
The Navier–Stokes equations in the critical Morrey–Campanato space.

Pierre Gilles LEMARIÉ–RIEUSSET
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The classical Navier-Stokes equations describe the motion of a Newtonian fluid; we
consider only the case when the fluid is viscous, homogeneous, incompressible and fills the
entire space and is not submitted to external forces; then, the equations describing the
evolution of the motion ~u(t, x) of the fluid element at time t and position x are given by:

(1)

 ρ ∂t~u = µ ∆~u− ρ (~u.~∇) ~u− ~∇p

~∇.~u = 0

ρ is the (constant) density of the fluid, and we may assume with no loss of generality
that ρ = 1. µ is the viscosity coefficient, and we may assume as well that µ = 1. p
is the (unknown) pressure, whose action is to maintain the divergence of ~u to be 0 (this
divergence free condition expresses the incompressibility of the fluid).

We shall use the scaling property of equations (1). When (~u, p) is a solution on
(0, T )× IR3 of the Cauchy problem associated to equations (1) and initial value ~u0, then,
for every λ > 0 and every x0 ∈ IR3,

(λ~u(λ2t, λ(x− x0)), λ2p(λ2t, λ(x− x0)))

is a solution on (0, λ−2T )× IR3 of the Cauchy problem with initial value λ~u0(λ(x− x0)).
Therefore, we shall consider the Cauchy problem with initial value in a critical shift-
invariant Banach space : we shall require that ~u0 ∈ B3 where B is a Banach space of
distributions such that, for every λ > 0 and every x0 ∈ IR3 and for every f ∈ B, we
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have ‖f(x − x0)‖B = ‖f‖B and λ‖f(λx)‖B = ‖f‖B . If we require moreover that B is
continuously embedded in the space of locally square integrable functions, then B must
be embedded into the homogeneous Morrey–Campanato space Ṁ2,3 which will play a
prominent part throughout the paper.

1. The Navier–Stokes equations in the critical Morrey–Campanato space.

In order to solve equations (1), we use the Leray–Hopf operator IP which is the ortho-
gonal projection operator on divergence-free vector fields. We thus consider the following
Navier–Stokes equations on ~u(t, x), t ∈ (0,∞), x ∈ IR3 :

(2)

 ∂t~u = ∆~u− IP~∇ · (~u⊗ ~u)

~∇.~u = 0

(Every solution of (2) is a solution of (1). Conversely, under the restriction that ~u vanishes
at infinity in a weak sense, every solution of (1) is a solution of (2); see [FURLT 00] or
[LEM 02]). Solving the Cauchy problem associated to the initial value ~u0 then amounts
to solve the integral equation

(3) ~u = et∆~u0 −
∫ t

0

e(t−s)∆IP~∇.(~u⊗ ~u) ds.

In order to solve (3), we define the bilinear operator B by

(4) B(~u,~v)(t) =
∫ t

0

e(t−s)∆IP~∇.(~u⊗ ~v) ds.

We are going to describe the solutions of (3) when ~u0 belongs to the homogeneous
Morrey–Campanato space Ṁ2,3.

Definition 1 :
For 1 < p ≤ q <∞, the homogeneous Morrey–Campanato space Ṁp,q(IR3) is defined

as the space of locally p-integrable functions f such that

(5) sup
x0∈IR3

sup
0<R<∞

R3(1/q−1/p)(
∫
|x−x0|<R

|f(x)|p dx)1/p <∞;

the predual of Ṁp,q is then the space of functions f which may be decomposed as a se-
ries

∑
n∈IN λnfn with fn supported by a ball B(xn, Rn) with Rn > 0, fn ∈ Lp/(p−1),

‖fn‖p/(p−1) ≤ R
3(1/q−1/p)
n and

∑
n∈IN |λn| <∞.
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For p = 1 ≤ q <∞, the homogeneous Morrey–Campanato space Ṁ1,q(IR3) is defined
as the space of locally bounded measures µ such that

(6) sup
x0∈IR3

sup
0<R<∞

R3( 1
q−1)|µ|(B(x0, R)) <∞;

the predual of Ṁp,q is then the space of functions f which may be decomposed as a series∑
n∈IN λnfn with fn supported by a ball B(xn, Rn) with Rn > 0, fn continuous, ‖fn‖∞ ≤

R
3(1/q−1)
n and

∑
n∈IN |λn| <∞.

When the initial value ~u0 belongs to (Ṁ2,3)3, we may search for a solution in two
ways : either we use the formalism of mild solutions introduced by Kato in the study of
solutions on Lebesgue spaces [KAT 84], or we use a mollification of the equations and then
construct a weak solution through energy estimates and compactnes criteria (a process
introduced by Leray in the study of solutions in L2 [LER 34]).

We then have the following result :

Theorem 1 :
Let ~u0 ∈ (Ṁ2,3(IR3))3 with ~∇.~u0 = 0. Then the fixed-point problem

(7) ~u = et∆~u0 −
∫ t

0

e(t−s)∆IP~∇.(~u⊗ ~u) ds

can be solved in the following three cases :
(A) Local mild solution for a regular initial value :

If ~u0 belongs more precisely to (M̃2,3)3, where M̃2,3 is the closure of D(IR3) in Ṁ2,3,
then there exists a positive T = T (~u0) such that the sequence ~u(n) defined by

(8) ~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n))

remains bounded in the space (ET )3 where ET is defined as

f ∈ ET ⇔f ∈ L2
loc((0, T )×IR3), sup

0<t<T
t1/4‖f(t, .)‖Ṁ4,6 <∞ and sup

0<t<T
t1/2‖f(t, .)‖∞ <∞

and normed by

‖f‖ET
= sup

0<t<T
t1/4‖f(t, .)‖Ṁ4,6 + sup

0<t<T
t1/2‖f(t, .)‖∞.

Moreover, the sequence ~u(n) converges in (ET )3 to a solution ~u of (7) which belongs to
C([0, T ], (Ṁ2,3)3).
(B) Global mild solution for a small initial value :

There exists a positive constant ε0 such that when ~u0 belongs to (Ṁ2,3)3 with

‖~u0‖Ṁ2,3 ≤ ε0,
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then the sequence ~u(n) defined by

~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n))

remains bounded in the space (E∞)3 where E∞ is defined as

f ∈ E∞ ⇔f ∈ L2
loc((0,+∞)× IR3), sup

0<t
t1/4‖f(t, .)‖Ṁ4,6 <∞ and sup

0<t
t1/2‖f(t, .)‖∞ <∞

and normed by
‖f‖E∞ = sup

0<t
t1/4‖f(t, .)‖Ṁ4,6 + sup

0<t
t1/2‖f(t, .)‖∞.

Moreover, the sequence ~u(n) converges in (E∞)3 to a solution ~u of (7) which satisfies
sup0<t ‖~u(t, .)‖Ṁ2,3 <∞.
(C) Global weak solution for a general initial value :

Let ω ∈ D(IR3) with ω ≥ 0 and
∫
IR3 ω dx = 1 ; then the mollified equations are given

for ε > 0 by

(9)

 ∂t~u = ∆~u− IP~∇.((~u ∗ ωε)⊗ ~u)
~∇.~u = 0

~u(0, .) = ~u0

where ωε = 1
ε3ω(x

ε ). The equations (9) have a unique global solution ~uε such that

(10) sup
x0∈IR3, R>0, t>0

1
R+

√
t

∫
‖x−x0‖<R

|~uε(t, x)|2 dx <∞.

We have moreover

(11) sup
ε>0

sup
x0∈IR3, R>0, t>0

1
R+

√
t

∫
‖x−x0‖<R

|~uε(t, x)|2 dx <∞.

and

(12) sup
ε>0

sup
x0∈IR3, t>0

1√
t

∫ t

0

∫
‖x−x0‖<

√
t

|~∇⊗ ~uε(s, x)|2 ds dx <∞.

There exists a sequence (εk)k∈IN (depending on ~u0) such that εk decreases to 0 and ~uεk

converges strongly in L2
loc((0,∞) × IR3) to a solution ~u of (7). Moreover, this solution

satisfies the local energy inequality : the pressure p such that

∂t~u = ∆~u− ~∇.(~u⊗ ~u)− ~∇p for all φ ∈ D(Q)

may be chosen in L3/2
loc ((0,∞)× IR3)) and such that for all φ ∈ D((0,∞)× IR3) with φ ≥ 0

we have

(13) 2
∫∫

|~∇⊗ ~u|2φ dx dt ≤
∫∫

|~u|2(∂tφ+ ∆φ) dx dt+
∫∫

(|~u|2 + 2p)(~u.~∇)φ dx dt.
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We discuss the proof of points (A) and (B) in Section 2, and the proof of point (C) in
Section 3. Whereas points (A) and (B) are classical (they were first proved, in the setting
of Morrey–Campanato spaces, by Kato [KAT 92]; see also [TAY 92], [FED 93] and [CAN
95]), point (C) may appear new (it is however a straightforward consequence of the theory
of weak solutions in L2

uloc developed in [LEM 02]).

2. Mild solutions for the Navier–Stokes equations.

In the formalism of mild solutions, we try to solve (7) by the fixed-point algorithm :
~u = limn→∞ ~u(n) with ~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n)).

The resolution of this fixed-point problem is based on a general tool for multilinear
equations in a Banach space :

Lemma 1 :
Let E be a Banach space and T a bounded bilinear operator on E

(14) ‖T (x, y)‖E ≤ C0‖x‖E‖y‖E .

Let x0 ∈ E with ‖x0‖E < 1
4C0

. Then, the equation x = x0 + T (x, x) has at least one
solution. More precisely, it has one unique solution x ∈ E such that ‖x‖E ≤ 1

2C0
.

This lemma is straightfoward, since the mapping x 7→ x0+T (x, x) is then a contraction
on the closed ball B̄(0, ‖x0‖E + 1

4C0
). We may remark that the existence and uniqueness

result holds in the closed ball [AUST 99], [LEM 02], [LEM 05] (even though the mapping
x 7→ x0+T (x, x) is no longer a contraction) and can be extended to more general multilinear
operators [LEM 05] :

Lemma 2 :
Let k ≥ 2. Let E be a Banach space and Tk be a bounded k-linear operator on E

‖Tk(x1, . . . , xk)‖E ≤ C0‖x1‖E . . . ‖xk‖E .

Let

(15) rk = (C0k)−
1

k−1
k − 1
k

and Rk =
k

k − 1
rk.

Let Bk be the closed ball Bk = B̄(0, Rk). If x0 ∈ E with ‖x0‖E ≤ rk, then the equation
x = x0 + Tk(x, . . . , x) has at least one solution. More precisely, it has one unique solution
x∞ in Bk.
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We may moreover precise the speed of convergence of the Picard-Duhamel approxi-
mation of x∞ [LEM 05]:

Lemma 3 :
Under the assumptions of Lemma 2, let xn be defined from x0 by xn+1 = x0 +

Tk(xn, . . . , xn). If ‖x0‖E ≤ rk, then we have

(16) lim sup
n→∞

n2‖xn+1 − xn‖E ≤ 2Rk

k − 1
.

Of course, if ‖x0‖E < rk, the rate of convergence is much better (exponentially de-
creasing, due to contractivity : ‖xn+1 − xn‖E ≤ (‖x0‖E

rk
)(n+1)(k−1)‖x0‖E).

We now come back to the Navier–Stokes equations. The construction of mild solutions
relies on the fact that the operator e(t−s)∆IP~∇ is a matrix of convolutions operators (in
the x variable) whose kernels Ki,j(t− s, x) are controlled by

|Ki,j(t− s, x)| ≤ C
1

(
√
t− s+ ‖x‖)4

.

In 1984, Kato [KAT 84] proved the existence of mild solutions in Lp, p ≥ 3. For p > 3, he
used the estimate

(17) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖p ≤ Cp(t− s)−
1
2−

3
2p ‖~u‖p‖~v‖p

to prove the boundedness of B on L∞([0, T ], (Lp)3) :

(18) ‖B(~u,~v)(t, .)‖p ≤ Cpt
1
2−

3
2p sup

0<s<t
‖~u(s, .)‖p sup

0<s<t
‖~v(s, .)‖p.

For the critical case p = 3, inequality (17) becomes

(19) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖3 ≤ C
1

(t− s)
‖~u‖3‖~v‖3.

This is a very unconvenient estimate for dealing with ~u and ~v in L∞([0, T ], (L3)3), since∫ t

0
ds

t−s diverges both at the endpoints s = 0 and s = t. Kato then used an idea of Weissler
[WEI 81], namely to use the smoothing properties of the heat kernel (when applied to ~u0 ∈
(L3)3) to search for the existence of a solution in a smaller space of mild solutions ; indeed,
whereas the bilinear operator B is unbounded on C([0, T ], (L3(IR3))3) [ORU 98], it becomes
bounded on the smaller space {~f ∈ C([0, T ], (L3(IR3))3) / sup0<t<T

√
t‖~f(t, .)‖∞ < ∞}.

Thus, we replace the estimate (19) (which leads to a divergent integral) by the estimates

(20) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖3 ≤ C
1√

t− s
√
s
‖~u‖3

√
s‖~v‖∞
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and

(21) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖∞ ≤ C
1√
t− s

min(
1

(t− s)
‖~u‖3‖~v‖3,

1
s

√
s‖~u‖∞

√
s‖~v‖∞)

which lead to two convergent integrals.

In the same way, in order to construct mild solutions in Ṁ2,3, one uses the smoothing
properties of the heat kernel :

(22) sup
t>0

√
t ‖et∆~u0‖∞ ≤ C‖~u0‖Ṁ2,3 .

From (22), we find as well that

(23) ‖et∆~u0‖Ṁ4,6 ≤
√
‖et∆~u0‖Ṁ2,3‖et∆~u0‖∞ ≤

√
Ct−1/4‖~u0‖Ṁ2,3 .

Thus,
(
et∆~u0

)
0<t<T

belongs to the space (ET )3 defined in Theorem 1, point (A) (T <∞)
or point (B) (T = ∞). Then, the proof of points (A) and (B) relies on the estimates

(24) ‖e(t−s)∆IP~∇.(~u⊗ ~v)‖Ṁ4,6 ≤ C
1

(t− s)1/2 s3/4
s1/4‖~u‖Ṁ4,6 s

1/2‖~v‖∞

and

(25) ‖e(t−s)∆IP~∇.(~u⊗~v)‖∞ ≤ C
1√
t− s

min(
s1/4‖~u‖Ṁ4,6s1/4‖~v‖Ṁ4,6√

t− s
√
s

,

√
s‖~u‖∞

√
s‖~v‖∞

s
)

which prove that the bilinear operator B is bounded on (ET )3 :

(26) ‖B(~u,~v)‖ET
≤ C0‖~u‖ET

‖~v‖ET

where C0 does not depend on T ∈ (0,+∞]. Since we have

(27) ‖et∆~u0‖ET
≤ C‖~u0‖Ṁ2,3

and

(28) lim
T→0

‖et∆~u0‖ET
= 0 when ~u0 ∈ (M̃2,3)3,

we get the convergence of ~u(n) in (ET )3 when ‖et∆~u0‖ET
≤ 1

4C0
, i.e. when ~u0 is small

(T = +∞) or when ~u0 is regular and T is small enough. Moreover, B is obviously bounded
from (ET )3 × (ET )3 to (L∞((0, T ), Ṁ2,3)3. Thus, the convergence of ~u(n) to a solution ~u
holds as well in the norm of (L∞(Ṁ2,3)3 as in the norm of (ET )3. Moreover, when ~u0 is
regular, it is easy to check by induction on n that ~u(n) belongs to the space

{~f ∈ (ET )3 / lim
t→0

t1/4‖~f‖Ṁ4,6 = lim
t→0

t1/2‖~f‖∞ = 0} ∩ C([0, T ], (M̃2,3)3)
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which is closed in (ET )3 ∩ (L∞(Ṁ2,3)3. Thus, one gets the proof of points (A) and (B) of
Theorem 1.

3. Maximal solutions.

The Navier–Stokes equations are locally well-posed in L∞, since the bilinear operator
B is bounded on (FT )3, where FT is defined as

f ∈ FT ⇔f ∈ L2
loc((0, T )× IR3) and sup

0<t<T
‖f(t, .)‖∞ <∞

and normed by
‖f‖FT

= sup
0<t<T

‖f(t, .)‖∞.

We easily can check that

(29) ‖B(~u,~v)(t, .)‖∞ ≤ C0t
1
2 sup

0<s<t
‖~u(s, .)‖∞ sup

0<s<t
‖~v(s, .)‖∞.

so that, by lemma 1 or 2, we may conclude that the Navier–Stokes equations associated
to ~u0 ∈ (L∞)3

(30) ~u = et∆~u0 −
∫ t

0

e(t−s)∆IP~∇.(~u⊗ ~u) ds

has a (unique) mild solution in (FT )3 with

(31) T =
1

(4C0‖~u0‖∞)2
.

Thus, the solution described in point (A) of Theorem 1 can be continued on a maximal
interval [0, T ∗), with

(32) T ∗ = +∞ or lim inf
t→T∗

√
T ∗ − t‖~u(t, .)‖∞ >

1
4C0

.

This maximal solution remains in Ṁ2,3 :

Proposition 1 :
Let ~u0 ∈ (M̃2,3)3 and let ~u be the maximal continuation in L∞loc((0, T

∗), (L∞)3) of the
mild solution associated to ~u0 by Theorem 1. Then, ~u ∈ C([0, T ∗), (M̃2,3)3).

This is a direct consequence of Theorem 1. Indeed, if T < T ∗ is such that ~u ∈
C([0, T ), (M̃2,3)3) and if δ ∈ (0, T ), then ~u is uniformly bounded on [δ, T ]; moreover, we
have, for t ∈ [δ, T ],

(33) ~u(t, .) = e(t−δ)∆~u(δ, .)−
∫ t

δ

e(t−s)∆IP~∇.(~u⊗ ~u) ds,

8



hence

(34) ‖~u(t, .)‖Ṁ2,3 ≤ ‖~u(δ, .)‖Ṁ2,3 + C sup
δ≤s≤T

‖~u(s, .)‖∞
∫ t

δ

1
(t− s)

‖~u(s, .)‖Ṁ2,3 ds

and the Gronwall lemma shows that the norm ‖~u(t, .)‖Ṁ2,3 remains bounded as t→ T . If
0 < t0 < T , the Kato algorithm provides a mild solution in C([t0, t0 + t1], (M̃2,3)3) where
t1 is such that, for a positive constant ε0,

sup
0<t<t1

t1/4‖et∆~u(t0, .)‖Ṁ4,6 + t1/2‖et∆~u(t0, .)‖∞ ≤ ε0,

hence, at least, for t1 such that

t
1/4
1

√
‖~u(t0, .)‖Ṁ2,3‖~u(t0, .)‖∞ + t

1/2
1 ‖~u(t0, .)‖∞ ≤ ε0,

while the same Kato algorithm provides a mild solution in L∞([t0, t0 + t2], (L∞)3) where
t2 is such that, for a positive constant ε1,

t
1/2
2 ‖~u(t0, .)‖∞ ≤ ε1.

Moreover, by uniqueness in L∞([t0, t0 + t2], (L∞)3), this mild solution coincides withthe
maximal solution ~u. Thus, we may conclude that ~u remains in C([0, t0+inf(t1, t2)), (M̃2,3)3)
and that we may choose t0 such that t0 + inf(t1, t2) > T . This proves Proposition 1.

4. Global weak solutions for the Navier–Stokes equations.

The proof of Point (C) in Theorem 1 is based on some local energy estimates for the
solution of the mollified equations

(35− ε)

 ∂t~uε = ∆~uε − IP~∇.((~uε ∗ ωε)⊗ ~uε)
~∇.~uε = 0

~uε(0, .) = ~u0

These estimates are described in [LEM 02] in the study of the Navier–Stokes equations in
L2

uloc, where L2
uloc is the space of uniformly locally square integrable functions :

f ∈ L2
uloc ⇔ sup

x0∈IR3

∫
‖x−x0‖<1

|f(x)|2 dx <∞

normed with

‖f‖L2
uloc

= sup
x0∈IR3

√∫
‖x−x0‖<1

|f(x)|2 dx.

We recall the main result proved in [LEM 02] :
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Proposition 2 :
Let ~u0 ∈ (L2

uloc(IR
3))3 be such that ~∇.~u0 = 0. Define α0 = ‖~u0‖L2

uloc
and α1 =

min(1, α0). Then, there exists a positive constant C0 (which does not depend on ~u nor on
ε) such that the equations (35−ε) have a solution ~uε on (0, T0)×IR3 with T0 = min(1, α2

1
α2

0C4
0
)

and such that for all 0 < t < T0 we have

(36) ‖~uε(t, .)‖L2
uloc

≤
√
C0‖~u0‖L2

uloc

(
1− α2

0C
4
0

α2
1

t
)−1/4

and

(37) sup
x0∈IR3

∫ t

0

∫
‖x−x0‖<1

|~∇⊗ ~uε(s, x))|2 dx ds ≤ C0‖~u0‖2L2
uloc

(
1− α2

0C
4
0

α2
1

t
)−1/2

.

We now use the scaling property of the Navier–Stokes equations. When ~vε is a solution
on (0, T )× IR3 of the Cauchy problem associated to equations (35− ε) and initial value ~v0,
then, for every λ > 0, λ~vε(λ2t, λx) is a solution on (0, λ−2T )× IR3 of the Cauchy problem
associated to equations (35 − ε

λ ) with initial value λ~v0(λx). We now use the following
points :
- we have uniqueness of the solutions of (35− ε) in the space L∞((L2

uloc)
3)

- the constant C0 in Proposition 2 does not depend on ε
- when u ∈ Ṁ2,3, then supλ>0 ‖λu(λx)‖L2

uloc
= ‖u‖Ṁ2,3 .

Thus, applying Proposition 2 to λ~u0(λx) and to equations (35− ε
λ ), we find a solution

~v ε
λ

defined on (0, T0) where T0 depends only on ‖~u0‖Ṁ2,3 and not on ε nor λ, hence the
solution ~uε of (35 − ε) associated to ~u0 satisfies ~uε = 1

λ~v ε
λ
( t

λ2 ,
x
λ ), hence is defined on

(0, λ2T0) and satisfies for all 0 < t < λ2T0

(38) sup
x0∈IR3

∫
‖x−x0‖<λ

|~uε(t, x)|2 dx ≤ C0λ‖λu0(λx)‖2L2
uloc

(
1− α2

0C
4
0

α2
1λ

2
t
)−1/2

and

(39) sup
x0∈IR3

∫ t

0

∫
‖x−x0‖<λ

|~∇⊗ ~uε(s, x))|2 dx ds ≤ C0λ‖λu0(λx)‖2L2
uloc

(
1− α2

0C
4
0

α2
1λ

2
t
)−1/2

.

Since ~uε is defined on (0, λ2T0) for every positive λ, ~uε is defined on (0,+∞). Moreover,
we may estimate

∫
‖x−x0‖<R

|~uε(t, x)|2 dx by using (38) : if t ≤ 1
4R

2T0, then∫
‖x−x0‖<R

|~uε(t, x)|2 dx ≤ C0R‖Ru0(Rx)‖2L2
uloc

(
1− α2

0C
4
0

α2
1R

2
t
)−1/2 ≤ 2C0R‖u0‖2Ṁ2,3 ,

while if t ≥ 1
4R

2T0 we have∫
‖x−x0‖<R

|~uε(t, x)|2 dx ≤
∫
‖x−x0‖<

√
4t
T0

|~uε(t, x)|2 dx ≤ 2C0

√
4t
T0
‖u0‖2Ṁ2,3 .

10



Thus, we have proved

(40) sup
ε>0

sup
x0∈IR3, R>0, t>0

1
R+

√
t

∫
‖x−x0‖<R

|~uε(t, x)|2 dx <∞.

and we get similarly

(41) sup
ε>0

sup
x0∈IR3, t>0

1√
t

∫ t

0

∫
‖x−x0‖<

√
t

|~∇⊗ ~uε(s, x)|2 ds dx <∞.

Those estimates then allows one to use the limiting process of Leray [LER 34] to extract a
subsequence ~uεn that is convergent to a solution ~u of the Navier-Stokes equations associated
to ~u0. More precisely, when εn converges to 0, we have for all φ ∈ D((0, T0) × IR3)
strong convergence of φ~uε in Lp((0, T0), (L2)3) for all p < ∞ and weak convergence in
L2((0, T0), (H1)3)). The details of the proof (and the proof of the local energy inequality)
are exactly similar to the case of weak solutions in L2

uloc [LEM 02].

5. Comparison of weak and mild solutions.

If ~u0 ∈ (M̃2,3)3, we have a maximal regular solution which is described by Point (A)
of Theorem 1 and Proposition 1, and global weak solutions which are described by Point
(C) if Theorem 1. As a matter of fact, those solutions coincide on the domain of definition
of the regular solution. We have more precisely the following convergence theorem :

Theorem 2 :
Let ~u0 ∈ (M̃2,3)3 and let ~u be the maximal continuation in L∞loc((0, T

∗), (L∞)3) of the
mild solution associated to ~u0 by Theorem 1, and let ~uε be the solution of the mollified
equations (9). Then, for every T ∈ (0, T ∗), there exists a positive εT such that, for every
ε ∈ (0, εT ), ~uε ∈ C([0, T ], (M̃2,3)3) and moreover, we have

(42) lim
ε→0

‖~u− ~uε‖C([0,T ],(M̃2,3)3) = 0.

Indeed, we have, for any positive θ,

(43) ‖B(~u,~v)‖Eθ
≤ C0‖~u‖Eθ

‖~v‖Eθ

and

(44) ‖B(~u ∗ ωε, ~v)‖Eθ
≤ C0‖~u ∗ ωε‖Eθ

‖~v‖Eθ
≤ C0‖~u‖Eθ

‖~v‖Eθ

where the positive constant C0 does not depend on θ. If ~v0 ∈ (M̃2,3)3) satisfies the inequal-
ity ‖et∆~v0‖Eθ

≤ 1
4C0

, then the Kato algorithm provides a mild solution in C([0, θ], (M̃2,3)3)
of the Navier-Stokes equations or of the mollified Navier–Stokes equations associated to

11



the initial value ~v0. By compactness of [0, T ], hence of the set {~u(t, .) / 0 ≤ t ≤ T} in
(M̃2,3)3, there exists a positive θ such that

(45) sup
0≤t≤T

‖es∆~u(t, .)‖Eθ
≤ 1

16C0

Now, we are going to show that, if t0 ∈ [0, T ], if ~uε(t0, .) ∈ (M̃2,3)3 for 0 < ε < ε(t0)
and limε→0 ‖~u(t0, .) − ~uε(t0, .)‖Ṁ2,3 = 0, then there exists a positive η(t0) such that, for
0 < ε < η(t0), ~uε ∈ C([t0, t0 + θ], (M̃2,3)3) and

lim
ε→0

‖~u− ~uε‖C([t0,t0+θ],(M̃2,3)3) = 0.

Since θ does not depend on t0, we shall have proved the theorem.
Since limε→0 ‖~u(t0, .)− ~uε(t0, .)‖Ṁ2,3 = 0, we find that

lim
ε→0

‖et∆~u(t0, .)− et∆~uε(t0, .)‖Eθ
= 0.

Thus, there exists a positive η(t0) such that, for 0 < ε < η(t0), ‖et∆~uε(t0, .)‖Eθ
≤ 1

8C0
. This

proves that, for 0 < ε < η(t0), ~uε ∈ C([t0, t0 + θ], (M̃2,3)3), with ‖~uε(t0 + t, .)‖Eθ
≤ 1

4C0
.

Now, for 0 ≤ t ≤ θ, we define ~w(t, .) = ~u(t0 + t, .) and ~wε(t, .) = ~uε(t0 + t, .); we have

~wε(t, .)− ~w(t, .) = et∆(~uε(t0, .)− ~u(t0, .))
+B(~w, ~w − ~wε) +B((~w − ~wε) ∗ ωε, ~wε) +B(~w − (~w ∗ ωε), ~wε)

which gives

‖~wε(t, .)− ~w(t, .)‖Eθ
≤ ‖et∆(~uε(t0, .)− ~u(t0, .))‖Eθ

+C0‖~w‖Eθ
‖~w − ~wε‖Eθ

+ C0‖(~w − ~wε) ∗ ωε‖Eθ
‖~wε‖Eθ

+C0‖~w − ~w ∗ ωε‖Eθ
‖~wε‖Eθ

≤ C‖~uε(t0, .)− ~u(t0, .)‖Ṁ2,3

+C0
1

4C0
‖~w − ~wε‖Eθ

+ C0‖~w − ~wε‖Eθ

1
4C0

+C0‖~w − ~w ∗ ωε‖Eθ

1
4C0

and finally

(46) ‖~wε(t, .)− ~w(t, .)‖Eθ
≤ 2C‖~uε(t0, .)− ~u(t0, .)‖Ṁ2,3 +

1
2
‖~w − ~w ∗ ωε‖Eθ

.

The operators f 7→ f ∗ ωε are equicontinuous on Eθ and when ϕ ∈ D([0, θ] × IR3) the
functions ϕ∗ωε converge to ϕ in D (hence in Eθ) as ε goes to O. Moreover, ~w belongs to the
closure of (D([0, θ]× IR3))3 in (Eθ)3. Thus, we have limε→0 ‖~w− ~w ∗ωε‖Eθ

= 0. Finally, we
get limε→0 ‖~wε(t, .)− ~w(t, .)‖Eθ

= 0, which proves that limε→0 ‖~u−~uε‖C([t0,t0+θ],(M̃2,3)3) = 0.

6. The condition limt→0

√
t‖~u‖∞ = 0.

12



The results described above may be partially extended to the case when ~u0 /∈ (M̃2,3)3,
provided that we assume that ~u0 ∈ (Ṁ2,3)3 and limt→0

√
t‖et∆~u0‖∞ = 0. Under those

assumptions, we have the following results :
i) local existence : there exists a positive T = T (~u0) such that the sequence ~u(n) defined
by

~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n))

remains bounded in the space (ET )3 where ET is defined as

f ∈ ET ⇔f ∈ L2
loc((0, T )×IR3), sup

0<t<T
t1/4‖f(t, .)‖Ṁ4,6 <∞ and sup

0<t<T
t1/2‖f(t, .)‖∞ <∞

Moreover, the sequence ~u(n) converges in (ET )3 to a solution ~u of (7) which belongs to
C([0, T ], (Ṁ2,3)3) and satisfies limt→0

√
t‖~u‖∞ = 0.

ii) uniqueness : if ~u1 and ~u2 are two solutions of (7) (associated to the same initial value
~u0) which satisfy (for j = 1, 2) ~uj ∈ L∞([0, T ], (Ṁ2,3)3) and limt→0

√
t‖~uj‖∞ = 0, then

~u1 = ~u2.
iii) maximal solutions : let ~u be the maximal continuation in L∞loc((0, T

∗), (L∞)3) of the
mild solution associated to ~u0 by Point i). Then, ~u ∈ C((0, T ∗), (M̃2,3)3). More precisely,
B(~u, ~u) is locally Hölderian (of exponent 1/2) [MEY 99] [LEM 02] and is continuous at
t = 0. However, t 7→ et∆~u0 may be not (strongly) continous at t = 0.
iv) weak solutions : we cannot identify the weak solutions given by Point C) in Theorem
1 to the maximal solution given by Point iii). However, if ~u is such a weak solution and
if moreover ~u ∈ L∞loc((0, T

∗), (L∞)3) with limt→0

√
t‖~u‖∞ = 0, then ~u is the maximal

solution given by Point iii). This is a direct consequence of Point ii), since in that case
~u obviously belongs to L∞([0, T ], (Ṁ2,3)3) for every T < T ∗ : indeed, we already know
that

∫
B(x0,R)

|~u(t, x)|2 dx ≤ C(R +
√
t); moreover, we have |~u(t, x)| ≤ CT t

−1/2, hence∫
B(x0,R)

|~u(t, x)|2 dx ≤ C ′TR
3t−1, and we conclude since min(R+

√
t, 2R3t−1) = 2R.

7. Comparison of mild solutions.

When ~u0 ∈ (Ṁ2,3)3, Kato’s algorithm may converge to a solution of the Navier–Stokes
equations on other norms than the norm of ET . Indeed, we have seen that there exists a
positive constant C0 such that

(47) ‖B(~u,~v)‖ET
≤ C0‖~u‖ET

‖~v‖ET
;

Thus, the sequence ~u(n) defined by

~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n))

will converge in E3
T to a solution ~u of (7), as soon as ‖et∆~u0‖ET

≤ 1
4C0

.
On the other hand, we may use the embedding Ṁ2,3 ⊂ BMO(−1). Koch and Tataru

[KOCT 01] have proved that there exists a positive constant C1 such that

(48) ‖B(~u,~v)‖GT
≤ C0‖~u‖GT

‖~v‖GT
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where GT is defined as

f ∈ GT ⇔


f ∈ L2

loc((0, T )× IR3)

sup0<t<T, x0∈IR3 t−3/2
∫ t

0

∫
B(x0,

√
t)
|f(s, x)|2 dx ds <∞

sup0<t<T t
1/2‖f(t, .)‖∞ <∞

Thus, the sequence ~u(n) will converge in G3
T to a solution ~u of (7), as soon as ‖et∆~u0‖GT

≤
1

4C1
. Due to Lemma 3, this sequence will then satisfy

(49) sup
0<t<T

√
t‖~u(n+1) − ~u(n)‖∞ ≤ C

1
(n+ 1)2

.

We may as well use the embedding L3,∞ ⊂ Ṁ2,3. Meyer [MEY 99] has proved that
there exists a positive constant C2 such that

(50) ‖B(~u,~v)‖HT
≤ C2‖~u‖HT

‖~v‖HT

where HT is defined as HT = Cw([0, T ], L3,∞(IR3)) (f ∈ HT means that f is continuous
and bounded from (0, T ] to L3,∞ and is weakly continuous at t = 0). Thus, the sequence
~u(n) will converge in H3

T to a solution ~u of (7), as soon as ‖et∆~u0‖HT
≤ 1

4C2
. Due to

Lemma 3, this sequence will then satisfy

(51) sup
0<t<T

‖~u(n+1) − ~u(n)‖Ṁ2,3 ≤ C
1

(n+ 1)2
.

A frequently asked question on mild solutions is the regularity of those solutions.
Since Meyer’s solutions do not use the smoothing properties of the heat kernel, one may
wonder if the solution ~u obtained in (HT )3 will satisfy sup0<t<T

√
t‖~u(t, .)‖∞ <∞. Such

a question is raised for instance in [GRU 06]. As a matter of fact, the answer is positive,
due to the persistency formalism developed in [FURLZZ 00] [LEM 02] [LEM 05] which
gives a more precise answer :

Theorem 3 :
Let ~u0 ∈ (Ṁ2,3(IR3))3 with ~∇.~u0 = 0. Let the sequence ~u(n) be defined by

(52) ~u(0) = et∆~u0 and ~u(n+1) = et∆~u0 −B(~u(n), ~u(n)).

Let T ∈ (0,+∞]. Then the following assertions are equivalent :

(A)
∑
n∈IN

sup
0<t<T

‖~u(n+1)(t, .)− ~u(n)(t, .)‖Ṁ2,3 <∞
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(B)
∑
n∈IN

sup
0<t<T

√
t‖~u(n+1)(t, .)− ~u(n)(t, .)‖∞ <∞

Let AT and BT be the norms

AT (f) = sup
0<t<T

‖f(t, .)‖Ṁ2,3 and BT (f) =
√
t‖f(t, .)‖∞.

We easily get

(53) AT (B(~u,~v)) ≤ Cmin(AT (~u)BT (~v), BT (~u)AT (~v)) ≤ C
√
AT (~u)BT (~v)BT (~u)AT (~v).

On the other hand, we have, for 0 < τ < t < T

‖B(~u,~v))‖∞ ≤ C

∫ τ

0

ds

(t− s)3/2
AT (~u)AT (~v) + C

∫ t

τ

ds

s
√
t− s

BT (~u)BT (~v).

Hence, we have

‖B(~u,~v))‖∞ ≤ C(t− τ)−1/2AT (~u)AT (~v) + Cτ−1
√
t− τBT (~u)BT (~v).

For

τ = t
BT (~u)BT (~v)

AT (~u)AT (~v) +BT (~u)BT (~v)

we find

(54) BT (B(~u,~v)) ≤ C
√
AT (~u)AT (~v)(AT (~u)AT (~v) +BT (~u)BT (~v)).

(53) and (54) then give

(55) AT (B(~u,~v)) +BT (B(~u,~v)) ≤ C
√
AT (~u)AT (~v)(AT (~u) +BT (~u))(AT (~v) +BT (~v)).

From (55) (to get (A) ⇒ (B)) and (53) (to get (B) ⇒ (A)), we see that Theorem 3 is
a direct consequence of the following lemma :

Lemma 4 :
Let N1 and N2 be two norms on a vector space E and T a bilinear operator on E such

that there exists a positive constant C0 such that

(56) ∀x, y ∈ E N2(T (x, y)) ≤ C0

√
N1(x)N2(x)N1(y)N2(y).

Let x0 ∈ E and let the sequence (xn) be defined by

(57) xn+1 = T (xn, xn).

If
∑

n∈INN1(xn+1 − xn) <∞, then
∑

n∈INN2(xn+1 − xn) <∞.
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Indeed, let α0 = N1(x0), αn+1 = N1(xn+1 − xn) and, similarly, β0 = N2(x0), βn+1 =
N2(xn+1 − xn). We write

xn+2 − xn+1 = T (xn+1, xn+1)− T (xn, xn) = T (xn+1 − xn, xn+1) + T (xn, xn+1 − xn),

hence

(58) βn+2 ≤ C0

√√√√2αn+1βn+1(
n+1∑
k=0

αk)(
n+1∑
j=0

βj) ≤
1
2
βn+1 + C2

0αn+1(
n+1∑
k=0

αk)(
n+1∑
j=0

βj).

Now, if N0 is big enough to grant that

C2
0 (

+∞∑
k=N0+1

αk+1)(
+∞∑
j=0

αj) ≤
1
4

we get that, for N ≥ N0 + 2 we have

N∑
j=0

βj ≤ β0 + β1 +
1
2

N−1∑
j=1

βj +
N0∑
j=1

C2
0αj(

j∑
k=0

αk)(
j∑

l=0

βl) +
1
4

N−1∑
j=0

βj

and thus

(59)
∞∑

j=0

βj ≤ 4
(
β0 + β1 +

N0∑
j=1

C2
0αj(

j∑
k=0

αk)(
j∑

l=0

βl)
)

8. Serrin’s uniqueness criterion.

Recall that we consider the Navier-Stokes equations on the whole space IR3:

(60)
{
∃p ∈ D′((0, T )× IR3) ∂t~u = ∆~u− ~∇.(~u⊗ ~u)− ~∇p

~∇.~u = 0

We shall speak of weak solutions when the derivatives in (60) are taken in the sense of
distributions theory.

Leray [LER 34] studied the Cauchy initial value problem for equations (60) with a
square-integrable initial value. He proved the existence of weak solutions, which satisfy
moreover an energy inequality :

Definition 2 : (Leray solutions)
A Leray solution on (0, T ) for the Navier-Stokes equations with initial value ~u0 ∈ (L2)3

is a solution ~u such that
i) t 7→ ~u(t, .) is weakly continuous from (0, T ) to (L2)3
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ii) ~u(t, .) converges weakly to ~u0 as t→ 0+,
iii) ~u ∈ L∞((0, T ), (L2)3) ∩ L2((0, T ), (Ḣ1)3),
iv) ~u satisfies the Leray energy inequality

(61) for all t ∈ (0, T ), ‖~u(t, .)‖22 + 2
∫ t

0

∫
IR3
|~∇⊗ ~u|2 dx ds ≤ ‖~u0‖22.

Weak continuity of (a representant of) ~u is a consequence of the Navier–Stokes equa-
tions and of the hypothesis iii). An easy consequence of inequality (61) is then the strong
continuity at t = 0 :

lim
t→0+

‖~u− ~u0‖2 = 0.

But it is still not known whether we have continuity for all time t and whether we have
uniqueness in the class of Leray solutions. Serrin’s theorem [SER 62] gives a criterion for
uniqueness :

Proposition 3 : (Serrin’s uniqueness theorem)
Let ~u0 ∈ (L2(IR3))3 with ~∇.~u0 = 0. Assume that there exists a solution ~u of the

Navier-Stokes equations on (0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such
that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ [0, 1), ~u belongs to (Lσ((0, T ), L3/r))3 with 2/σ = 1− r.

Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution asso-
ciated to ~u0 on (0, T ).

The limit case r = 1 is dealt with Von Wahl’s theorem [WAH 85] :

Proposition 4 : (Sohr and Von Wahl’s uniqueness theorem)
Let ~u0 ∈ (L2(IR3))3 with ~∇.~u0 = 0. Assume that there exists a solution ~u of the

Navier-Stokes equations on (0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such
that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (H1(IR3)3) ;
iii) ~u belongs to (C([0, T ], L3))3.

Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution asso-
ciated to ~u0 on (0, T ).

The theorem of Sohr and Von Wahl has been generalized to the case of a solution
~u ∈ (L∞([0, T ], L3))3 (instead of (C([0, T ], L3))3) by Kozono and Sohr [KOZS 96].

We sketch the proof of those well-known propositions. Let ~v be another solution
associated to ~u0 on (0, T ) (with associated pressure q) such that ~v ∈ L∞((0, T ), (L2(IR3)3)∩
L2((0, T ), (Ḣ1(IR3)3). The main point is to check the validity of the formula

(62) ∂t

∫
~u.~v dx = −2

∫
~∇⊗ ~u.~∇⊗ ~v dx+

∫
~u.(~u.~∇)~v dx−

∫
~u.(~v.~∇)~v dx.
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This is checked by regularizing ~u and ~v : we use a smoothing function θ(t, x) = α(t)β(x)
∈ D(IR3+1), where α is supported in [−1, 1], with

∫ ∫
θ dx dt = 1, and define, for ε > 0,

θε(t, x) = 1
ε3+1 θ( t

ε ,
x
ε ). Then, θε ∗ ~u and θε ∗ ~v are smooth functions on (ε, T − ε)× IR3 and

we may write ∂t

(
(θε ∗ ~u).(θε ∗ ~v)

)
= (θε ∗ ∂t~u).(θε ∗ ~v) + (θε ∗ ~u).(θε ∗ ∂t~v). We then get by

an integration with respect to x :

(63)
∂t

∫
(θε ∗ ~u).(θε ∗ ~v) dx = −2

∫
(θε ∗ [~∇⊗ ~u]).(θε ∗ [~∇⊗ ~v]) dx

+
∫

(θε ∗ [~u⊗ ~u]).(θε ∗ [~∇⊗ ~v]) dx
+

∫
(θε ∗ [~v ⊗ ~v]).(θε ∗ [~∇⊗ ~u]) dx

We may rewrite the last summand in

(64)
∫

(θε ∗ [~v ⊗ ~v]).(θε ∗ [~∇⊗ ~u]) dx = −
∫

(θε ∗ [~∇.(~v ⊗ ~v)]).(θε ∗ ~u) dx
= −

∫
(θε ∗ [{~v.~∇}~v)]).(θε ∗ ~u) dx

To deal with θε ∗ [~u⊗~u], we write that the pointwise product maps L2/rḢr×L2/(1−r)L3/r

to L2L2, hence θε ∗ [~u ⊗ ~u] converges strongly to ~u ⊗ ~u in (L2((0, T ) × IR3))3×3. To deal
with θε ∗ [{~v.~∇}~v)], we write that the pointwise product maps Ḣr × L2 to the pre-dual
L

3
3−r of L3/r and that smooth functions are dense in L3/r ; thus, θε ∗ [(~v.~∇)~v] converges

strongly to (~v.~∇)~v in (L
2

1+rL
3

3−r )3 while θε ∗~u converges weakly to ~u in (L
2

1−rL3/r)3. This
proves (62).

Since ~u⊗~u ∈ (L2((0, T )× IR3))3×3 and ~u = et∆~u(0)− IP
∫ t

0
e(t−s)∆~∇.(~u⊗~u) ds, t 7→ ~u

is continuous from [0, T ] to (L2(dx))3 and (since t 7→ ~v is weakly continuous from [0, T ] to
(L2(dx))3) t 7→

∫
~u.~v dx is continuous. Thus, we may integrate equality (62) and obtain

(65)
∫
~u(t, x).~v(t, x) dx+ 2

∫ t

0

∫
IR3

~∇⊗ ~u.~∇⊗ ~v dx ds =
‖~u0‖22 +

∫ t

0

∫
IR3~u.(~u.~∇)~v dx ds−

∫ t

0

∫
IR3~u.(~v.~∇)~v dx ds

Of course, this equality holds as well for ~v = ~u.
Now, if we assume moreover that ~v satisfies the Leray inequality

(66) ‖~v(t)‖22 + 2
∫ t

0

‖~∇⊗ ~v‖22 ds ≤ ‖~u0‖22,

we get the following inequality for ~u− ~v :

(67) ‖~u(t, .)− ~v(t, .)‖22 ≤ −2
∫ t

0

∫
IR3
|~∇⊗ (~u− ~v)|2 dx ds− 2

∫ t

0

∫
IR3
~u.

(
(~u− ~v).~∇

)
~v dx ds

Moreover, we have the antisymmetry property
∫ t

0

∫
IR3 ~u.

(
(~u− ~v).~∇

)
~u dx ds = 0.

We then write

(68)

|
∫ t

τ

∫
IR3 ~u.

(
(~u− ~v).~∇

)
(~v − ~u) dx ds|

≤ Cr(
∫ t

τ
‖~u‖

2
1−r

L3/r ds)(1−r)/2(
∫ t

0
‖~v − ~u‖2

Ḣ1 ds)1/2(
∫ t

τ
‖~v − ~u‖

2
r

Ḣr
ds)

r
2

≤ C ′r(
∫ t

τ
‖~u‖

2
1−r

L3/r ds)(1−r)/2(
∫ t

0
‖~v − ~u‖2

Ḣ1 ds)(1+r)/2(supτ<s<t ‖~v − ~u‖22)
(1−r)

2
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If r < 1, we may easily conclude : we write with help of the Young inequality

(69) C ′ra
(1−r)/2b(1+r)/2 ≤ 1− r

2
C ′r

2/(1−r)
a+

1 + r

2
b

Thus, if ~u = ~v on [0, τ ], we find from (67) and (68) that

(70) sup
0<s≤t

‖~u− ~v‖22 ≤ C ′′r (
∫ t

τ

‖~u‖
2

1−r

L3/r ds)1/2 sup
0<s≤t

‖~u− ~v‖22

and uniqueness is valid on a bigger interval. By weak continuity of t 7→ ~v, we find ~u = ~v.
If r = 1, ~u belongs to (C([0, T ], L3))3; if T0 < T , then for each ε > 0 we may split ~u

on [0, T0] in ~u = ~α+ ~β with ‖~α‖L∞L3 < ε and ~β ∈ (L∞((0, T0)× IR3)3. Then we write

(71)

|
∫ t

0

∫
IR3 ~u.

(
(~u− ~v).~∇

)
(~v − ~u) dx ds|

≤ C‖~α‖L∞L3

∫ t

0
‖~v − ~u‖2

Ḣ1 ds

+‖~β‖∞(
∫ t

0

∫
IR3 |~∇⊗ (~v − ~u)|2 dx ds)1/2(

∫ t

0

∫
IR3 |~v − ~u|2 dx ds)1/2

≤ 2Cε
∫ t

0

∫
IR3 |~∇⊗ (~v − ~u)|2 dx ds+ ( 4

Cε‖~β‖
2
∞ + Cε)

∫ t

0

∫
IR3 |~v − ~u|2 dx ds.

Choosing ε such that 2Cε < 1, we get that

(72) ‖~v(t, .)− ~u(t, .)‖22 ≤ (
4
Cε
‖~β‖2∞ + Cε)

∫ t

0

‖~v(s, .)− ~u(s, .)‖22 ds.

The Gronwall lemma gives then that ~u = ~v.

Thus, the main tool in proving Propositions 3 and 4 is the facts that when f ∈
L∞L2 ∩L2Ḣ1, then f belongs to L2/rḢr and that the pointwise product is bounded from
Ḣr × L3/r to L2. Considering the space Ẋr of pointwise multipliers from Ḣr to L2 then
gives a direct generalization of Propositions 3 and 4, as it has been observed in [LEM 02]
[LEMM 06] :

Definition 3 : (Pointwise multipliers of negative order.)
For 0 ≤ r < 3/2, we define the space Ẋr(IR3) as the space of functions which are

locally square integrable on IR3 and such that pointwise multiplication with these functions
maps boundedly the Sobolev space Ḣr(IR3) to L2(IR3). The norm in Ẋr is given by the
operator norm of pointwise multiplication:

(73) ‖f‖Ẋr
= sup{ ‖fg‖2 / ‖g‖Ḣr ≤ 1}.

The closure of the space D of smooth test functions in Ẋr will be denoted by X̃r.
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The spaces Ẋr have been characterized by Maz’ya [MAZ 64] in terms of Sobolev ca-
pacities. A weaker result establishes a comparison between the spaces Ẋr and the Morrey–
Campanato spaces Ṁ2,p [FEF 83] [LEM 02].

Lemma 5: (Comparison theorem)
For 2 < p ≤ 3/r and 0 < r we have Ṁp,3/r ⊂ Ẋr ⊂ Ṁ2,3/r.

Another easy result is the embedding L3/r,∞ ⊂ Ẋr for r < 3/2.

We may now state the generalization of Propositions 3 and 4 :

Proposition 5 :
Let ~u0 ∈ (L2(IR3))3 with ~∇.~u0 = 0. Assume that there exists a solution ~u of the

Navier-Stokes equations on (0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such
that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ [0, 1), ~u belongs to (Lσ((0, T ), Ẋr))3 with 2/σ = 1− r.

Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution asso-
ciated to ~u0 on (0, T ).

A similar results holds for r = 1 when iii) is replaced by
iii’) ~u belongs to (C([0, T ], X̃1))3.

The structure of the multiplier spaces Ẋr is not easy to describe. However, when
r < 1, we may replace the space Ẋr by the (greater) Morrey–Campanato space Ṁ2,3/r :

Theorem 4 :
Let ~u0 ∈ (L2(IR3))3 with ~∇.~u0 = 0. Assume that there exists a solution ~u of the

Navier-Stokes equations on (0, T )× IR3 (for some T ∈ (0,+∞]) with initial value ~u0 such
that :
i) ~u ∈ L∞((0, T ), (L2(IR3)3) ;
ii) ~u ∈ L2((0, T ), (Ḣ1(IR3)3) ;
iii) For some r ∈ [0, 1), ~u belongs to (Lσ((0, T ), Ṁ2,3/r))3 with 2/σ = 1− r.

Then, ~u satisfies the Leray energy inequality and it is the unique Leray solution asso-
ciated to ~u0 on (0, T ).

For r = 0, we have Ṁ2,∞ = Ẋ0 = L∞, and this is Serrin’s theorem. When 0 < r < 1,
we use the fact that L2 ∩ Ḣ1 ⊂ Ḃr,1

2 ⊂ Ḣr. Thus, in generalizing Serrin’s theorem, we
may replace the pointwise multipliers from Ḣr to L2 by the pointwise multipliers from the
Besov space Ḃr,1

2 to L2. We then conclude with the following lemma :

Lemma 6 :
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For 0 ≤ r ≤ 3/2, we define the spaceM(Ḃr,1
2 7→ L2) as the space of functions which are

locally square integrable on IR3 and such that pointwise multiplication with these functions
maps boundedly the Besov space Ḃr,1

2 (IR3) to L2(IR3). The norm in M(Ḃr,1
2 7→ L2) is

given by the operator norm of pointwise multiplication:

(74) ‖f‖M(Ḃr,1
2 7→L2) = sup{ ‖fg‖2 / ‖g‖Ḃr,1

2
≤ 1}.

Then, f belongs to M(Ḃr,1
2 7→ L2) if and only if f belongs to Ṁ2,3/r (with equivalence of

norms).

The embedding M(Ḃr,1
2 7→ L2) ⊂ Ṁ2,3/r is obvious : if ω ∈ D(IR3) is equal to 1 on

B(0, 1), then we find that∫
B(x0,R)

|f(x)|2 dx ≤ ‖f‖2M(Ḃr,1
2 7→L2)

‖ω(
x− x0

R
)‖2

Ḃr,2
1

= R3−2r‖f‖2M(Ḃr,1
2 7→L2)

‖ω‖2
Ḃr,2

1
.

Conversely, if f ∈ Ṁ2,3/r and g ∈ Ḃ2,3/r
1 , then we use the decomposition of g in a regular

enough Daubechies basis of compactly supported wavelets [MEY 92] [KAHL 95] [LEM 02].
The wavelet basis is an orthonormal basis of L2(IR3) which is given as a family of functions
(ψε,j,k)1≤ε≤7,j∈ZZ,k∈ZZ3 derived through dyadic dilations and translations from a finite set
of functions (ψε)1≤ε≤7 :

(75) ψε,j,k(x) = 23j/2ψε(2jx− k)

where the functions ψε are compactly supported and of class C2. Then for 0 ≤ r < 3/2,
the family (ψε,j,k)1≤ε≤7,j∈ZZ,k∈ZZ3 is a Riesz basis of Ḃr,1

2 (IR3) ; more precisely, there exists
two positive constants 0 < Ar ≤ Br <∞ such that for all g ∈ Ḃr,1

2 (IR3) we have

(76) Ar‖g‖Ḃr,1
2
≤Nr(g) ≤ Br‖g‖Ḃr,1

2 (IR3)

with

(77) Nr(g) =
∑
j∈ZZ

2jr

√ ∑
k∈ZZ3

∑
1≤ε≤7

|〈g|ψε,j,k〉|2.

Now, we write

(78) ‖fg‖2 ≤
∑
j∈ZZ

‖
∑

k∈ZZ3

∑
1≤ε≤7

〈g|ψε,j,k〉 ψε,j,kf‖2;

since the family (ψε,j,kf)k∈ZZ3, 1≤ε≤7 is (uniformly) locally finite, we find that

(79) ‖
∑

k∈ZZ3

∑
1≤ε≤7

〈g|ψε,j,k〉 ψε,j,kf‖22 ≤ C
∑

k∈ZZ3

∑
1≤ε≤7

|〈g|ψε,j,k〉|2‖ψε,j,kf‖22
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and, since ψε is bounded and compactly supported,

(80) ‖ψε,j,kf‖22 ≤ C23j‖f‖2
Ṁ2,3/r2−3j(1− 2r

3 ).

Thus, we get

(81) ‖fg‖2 ≤ C
∑
j∈ZZ

√ ∑
k∈ZZ3

∑
1≤ε≤7

|〈g|ψε,j,k〉|2‖f‖2Ṁ2,3/r
22jr ≤ C ′‖g‖Ḃr,1

2
‖f‖Ṁ2,3/r .

Thus, Lemma 6 is proved.

Theorem 4 does not include the limit case r = 1, which is still an open question :

Open question 1 :
In Theorem 4, does a similar results holds for r = 1 when iii) is replaced by

iii’) ~u belongs to (C([0, T ], M̃2,3))3?

We end this section with two further remarks :
i) the condition ~u ∈ (L2((0, T ), L∞))3 in the limit case r = 0 may be modified in
~u ∈ (L2((0, T ), BMO))3 [KOZT 00]. In order to prove this, one replaces poinwise mul-
tiplication with the paraproduct operator. Using paramultipliers instead of multipliers,
Germain has recently extended Proposition 5 to negative values of r [GER 05].
ii) If ~u is a solution to the Navier–Stokes equations such that ~u ∈ (Lσ((0,∞), Ṁ2,3/r))3

with 2/σ = 1− r and 0 < r < 1, then it is easy to see that ~u0 belongs to the Besov space
(Ḃr−1,σ

Ṁ2,3/r
)3 based on the Morrey–Campanato space Ṁ2,3/r. Conversely, if ~u0 belongs to the

Besov space (Ḃr−1,σ

Ṁ2,3/r
)3 and has a small enough norm in this space, then one can construct

a solution ~u ∈ (Lσ((0,∞), Ṁ2,3/r))3 [KOZY 97] [LEM 02].

9. Uniqueness theorems.

In 1997, Furioli, Lemarié-Rieusset and Terraneo [FURLT 00] proved uniqueness of
mild solutions in C([0, T ∗), (L3)3). They extended their proof to the case of Morrey-
Campanato spaces by using the Besov spaces over Morrey-Campanato spaces described
by Kozono and Yamazaki [KOZY 97] and found that uniqueness holds as well in the class
C([0, T ∗), (M̃p,3)3) for p > 2, where M̃p,3 is the closure of the smooth compactly supported
functions in the Morrey-Campanato space Ṁp,3. In his thesis dissertation, May [MAY 02]
[LEMM 06] proved a slightly more general result by extending the approach of Monniaux
(i.e. by using the maximal LpLq property of the heat kernel) :

Proposition 6 :
If ~u and ~v are two weak solutions of the Navier-Stokes equations on (0, T ∗)× IR3 such

that ~u and ~v belong to C([0, T ∗), (X̃1)3) and have the same initial value, then ~u = ~v.

May’s result generalizes the results of Furioli, Lemarié–Rieusset and Terraneo, but
leaves open the limit case of Ṁ2,3 :
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Open question 2 :
Does uniqueness holds in (C([0, T ∗), M̃2,3))3?

The problem of uniqueness we may consider in a more general approach is the following
one :

Definition 3 : (Regular critical space)
A regular critical space is a Banach space X such that we have the continuous embed-

dings D(IR3) ⊂ X ⊂ L2
loc(IR

3) and such that moreover :
(a) for all x0 ∈ IR3 and for all f ∈ X, f(x− x0) ∈ X and ‖f‖X = ‖f(x− x0)‖X .
(b) for all λ > 0 and for all f ∈ X, f(λx) ∈ X and λ‖f(λx)‖X = ‖f‖X .
(c) D(IR3) is dense in X.

We have the obvious result :

Lemma 7 :
Let X be a regular critical space. Then X is continuously embedded in M̃2,3.

We shall then consider the problem of uniqueness in C([0, T ∗), X3) :

Uniqueness problem :
Let X be a regular critical space. If ~u and ~v are two weak solutions of the Navier-

Stokes equations on (0, T ∗)× IR3 such that ~u and ~v belong to C([0, T ∗), X3) and have the
same initial value, then do we have ~u = ~v ?

We may do the following remarks on this problem :
i) We can write the Navier–Stokes equations as

(82)

 ∂t~u = ∆~u− IP~∇ · (~u⊗ ~u)

~∇.~u = 0

since a solution ~u ∈ C([0, T ∗), X3) vanishes at infinity in the sense of [FURLT 00] (see also
[LEM 02]). Another way to write the equations is then

(83) ~u = et∆~u0 −B(~u, ~u)

where B is the bilinear operator

(84) B(~u,~v)(t) =
∫ t

0

e(t−s)∆IP~∇.(~u⊗ ~v) ds.

ii) It is easy to check that, in a regular critical space, local uniqueness implies global
uniqueness. Local uniqueness means that, if T ∗ > 0 and if ~u and ~v are two weak solutions
of the Navier-Stokes equations on (0, T ∗)× IR3 such that ~u and ~v belong to C([0, T ∗), X3)
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and have the same initial value, then there exists a positive ε such that we have ~u = ~v on
[0, ε]× IR3. Global uniqueness then means that we must have ~u = ~v on [0, T ∗).
iii) The basic idea in Furioli, Lemarié-Rieusset and Terraneo [FURLT 00] is to split the
solutions in tendency and fluctuation, and to use different estimates on each term. More
precisely, we consider two mild solutions ~u = et∆~u0−B(~u, ~u) = et∆~u0− ~w1 and ~v = et∆~u0−
B(~v,~v) = et∆~u0− ~w2 in C([0, T ∗), X3) and write ~w = ~u−~v = ~w2− ~w1 = −B(~w,~v)−B(~u, ~w),
and finally

(85) ~w = B(~w1, ~w) +B(~w, ~w2)−B(et∆~u0, ~w)−B(~w, et∆~u0).

Thus we see clearly the role of the fluctuations : they control the behaviour of ~w. We
shall use the regularization properties of the heat kernel for the term et∆~u0 (mainly,
that limt→0

√
t‖et∆~u0‖∞ = 0), while we shall use the fact that, for i = 1 or 2, we have

limε→0 sup0≤t≤ε ‖~wi(t)‖X = 0, thus we shall assume that the norm of ~wi is very small.

Those remarks give us a simple way for proving uniqueness of some regular solutions.
First, we define fully adapted critical Banach spaces for the Navier–Stokes equations. The
notion of adapted spaces was introduced by Cannone in his book [CAN 95] : Cannone
studied Banach spaces X such that the bilinear operator B defined by

B(~f,~g)(t) =
∫ t

0

e(t−s)∆IP~∇. ~f ⊗ ~g ds

is bounded from L∞((0, T ), X3) × L∞((0, T ), X3) to L∞((0, T ), X3). According to Can-
none, a Banach space X is adapted to the Navier-Stokes equations if the following asser-
tions are satisfied:
a) X is a shift-invariant Banach space of distributions.
b) the pointwise product between two elements of X is still well defined as a tempered
distribution
c) there is a sequence of real numbers ηj > 0, j ∈ ZZ, such that∑

j∈ZZ

2−|j| ηj <∞

and such that

∀j ∈ ZZ,∀f ∈ X,∀g ∈ X ‖∆j(fg)‖X ≤ ηj ‖f‖X ‖g‖X

IfX is a Banach space adapted (according to Cannone) to the Navier-Stokes equations,
then the bilinear transform B is continuous on L∞((0, T ), X3). But this definition doesn’t
work in the case of critical spaces : if the norm of X is invariant under the dilations
f 7→ λf(λx) and if we have the inequalities ‖∆j(fg)‖X ≤ ηj ‖f‖X ‖g‖X , then we find
that ηj = 2jη0 and thus

∑
j∈ZZ 2−|j| ηj = ∞.

Other definitions of adapted spaces have been proposed by Meyer and Muschetti [MEY
99] or Auscher and Tchamitchian [AUST 99]. While those definitions are introduced to deal
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with critical spaces, they don’t allow to prove the boundedness of B on L∞((0, T ), X3),
but on a smaller space of smooth trajectories (as in the case of Theorem 1, points (A) and
(B)).

However, there are some critical shift–invariant spaces E for which the boundedness of
B on L∞((0, T ), E3) is known : the first instance was given by Le Jan and Sznitman [LEJS
97] and is known since the works of Cannone as the Besov space Ḃ2,∞

PM based on pseudo-
measures [CANK 04] [LEM 02]; another instance was then given by Yves Meyer [MEY
99] : the Lorentz space L3,∞. All those examples can be dealt with with the following
notion of fully adapted Banach spaces :

Definition 4 : (Fully adapted critical space)
A fully adapted critical Banach space for the Navier–Stokes equations is a Banach

space E such that we have the continuous embeddings D(IR3) ⊂ E ⊂ L2
loc(IR

3) and such
that moreover :
(a) for all x0 ∈ IR3 and for all f ∈ E, f(x− x0) ∈ E and ‖f‖E = ‖f(x− x0)‖E.
(b) for all λ > 0 and for all f ∈ E, f(λx) ∈ E and λ‖f(λx)‖E = ‖f‖E.
(c) The closed unit ball of E is a metrizable compact subset of S ′(IR3).
(d) e∆ maps boundedly E to the space M of pointwise multipliers of E
(e) Let F be the Banach space

F = {f ∈ L1
loc / ∃(fn), (gn) ∈ EIN s.t. f =

∑
n∈IN

fngn and
∑
n∈IN

‖fn‖E‖gn‖E <∞

(normed with ‖f‖F = minf=
∑

n∈IN
fngn

∑
n∈IN ‖fn‖E‖gn‖E). There exists a Banach space

of tempered distributions G such that
i) e∆ maps boundedly F to G
ii) the real interpolation space [F,G]1/2,∞ is continuously embedded into E
iii) for all λ > 0 and for all f ∈ G, f(λx) ∈ G and ‖f(λx)‖G = ‖f‖G.

Hypothesis (c) (together with (a)) shows that E is invariant under convolution with
an integrable kernel :

(86) ∀f ∈ E ∀g ∈ L1 f ∗ g ∈ E and ‖f ∗ g‖E ≤ ‖f‖E‖g‖1.

This hypothesis (c) is fulfilled in the case where E is the dual space of a separable Banach
space containing S as a dense subspace.

The following proposition shows why those spaces are called adapted to the Navier–
Stokes equations :

Proposition 7 :
Let E be a fully adapted critical space and let M = M(E 7→ E) be the space of

pointwise multipliers of E. For T ∈ (0,+∞), let AT and BT be the spaces defined by

f ∈ AT ⇔ f ∈ L2
loc((0, T )× IR3), sup

0<t<T
‖f(t, .)‖E <∞
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and
f ∈ BT ⇔ f ∈ L1

loc((0, T )× IR3), sup
0<t<T

t1/2‖f(t, .)‖M <∞.

Then B is bounded from (AT )3×(AT )3 to (AT )3 and from (AT )3×(BT )3 or (BT )3×(AT )3

to (AT )3. More precisely, there exists a constant CE such that, for all T ∈ (0,+∞], all
~u0 ∈ E3, all ~f,~g ∈ (AT )3 and all ~h ∈ (AT )3 we have

(87) sup
t>0

√
t‖et∆~u0‖M ≤ CE‖~u0‖E

(88) ‖B(~f,~g)‖AT
≤ CE‖~f‖AT

‖~g‖AT

and

(89) ‖B(~f,~h)‖AT
+ ‖B(~h, ~f)‖AT

≤ CE‖~f‖AT
‖~h‖BT

.

Since e∆ maps E to M, (87) is a direct consequence of the homogeneity of the norm
of E (and therefore of the norm of M). (89) is a direct consequence of the convolution
inequality (86). We now prove (88). We want to estimate the norm ‖B(~f,~g)‖E . We split
the integral I =

∫ t

0
e(t−s)∆IP~∇.(~f ⊗ ~f) ds into GA +HA with

{
GA =

∫ A

0
e(t−s)∆IP~∇.(~f ⊗ ~g) ds

HA =
∫ t

A
e(t−s)∆IP~∇.(~f ⊗ ~g) ds

We then use the inequalities{
‖e(t−s)∆IP~∇.(~f ⊗ ~g)‖F ≤ C 1√

t−s
‖~f‖E‖~g‖E

‖e(t−s)∆IP~∇.(~f ⊗ ~g)‖G ≤ C 1
(t−s)3/2 ‖~f‖E‖~g‖E

We obtain
‖HA‖F ≤ C

√
t−A sup

0<s<t
‖~f‖E sup

0<s<t
‖~g‖E

and
‖GA‖G ≤ C

1√
t−A

sup
0<s<t

‖~f‖E sup
0<s<t

‖~g‖E .

If λ ≥
√
t, we define A(λ) = 0 so that I = HA and GA = 0; if 0 < λ <

√
t, we define

A(λ) = t− λ2. Thus, we find that, for every λ > 0, I = GA(λ) +HA(λ) with

‖HA(λ)‖F ≤ Cλ sup
0<s<t

‖~f‖E sup
0<s<t

‖~g‖E
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and
‖GA(λ)‖G ≤ C

1
λ

sup
0<s<t

‖~f‖E sup
0<s<t

‖~g‖E .

Since such a splitting may be done for any positive λ, we obtain

‖I‖[F,G]1/2,∞ ≤ C sup
0<s<t

‖~f‖E sup
0<s<t

‖~g‖E .

Then, one easily finishes the proof of Proposition 7.

Combining (85) and Proposition 7, we easily get the following uniqueness result :

Theorem 5 :
If X is a regular critical space such that X is boundedly embedded into a a fully adapted

critical space E, then uniqueness holds in (C([0, T ∗), X))3.

Indeed, we have, with the notations of Proposition 7 and of formula (85)

‖~w‖AT
≤ CE‖~w‖AT

(2‖et∆~u0‖BT
+ ‖~w1‖AT

+ ‖~w2‖AT
)

with
lim
T→0

‖et∆~u0‖BT
= lim

T→0
‖~w1‖AT

= lim
T→0

‖~w2‖AT
= 0

so that ~w = 0 on (0, T ) for T small enough. Thus, local (hence global) uniqueness holds
in (C([0, T ∗), X))3.

Examples of fully adapted spaces :
i) the space of Le Jan and Sznitman

E = Ḃ2,∞
PM = {f ∈ S ′(IR3) / f̂ ∈ L1

loc and ξ2f̂(ξ) ∈ L∞}

with F ⊂ Ḃ1,∞
PM and G = Ḃ3,1

PM

ii) the homogeneous Besov space

E = Ḃ3/p−1,∞
p where 1 ≤ p < 3

with F ⊂ Ḃ
3/p−2,∞
p and G = Ḃ

3/p,1
p

iii) the Lorentz space
E = L3,∞

with F = L3/2,∞ and G = L∞

iv) the homogeneous Morrey–Campanato spaces based on Lorentz spaces :

E = Ṁp,3
∗ where 2 < p ≤ 3
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with F = Ṁ
p/2,3/2
∗ and G = L∞. The space Ṁp,q

∗ (IR3) is defined for 1 < p ≤ q < ∞ as
the space of locally integrable functions f such that

sup
x0∈IR3

sup
0<R<∞

R3(1/q−1/p)‖1B(x0,R)f‖Lp,∞ <∞;

the predual of Ṁp,q
∗ (IR3) is then the space of functions f which may be decomposed as a

series
∑

n∈IN λnfn with fn supported by a ball B(xn, Rn) with Rn > 0, fn ∈ Lp/(p−1),1,
‖fn‖Lp/(p−1),1 ≤ R

3(1/q−1/p)
n and

∑
n∈IN |λn| <∞.

All those examples however give no new information on the uniqueness problem, since
we have the embeddings (for 2 ≤ p < 3 and 2 < q ≤ 3)

(90) Ḃ2,∞
PM ⊂ Ḃ3/p−1,∞

p ⊂ L3,∞ ⊂ Ṁq,3
∗ ⊂ Ẋ1

and thus uniqueness may be dealt with by using May’s theorem (Proposition 6).

We finish this section with an example of a regular space where uniqueness holds but
which cannot be dealt with by using either Theorem 5 or Proposition 6 :

Theorem 6 :
Let X be defined as the space of locally integrable functions f such that

sup
x0∈IR3

sup
0<R<∞

R−1/2‖1B(x0,R)f‖L2,1 <∞

and let X̃ be the closure of D in X. Then
a) Uniqueness holds in (C([0, T ∗), X̃))3.
b) X̃ is not included in the multiplier space Ẋ1 = M(Ḣ1 7→ L2)
c) there is no fully adapted critical space E such that X̃ ⊂ E.

The proof of (b) and (c) is easy. Indeed, let β be the bilinear operator β(u, v) =
1√
−∆

(uv). Then β is continuous from Ẋ1 × Ẋ1 to Ẋ1 (this is a direct consequence of the

characterization by Maz’ya and Verbitsky of M(Ḣ1 7→ H−1) [MAZV 02]) and from E×E
to E for a fully adapted critical space E (as is checked by writing 1√

−∆
=

∫∞
0
et∆

√
−∆ dt

and adapting the proof of Proposition 7). Thus, we shall prove (b) and (c) by checking
that β is not bounded from X̃ × X̃ to Ṁ2,3. Let ω ∈ D(IR) with ω = 1 on [−1/4, 1/4] and∫
IR
ω(t) dt = 1. We define

(91) uR(x) = Rω(Rx1)ω(Rx2)ω(x3/R)

uR ∈ X̃ and ‖uR‖X = ‖u1‖X . If β were bounded from X̃ × X̃ to Ṁ2,3, we would have
that limR→∞ β(uR, uR) ∈ Ṁ2,3 ⊂ L2

loc (the limit being taken in the sense of distributions).
But

(92) lim
R→∞

β(uR, uR) =
c0
|x|2

∗ (δ(x1)⊗ δ(x2)⊗ 1) =
πc0√
x2

1 + x2
2
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for a positive constant c0. Since (
√
x2

1 + x2
2)
−1 is not locally square integrable, we proved

(b) and (c).
In order to prove (a), we use again the equality

(93) ~w = B(~w1, ~w) +B(~w, ~w2)−B(et∆~u0, ~w)−B(~w, et∆~u0).

where we have ~w ∈ C([0, T ∗), (X̃)3), ~wi ∈ C([0, T ∗), (X̃)3) with ~wi(0, .) = 0 for i ∈ {1, 2},
sup

√
t‖et∆~u0‖∞ <∞ and limt→0

√
t‖et∆~u0‖∞ = 0. We then use the inclusion X ⊂ Ṁ2,3

∗ .
Since the pointwise product maps boundedly X × Ṁ2,3

∗ to Ṁ1,3/2 and since we have

(94) Ṁ2,3
∗ = [Ṁ1,3/2, L∞]1/2,∞

we find that

(96) sup
0<t<T

‖~w‖Ṁ2,3
∗
≤C sup

0<t<T
‖~w‖Ṁ2,3

∗
( sup
0<t<T

‖~w1‖X + sup
0<t<T

‖~w2‖X + sup
0<t<T

√
t‖et∆~u0‖∞).

Thus, Theorem 6 is proved.
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