More Regular Wavelets

Pierre Gilles Lemarie-Rieusset
Equipe d'Analyse et Probabilités, Département de Mathématiques, Université d'Evry, Bd des Coquibus, F-91025 Evry Cedex, France; and URA 757 (Analyse Harmonique), Département de Mathématiques (bât. 425), Université de Paris-Sud, F-91405 Orsay Cedex, France
E-mail: lemarie@lami.univ-evry.fr
and
Ezzedine Zahrouni
Département de Mathématiques, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia

Communicated by Ingrid Daubechies

Received December 5, 1995; revised April 14, 1997

We introduce a new class of compactly supported orthonormal wavelets which are more regular than the Daubechies wavelets. © 1998 Academic Press

INTRODUCTION

Let ψ be a compactly supported wavelet; i.e., ψ is a real-valued square-integrable compactly supported function such that the family

$$
\left(\psi_{j, k}=2^{j / 2} \psi\left(2^{j} x-k\right)\right)_{j \in \mathbb{Z}, k \in \mathbb{Z}}
$$

is an Hilbertian basis of $L^{2}(\mathbb{R})$. It is known that (at least in the case when ψ is slightly better than $L^{2}: \psi \in H^{\epsilon}$ for some positive ϵ) the basis $\left(\psi_{j, k}\right)_{j \in \mathbb{Z}, k \in \mathbb{Z}}$ is derived from a multiresolution analysis associated to a compactly supported scaling function φ [5] and a scaling filter m_{0}, which is a trigonometric polynomial. We may choose m_{0} such that the lower frequency in m_{0} is $k=0$,

$$
\begin{equation*}
m_{0}(\xi)=\sum_{k=0}^{k_{1}} a_{k} e^{-i k \xi}, \quad a_{k_{1}} \neq 0, \quad a_{0} \neq 0, \quad m_{0}(0)=1, \tag{1}
\end{equation*}
$$

and φ is defined by

$$
\begin{equation*}
\hat{\varphi}(\xi)=\prod_{j=1}^{\infty} m_{0}\left(\frac{\xi}{2^{j}}\right) \tag{2}
\end{equation*}
$$

and then we have

$$
\begin{equation*}
\hat{\psi}(\xi)=e^{-i K \xi} e^{-i \xi / 2} \bar{m}_{0}\left(\frac{\xi}{2}+\pi\right) \hat{\varphi}\left(\frac{\xi}{2}\right), \tag{3}
\end{equation*}
$$

where $K+\frac{1}{2}$ is the midpoint of Supp ψ,

$$
\operatorname{Supp} \varphi=\left[0, k_{1}\right], \quad \operatorname{Supp} \psi=\left[K+\frac{1}{2}-\frac{k_{1}}{2}, K+\frac{1}{2}+\frac{k_{1}}{2}\right],
$$

k_{1} is always an odd integer, and we write $k_{1}=2 N-1$.
The length of the filter m_{0} is then the number $l=2 N$. It is a measurement of the complexity of the fast wavelet transform [6] associated to ψ. In this paper, we are interested in the regularity ratio $\sigma / l=\sigma / 2 N$, where σ is the Sobolev regularity exponent of ψ :

$$
\begin{equation*}
\sigma=\operatorname{Sup}\left\{s /|\xi|^{s} \hat{\psi} \in L^{2}\right\} \tag{4}
\end{equation*}
$$

More precisely, we are going to improve the ratio $\sigma / 2 N$ when N goes to infinity by introducing a new class of wavelets which are more regular than the Daubechies wavelets.

Theorem. There exists a family $\left(\psi_{N}\right)_{N \geq 0}$ of compactly supported orthonormal wavelets (of Sobolev exponent σ_{N}) such that:
(i) for all N, Supp $\psi_{N}=[0,2 N-1]$
(ii) $\liminf _{N \rightarrow+\infty}\left(\sigma_{N} / 2 N\right)>1 / 2-\ln 3 / 4 \ln 2$.

We will begin by some elementary lemmas on wavelets, then recall the proof that if ψ_{N} is a Daubechies wavelet of length $2 N$ and regularity exponent σ_{N}, then $\lim _{N \rightarrow+\infty}$ $\sigma_{N} / 2 N=1 / 2-\ln 3 / 4 \ln 2$. We slightly modify the classical proof of Cohen and Conze [2] and Volkmer [8] in order to generalize the proof to other families of wavelets.

1. BASIC RESULTS ON WAVELETS

How can we construct wavelets of length $2 N$? The procedure is given by formulas (2) and (3) provided that we may construct a good polynomial m_{0}. Such polynomials are characterized by the Cohen criterion [1]:

Lemma 1. Let $Q \in \mathbb{R}[X], Q(1)=1$. Then the following assertions are equivalent:
(A1) $Q(\cos \xi)$ is the square modulus $\left|m_{0}(\xi)\right|^{2}$ of an orthonormal scaling filter of length $2 N$.
(A2) Q satisfies:
(i) $\operatorname{deg} \mathrm{Q}=2 N-1$
(ii) $Q(X)+Q(-X)=1$
(iii) $Q(X) \geq 0$ for $X \in[-1,1]$
(iv) if $\mathrm{Q}\left(\cos \left(2^{k} \xi_{0}+\pi\right)\right)=0$ for all $k \in \mathbb{N}$ then $\xi_{0} \in 2 \pi \mathbb{Z}$.

Condition (iv) is satisfied as soon as Q does not vanish on $\left[\frac{1}{2}, 1\right]$. Of course, Q does not determine an unique m_{0} (it determines only the modulus $\left|m_{0}(\xi)\right|$), and we have to use a Riesz factorization [allowed by the condition (A2) (iii)] for the extraction of a 'square root"' m_{0}. But, the knowledge of Q is enough for describing the regularity of the wavelets we may produce from it (since σ depends only on $|\hat{\psi}|$, hence on $\left.\left|m_{0}\right|\right)$.

Lemma 2. (i) $\tilde{\sigma}-1 / 2 \leq \sigma \leq \tilde{\sigma}$, where $\tilde{\sigma}=\operatorname{Max}\left\{\alpha /|\xi|^{\alpha} \hat{\varphi} \in L^{\infty}\right\}$.
(ii) if $Q(X)=((1+X) / 2)^{L} A(X)$ then

$$
\begin{equation*}
L-\frac{1}{2 \ln 2} \ln \rho_{1} \leq \tilde{\sigma} \leq L-\frac{1}{2 \ln 2} \ln \rho_{2}, \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \rho_{1}=\operatorname{Max}\left\{\operatorname{Sup}_{-1 \leq X \leq-1 / 2} \sqrt{A(X) A\left(2 X^{2}-1\right)}, \operatorname{Sup}_{X \geq-1 / 2} A(X)\right\} \\
& \rho_{2}=A(-1 / 2) \quad\left(\text { so that } L-\frac{1}{2 \ln 2} \ln \rho_{2}=-\ln Q(-1 / 2)\right) .
\end{aligned}
$$

Notice that φ and ψ have the same Sobolev exponent. Lemma 2 is classical [4] ($\sigma \leq \tilde{\sigma}$ is not classical; one finds often $\sigma \leq \tilde{\sigma}+1 / 2$; but it is known that if $\varphi \in$ $H^{s+\epsilon}$, then $(\varphi(x-k))_{k \in \mathbb{Z}}$ is a Riesz family in H^{s}, hence $\sum_{k \in \mathbb{Z}}|\xi+2 k \pi|^{2 s} \mid \hat{\varphi}(\xi+$ $2 k \pi)\left.\right|^{2} \in L^{\infty}$, which proves $\left.\sigma \leq \tilde{\sigma}\right)$.

Our last lemma solves $Q(X)+Q(-X)=1$, with the assumption that $\operatorname{deg} Q \leq$ $2 N-1$ and Q is a multiple of $(1+X)^{L}$:

Lemma 3. The following assertions are equivalent:
(B1) $Q \in \mathbb{R}_{2 N-1}[X], Q(1)=1, Q(X)+Q(-X)=1$ and Q is a multiple of $(1+X)^{L}$.
(B2) $Q=\sum_{k=0}^{2 N-1} \epsilon_{N, k}\binom{2 N-1}{k}((1+X) / 2)^{k}((1-X) / 2)^{2 N-1-k}$ with $\epsilon_{N, k}+\epsilon_{N, 2 N-1-k}$ $=1$ for $0 \leq k \leq 2 N-1$ and $\epsilon_{N, k}=0$ for $0 \leq k \leq L-1$.
(B3) there is a polynomial $A \in \mathbb{R}_{N-L}[X]$ such that $Q(1)=1$ and

$$
Q(X)=\int_{-1}^{X}\left(1-t^{2}\right)^{L-1} A\left(t^{2}\right) d t
$$

(B2) is called the Bernstein representation of Q and (B3) its integral representation. Lemma 3 is obvious, but very useful.

2. DAUBECHIES WAVELETS

Daubechies wavelets ψ_{N} are defined as wavelets of length $2 N$ with optimal power of approximation. We say that a wavelet ψ (associated to a scaling function φ) has power of approximation $\lambda \in \mathbb{N}$ if

$$
\begin{equation*}
\forall f \in H^{\lambda} \quad \lim _{j \rightarrow+\infty} 2^{\lambda j}\left\|f-P_{j} f\right\|_{2}=0, \tag{6}
\end{equation*}
$$

where P_{j} is the orthogonal projection operator on the closed linear span of the $\varphi_{j, k}=$ $2^{j / 2} \varphi\left(2^{j} x-k\right), k \in \mathbb{Z}$. The following lemma is classical.

Lemma 4. The following assertions are equivalent:
(C1) ψ has power of approximation λ
(C2) $\forall k \in\{0, \ldots, \lambda\}, P_{j}\left(x^{k}\right)=x^{k}$ (Strang-Fix condition)
(C3) $\forall k \in\{0, \ldots, \lambda\},\left(\left(d^{k} / d \xi^{k}\right) m_{0}\right)(\pi)=0$
(C4) Q is a multiple of $(1+X)^{\lambda+1}$ (Daubechies condition).
Thus, looking at (B3), we see that if ψ has power of approximation λ, then its length is at least $2 \lambda+2$. The Daubechies wavelets ψ_{N} are precisely the wavelets of length $2 N$ and power of approximation $N-1$. (B2) gives us that Q_{N} is given by

$$
\begin{equation*}
Q_{N}=\sum_{N}^{2 N-1}\binom{2 N-1}{k}\left(\frac{1+X}{2}\right)^{k}\left(\frac{1-X}{2}\right)^{2 N-1-k} \tag{7}
\end{equation*}
$$

and (B3) gives us that

$$
\begin{equation*}
Q_{N}=\frac{N}{2^{2 N-1}}\binom{2 N-1}{N} \int_{-1}^{X}\left(1-t^{2}\right)^{N-1} d t \tag{8}
\end{equation*}
$$

(where the constant $N / 2^{2 N-1}\binom{2 N-1}{N}$ can be determined by differentiating (7)). We are going to prove

$$
\begin{equation*}
\sigma_{N}=N\left(1-\frac{\ln 3}{2 \ln 2}\right)+0\left(\frac{\ln N}{N}\right) \tag{9}
\end{equation*}
$$

by proving that, in Lemma 2,

$$
\begin{aligned}
& \rho_{1} \leq C_{0} \sqrt{N} 3^{N} \\
& \rho_{2} \geq C_{1} 3^{N} \sqrt{N} .
\end{aligned}
$$

The proof is very easy. First, we use the Stirling formula to get

$$
\binom{2 N-1}{N} \sim \frac{2^{2 N-1}}{\sqrt{N \pi}}
$$

Thus, we have, for $X \leq 0$

$$
\begin{aligned}
Q_{N}(X) \leq \gamma_{0} \sqrt{N} \int_{-1}^{X}\left(1-t^{2}\right)^{N-1} d t & \leq \gamma_{0} \sqrt{N}\left(1-X^{2}\right)^{N-1} \int_{-1}^{X} d t \\
& \leq \gamma_{0} \sqrt{N}\left(\frac{1+X}{2}\right)^{N}(2(1-X))^{N}
\end{aligned}
$$

Thus, $A_{N}(X) \leq \gamma_{0} \sqrt{N}(2(1-X))^{N}$ if $X \leq 0, \leq(2 /(1+X))^{N}$ if $X \geq 0$. Hence,

- if $X \geq 0, A_{N}(X) \leq 2^{N} \leq 3^{N}$
- if $-\frac{1}{2} \leq X \leq 0, A_{N}(X) \leq \gamma_{0} \sqrt{N}(2(1-X))^{N} \leq \gamma_{0} \sqrt{N} 3^{N}$
- if $-\sqrt{2} / 2 \leq X \leq \frac{1}{2}, A_{N}(X) A_{N}\left(2 X^{2}-1\right) \leq \gamma_{0}^{2} N\left(8(1-X)\left(1-X^{2}\right)\right)^{N}$
$\leq \gamma_{0}^{2} N 9^{N}$
- if $X \leq-\sqrt{2} / 2, A_{N}(X) A_{N}\left(2 X^{2}-1\right) \leq \gamma_{0} \sqrt{N}(2(1-X))^{N} \cdot 2^{N} \leq \gamma_{0} \sqrt{N} 8^{N}$ $\leq \gamma_{0} \sqrt{N} 9^{N}$,
thus we have a good estimate for ρ_{1}.
For estimating ρ_{2}, it is enough to write

$$
Q_{N}\left(-\frac{1}{2}\right) \geq\binom{ 2 N-1}{N}\left(\frac{1-1 / 2}{2}\right)^{N}\left(\frac{1+1 / 2}{2}\right)^{N-1} \geq C \frac{1}{\sqrt{N}}\left(\frac{3}{4}\right)^{N}
$$

Thus (9) is proved.

3. THE RESTRICTED BERNSTEIN CLASS

Our first attempt to improve (9) was to replace Q_{N} by another polynomial Q given by

$$
Q(X)=\sum_{0}^{2 N-1} \epsilon_{N, k}\binom{2 N-1}{k}\left(\frac{1+X}{2}\right)^{k}\left(\frac{1-X}{2}\right)^{2 N-1-k}
$$

with $\epsilon_{N, k} \geq 0$ for all $k, \epsilon_{N, k}+\epsilon_{2 N-1-k}=1$, and $\epsilon_{N, 0}=0$. This polynomial is of degree $\leq 2 N-1$ and satisfies obviously conditions (ii), (iii), (iv) of (A2) and thus defines a wavelet. Such polynomials will be said to belong to the restricted Bernstein class. But, we cannot improve (9).

Proposition 1. If $\operatorname{deg} Q \leq 2 N-1$ and Q belongs to the restricted Bernstein class, then $\sigma \leq N(1-\ln 3 / 2 \ln 2)+O(\ln N / N)$.

Proof. It is enough to estimate $Q\left(-\frac{1}{2}\right)$. We have

$$
\begin{aligned}
Q\left(-\frac{1}{2}\right) & \geq\binom{ 2 N-1}{N-1}\left\{\epsilon_{N, N-1} \frac{3^{N}}{4^{2 N-1}}+\left(1-\epsilon_{N, N-1}\right) \frac{3^{N-1}}{4}\right\} \\
& \geq\binom{ 2 N-1}{N-1} \frac{3^{N-1}}{4^{2 N-1}}
\end{aligned}
$$

4. THE MATZINGER WAVELETS

After the failure of the restricted Bernstein class, we had to introduce some negative coefficients in the Bernstein representation; hence we encountered a problem for keeping $Q(X)$ positive-valued. Therefore, we changed our plan and turned to the integral representation. Moreover, we decided to impose $Q\left(-\frac{1}{2}\right)=0$, since $Q\left(-\frac{1}{2}\right)$ was the main obstacle for better regularity in the case of the restricted Bernstein class. (After completing this work, we learned that H . Volkmer constructed regular wavelets using the integral representation [9], but in a different way than ours; his polynomials $Q(X)$ are increasing on $[-1,1]$.)

Thus, we asked E. Matzinger to study the filters m_{0} of minimal length such that m_{0} has L zeros at π and $2 M$ zeros at $2 \pi / 3$ [7]. The result we obtained with Matzinger is the following.

Theorem 2. (a) m_{0} has L zeros at π and $2 M$ zeros at $2 \pi / 3$ if and only if:

$$
Q(-1 / 2)=0
$$

and for some $A \in \mathbb{R}[X]$

$$
Q(X)=\int_{-1}^{X}\left(1-t^{2}\right)^{L-1}\left(1-4 t^{2}\right)^{2 M-1} A\left(t^{2}\right) d t .
$$

Moreover, we must have $\operatorname{deg} A \geq 1$.
(b) If $2 M \leq(L-1)(\ln 5 / \ln 4)$ then the polynomial

$$
Q_{M, L}(X)=\alpha_{M, L} \int_{-1}^{X}\left(1-t^{2}\right)^{L-1}\left(1-4 t^{2}\right)^{2 M-1}\left(1-\beta_{M, L} t^{2}\right) d t
$$

where $\beta_{M, L}$ is determined by $Q_{M, L}\left(-\frac{1}{2}\right)=0$ and $\alpha_{M, L}$ by $Q_{M, L}(1)=1$, satisfies the Cohen criterion (A2) (ii) - (iv).

Proof. (a) is obvious, since $d Q / d X$ is even, has $L-1$ zeros at -1 and $2 M-1$ zeros at $-1 / 2$. Moreover, $A\left(t^{2}\right)$ vanishes between -1 and $-1 / 2$ by Rolle's theorem; hence $\operatorname{deg} A \geq 1$.
(b) is easy. First, we see that $\beta_{M, L}$ and $\alpha_{M, L}$ are well defined. $\beta_{M, L}$ is the root of $F(\beta)=0$, where

$$
F(\beta)=\int_{-1}^{-1 / 2}\left(1-t^{2}\right)^{L-1}\left(1-4 t^{2}\right)^{2 M-1}\left(1-\beta t^{2}\right) d t=A_{M, L}-B_{M, L} \beta
$$

Obviously $F(1)<0$ and $F(4)>0$; hence, $1<\beta_{M, L}<4$.
Now, $\alpha_{M, L}$ is defined by

$$
\alpha_{M, L} \int_{-1 / 2}^{1 / 2}\left(1-t^{2}\right)^{L-1}\left(1-4 t^{2}\right)^{2 M-1}\left(1-\beta_{M, L} t^{2}\right) d t=1
$$

and the multiplicand of $\alpha_{M, L}$ is clearly positive.
In order to prove that $Q_{M, L}$ satisfies the Cohen criterion, we will prove more precisely that $Q_{M, L}$ is nonnegative on $[-1,1]$ and that its roots on $[-1,1]$ are just -1 and $-1 / 2$. Since $Q_{M, L}$ increases on $[-1 / 2,1 / 2]$ and since $Q_{M, L}(X)+Q_{M, L}(-X)=1$, it is enough to show that for $-1<X<-1 / 2$ we have $0<Q_{M, L}(X)<1$. $Q_{M, L}$ increases between -1 and $\gamma_{M, L}=-1 / \sqrt{\beta_{M, L}}$ and decreases between $\gamma_{M, L}$ and $-1 / 2$, so we have just to prove

$$
Q_{M, L}\left(\gamma_{M, L}\right)<Q_{M, L}(1 / 2)=1,
$$

or equivalently, to prove $I_{M, L}<J_{M, L}$, where

$$
I_{M, L}=\int_{-1}^{\gamma_{M, L}}\left(1-t^{2}\right)^{L-1}\left(1-4 t^{2}\right)^{2 M-1}\left(1-\beta_{M, L} t^{2}\right) d t
$$

and

$$
J_{M, L}=\int_{-1 / 2}^{1 / 2}\left(1-t^{2}\right)^{L-1}\left(1-4 t^{2}\right)^{2 M-1}\left(1-\beta_{M, L} t^{2}\right) d t
$$

But, on $\left[-1, \gamma_{M, L}\right]$ we have

$$
\left(1-4 t^{2}\right)^{2 M-1}\left(1-\beta_{M, L} t^{2}\right)=\left(4 t^{2}-1\right)^{2 M-1}\left(\beta_{M, L} t^{2}-1\right) \leq\left(4 t^{2}-1\right)^{2 M}
$$

hence

$$
I_{M, L} \leq \int_{-1}^{-1 / 2}\left(1-t^{2}\right)^{L-1}\left(1-4 t^{2}\right)^{2 M} d t=\tilde{I}_{M, L}
$$

while, on $[-1 / 2,1 / 2]$, we have $1-\beta_{M, L} t^{2} \geq 1-4 t^{2}$; hence

$$
J_{M, L} \geq \int_{-1 / 4}^{1 / 4}\left(1-t^{2}\right)^{L-1}\left(1-4 t^{2}\right)^{2 M} d t=\tilde{J}_{M, L}
$$

Now, if we look at $f(\theta)=\left(1-\theta^{2}\right)\left|1-4 \theta^{2}\right|$, then $f(\theta) \leq 36 / 64$ on $[-1,-1 / 2]$ and $f(\theta) \geq 45 / 64$ on $[-1 / 4,1 / 4]$; hence

TABLE 1
The Matzinger Scaling Filter for $L=\mathbf{3}$ and $M=1$

	k	$a_{k}^{M, L}$
$L=3$	0	0.01387003
	1	-0.03351638
	2	-0.01732329
	3	0.10179320
	4	-0.01710161
	5	-0.16606030
	6	0.00383799
	7	0.38395131
	8	0.51671690
	9	0.21383210

- if $2 M \leq L-1$,

$$
\tilde{I}_{M, L} \leq\left(\frac{36}{64}\right)^{2 M} \int_{-1}^{-1 / 2}\left(1-t^{2}\right)^{L-1-2 M} d t \leq \frac{1}{2}\left(\frac{36}{64}\right)^{2 M}\left(\frac{3}{4}\right)^{L-1-2 M}
$$

and

$$
\tilde{J}_{M, L} \geq\left(\frac{45}{64}\right)^{2 M} \int_{-1 / 4}^{1 / 4}\left(1-t^{2}\right)^{L-1-2 M} d t \geq \frac{1}{2}\left(\frac{45}{64}\right)^{2 M}\left(\frac{15}{16}\right)^{L-1-2 M}
$$

hence

$$
J_{M, L} \geq\left(\frac{45}{36}\right)^{2 M}\left(\frac{15}{12}\right)^{L-1-2 M} I_{M, L}>I_{M, L}
$$

- if $2 M \geq L$, we get similarly

$$
\tilde{I}_{M, L} \leq \frac{1}{2}\left(\frac{36}{64}\right)^{L-1} 3^{2 M-L+1}, \quad \tilde{J}_{M, L} \geq \frac{1}{2}\left(\frac{45}{64}\right)^{L-1}\left(\frac{3}{4}\right)^{2 M-L+1}
$$

hence

$$
J_{M, L} \geq\left(\frac{45}{36}\right)^{L-1} 4^{-2 M+L-1} I_{M, L}=\frac{5^{L-1}}{4^{2 M}} I_{M, L}>I_{M, L}
$$

if $5^{L-1}>4^{2 M}$. Hence, Theorem 2 is proved.

5. MATZINGER WAVELETS: TABLES AND FIGURES

In this section, we give the Matzinger filters for some small values of L and M (choosing for the computations the minimum-phased square root of $Q_{M, L}(\cos (\xi))$) and we plot the associated scaling functions.

The Matzinger wavelet for $\mathrm{L}=3$ and $\mathrm{M}=1$ are shown in Table 1 and Fig. 1. The Matzinger wavelet for $\mathrm{L}=4$ and $\mathrm{M}=1$ are shown in Table 2 and Fig. 2.

FIG. 1. Matzinger scaling function for $L=3$ and $M=1$.

We now give the Sobolev regularity exponent σ for these Matzinger wavelets,

$$
\sigma=\max \left\{s / \phi \in H^{s}\right\},
$$

which can be computed exactly through the spectral analysis of a transition operator on a finite-dimensional space [3]. We recall in our tables the length of the scaling filter (Tables 3-5).

In Table 5 we write $\sigma_{L, M}$ and $\sigma_{L+2 M}$ for the Sobolev exponent of the Matzinger and the Daubechies scaling functions $\varphi_{L, M}$ and $\varphi_{L+2 M}$ (they have the same support).

TABLE 2
The Matzinger Scaling Filter for $L=4$ and $M=1$

k	$a_{k}^{M, L}$	
4	0	-0.00466166
	1	0.01430884
	2	0.00423221
	3	-0.05451530
	4	0.02704138
	5	0.09655332
	6	-0.06914172
	7	-0.16778700
0	0.08275964	
	8	0.46165201
	9	0.45977020

FIG. 2. Matzinger scaling function for $L=4$ and $M=1$.

Thus, we can see that for $L \geq 8$ and $M=1$ the Matzinger wavelet is more regular than the Daubechies wavelet $\phi_{L+2 M}$ which has a support of the same size. This is a general feature of the Matzinger wavelets for big enough values of L as we shall see in the next section.

6. REGULARITY OF THE MATZINGER WAVELETS

We are now able to prove Theorem 1 in the following way.
Theorem 3. Let $\lambda>0$. For $N \geq 1 / \lambda$, let $\psi_{N}=\psi_{M, L}$ be a Matzinger wavelet (associated to a Q which has L zeros at -1 and $2 M$ zeros at $-\frac{1}{2}$) of length $2 N=2 L$

TABLE 3
Sobolev Exponent of the Matzinger Scaling Functions for $M=1$

L	Length	σ
3	10	1.411
4	12	1.867
5	14	2.297
6	16	2.711
7	18	3.114
8	20	3.508
9	22	3.897
10	24	4.482
11	26	4.661

TABLE 4
Sobolev Exponent of the Matzinger Scaling Functions for $\boldsymbol{M}=2$

L	Length	σ
3	14	1.000
4	16	1.600
5	18	2.046
6	20	2.472
7	22	2.883
8	24	3.258
9	26	3.682
10	28	4.076
11	30	4.467

$+4 M$ with $M=[\lambda N]$. Then, if λ is small enough, we have $\lim \inf \left(\sigma_{N} / 2 N\right)>\frac{1}{2}-$ $\ln 3 / 4 \ln 2\left(\right.$ where σ_{N} is the Sobolev exponent of $\left.\psi_{N}\right)$.

Proof. We are going to prove more precisely: $\sigma_{N} / 2 N \geq \frac{1}{2}-\ln 3 / 4 \ln 2+\mu+$ $O(\log n / n)$, where μ is a positive constant.

We will always assume $2 M \leq L-1$, hence $\lambda<\frac{1}{4}$. Then we may prove the following estimate.

Lemma 5. There is a constant $C(\lambda)$ depending only on λ such that:

$$
\forall N \geq \frac{1}{\lambda}, \forall x \in[-1,0] \quad Q_{M, L}(x) \leq C(\lambda) \sqrt{N}\left(1-x^{2}\right)^{L}\left(1-4 x^{2}\right)^{2 M} .
$$

TABLE 5
Comparison of Sobolev Exponent of the Matzinger and the Daubechies Scaling Functions

L	Length	$\sigma_{L, M}$	$\sigma_{L+2 M}$
3	9	1.411	2.096
4	11	1.807	2.469
5	13	2.297	2.701
6	15	2.711	2.914
7	17	3.114	3.161
8	19	3.508	3.402
9	21	3.897	3.639
10	23	4.482	3.875
11	25	4.661	4.106
12	27	5.036	4.336
13	29	5.405	4.566
14	31	5.771	4.792
15	33	6.131	5.019

The lemma is easy to check; we have
$Q_{M, L}(x) \leq 3 \alpha_{M, L} \inf \left(\int_{-1}^{x}\left(1-t^{2}\right)^{L-1}\left|1-4 t^{2}\right|^{2 M-1} d t\right.$,

$$
\left.\left|\int_{-1 / 2}^{x}\left(1-t^{2}\right)^{L-1}\right| 1-\left.4 t^{2}\right|^{2 M-1} d t \mid\right)
$$

Let us estimate $\alpha_{M, L}$,

$$
\begin{aligned}
\frac{1}{\alpha_{M, L}} & =\int_{-1 / 2}^{1 / 2}\left(1-t^{2}\right)^{L-1}\left(1-4 t^{2}\right)^{2 M-1}\left(1-\beta_{M, L} t^{2}\right) d t \\
& \geq \int_{-1 / 2}^{1 / 2}\left(1-4 t^{2}\right)^{2 M+L-1} d t \\
& =\frac{1}{2} \int_{-1}^{1}\left(1-t^{2}\right)^{N-1} d t \\
& =\frac{1}{2} \frac{2^{2 N-1}}{N\binom{2 N-1}{N}} \\
& \geq C \frac{1}{\sqrt{N}}
\end{aligned}
$$

and thus $\alpha_{M, L} \leq C \sqrt{N}$.
Now, let us look at $P(x)=\left|\left(1-x^{2}\right)^{L-1}\left(1-4 x^{2}\right)^{2 M-1}\right|$.
Clearly, P is increasing on $\left[-1, t_{M, L}\right]$, decreasing on $\left[t_{M, L},-\frac{1}{2}\right]$ and increasing on $\left[-\frac{1}{2}, 0\right]$, where $t_{M, L}$ is the negative root of

$$
(2 M-1)\left(1-t^{2}\right)+4(L-1)\left(1-4 t^{2}\right)=0
$$

Thus,

$$
Q_{M, L}(X) \leq 3 \alpha_{M, L}(1+X)\left(1-X^{2}\right)^{L-1}\left|1-4 X^{2}\right|^{2 M-1} \quad \text { if }-1 \leq X \leq t_{M, L}
$$

and

$$
Q_{M, L}(X) \leq 3 \alpha_{M, L}\left|\frac{1}{2}+X\right|\left(1-X^{2}\right)^{L-1}\left|1-4 X^{2}\right|^{2 M-1} \quad \text { if } t_{M, L} \leq X \leq 0
$$

and we get, finally,

$$
Q_{M, L}(X) \leq 3 \alpha_{M, L}\left(1-X^{2}\right)^{L}\left(1-4 X^{2}\right)^{2 M} \operatorname{Max}\left(\frac{1}{\left|1-4 t_{M, L}^{2}\right|}, \frac{1}{2\left|1-t_{M, L}^{2}\right|}\right)
$$

on $[-1,0]$. But $t_{M, L}^{2} \sim(1+6 \lambda) / 4$. Thus, Lemma 5 is proved.

We are now going to estimate σ_{N} by estimating ρ_{1} in Lemma 2 in a way very similar to the case of Daubechies filters (the Daubechies filters correspond to the value $M=0$ of a Matzinger wavelet). As a matter of fact, $\rho_{1} \leq \delta_{M, L}=\operatorname{Max}_{-1 \leq x \leq 1} \alpha(x)$, where $\alpha(x)$ is defined by

- for $0 \leq x \leq 1, \alpha(x)=(2 /(1+x))^{L}$
- for $-\frac{1}{2} \leq x<0, \alpha(x)=C(\lambda) \sqrt{N}(2(1-x))^{L}\left(1-4 x^{2}\right)^{2 M}$
- for $-\sqrt{2} / 2 \leq x<-\frac{1}{2}$,
$\alpha(x)=C(\lambda) \sqrt{N}\left(8(1-x)\left(1-x^{2}\right)\right)^{L / 2}\left(1-4 x^{2}\right)^{2 M}\left|3-4 x^{2}\right|^{M}$
- for $-1 \leq x<-(-\sqrt{2} / 2), \alpha(x)=\sqrt{C(\lambda)} N^{1 / 4}\left(\frac{2(1-x)}{x^{2}}\right)^{L / 2}\left(1-4 x^{2}\right)^{M}$
(we have just used $Q_{M, L}(x)=((1+x) / 2)^{L} A_{M, L}(x)$ and Lemma 5 and $Q_{M, L}(x) \leq 1$ in order to estimate the size of $A_{M, L}(x)$ and of $\left.A_{M, L}(x) A_{M, L}\left(2 x^{2}-1\right)\right)$. Thus, we find

$$
\frac{\sigma_{N}}{2 N} \geq \frac{1}{2 N} \frac{1}{2 \ln 2} \ln \frac{4^{L}}{\delta_{M, L}}=\frac{1}{4 \ln 2} \ln \left(\frac{4^{L}}{\delta_{M, L}}\right)^{1 / N} .
$$

For $M=0$ (the Daubechies wavelets), we find again $\sigma_{N} / 2 N \sim(1 / 4 \ln 2) \ln \frac{4}{3}=$ $0.103 \cdots$. Numerically, we find that for $\lambda=\frac{1}{20}, \sigma_{N} / 2 N \geq 0.128 \cdots$.

We are going to prove that for $0<\lambda<\ln (9 / 8) / 2 \ln 6$ we have indeed that lim $\inf \left(\sigma_{N} / 2 N\right)>(1 / 4 \ln 2) \ln \frac{4}{3}$. We are going to prove more precisely that $\delta_{M, L} \leq$ $C(\lambda) 3^{L}\left(\frac{3}{4}\right)^{2 M} \theta^{N} \sqrt{N}$, where $C(\lambda)$ and θ depends only on λ and where $0<\theta<1$:

- For $x \geq 0, \alpha(x) \leq 2^{L}=3^{L}\left(\frac{3}{4}\right)^{2 M}\left\{\left(\frac{2}{3}\right)^{1-2 \lambda}\left(\frac{4}{3}\right)^{2 \lambda}\right\}^{N}$.
- For $-\frac{1}{3} \leq x<0$, we write $\left|1-4 x^{2}\right| \leq 1$; hence,

$$
\alpha(x) \leq C(\lambda) \sqrt{N}\left(\frac{8}{3}\right)^{L}=C(\lambda) \sqrt{N} 3^{L}\left(\frac{3}{4}\right)^{2 M}\left\{\left(\frac{8}{9}\right)^{1-2 \lambda}\left(\frac{4}{3}\right)^{2 \lambda}\right\}^{N} .
$$

- For $-\frac{1}{2} \leq x<-\frac{1}{3}$, we write $\left|1-4 x^{2}\right| \leq \frac{5}{9}$; hence

$$
\alpha(x) \leq C(\lambda) \sqrt{N} 3^{L}\left(\frac{5}{9}\right)^{2 M}=C(\lambda) \sqrt{N} 3^{L}\left(\frac{3}{4}\right)^{2 M}\left\{\left(\frac{20}{27}\right)^{2 \lambda}\right\}^{N} .
$$

- For $-\frac{5}{8} \leq x<-\frac{1}{2}$ we write $\left(1-4 x^{2}\right)^{2 M}\left|3-4 x^{2}\right|^{M} \leq\left(\left(\frac{207}{256}\right) \times\left(\frac{9}{16}\right)\right)^{M}$

$$
\alpha(x) \leq C(\lambda) \sqrt{N} 3^{L}\left(\frac{9 \times 207}{16 \times 256}\right)^{M}=C(\lambda) \sqrt{N} 3^{L}\left(\frac{3}{4}\right)^{2 M}\left\{\left(\frac{207}{256}\right)^{\lambda}\right\}^{N} .
$$

- For $-\sqrt{2} / 2 \leq x<-\frac{5}{8}$, we write $\left(1-4 x^{2}\right)^{2 M}\left|3-4 x^{2}\right|^{M} \leq 1$

$$
\alpha(x) \leq C(\lambda) \sqrt{N}\left(\frac{337}{64}\right)^{L / 2}=C(\lambda) \sqrt{N} 3^{L}\left(\frac{3}{4}\right)^{2 M}\left\{\left(\frac{337}{576}\right)^{1 / 2-\lambda}\left(\frac{4}{3}\right)^{2 \lambda}\right\}^{N} .
$$

- For $-1 \leq x<-\sqrt{2} / 2$ we write $\left|1-4 x^{2}\right| \leq 3$; hence

$$
\alpha(x) \leq \sqrt{C(\lambda)} N^{1 / 4} 3^{M} 8^{L / 2} \leq C(\lambda) \sqrt{N} 3^{L}\left(\frac{3}{4}\right)^{2 M}\left\{\left(\frac{8}{9}\right)^{1 / 2-\lambda}\left(\frac{16}{3}\right)^{\lambda}\right\}^{N} .
$$

Thus, we have proved $\delta_{M, L} \leq C(\lambda) \sqrt{N} 3^{L}\left(\frac{3}{4}\right)^{2 M} \theta^{N}$ with $\theta=\operatorname{Max}\left\{\sqrt{\frac{8}{9}} \cdot 6^{\lambda},\left(\frac{207}{256}\right)^{\lambda}\right\}$, and $\theta<1$ as soon as $\lambda \ln 6<\frac{1}{2} \ln \frac{9}{8}$. Theorem 3 is proved.

CONCLUSION

We have slightly improved the ratio between regularity and complexity. The natural question which remains open is then the following one: which is the best asymptotic ratio.

Remark. H. Volkmer achieved the construction of wavelets with the regularity ratio $0.175 \cdots[9]$; hence, they are better than the Matzinger wavelets.

REFERENCES

1. A. Cohen, "Ondelettes, analyses multirésolutions et traitement numérique du signal," thesis, Univ. Paris-Dauphine, 1990.
2. A. Cohen and J. P. Conze, Régularité des bases d'ondelettes et mesures ergodiques, Rev. Mat. Iberoamer. 8 (1992), 351-365.
3. A. Cohen and I. Daubechies, A stability criterion for bi-orthogonal wavelets and their related subband coding scheme, Duke Math. J. 68 (1992), 313-335.
4. I. Daubechies, "Ten Lectures on Wavelets,'" CBMS-NSF Regional Conference Series in Applied Math, Vol. 61, SIAM, Philadelphia, 1992.
5. P. G. Lemarie-Rieusset, Sur l'existence des analyses multi-résolutions en théorie des ondelettes, Rev. Mat. Iberoamer. 8 (1992), 457-474.
6. S. Mallat, Multiresolution approximation and wavelet orthonormal bases of $L^{2}(\mathbb{R})$. Trans. Amer. Math. Soc. 315 (1989), 69-87.
7. E. Matzinger, Mémoire de DEA, Univ. Paris-Sud, 1995.
8. H. Volkmer, On the regularity of wavelets, IEEE Trans. Inform. Theory 38 (1992), 872-876.
9. H. Volkmer, Asymptotic regularity of compactly supported wavelets, SIAM J. Math. Anal. 26 (1995), 1075-1087.
