Wavelet bases on the L-shaped domain.
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Abstract : We present in this paper two elementary constructions of multiresolution analyses on the L-
shaped domain. In the first one, we use Meyer’s method to define an orthonormal multiresolution analysis.
In the second one, we use Cieselski and Figiel’s decomposition method for constructing a biorthogonal
multiresolution analysis.
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Introduction

The search for wavelet bases on a domain of IR? has been an active field for many years, since the begin-
ning of the 1990’s. Most constructions are based on the decomposition method, introduced by Z.Ciesielski
and T. Figiel in 1983 [CF 83] to construct spline bases of generalized Sobolev spaces W (M) (k € Z and
1 < p < o) on a Riemannian manifold M. This method has been adapted to the wavelet setting to
construct generalized multiresolution analyses on bounded domains. In 1992, we constructed biorthogonal
wavelet bases on a two-dimensional manifold Q [J 93] [JL 92]; these bases were adapted to the study of
Sobolev spaces H(2) or to HJ ().

More recently, in 1997, the decomposition method has been used by A. Cohen, W. Dahmen and
R. Schneider [DS 99a] [DS 99b] to construct biorthogonal wavelet bases (x,%)rev of L?(Q) where Q
is a bounded domain of R? (d € IN); these bases were shown to be bases of Sobolev spaces H®(f) for
|s| < 3. There are related constructions as well by A. Canuto and coworkers [CTU 99] and by R. Masson
[Mas 99]. All these constructions are based on the decomposition method; there is a slight difficulty in their
presentation, due to notational burden; moreover, it is often unclear how to get higher regularity Sobolev
estimates.

In this paper, we aim to construct in an elementary way two multiresolution analyses on the L-shaped
domain which are adapted to higher regularity analysis. The first one is a direct method, which turns out
to be well adapted to the wavelet setting due to the simple geometry of the domain. The second one is an
illustration of the decomposition method in this simple case; the specific geometry of the domain allows to
get higher regularity estimates in a straightforward manner.

1. The space V;(I).

Throughout this paper, we consider a univariate orthonormal scaling function ¢, with support [0, 2N —1]
and Sobolev regularity H? for some o > 0. We call ¢ the associated orthonormal wavelet with support
[0,2N — 1].

Let us recall that I. Daubechies has constructed compactly supported scaling functions with arbitrarily
high regularity [D 88]. (More precisely, she constructed a family (¢x)n>1 of scaling functions, such that ¢
is supported in [0, 2N — 1] and has Sobolev regularity H*¥ with sy = (1 — 23)N + o(N)).

We define (V;(IR)) ez the multiresolution analysis associated to ¢: V;(IR) is the closed linear span in
L2 of the functions ¢ (z) = 27/2p(2z — k), k € Z.

Definition 1:

Let I be a bounded interval of R. The space V;(I) is defined as the space of restrictions to I of elements
of Vj(R). This is the linear span of the functions ¢(; x) = (¢j) |1, k € ZL. More precisely, we may keep only
the indezes k such that (277k,277(k+ 2N —1)) N1 #0.

Recall the following important result of Meyer [Mey 91] and Malgouyres [Mal 93] [KL 95]:
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Proposition 1:

Let I = [, B]. For j € 7L, let a; the smallest integer which is greater than 2 — 2N + 1 and let 3; the
greatest integer which is smaller than 27 3. The functions PGk, @j <k < B, are linearly independent, and
thus they are a basis for V;(I).

In particular, there exists a constant c(j, I) such that for all sequences (Ax)q; <k<g; We have the inequality

B
G Y P < / 1Y e@P A< Y P

a; <k<B; * ;<k<B; a; <k<B;

If @ or B is not a dyadic number, we may have liminf;_,; ., ¢(j,I) = 0: we have obviously ¢(j,I) <

min(frja" o] dw,ff_jﬂj |¢|? dz). On the other hand, when a and § are dyadic numbers, ¢(j,I) does not

a

depend on j when j is big enough:

Definition 2: (Meyer’s border functions)

Let ¢ be a compactly supported orthonormal scaling function with support [0,2N — 1]. The associated
Meyer border functions are defined in the following way:
i) [left border functions] for 1 < p < 2N — 2, the functions cp][;] belong to the linear span of the functions
@(z — k) |(0,400) with —2N +2 < k < —1 and satisfy [} p(z — k)(pg] (x) dz = ok, —p.
it) [right border functions] for 1 < p < 2N — 2, the functions cpg] belong to the linear span of the functions
©(x — k)|(—00,0) with —2N +2 < k < —1 and satisfy ffoo p(r — k‘)cpg,r] (x) dz = dp,—p.

Proposition 2:

Let (w?j,k))ajSkSBj be the dual system of the basis (¢(j r))a;<k<p;- If @ and B are dyadic numbers and
if moreover jo is the smallest integer j such that 29 and 293 belong to Z and 27(3 — o) > 2N — 1, then for
J > jo we have aj = 27a— 2N + 2 and B; = 273 — 1, and
i) [interior functions] for 27a < k <298 — 2N + 1, we have ik = PGE) = Pik
i) [left border functions] for 27a—2N+2 <k < 2a—1, k = 2/a—p, we have el (@) = 2j/290¥](2j (x—0a))
i) [right border functions] for 2713—2N+2 < k < 293—1, k = 2/ 3—p, we have elim (@) = 2j/290£f] (27 (z—B)).

In particular, c(4,1) = ¢(jo,I)-

2. The space V;().

As usually in wavelet theory, we define Vj(]R2) the multiresolution analysis associated to the separable
scaling function p®¢: V;(IR?) is the tensor product V;(IR*) = V;(IR)&V;(IR). For 2 a bounded open domain
in R?, we define V;(Q) as the space of restrictions to Q of elements of V;(IR?). For a generic 2, we cannot
expect a simple description of the space V;(Q): even in the univariate case and in the case of an elementary
interval, we had difficulties in estimating the dual basis. On the other hand, for very simple cases, we get
an easy description. The first elementary case is the case of the unit cube:

Proposition 3:

Let @ = (0,1)2 and I = (0,1). Then, V;(Q) = V;(I) ® V;(I). Thus, for j such that 29 > 2N —1, a basis
for V;(Q) is given by the family ¢k, ks) = (Piks @ Pika)|@ = Pirkr) @ Pliika)s —2N +2 <k <29 — 1 and
—2N +2<ky <2/~ 1.

Let (¢z<j’kl’kz))_2N+2Sk17k252j_1 be the dual system of the basis (P(j ky ks))—2N42<ky ka<2i—1- Then:

i) [interior functions] for 0 < ki, ks < 29 — 2N + 1, we have Dl kr k) = Pliskr k) = Pk © Piika

i1) [edge functions]

o for =2N +2 <k <=1, ky = —p, and 0< ky <20 —2N +1, 67, 0 = 2000 (2721 )p(2my — ki)
o« for0 <k <2 —2N+1and —2N +2<ky < —1, ko = —p, 6§ o) = 202 m1 — k) g} (2922)
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o for 2 —2N+2 <k <2-1, k1 =2—p, and 0 < ky <V —2N+1, 67, = 2129 (31 -1))p(2 w2 — k2)
o for0< ki <P-2N+1and 2 —2N+2< ky <=1, ky = 2 —p, ¢, 1 1) = 20(2 21 —kn )l (27 (22— 1))
iit) [corner functions]

o for 2N +2< ki < -1, k1 = —p, and —2N +2 < ky < -1, k2 = —q, ¢[; 4, 4o) = 2o (21 )l (2 22)

o for 20 —2N +2 < ky < 2 -1,k =2/ —p, and 2N +2 < ky < =1, ky = —q, :(kj,kl,kz) =
201 (21 (a1 — 1))l (2V2) | | |
o for 2N +2 < ky < -1, kg = —p, and 22 — 2N + 2 < ky < 20 —1, ks = 27 — q, ¢fj7k1’k2) =

Yoy (V) (2 (e2 — 1)) | | | |
o for 27 —2N +2< k1 <22 -1,k =2 —p,and 22 —2N +2 < ky <27 -1, ky =27 — g, ¢>{j,k1,kg) =

205127 (21 — 1))l (2 (22 — 1)).

The next easy domain we shall consider is the L-shaped domain Q = {(z,y) € (—1,1)2 /z < 0 or y < 0}.
We intoduce some new functions associated to the scaling function ¢:

Definition 3: (Interior border functions)
Let O = {(z,y) € R* / 2 < 0 ory < 0}. Let ¢ be a compactly supported orthonormal scaling function
with support [0,2N — 1]. The associated interior border functions are defined in the following way: for

p,q € {1,...,2N — 2}, the functions ¢p,q belong to the linear span of the functions p(x1 — k1)p(z2 — k2)jo
with —2N + 2 < ki, k2 < =1 and satisfy [, o(x1 — k1,22 — k2) Lb,]q(x) dz = 0py,—p Oy, —q-

Proposition 3 then becomes:

Proposition 4:

Let Q = {(z,y) € (-1,1)? / < 0 or y < 0}. Then, for j such that 2/ > 2N — 1, a basis for Vi(9) is
given by the family @ r, k) = (Vg ® Pika)ia, =27 —2N +2<k; <29 =1, =29 —2N +2 <k, <2 -1
and k1 <0 or ks <0.

Let Aj = {(k1, ko) € Z% | =20 —2N+2< k) <29 —1, —20 2N +2<ky <2/ —1; k; <0 or ks < 0}.
Let (¢zj,k1,k2))(k1ak2)€Aj be the dual system of the basis (P(j,k, ka))(k1,ka)en;- Then:

i) [interior functions| for —29 < ki, ks <29 —2N +1, k1 < 2N +1 or ks < —2N + 1, we have B,
P(ikr k2) = Piks © Pjks
i1) [edge functions]
Ofor—2j—2N—|—2<k1 <=2 1,k =-2—p, and -2 <ky <29 —2N +1,
k) = 200 (2 (@1 + D) (22 — k)
o for =27 < k; 321—2N+1 and =29 —2N +2<ky < =27 —1, ky = =27 —p,
i) = 20221 — k)b (2 (22 + 1))
o for 22 —2N+2 < by < =1,k = 2—p, and =2 <ky < —2N+1, 67, = 200} (27 (21 -1)) (2 32— k)
o for =2N+2<k < -1, k1 =—p, and 0< ky <20 —2N +1, 87, =2 [T](ijl)cp(Qj:Eg — k)
o for =29 <k < —2N+1and 2 —2N+2<ky < 20—1, ky = 27 —p, ¢(J’k1 ko) = =2 cp(ZJml—kl) (2J(x2—l))
e for0<k; <20 —2N +1 and —2N +2<ky < -1, k2 = —p, Dk ea) = 2 (2 — kl)cpp (2 25)

iii) [exterior corner functions]
o for —2 —ON4+2<k < -2 1,k =-2 —p oand -2 —2N+2< ks < -2 —1, ky= -2 —gq,

¢?j,k1,k2) = 2J‘p£)l] (2j (331 + ].)) [ (2] (51:2 + 1))

ko) —

o for 20 —2N +2 <k <2 — 1,k =2 —p, and -2 —2N +2 < ky < -2/ — 1, ky = =27 — g,
" ] rei P

B ka ko) = 2905 (2 (31 — 1))l (27 (2 + 1))

o for =20 —2N +2 < k1 < =20 — 1,k = =2/ —p, and 20 —2N +2 < ky < 2/ — 1, ky = 27 — g,

Pl ka) = 290l (27 (21 + 1)) (27 (22 — 1))
.fOTZJ—2N+2<k1<2]—]_ k1—21—p,and —ON+2<ky < ].kz
Pljskr k) = P52 (21 — 1)@} (2 xs)



o for 2N +2<k < -1, ki =—-p, and 2/ —2N +2<ky <2/ —1, ky =2/ — ¢,
i) = 205 (2Vm1) ) (2 (22 — 1))
iv) [interior corner functions] for —2N+2 < kq, ks < —1, k1 = —p, k2 = —q, we have Bk ka) = 2j¢£,b,]q (27z).

3. A regularity lemma.

We now proceed to prove some elementary lemmas which will be useful in regularity analysis for functions
defined on €.

Lemma 1:

Let w1, wy be two square integrable compactly supported functions on R2. Then the operator f —
Y wez (flwi(c — k))ws2 (- — k) is bounded on L?.

Proof: Let M € IN be such that the supports of w; and w» are contained in (—M, M )2. Then we have

/| > Awa(w — k)|? do < 4M2/ D wwa( — k)? do =AM [|wsll3 Y Ak

kEZ? keZ? keZ?
and
Y1 [t =b dyP <l 3 [ 1P s =) dy <42l
keZ? keZ?
Thus, the lemma is obvious. o

Definition 4: (Extension operators)
Let Q = {(z,y) € (-=1,1)2 / £ < 0 or y < 0}. Let us consider, for j such that 29 > 2N — 1, the bases for
Vi(Q) given by the families (¢ ky ko)) (k1 ka)en; ond (d)?j,kl,kz))(klakﬂeAj described in Proposition 4. Then

we define the extension operator E; from V;(Q) to V;(R?) by the formula

E;i(f) = Z <f|¢?j,kl,k2))9 Pjkr @ Pjka s

(kl,kz)EA]'
where (f|g)a = [, fg d=.
A direct consequence of Lemma 1 and Proposition 4 is the following lemma:

Lemma 2: (Uniform estimates for extension operators)
Let @ = {(z,y) € (=1,1)> / x < 0 or y < 0}. There exists a positive constant Co such that, for al j
such that 27 > 2N — 1 and all f € V;(Q), |E; fllr2m2) < Collfllz2(o)-

We now recall the following result of wavelet theory [Mey 90] [B 95] [KL 95]:

Lemma 3:
Let 0 > 0 and assume that ¢ belongs to the Sobolev space H? (R). Then, for all s € (0,0), there exists
a constant D, such that for all sequences (f;)j>0 € (L>(R®))N such that f; € V;(IR?) for all j € N, we have

the inequality
1" fillme <D, > 430145113
JEN jEN

Moreover, if A; is the orthogonal projection operator from L*(IR?) onto V;(IR?), there exists a constant ds
such that for all f € H® we have

Hs-

140 fll2 + \/Z 4°||(Aj1 = A 113 < dsll /]

jEN



Lemmas 2 and 3 then gives the following useful regularity criterion:

Theorem 1:

Let Q = {(z,y) € (-1,1)> / 2 < 0 or y < 0} and let jo € IN such that 270 > 2N — 1. Let 0 > 0 and
assume that ¢ belongs to the Sobolev space H? (R). Moreover, let (P;);>j, be a sequence of operators such
that
o for every j > jo, Pj is a projection operator from L*(Q) onto V;(Q)

o there exists a constant 8 such that, for all j > jo and all f € L*(Q), ||P;fllz2) < BIIfllz2)-

Then, for all s € (0,0), there exists two positive constants As; and Bs such that for all f € H*(Q) we

have

AslI £

w7 < 1Pjo fllr2e) + Z 4°(|(Pjt1 = P fll72q) < Bsllf
Jj>jo

He(Q)-

Proof: Let fj, = Pj,f and f; = (P; — Pj_1)f for j > jo + 1. Since Q is a Lipschitz domain, H*(Q) is
the space of functions on  which are restrictions to € of functions in H*(IR*) and the norm |[|f||gs (o) is
equivalent to min{[|F||gs(r2y / Fijo = f}. Thus, we have

1Y £l

mo@) < CEN Y. Eifillmme) < C()Ds | Y 4B £13 < C(s)DyCo, [ 45°]| f512
Jj>jo Jj>Jo Jj2Jo J2>jo

Conversely, let us write f = Fig and F' = (F — A;F) + A;F. We have

1Pjy1f — Pifll2e) = I(Pjsa — Py (F — A;F)0)ll2 ) < BIF — A;F||12(0);

hence,
> 2| Piaf — Piflliagey < B° Y 2°|IF — A;F|[ g,
Jj2Jjo J>Jo
2 2js ﬂ 2ps 4SB2 P s
=p Z 2 Z” p+1 — F||L2(1R2) = Ys _ Z 2 ” p+1 — )F”LZ(]RZ) < ||F| He-
j2jo p>J p>Jo
Thus, Theorem 1 is proved. ©

Theorem 1 is the basis for our strategy : in order to get a good tool for regularity analysis of functions
defined on the L-shaped domain, we shall try to define nice equicontinuous families of projection operators
on the spaces V;(f2). Moreover, following Proposition 4, the spaces V;(f2) have dual bases that are generated

through dilations and translations from a finite set of basic functions with small supports (the scaling function
[ @l [r]

p® ¢, the edge functions ¢p' @, Y@y, Yp @y and PRy, and the corner functions qo[l] ([1”, <,0£:T] ®80g]>
<pL” ® C/J([; ]7 SOz[ur] E;r], ,[Db, ]q) and we shall try to keep this feature in all our constructions.

4. Meyer’s analysis.

In his fundamental paper on wavelets on the interval [Mey 91], Meyer intoduced the projection operators

P; (orthogonal projection from L?((0, 1)) onto V;((0,1))) and Q; = Pj11 — P;, and he showed that the ranges

V; = Im P; and W; = Im @Q; have elementary Hilbertian bases. This is based on the remark that, while

Vi+1((0,1)) is clearly generated by the restrictions of the scaling functions ¢, and the wavelet functions

Yk, —2N +2 < k < 2/ — 1, the restrictions of the extreme wavelets 1, (—=2N +2 < k < —N and

- N+1 < k < 2 —1 belong to V;((0,1)), so that their elimination gives a generating families of
29+ + 2N — 2 vectors of Vj11((0,1)), hence a Riesz basis of Vj11((0,1)).
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Definition 5: (Meyer’s border wavelets)
Let ¢ be a compactly supported orthonormal scaling function with support [0,2N — 1]. The associated
Meyer border wavelets are defined in the following way:

i) [left border scaling functions] the family ((p},l})lspszN_z is the Gram-Schmidt orthonormalization of the
family (o} 1<p<an 2.

it) [right border scaling functions] the family (cpg} )i<p<2N—2 is the Gram-Schmidt orthonormalization of the
family (o5 1<p<on—a.

iit) [left border wavelets] the family (cpy})lspsz N_zu(zpé’})lsqs ~N_1 45 the Gram-Schmidt orthonormalization
of the family (cpz[[f]hgpgz]v—z U (%(z + ))(0,400))1<qg<N-1-

iv) [right border wavelets| the family (go,{,T})lspsgN,z U (¢§T})1§q§N71 is the Gram-Schmidt orthonormaliza-
tion of the family (Q@LT])ISIJSQN—Q U@(@ =2+ N+ q)|(~c0,0))1<q<N-1-

Then, Meyer’s theorem reads as :

Proposition 5: (Meyer’s theorem)
Let j such that 29 > 2N — 1. Then
i) A Hilbertian basis for V;((0,1)) is given by the family (goj:k)_QNHSkng_l, with
o [interior functions] for 0 <k <29 —2N +1, ¢i7 = ¢jk
o [left border functions] for —2N +2 <k < =1, k= —p, 5, = 23'/2(,01{}}(2]':1:)
o [right border functions] for 20 —2N +2<k <2 —1, k=2 —p, o7}, = 21128 (23 (2 — 1))
i) A Hilbertian basis for W;((0,1)) is given by the family (wj,—k),NHSkSQj,N, with
o [interior wavelets] for 0 <k <29 —2N +1, wj:k =Yk
o [left border wavelets] for —N +1< k< -1,k = —gq, @bj-:k = 2j/2¢,§l} (27z)
o [right border wavelets] for 20 —2N +2< k<2 —N, k=2 —N+1—gq, ¢j;, = 2/2p87} (29 (z — 1))

Our purpose is to show similar results on the L-shaped domain.

5. Orthogonal multi-resolution analysis on the L-shaped domain.

The most direct way to construct an equicontinuous family of projection operators is obviously to use
orthogonal projections; the problem is then just to check that this leads to well-supported basic functions.

Let Q = {(z,y) € (—=1,1)2 / x < 0 or y < 0}. Then, for j such that 2/ > 2N — 1, Proposition 4 describes
the Riesz basis (A(j,k,,k2)) (k1,ka)en; Of V;(€2) as split into four families (and thirtenn subfamilies) of functions

i) [interior functions] —27 < ky,ky <29 —2N + 1, k; < —2N +1or ks < —2N +1
ii) [edge functions]
e 20 N 4+2<k <—-2—land 20 <ky <29 —2N +1
o 20 <k <2 —2N+1land —20 —2N +2<ky < -2/ -1
02 2N +2<k <2 —land -2/ <ky < -2N+1
e 2N +2<k <—-1land0<ky <2/ —2N +1
e 20<k <-2N+1land 2/ —2N+2<ky <27 -1
0 0<k <2 —2N+4+1land 2N +2<ky < —1
iii) [exterior corner functions]
e 21 2N 4+2<k <-2 —land -2/ —2N +2<ky < -2/ —1
02 2N +2<k <2 —land -2 —2N +2<ky < -2/ -1
e 2/ _ON4+2<k <-2—-1land 2P —2N+2<k <2/ -1
02 2N +2<k <2 —land 2N+2<ky < -1
e 2N +2<k <-land 2/ —2N4+2<ky <2/ -1
iv) [interior corner functions] —2N + 2 < kq, ks < —1.
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The main point is that these thirteen subfamilies are orthogonal one to each other and that orthonor-
malization can be processed independently for each subfamily. Moreover, the twelve first families can be
reduced to Meyer’s analysis, and only the last one gives a new family of basic functions.

Definition 6: (Interior border orthonormal scaling functions)
Let O = {(z,y) € R? / 2 < 0 ory < 0}. Let ¢ be a compactly supported orthonormal scaling function
with support [0,2N — 1]. The associated interior border orthonormal scaling functions are defined in the

following way: ((ﬁi{,fq})lsp,ngN_g is a Gram-Schmidt orthonormalization of (o(x1+p)p(z2+49) 0)1<p,q<2N—2.
We then get :

Theorem 2:
Let Let Q = {(z,y) € (-=1,1)? / < 0 or y < 0}. Then, for j such that 29 > 2N — 1, a Hilbertian basis
for V;(Q) is given by the fam.ily (d)i_j,kl,kQ))'(klka)eAj’ where
i) [interior functions] for —27 < kj, ks <27 —2N +1,k; < -2N+1 or ks < —2N + 1, we have ¢é’k1’
(Pj’kl ® ij7k2
i1) [edge functions]
o for =2 —ON +2<k < -2 —1,k =—2 —p, and —29 < ky <2 —2N +1,
BGkr sy = 2080 (2 (@1 +1))p(2 22 — )
o for =20 <k <20 —2N +1 and =29 —2N +2<ky < =2/ — 1, ky = =2/ — p,
Okr ) = 202 m1 — k) o8 (2 (2 +1))
o for 2 —oN+2<k <2 —1,k =2 —p, and -2 < ky < —2N +1,
Oy = 205 (2 (21 — 1)) (202 — k)
o for 2N +2 <k < -1, ki =—p, and 0 < ks <27 — 2N +1, ¢, 1) = 205 (2721)p(2 22 — ko)
o for—29 <ky < —2N+1and 2P —2N+2< ky <2 —1,ky =2 —p, ¢ o1 = Pp(Dm1—kr) o (2 (22 —1))
e for0<k; <2 —2N +1and —2N +2<ky < -1, ky = —p, ¢é,k1,k2) =22z — kl)cpl{,r}(Zja:g)
iit) [exterior corner functions]
o for -2 —2N +2 <k < -2 —1,k = -2/ —p, and -2 —2N +2 < ky < -2/ — 1, ky = -2/ — g,
O kr ko) = 2050 (2 (@1 + 1))} (27 (2 + 1))
o for 20 —2N +2 <k <2 — 1,k =2 —p, and -2 —2N +2 < ky < -2/ — 1, ky = -2/ — g,
. r . l .
OGka ko) = 2057 (2 (@1 — 1))} (27 (2 + 1))
o for =20 —2N +2 <k < =20 =1,k = =2/ —p, and 20 —2N +2 < ky < 21 —1, ky = 2/ — g,
O ki) = 2000 (2 (@1 + 1)) (2 (22 — 1))
o for 2l —2N+2<k <2 -1,k =2 —p, and —2N +2 < ky < -1, ky = —q,
Bkr ) = 2057 (2 (1 — 1))0d (272)
o for 2N+2<k; <—1,k;=-p,and 2/ —2N +2<ky <2/ =1, ky =2/ — ¢,
O ki) = P08 (@) (2 (22— 1))
iv) [interior corner functions] for —2N+2 < ky, ke < =1, k; = —p, ks = —q, we have ‘?5?},1@1,1;2) = 2%,@{’,}(2%).

ko) —

We now describe a supplementary space X; of V;(Q) in Vj41(£2). We have an obvious generating family

of V;41(£2) by taking the functions (¢jk, ® ©jks) 25 (Phk1 @ Yjka) Qs (Viks ® Piika) @ and (Vjky, ®Vijks) 105
2 ONG2< ki ky <2 —1,k < —1orky < —1. We have thus 4((2/+ + 2N — 2)2 — 22) functions, while

the dimension of Vj1 () is (2712 4+ 2N — 2)? — 227+2, Thus, we must eliminate 8(2N — 2)27 + 3(2N — 2)?
functions.

Lemma 4:
The following family is a Riesz basis of Vj11(Q) :
° ((,Dj,kl ®Q0j,k2)|g, —2j—2N+2§k1 §2j—1, —2J —2N +2< ks §2j -1, ki <-1ork, <-1;
® (ks @WUjka)i, =29 —2N +2<ky <29 -1, =20 =N +1<ky <2 - N, ky < -1 orky < —N;
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o (Yjky @ Pjika)jy =20 =N +1<ky <20 —N, 21 —2N+2<ky <2 -1,k < =N orky < -1;
o (Yjky ®Vjka)iy =20 —N+1<k <2—N, =20 -N4+1<ky <21 =N, ks <—N ork; <—N.

Proof: Since we have the right number of functions, it is enough to prove that they are linearly independent.
Let us consider sequences (a; ky ks); (D) k1,ks)s (Cjk1 ks ), and (dj gy ko), such that

2 ket ka)eA; Tivka ko Piks ® Piika + D0 Dk, ke B, Vivkr kaPiks @ Yjko
22 2k ko) ey Ckrka Wik ® Piika + 20 Dk ko)e Dy Dk ke Viks @ Yjiky =0 0n O

Thus, defining @1 = (—1,0) x (—=1,0), Q2 = (—1,0) x (0,1) and Q3 = (0,1) x (—1,0), we have that

-1 — ,
Eklf—m IN+2 Zsz—zz IN+2 J,kl,kZ%,kl ® Piks F D py——2i —aN+2 D kam—2i — N+1 Of by ko Pk @ Viks

N °N
+ Zklz—2i—N+1 Zk22—2i—2N+2 ks ik © Pjiks +Q2k1:—2i—N+1 2 kom—2i—N+1 L1 ks Vg kr ® Vjokeo
=0on 1

Zkl——m IN42 Zk27—2N+2 a5 oy ko Pisks © Pjks + Zk1:—2i IN42 Zkzz—N-{-l ' er ko Pk @ Yk
271 29N d
+Zk1:72JfN+1 ko=—2N+2 J,kl,k2¢1,k1 ® ks T Zk1:—2J—N+1 ko=—N+1 Jaklak2¢.77kl ®¢1,k2
=0 on QQ

and

271 -N " ) )
Zk1:—2N+2 Zkz_—21—2N+2 7, kl,kg Pjks @ Pjky + Zk1:—2N+2 Zkz_—Qj N+1 b_] k1 ke Pirk1 © (I

+ Zkl_—N-}—l Zkz_—zz 2N+2 g,kl,k2¢1 k1 @ Pk + Zklz—N-i-l ZkZ_—W —N+1 dj k1 ko Wjsky @ Vo
=0on Qg

Then the tensorization of Meyer’s analysis gives us that the coefficients d; i, i, are all equal to 0. This gives
in turn that

1 —
Zkl_—21 —2N42 Zk2 2/ _2N42 ] itk Pisks ® Piks Do C_0i _aN42 D ksm—2i— N1 Vi1 ko Pk © Vjka
+ Ekl 25 _N+1 Ekg_—w oN1+2 Cik1,ka Wik © Pjiks

0 on Q17

Zklz—ZJ IN42 ZkZ_—2N+2 Gk ko Pirkr © Pk T Zklz—ZJ IN42 Zk2=—N+1 Gk ke Py © Viiks

+ Zkl:—Z? —N+1 Zk2=—2N+2 CJ,k1,k2¢J,k1 ® Pj,ks
=0 on QQ

and

291 -N
Zk1:—2N+2 Zkz_—21—2N+2 ],kl,kQ Pjkr @ Pj ke + Zk1:—2N+2 Ek2:—2j N+1 bj ks ks Piks ® Vjiks

+ Zklz—N-{-l Zk27—21—2N+2 Cjokr ko Wik ® Pjiks
=0on Qg

Tensorization of Meyer’s analysis gives then us that the coeflicients b; i, &, and c; i, x, are all equal to 0.
Finally, we have that the coefficents b ¢, x, are all equal to 0 as well. o

One more time, we may group the remaining functions in families according to the geometrical position
of their support : the basis of X; is given by the families
i) [interior functions]
* (Pjk ®VYjks) 0y =2/ <1 kp <2 —2N 41,k < 2N +1or kg < —2N +1
L4 ('d)j,kl ®(Pj,]g2)‘g, —2'7 < kl,kg < 2'7 — 2N + 1, ki <-2N+1lorky, <-2N+1
L4 ('d)j,kl ®'(/1j7]g2)‘9, -2 S kl,kg S 27 — 2N + ]., kl S —2N +1or k‘g S —2N +1
ii) [edge functions]
* (Vjks @Ujka)ia, =20 —2N +2<ky < -2 —1land =29 <ky <2/ —2N +1
o (Yjky ® Pjka)iy =20 —N+1<k; <—-2/ —land -2/ <ky <20 -2N +1
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(Vjky @ Vjko)is =20 =N +1<k < -2/ —1land -2/ <ky <20 —2N +1
@ik ®Vjka)i, =22 <k1 <29 —2N+1land -2 —N+1<ky, < -2 -1
(Yiks ® Pjks) iy =27 <k <27 —2N 4+ 1and =27 —2N +2<ky < -2/ -1
(Vjkr @ikl =27 <k1 <22 —2N+1land -2 —N +1<ky < -2 -1
(Piks @ Yjks) 2,29 —2N +2<k; <2/ —Tand -2/ < ky < 2N +1
(Vjkr ® Qjka)ir 29 —2N +2<k; <2/ — N and -2/ <ky < —2N +1
(Vjpr ® Vo) 29 —2N +2< ky <20 — N and -2/ <ky < —2N +1
(Pikr @ Yjka)i0s —2N +2< k1 < —land 0 <kp <2/ —2N +1
( 5. k1 ®‘Pj,k2)\9; 2N +2<k<—-Nand0<k < 2J —2N+1
(Vjky @ Pjka) s —2N +2< k1 <-=Nand 0 <k <2 —2N +1
((pj,kl ®¢j,k2)\9; —2'7 S kl S —2N+ ]. and 2'7 el 2N+ 2 S kg S 2'7 el N
( j,k1 ®§0j,k2)\9; —2'7 S kl S —2N+1 and 2'7 —2N+2 S kg S 2'7 el ].
( i,k1 ®¢j,k2)\9; —2'7 S kl S —2N+ ]. and 2'7 —2N+2 S kg S 2'7 —N
((Pj,lm ®¢j,k2)\97 0 S kl S 27 —2N +1 and —2N +2 S k2 S -N
(Vjhr ® Qjka)j2, 0 < k1 <27 —2N 41 and —2N +2<ky < —1

( 7.k1 ®¢j,k2)\97 0 S kl S 2] —2N +1 and —2N +2 S k? S -N
iii) [exterior corner functions]
((Pj,lm ®¢j,k2)\97 _2] —2N +2 < k1 < _2]' — 1 and _2] -N+1 < ks < _2] -1
(Vjky ® Pjks)ios =22 =N +1<k <-2 —land -2 —2N +2<ky <27 -1
Wik ®Vjks) 2> =2 =N+ 1<k < -2 —land =20 - N +1<ky < -2/ -1
(@iks @ Wjks) iy 2P —2N +2<k1 <2/ —land -2 — N +1<ky < -2/ -1
(Piks © Piks)is 22 —2N +2<ky <2/~ Nand -2 —2N +2< ky < -2 -1
(jkr ® Yjks) iy 22 —2N+2< k1 <2 = Nand -2 —N+1<ky <=2/ -1
(Piks @ Vjka) iy =2 —2N +2< k1 < ~2 —land 2 —2N +2<ky <2 - N
Wiky @ Piks)iay 2 ~N+1<k <2 —land 2 —2N +2<ky <2 1
( )
( )
( )
( )
( )
( )
(

Viks @ Vjka)0s —_2J'—N+15k1g—_zf—land2f—2N+25k2§2f—N
(Pj,k1®¢j,k2 ‘9,23_—2N+2§k1§23_—1and —2N+2<ky<-N
wj,k1®(pj,k2 ‘9,23_—2N+2§k1§23_—Nand —2N +2<ky<-—-1
Yik @ V) ko ‘9,23—2N+2§k1§23—]\(and —2N+2§k‘2S —N
—land 22 —2N 4+2<ky; <2/ - N
—Nand 22 —2N +2<k <29 -1
—Nand 2/ —2N +2<k <2 - N

Cikr @ Yjks) i, —2N +2< Ky
Vi ® Pjks) s —2N +2 < kg
Vikr @ Vjks) i —2N +2 < kg
iv) [interior corner functions]
® (Pjkr ®Yjka) 0, —2N +2 <k
® (Vjks ® Pjks)i2, —2N +2<ky
® (Vjks @Vjko)i2, —2N +2<ky

ININAINA

—land —2N +2<ky < —1
—land —2N +2< ky < —1
—1a.nd—2N+2§k2§—1,k1g—NoerS—N

INININA

Gram-Schmidt orthonormalization allows then to get a nice basis for W]-J- (Q), the orthogonal complement
of V;(Q) in Vi1 () :

Theorem 3:

Let Let @ = {(z,y) € (-1,1)2 / 2 < 0 ory < 0}. Let W]-J-(Q) be the the orthogonal complement of
Vi(Q) in Vj41(Q). Then, there exists 11(N — 1)? functions ¥, 1 < p < 11(N — 1), compactly supported
in {(z,y) € R* / 2 <0 ory < 0} such that, for j such that 2/ > 4N — 2, a Hilbertian basis for W]-J-(Q) is
given by the following family

i) [interior functions]

© 21wy — k) (2P my — k), =29 < ki, ko <2 —2N+ 1,k < 2N +1orky < 2N +1

L] 2J¢(2J.’L'1 —kl)(p(2j.’1,'2 —k2), —2j S kl,kQ S 2] — 2N + ]., k‘]_ S —2N +1 or k2 S —2N +1

L] 2J¢(2J.’L'1 —k1)¢(2j$2 —kg), —2j S kl,kQ S 2'7 — 2N + ]., k]_ S —2N +1 or k}2 S —2N +1
it) [edge functions]

o 208 (20 (21 +1))0(20 7y — k), L<p< 2N —2 and -2 < ky <29 —2N +1

o 208 (20 (zy + 1)) (Vs — ko), L<p<N—1and -2 <ky <2 —2N+1

o 20829 (21 + 1))0(20ms — ko), 1 <p< N —1and -2 <ky <2 —2N +1
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e 2203y — k)i (29 (s + 1)), =29 <ky <2 —2N+1and 1 <p< N —1
o 20)(2z; — ky) ,{) (21(1'2 +1), -2 <k <2 —2N+1and1<p<2N—2
o 20)(2zy — k)i (2 (za + 1)), =29 <k <2 —2N+1and1<p< N -1
0 28 (2 (21 — 1))W(2y — ko), 1 <p< 2N —2 and -2 < ky < —2N + 1
o 208 (20 (1 — 1))p(2y — ko), 1 <p< N —1and -2 < ky < —2N +1
23¢{T}(2J($1 — D))(2ms — k), L<p<N—1and -2 <k, < 2N +1
0 208 (2 )(Pzy —ks), L<p<2N —2 and 0 < ky <29 — 2N + 1
. 23¢{T}(23.7:1)<p(2j:1:2 — k), 1<p<N-1and0<ky <2 —2N+1
o 205k (2];:;1)1,/)(213:2—1@) 1<p<N-1and0<ky <2 —2N +1
o 2p(2zy — k)i (29(33 — 1)), ~2 <ky < —2N+1land 1<p< N -1
0 22p(20my — ki) (29 (2 — 1)), -2 <ky < 2N +1 and 1 < p < 2N — 2
o 24p(2m; — l)zp,?}(w (z3—1)), =2 <k < —2N+1land 1 <p< N -1
o 22z — 1)¢,{,’“}(2J;c) 0<k <2 —2N+1landl<p<N-1
o 200)(zy — k1) (22), 0< k1 <29 —2N +1 and1<p < 2N —2
o 21p(20my — ki) (2925), 0< k) <P —2N+1and I<p< N -1
iii) [exterior corner func wns]

Y {’}(21'(3; + 1)) (2 (2a +1)), 1<p<2N-—2and 1<g< N-—1
o 2791 (20 (21 + 1)} (2w + 1), ISP< N —1and 1 <g< 2N —2

. zw{”w( + 1) (@ (2 +1)), 1<p<N-1and1<g<N-1

o 291" (29 (21 — 1))¢z}{l}(2j(wz+1));1Sp52N—2and15q§N—1
2]«/;{”(2 (31 — 1)piH (2 (zy +1)), 1<p<N-1land1<q<2N -2

. 2J¢{T}(2 (21 — WS (2 (@2 +1)), 1<p<N-1land1<g<N-1

o 28 (2 (2 + 1))iH (2 (2, — 1)), 1<p<2N -2 and 1< g¢< N -1

. 21¢ }(2J(m1 + 1))l 2@y~ 1)), 1<p<N-1and1<qg<2N -2

-211/; 1 2i (g + 1) (292, - 1)), 1<p<N-land1<q<N-1

o 28 (29 (zy — ))¢[1{T}(2]a:2) 1<p<2N-2and1<qg<N-1

. 23¢{T}(23($1 ))go (2’:1:2 1<p<N-1andl<qg<2N -2

o 2095 (2 (21 — V)i (Pe), 1<p<N-1and1<q<N-1

o2 {r}(zﬂxl)w{r} i(zy— 1

1<p<N-1andl<qg<2N-2

),
)
), 1<p<2N-2andl1<qg<N-1
)
), 1<p<N-1landl<g<N-1

2
(2 )
o 20p" (203 )i (29 (2 — 1)
o 2747 (2l ") (272 — 1)

iv) [interior corner functions]
© 210, (221,2725), 1 < p < 11(N —1)2.

Proof: We proceed the orthonormalization by following the order in the description of the basis of Xj.
The interior functions are already orthogonal to V;(2) and orthonormal : they give the interior wavelets.
Then, we orthonormalize the edge functions. This can be reduced to the analysis on the interval and gives
the edge wavelets. Then, we proceed to the orthonormalization of the exterior corner functions. Due to the
control of the supports of the wavelets involved in those computations, we do not see in those computations
the global geometry of the open set and for each corner, the computations are the same as if we were in
the case of a cube (0,1) x (0,1), and we find wavelets provided by tensor products of the analysis on the
interval (more precisely, we find the corner elements of the tensor basis). Finally, we must orthonormalize
the interior corner functions, which may be written as 27 f,(2/z1,272,), 1 < p < 11(N — 1)2. Indeed, if we
define g, k, = (Po,k1 @ Y0,k2)105 Briks = (Y0, @ P0,k2) 10 a0 Yky ks = (Y05, @ Yok, )0, We must proceed
with the functions

[] ((pj,kn ®¢j,k2)|9 = 2jak1,k2(2jx1,2j:c2), —2N +2 S kl S —1and —2N + 2 S kz S -1

. (¢j,k1 ® on,k2)|9 = 2j,3.k17k2(2j1.:1,2j2.32), —2N+2<k <—-land —2N +2<k; < -1

e (¢j7k1 ®¢j,k2)|9 = 2]7/61,/92(2]3"172]'7;2)7 —2N+2 <k < -land —2N +2 < ky < -1, ki < =N or
ks < —N.
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We must first substract from those functions their components on the other elements og the Hilbertian
basis. The only elements which may interfere have a support which intersect (— 2]\27] a2 21\2’] 2I7-2)2 Those are
the functions :

0 227z — k1)p(27zy — ky), for —AN +2 < ki, ko <2N -3, k; < —2N+1lor ky < 2N +1

0 208 (2, )p(2my — ky), for 1< p< 2N —2and 0 < ky < 2N — 3

o (2031 — k)t (2935), for 0 < ky <2N —3 and 1 <p < 2N — 2

o 2961} (29), for 1 < p,q < 2N —2

(] 2j(p(2j$1 k1)¢(2jx2 - kz), for — AN +2 < ky,kes <2N =3, k1 <-2N+1or ks <-2N+1
k)29 my — ks), for —4N +2 < ki, ko <2N =3,k < —2N+1lor ky < —2N +1
k)w(29xe — k), for —AN +2 < ky, ke <2N =3,k < —2N +1lor ky < —2N +1

2

o 204p(2ixy —
o 2)(2g —
o 208 (2w )(2ws — k), for 1 <p<2N —2and 0 < ky < 2N — 3
o 208 (2 p(Vixs — ky),
o 23 (2 )p(20my — ko), for 1< p< N—1and 0< ky <2N —3
0 (20 zy — k)i (29my), for 0 < ky <2N—3and 1<p< N-—1
o 24p(2zy — k)b (29m), for 0 < ky <2N —3and 1 <p < 2N — 2
o 2ap(Vzy — k)i (2zs), for 0< ky <2N —3and 1<p< N —1

This is a finite set of functions 278, (2721, 2x5), 1 < n < Nmax, so that we finally have to orthonormalize
the set of functions g, = fp — >0 "3 (fp|0n)0n, 1 < p < 11(N — 1)?, to find the functions ¥, o

for l<p< N—1and0<ky <2N —3

6. Cieselski and Figiel’s decomposition method.

We shall now describe an altenative method for getting a good multi-resolution analysis on the L-
shaped domain. This method is based on Cieselski and Figiel’s construction of (generalized) spline bases on
a manifold [CF 83]. Their construction is based on a quadrangulation of the manifold. For the L-shaped
domain, Cieselski and Figiel’s quadrangulation is very easy to perform:

Definition 7: (Cieselski and Figiel’s quadrangulation)

Let Q be the domain Q = {(z,y) € (—1,1)2 / £ <0 or y < 0}. Cieselski and Figiel’s quadrangulation of
Q is the following decomposition of 2 into a union of cubes Q = Q1 U Q2 U Q3 where Q1 = (—1,0) x (—1,0),
Q2 = (-1,0) x [0,1) and Q3 =[0,1) x (—1,0).

For s > 0, we consider the following Sobolev spaces on {2 and the cubes Q;:
e H*(Q) is the usual Sobolev space on Q;
e H?(Q;) is the usual Sobolev space on @;; it may be defined as well as the space of restrictions to @; of
elements of H*(Q);
e H*%(Q) is the subspace of H*(f) of functions in H*(Q) which are identically equal to 0 outside from Q;;
e H*(Q;) is the space of restrictions to Q; of elements of H*%(Q).

We shall need the following lemma on those Sobolev spaces :

Lemma 5:
If f € H*(Q) is identically equal to 0 inside Q1, then fig, belongs to H**(Q;) for i =2, 3.

Proof: f may be extended to fo € H*(IR?) (since Q is Lipschitz); thus, we may consider the translates
fo(z,y — €)@, as approximations of f in H*(Q2); but fo(z,y — €)|q, is equal to 0 for 0 < y < ¢, so that it
may be extended by 0 on Q — Q2 to define an element of H*?({2) and we find that fo(z,y — €)g, belongs
to H*?(Q2); letting € go to 0", we find that fig, belongs to H*?(Q2). o

Moreover, we define the operators EZ(O) of extension by 0 as the operators defined from L?(Q;) to L*(Q)
by (E”f)q; = f and (B f)ja_g, = 0. Obviously, E'”) maps as well H*¥(Q;) onto H*#(). We then
have the following decomposition lemma for H*(2):
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Proposition 6: (Cieselski and Figiel’s lemma)
Let Ey be a continuous extension operator from H®(Q1) to H*(Q): f € H*(Q1) — E1f € H*(Q) with

E: fig, = f. Then, the mapping E defined by (f1, f2, f3) = E(f) = E1 f1 +E§0)f2+E§0) f3 is an isomorphism
between H*(Q1) x H*2(Q2) x H*(Q3) and H*(1Q).

Proof: This is a direct consequence of Lemma, 5. o

Proposition 6 suggests that, in order to have a multi-resolution analysis on (2 that is well-adapted to the
analysis of H® functions, we may try to find multi-resolution analyses on the cubes (); that are well-adapted
to the analysis of the Sobolev spaces H*(Q1), H*%(Q2) and H*3(Q3). This will be done in section 8 by
tensorizing multi-resolution analyses on the interval that are well adapted to boundary conditions (section
7.

7. Wavelets on the interval.

There are many construction of wavelet bases on the interval, besides Meyer’s analysis. The main
concern is to get better condition numbers in the orthonormalization process or to deal with boundary
conditions [CDV 93]. A most flexible method was introduced by Sweldens [S 96]. While most constructions
are based on approximating L? as the increasing union U;>;, V; of spaces V; C V;((0,1)) [JL 93], there
are even some constructions which introduce at scale j some boundary functions which does not belong to
V;((0,1)) [Mel 01].

Here, we shall only consider Meyer’s analysis (V;” = V;((=1,0)), W; =V, n(V;” )1) and the analysis
Vit =V;0((0,1)) = Span ((¢;k)|(0,1),0 < k < 27 —1) (the restrlctions to (0,1) of the elements of V;(IR)
which are supported in [0, +00)) and W;" = V;{, N (V;")*. This analysis was described in [JL 93].

Let us call P; the orthogonal projection operator on V;™ and Q; = P;;; —P; the orthogonal projection

operator on W,". According to Proposition 2, we have, for 2/ > 2N — 1,

Prf= YNl (@ (@ + 1)) 20202 (z + 1) + )i 10)
+ 2NN 1202020 — k) 20720(2z — k)
+ 32N 120200 (27 )) 2020(2x + q) (1,0

and, according to Proposition 5, we have

Pyf= YINTA2208 (29 (@ + 1) 2208 (20 ( + 1))
+ 3 2N 12120 (20 — k) 29/%0(2 s — k)

—_9i

+ 3N 12020 (2)) 297208 (27)

and
Q7 f= N2 (@ (@ + 1)) 2072988 (29 (2 + 1))
+ 2N EN f 1292920 — k) 20/ (2x — k)
+ N N f120298 (22)) 2972957 (29 )

Similarly, let us call PjJr the orthogonal projection operator on VjJr and Qj = P]JfH - PjJr the orthogonal
projection operator on Wj+. According to Proposition 2, we have, for 27 > 2N — 1,

Pf= ?j:ﬁ“%fmf/? 2z — k) 20/2p(2iz — k)
+ TR (f 121200 (2 (2 — 1)) 2020(2 (2 — 1) + )0,
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and, according to Proposition 5, we have

Pif= AN (f|29/20p (2 — k) 2/ %p(Va — k)
+ N (1207208 (20 (@ - 1)) 2972087 (20 (2 - 1))

Now, according to [JL 93], a Riesz basis for V]frl is given by the family :
* (¢j)01), 0< k<2 —1
* (Yjk)01), 0<k <2 =N
® Yiti,2p41, L<pS N -1
Orthonormalization then gives us N —1 new functions 1111{,” supported in [0,4N —2] such that, for 29 > 4N —4,

we have N1 o 1) e o ) e
Qff = Yopmr (fI202057 (20)) 292057 (2 )

+ NN 120220 — k) 297292z — k)
+ NN f1202980 (2 (2 - 1)) 2072957 (29 (2 - 1))

8. Bi-orthogonal multi-resolution analysis on the L-shaped domain: scaling functions.
We consider again the L-shaped domain 2 and the space V;(12).

Theorem 4:

Let Q@ = {(z,y) € (-1,1)2 /2 <0 ory < 0}. Let Q1 = (—1,0) x (—=1,0), Q2 = (—1,0) x [0,1) and
Qs = [0,1) x (—1,0). Let R; be the restriction operator to Q; : f € L*(Q) — Rif = fio, € L*(Q:). Let
E;q, Eéo) and Eg(,o) be the extension operators

Ejq1 Vi @V = LHQ), (@4ks @ Pika)(-1,0)x(~1,0) = (Pskr ® Qioa) 0

B L3(Qs) » LX(Q), (B f) g, = £ and (B f)jg_q, = 0.

E® : 12(Q3) = L2(Q), (B f) g, = f and (