp1 +CA+T) | Aay BT +a,Al ™7 (BO + Z'BP) , (82)
p=0
and we conclude (through the Young inequality):

1 o 1 1
Prot < Canst + 2+ CAU+T)T ey + Say (Bo +3 ﬂp> + CAay (83)
p=0

which is enough to grant (as in Lemma 1) that the convergence of ), «, implies the convergence of ), B,. Thus, we have proved
that (71) = (72).
To prove the converse, we use Kato’s theorem to get that, for some small § > 0, we have

o0
> sup Vil ™ (e, )lloo < o0, (84)

n=00<t<é

and we use the embedding B3™ C L™ (for o > 0) to get

ap < sup V|0, oo + CE2B, (85)

O<t<$

which is enough to conclude that the convergence of ) , B, implies the convergence of ), oz,. O
5. Serrin’s exponents

Serrin’s theorems on uniqueness or regularity of weak solutions deals with a solution % whichis LY LY with2/p+3/q = 1[14].
When i is a mild solution on [0, T'] associated to g € (L3)3, then u € (LP([0, T1), L9) for2/p +3/q = 1 and p > 3; the
fluctuation @ = ii — e'4iiy belongs to (L ([0, T1), L9)% for 2/p + 3/q = 1 (and p > 2)(for a discussion of the regularity of the
fluctuation, see [15]).

This can be checked directly on the Picard—Duhamel iterates:

Theorem 4. Let iig € (L3(R3))3 with V.iig = 0. Let the sequence i™ be defined by

00 =iy and Y = e — B@E@™, @™) (86)
and the sequence w'™ by

7™ = petD _ 50 (87)

Let T € (0, +oc] and p, q such that p > 2 and 2/p + 3/q = 1. Then the following assertions are equivalent:

Y sup 9™, )l < oo, (88)
neN 0<t<T
> 1B 0.1y, L0y < 0. (89)

neN
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Proof. From the Bernstein inequalities, we get the following embeddings for 2/p +3/g = 1 and p > 3:

L*c B c B c B (90)
and thus
1e" £l Lo, 400),L9) < ClIfI3- o1

f3<p<o00,2/p+3/q=1,1/q =1/r —1/3, we use the L? L9 maximal regularity of the heat kernel to get

t
‘ / e(IA/=AF(s, ) ds < CIFllro.1).Lr) (92)
0 LP((0,T),L9)

and thus

IB(f, ) lLro,1),L9) < C\/ sup || I3 Il fllzrco,7),09y sup 11813 118llLr(0,7),L4)- (93)

O0<t<T O0<t<T

In the same way as for proving Theorem 1, we then write

&’)(n‘l’l) — B(ﬁ(n), ﬁ(n)) _ B(l/_i(n+l), I:i(n+1)) — _B(l/‘t’(n)’ &')(n)) _ B(,J)(n)’ ﬁ(i’H‘])) (94)
We define:

an= sup 6™z,  A,= sup @™}, (95)

O<t<T O0<t<T

and

Bu = 10" | Le0,7),29) By = " e (0,7),19)- (96)

From (93), we get

,3n+1 = C\/an\/gn(\/Aan + \/An+an+1) (97)
and thus
Bui1t < CVep/B, [Ao+ D ap |Bo+ Y By (98)
p=0 p=0

Due to Lemma 1, we may conclude that the convergence (88) implies the convergence (89) when p > 3.
Now, we prove the convergence (89) for 2 < p < 3. It is enough to prove it for p = 2, since we have, for 2 < p < oo and

2/p+3/qg=1,

¥l <( £l )W LI <3 1+ 205 (99)
LP((0,T),L9) = sup 3 oy = — Sup 3 E— 2700.
0<t<T LX(O.7).L>) q 0<t<T q LoL
We use the L L® maximal regularity for » = 3/2 and s = 9/2 and for r = 3 and s = 9/4 and we find
v —AB(f, §)||L3/2((0,T)‘L9/2) = C||f||L3((0,T),L9)||§||L3((0‘T),L9)’ (100)
and
IV=4B(f. D014 = Clfllso.ry.e9) sup gl (101)
O0<t<T
We use the inequality
1/2 1/2 1/2 1/2
I flloo < CIIfIIggz;;,l < C’Ilflll-g/l,ooIIfIIB/l/s,Oo < C”IIV—Afllglelx/—Afllgf4 (102)
9/2 9/2
and thus
IBCF, D)l 2 0.1y, < CIFlL3 0.7y \/ 180 30,7729 sup N1&lIs. (103)
O<t<T
Thus, if we define:
an= sup @™z, A, = sup [, (104)
O<t<T O0<t<T

Bo =19 N 30029 Bn = 10N 130,19 (105)
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and

Vn = ||77)(n)||L2((o,T),LOO), (106)
we find from (94) and (103)

3

o < CBY? A

2
AV and  yus1 < C(Buv/@nBu + Buv/Ant1 Bar1), (107)

so that the convergence of ) «, (and, hence, of >, B,) implies the convergence of ), yy.
We now prove the converse. We first notice that, for 1/r +3/(20) = 1and f € L"((0, T), L?), we have

t
sup || [ e"VAV=AF (s, )dsll ot < CllFllLro.)Lo)- (108)
0<t<T 0 e

This is checked by using the Littlewood—Paley decomposition: we write

t
HAjf eI/ TAf(s, ) ds
0

! . 1
<c fo min (zf<1+3>, —H) 1£Gs, )llo ds (109)
S t

— 5 o
and we conclude by checking (using the equality 1 — 1/r = 3/(20) that

r—1

r —_1

t (143 1 T ' ‘

/ min (2/(1+”)7 ﬁ) ds < C2. (110)
0 Ji—s @

From (108), we getfor2/p 4+3/q =1

t
sup f e =IAYA(fg) ds < CllflliLro.1), L) gllLr0,7),L9), (111)
0<t<T IJo Bl
and
t
sup / AV A(fo)ds| < Clflerqorye sup gt i3 (112)
0<t<T /O By 0<t<T
Now, we define:
an = 0™ | Lr0.1),29), An = 0™ — 2ol Lo, 1,19 (113)
and
Bo= sup ([0 1.0 (114)
0<t<T o
From (94), (111) and (112), we get
n
But1 < Cay(lliolls + Ap) < Cary (uﬁons + Zap> : (115)
p=0

This proves the convergence of (88) (due to Theorem 2). [

Remark. We used the norm of the homogeneous space Bo_ol’oo and not the norm of the inhomogeneous space Bo_ol’oo as in
Theorem 2, because we wanted to include the value 7 = 400 in the theorem. If we dealt with the nonhomogeneous Besov
space, we would find different exponents for ¢ for the low frequencies and the high frequencies (see formulas (65) and (74), for
example), and we could not have results valid uniformly on (0, +00).

Appendix. Besov spaces

In this appendix, we recall some basic facts on Besov spaces we used throughout the paper. Proofs and further references to Besov
spaces can be found in the book [6] (or in the books [16—18]). First, we introduce the well-known Littlewood—Paley decomposition
of distributions into dyadic blocks of frequencies:

Definition 1. Let ¢y € D(R?) be a non-negative radial function such that |£] < % = @o(§) = land |§] > 1 = ¢o(§) = 0.
Let o be defined as Yo(&) = ¢o(6/2) — @o(£). Let S; and A; be defined as the Fourier multipliers 7 (S; f) = (p0(§/2j).7~"f and
F(A; f) = yo(§/2)F f. The distribution A; f is called the j-th dyadic block of the Littlewood—Paley decomposition of f.
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Forall N € Z and all f € S’'(R3) we have
f=Svf+ > Ajf inS®). (116)
j=N
This equality is called the Littlewood—Paley decomposition of the distribution f. If moreover limy_, oo Sy f = 0 in &', then the
equality
F=X 41 (117)
JEZL
is called the homogeneous Littlewood—Paley decomposition of f.
Then we define the Besov spaces B;’p :
Definition 2. Let p,g € [1, +oo] and s € R.

(a) The Besov space B;’p (IR3) is the Banach space of distributions f € S’(R?) such that, for all j € NS i f € LP and such that
(27 | Ajf)jen € 19, normed with

+00

1/q
I Fllgee = 1Sof 1l + (Zz-”anjfn%) : (118)

j=0

(b) For s < 3/p, the homogeneous Besov space B;’p (R3) is the Banach space of distributions f € &’ (R3) such that
f= ZjeZ Ajfin S’(R?) and such that, for all j € Z, Ajf e LP with (2° || A f)jez € 19, normed with

+00 1/q
£ 1 e = ( > 215‘/||Ajf||%> : (119)
j=—00
We have the obvious embeddings
By ¢ ByP for0<s<3/p and By’ c By? fors <0 (120)
and
forl <q1 <gq» <+oo, By’ c By’ and By’ c By (121)

An important result of harmonic analysis states that

-0’p .0’p
for1 < p < +o0, Bmin(p,Z) cL?C Bmax(p’z). (122)

The Bernstein inequalities on L” norms state that there exists constants C,, p, for 1 < p; < py < 400 such that

(L _ 1
for j € Zand for f € S'(R*), |IS;fllp, < Cm,mf“m ”2)||ij||p1 (123)

which implies that, for 1 < g < 4+ocoands € R,

s=3(L—-L)p . Ls=3(E—-L)p
forl <p <py<-4oo, By cB, " 7 and B cB, " (124)
The Bernstein inequalities on derivatives state that there exists constants Cy, for @ € N° such that
a“ ;
for j € Z,1 < p < ooand for f € S'(R?), H ; —Sif| < Ca2/NS £l (125)
X

p

which implies that - is a bounded map from By” to B;_M’p and from By to B;_‘al’p . Similarly, we find that 25 is a bounded

oo p—le],00
map from L™ to By .
The Riesz transforms operate boundedly on the dyadic blocks: there exists a constant C and constants Cj, for 1 < p < +00
such that, forall j € Zand all f € S'(R?), fork=1,...,3

for1 < p<-+oo, [RiS;fllp <CpllSifly (126)
and
forl1 < p <+oo, [RcA;fllp <Colld;flp- (127)

In particular, we see easily that the operator PV. is bounded from (L*®)3*3 to (Bo_ol’oo)3.
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A useful criterion to check whether a distribution f belongs to a Besov space is the following one: if s > 0,1 < p < 400 and
1 <g<+o0, f=) jeN fj where the Fourier transforms f ;i are supported in balls B(0, C 2/) (where C doesn’t depend on ;)

and if (215||f] lp)jen € 19, then f belongs to B, P A similar criterion holds for all s € R, if we request that, for j > 0, the Fourier

transforms f ; are supported in coronas {§ € R3 / y2/ < ||E|| < C2/} (where y > 0 doesn’t depend on j). Due to this criterion,
one is lead to split a product fg = (Sof + >_ jez Ajf)(Sog+> 5 jez A g) into pieces well localized in frequency

feg=n(f, 8 +n(g, f)+R(f 8 (128)

where the paraproduct 7 (f, g) contains the terms whose frequency is determined mainly by g

+00
m(f.8) =Y SiafAjsg. (129)
=2
the paraproduct 7 (g, f) similarly contains the terms whose frequency is determined mainly by f and R(f, g) is the remainder
+oo 42
R(f.8) =S0fSa8+ AofS3g+ AifSag+ Y > AjfAjug. (130)
j=21=-2

This decomposition and the criterion allows one to check very easily the well-known inequality

I7glgsr = Cs,p.q UL flIgsrllglloo + N loollgl gsr), (131)

fors >0,1<p<+ocand1 <qg < +o0.
Besov spaces may be characterized through the heat kernel:

Lemma2. Let]1 < p <400, 1 <g<+ooands <O.
@) Let T > 0. f € S'(R?) belongs to By" (R3) if and only if €2 f € LP forallt > 0 and t*V2|e'2 f|, € LI((0,T), %)

1/q
Moreover, the norm of By" is equivalent to the norm ||eTAf||[7 + <fOT 1l er A ||;I,%)

() f € S'(R?) belongs to B;’p(R3) ifand only if &2 f € L? forallt > 0 and t‘s|/2||e’Af||p € L7((0, 00), &). The norm of

. /q
s,p - . +o00 dt
By'? is equivalent to (fo 1451)|et 4 IIC;,T)
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