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We introduce a new class of compactly supported orthonormal wavelets
which are more regular than the Daubechies wavelets. q 1998 Academic Press

INTRODUCTION

Let c be a compactly supported wavelet; i.e., c is a real-valued square-integrable
compactly supported function such that the family

(cj,k Å 2 j /2c(2 j x 0 k)) j√Z,k√Z

is an Hilbertian basis of L 2(R) . It is known that (at least in the case when c is
slightly better than L 2 :c √ H e for some positive e) the basis (cj,k) j√Z,k√Z is derived
from a multiresolution analysis associated to a compactly supported scaling function
w [5] and a scaling filter m0 , which is a trigonometric polynomial. We may choose
m0 such that the lower frequency in m0 is k Å 0,

m0(j) Å ∑
k1

kÅ0

ake0ikj , ak1
x 0, a0 x 0, m0(0) Å 1, (1)
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93MORE REGULAR WAVELETS

and w is defined by

wP (j) Å ∏
`

jÅ1

m0S j

2 jD , (2)

and then we have

cO (j) Å e0iKje0ij /2m
V 0Sj2 / pDwO Sj2D , (3)

where K / 1
2 is the midpoint of Supp c,

Supp w Å [0, k1] , Supp c Å FK / 1
2
0 k1

2
, K / 1

2
/ k1

2 G ,

k1 is always an odd integer, and we write k1 Å 2N 0 1.
The length of the filter m0 is then the number l Å 2N . It is a measurement of the

complexity of the fast wavelet transform [6] associated to c. In this paper, we are
interested in the regularity ratio s / l Å s /2N , where s is the Sobolev regularity
exponent of c:

s Å Sup{s /ÉjÉscO √ L 2}. (4)

More precisely, we are going to improve the ratio s /2N when N goes to infinity
by introducing a new class of wavelets which are more regular than the Daubechies
wavelets.

THEOREM. There exists a family (cN)N¢0 of compactly supported orthonormal
wavelets (of Sobolev exponent sN) such that:

( i ) for all N, Supp cN Å [0, 2N 0 1]
(ii ) lim inf

Nr/`

(sN /2N) ú 1/2 0 ln 3/4 ln 2 .

We will begin by some elementary lemmas on wavelets, then recall the proof that
if cN is a Daubechies wavelet of length 2N and regularity exponent sN , then lim

Nr/`

sN /2N Å 1/2 0 ln 3/4 ln 2. We slightly modify the classical proof of Cohen and
Conze [2] and Volkmer [8] in order to generalize the proof to other families of
wavelets.

1. BASIC RESULTS ON WAVELETS

How can we construct wavelets of length 2N? The procedure is given by formulas
(2) and (3) provided that we may construct a good polynomial m0 . Such polynomials
are characterized by the Cohen criterion [1]:
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94 LEMARIE-RIEUSSET AND ZAHROUNI

LEMMA 1. Let Q√ R[X ] , Q(1)Å 1 . Then the following assertions are equivalent:

(A1) Q(cos j) is the square modulus Ém0(j)É2 of an orthonormal scaling filter
of length 2N.

(A2) Q satisfies:
( i ) deg Q Å 2N 0 1
(ii) Q(X ) / Q(0X ) Å 1
(iii ) Q(X ) ¢ 0 for X √ [01, 1]
( iv) if Q(cos(2 kj0 / p)) Å 0 for all k √ N then j0 √ 2pZ .

Condition (iv) is satisfied as soon as Q does not vanish on [1
2, 1] . Of course, Q

does not determine an unique m0 ( it determines only the modulus Ém0(j)É) , and we
have to use a Riesz factorization [allowed by the condition (A2) (iii )] for the extrac-
tion of a ‘‘square root’’ m0 . But, the knowledge of Q is enough for describing the
regularity of the wavelets we may produce from it (since s depends only on ÉcO É,
hence on Ém0É) .

LEMMA 2. (i) sI 0 1/2 ° s ° sI , where sI Å Max{a /ÉjÉawP √ L`} .
( ii ) if Q(X ) Å ((1 / X ) /2)LA(X ) then

L 0 1
2 ln 2

ln r1 ° sI ° L 0 1
2 ln 2

ln r2 , (5)

where

r1 Å Max{ Sup
01°X°01/2

√
A(X )A(2X 2 0 1) , Sup

X¢01/2
A(X )}

r2 Å A(01/2) Sso that L 0 1
2 ln 2

ln r2 Å 0ln Q(01/2)D .

Notice that w and c have the same Sobolev exponent. Lemma 2 is classical [4]
(s ° sI is not classical; one finds often s ° sI / 1/2; but it is known that if w √
Hs/e , then (w(x 0 k))k√Z is a Riesz family in Hs , hence (

k√Z

Éj / 2kpÉ2s
ÉwP (j /

2kp)É2 √ L` , which proves s ° sI ) .
Our last lemma solves Q(X ) / Q(0X ) Å 1, with the assumption that deg Q °

2N 0 1 and Q is a multiple of (1 / X )L :

LEMMA 3. The following assertions are equivalent:

(B1) Q √ R2N01[X ] , Q(1) Å 1 , Q(X ) / Q(0X ) Å 1 and Q is a multiple of
(1 / X )L .

(B2) QÅ (
2N01

kÅ0
eN,kS2N 0 1

k D((1/ X ) /2) k((10 X ) /2)2N010k with eN,k/ eN,2N010k

Å 1 for 0 ° k ° 2N 0 1 and eN,k Å 0 for 0 ° k ° L 0 1 .
(B3) there is a polynomial A √ RN0L[X ] such that Q(1) Å 1 and

Q(X ) Å *
X

01

(1 0 t 2)L01A( t 2)dt .
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95MORE REGULAR WAVELETS

(B2) is called the Bernstein representation of Q and (B3) its integral representa-
tion. Lemma 3 is obvious, but very useful.

2. DAUBECHIES WAVELETS

Daubechies wavelets cN are defined as wavelets of length 2N with optimal power
of approximation. We say that a wavelet c (associated to a scaling function w) has
power of approximation l √ N if

∀ f √ Hl lim
jr/`

2lj\ f 0 Pj f \2 Å 0, (6)

where Pj is the orthogonal projection operator on the closed linear span of the wj,k Å
2 j /2w(2 j x 0 k) , k √ Z. The following lemma is classical.

LEMMA 4. The following assertions are equivalent:

(C1) c has power of approximation l

(C2) ∀k √ {0 , . . . , l} , Pj( xk) Å xk (Strang–Fix condition)
(C3) ∀k √ {0 , . . . , l} , ((dk /djk)m0)(p) Å 0
(C4) Q is a multiple of (1 / X )l/1 (Daubechies condition) .

Thus, looking at (B3), we see that if c has power of approximation l, then its
length is at least 2l / 2. The Daubechies wavelets cN are precisely the wavelets of
length 2N and power of approximation N 0 1. (B2) gives us that QN is given by

QN Å ∑
2N01

N
S2N 0 1

k DS1 / X

2 DkS1 0 X

2 D2N010k

(7)

and (B3) gives us that

QN Å
N

22N01 S2N 0 1

N D *
X

01

(1 0 t 2)N01dt (8)

(where the constant N /22N01S2N 0 1

N D can be determined by differentiating (7)) .

We are going to prove

sN Å NS1 0 ln 3
2 ln 2D / 0S ln N

N D (9)

by proving that, in Lemma 2,

r1 ° C0

√
N3N

r2 ¢ C1 3N
√

N .
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96 LEMARIE-RIEUSSET AND ZAHROUNI

The proof is very easy. First, we use the Stirling formula to get

S2N 0 1

N D Ç 22N01√
Np

.

Thus, we have, for X ° 0

QN(X ) ° g0

√
N *

X

01

(1 0 t 2)N01dt ° g0

√
N(1 0 X 2)N01 *

X

01

dt

° g0

√
NS1 / X

2 DN

(2(1 0 X ))N .

Thus, AN(X ) ° g0

√
N(2(1 0 X ))N if X ° 0, °(2/(1 / X ))N if X ¢ 0. Hence,

• if X ¢ 0, AN(X ) ° 2N ° 3N

• if 01
2 ° X ° 0, AN(X ) ° g0

√
N(2(1 0 X ))N ° g0

√
N3N

• if 0
√
2/2 ° X ° 1

2, AN(X )AN(2X 2 0 1) ° g 2
0N(8(1 0 X )(1 0 X 2))N

° g 2
0N9N

• if X ° 0
√
2/2, AN(X )AN(2X 2 0 1) ° g0

√
N(2(1 0 X ))N

r2N ° g0

√
N8N

° g0

√
N9N ,

thus we have a good estimate for r1 .
For estimating r2 , it is enough to write

QNS0 1
2D ¢ S2N 0 1

N DS1 0 1/2
2 DNS1 / 1/2

2 DN01

¢ C
1√
N
S3

4D
N

.

Thus (9) is proved.

3. THE RESTRICTED BERNSTEIN CLASS

Our first attempt to improve (9) was to replace QN by another polynomial Q given
by

Q(X ) Å ∑
2N01

0

eN ,kS2N 0 1

k DS1 / X

2 DkS1 0 X

2 D2N010k

with eN ,k ¢ 0 for all k , eN ,k / e2N010k Å 1, and eN ,0 Å 0. This polynomial is of degree
°2N 0 1 and satisfies obviously conditions (ii ) , ( iii ) , ( iv) of (A2) and thus defines
a wavelet. Such polynomials will be said to belong to the restricted Bernstein class.
But, we cannot improve (9).

PROPOSITION 1. If deg Q ° 2N 0 1 and Q belongs to the restricted Bernstein
class, then s ° N(1 0 ln 3/2 ln 2) / O( ln N /N) .
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97MORE REGULAR WAVELETS

Proof. It is enough to estimate Q(01
2) . We have

QS0 1
2D ¢ S2N 0 1

N 0 1 DHeN ,N01
3N

42N01 / (1 0 eN ,N01)
3N01

4 J
¢ S2N 0 1

N 0 1 D 3N01

42N01 . j

4. THE MATZINGER WAVELETS

After the failure of the restricted Bernstein class, we had to introduce some negative
coefficients in the Bernstein representation; hence we encountered a problem for
keeping Q(X ) positive-valued. Therefore, we changed our plan and turned to the
integral representation. Moreover, we decided to impose Q(01

2) Å 0, since Q(01
2)

was the main obstacle for better regularity in the case of the restricted Bernstein class.
(After completing this work, we learned that H. Volkmer constructed regular wavelets
using the integral representation [9] , but in a different way than ours; his polynomials
Q(X ) are increasing on [01, 1] .)

Thus, we asked E. Matzinger to study the filters m0 of minimal length such that
m0 has L zeros at p and 2M zeros at 2p /3 [7] . The result we obtained with Matzinger
is the following.

THEOREM 2. (a) m0 has L zeros at p and 2M zeros at 2p /3 if and only if:

Q(01/2) Å 0

and for some A √ R[X ]

Q(X ) Å *
X

01

(1 0 t 2)L01(1 0 4t 2) 2M01A( t 2)dt .

Moreover, we must have deg A ¢ 1 .
(b) If 2M ° (L 0 1)(ln 5/ln 4) then the polynomial

QM ,L(X ) Å aM ,L *
X

01

(1 0 t 2)L01(1 0 4t 2) 2M01(1 0 bM ,Lt
2)dt ,

where bM,L is determined by QM,L(01
2) Å 0 and aM,L by QM,L(1) Å 1 , satisfies the

Cohen criterion (A2) (ii ) – (iv) .

Proof. (a) is obvious, since dQ /dX is even, has L 0 1 zeros at 01 and 2M 0 1
zeros at 01/2. Moreover, A( t 2) vanishes between 01 and 01/2 by Rolle’s theorem;
hence deg A ¢ 1.

(b) is easy. First, we see that bM ,L and aM ,L are well defined. bM ,L is the root of
F(b) Å 0, where
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98 LEMARIE-RIEUSSET AND ZAHROUNI

F(b) Å *
01/2

01

(1 0 t 2)L01(1 0 4t 2) 2M01(1 0 bt 2)dt Å AM ,L 0 BM ,Lb.

Obviously F(1) õ 0 and F(4) ú 0; hence, 1 õ bM ,L õ 4.

Now, aM ,L is defined by

aM ,L *
1/2

01/2

(1 0 t 2)L01(1 0 4t 2) 2M01(1 0 bM ,Lt
2)dt Å 1

and the multiplicand of aM ,L is clearly positive.
In order to prove that QM ,L satisfies the Cohen criterion, we will prove more precisely

that QM ,L is nonnegative on [01, 1] and that its roots on [01, 1] are just 01 and
01/2. Since QM ,L increases on [01/2, 1/2] and since QM ,L(X ) / QM ,L(0X ) Å 1, it
is enough to show that for 01õ Xõ01/2 we have 0õ QM ,L(X )õ 1. QM ,L increases
between 01 and gM ,L Å 01/

√
bM ,L and decreases between gM ,L and 01/2, so we have

just to prove

QM ,L(gM ,L) õ QM ,L(1/2) Å 1,

or equivalently, to prove IM ,L õ JM ,L , where

IM ,L Å *
gM ,L

01

(1 0 t 2)L01(1 0 4t 2) 2M01(1 0 bM ,Lt
2)dt

and

JM ,L Å *
1/2

01/2

(1 0 t 2)L01(1 0 4t 2) 2M01(1 0 bM ,Lt
2)dt .

But, on [01, gM ,L] we have

(1 0 4t 2) 2M01(1 0 bM ,Lt
2) Å (4t 2 0 1)2M01(bM ,Lt

2 0 1) ° (4t 2 0 1)2M;

hence

IM ,L ° *
01/2

01

(1 0 t 2)L01(1 0 4t 2) 2Mdt Å IH M ,L ,

while, on [01/2, 1/2] , we have 1 0 bM ,Lt
2 ¢ 1 0 4t 2 ; hence

JM ,L ¢ *
1/4

01/4

(1 0 t 2)L01(1 0 4t 2) 2Mdt Å JH M ,L .

Now, if we look at f (u) Å (1 0 u 2)É1 0 4u 2
É, then f (u) ° 36/64 on [01, 01/2]

and f (u) ¢ 45/64 on [01/4, 1/4]; hence
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99MORE REGULAR WAVELETS

TABLE 1
The Matzinger Scaling Filter for L Å 3 and M Å 1

k aM,L
k

L Å 3 0 0.01387003
1 00.03351638
2 00.01732329
3 0.10179320
4 00.01710161
5 00.16606030
6 0.00383799
7 0.38395131
8 0.51671690
9 0.21383210

• if 2M ° L 0 1,

IH M ,L ° S36
64D

2M

*
01/2

01

(1 0 t 2)L0102Mdt ° 1
2 S36

64D
2MS3

4D
L0102M

and

JH M ,L ¢ S45
64D

2M

*
1/4

01/4

(1 0 t 2)L0102Mdt ¢ 1
2 S45

64D
2MS15

16D
L0102M

;

hence

JM ,L ¢ S45
36D

2MS15
12D

L0102M

IM ,L ú IM ,L ;

• if 2M ¢ L , we get similarly

IH M ,L °
1
2 S36

64D
L01

32M0L/1 , JH M ,L ¢
1
2 S45

64D
L01S3

4D
2M0L/1

;

hence

JM ,L ¢ S45
36D

L01

402M/L01IM ,L Å
5L01

42M IM ,L ú IM ,L

if 5L01 ú 42M . Hence, Theorem 2 is proved. j

5. MATZINGER WAVELETS: TABLES AND FIGURES

In this section, we give the Matzinger filters for some small values of L and M
(choosing for the computations the minimum-phased square root of QM ,L(cos(j)))
and we plot the associated scaling functions.

The Matzinger wavelet for L Å 3 and M Å 1 are shown in Table 1 and Fig. 1.
The Matzinger wavelet for L Å 4 and M Å 1 are shown in Table 2 and Fig. 2.
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100 LEMARIE-RIEUSSET AND ZAHROUNI

FIG. 1. Matzinger scaling function for L Å 3 and M Å 1.

We now give the Sobolev regularity exponent s for these Matzinger wavelets,

s Å max{s /f √ Hs},

which can be computed exactly through the spectral analysis of a transition operator
on a finite-dimensional space [3] . We recall in our tables the length of the scaling
filter (Tables 3–5).

In Table 5 we write sL ,M and sL/2M for the Sobolev exponent of the Matzinger and
the Daubechies scaling functions wL ,M and wL/2M ( they have the same support) .

TABLE 2
The Matzinger Scaling Filter for L Å 4 and M Å 1

k aM,L
k

L Å 4 0 00.00466166
1 0.01430884
2 0.00423221
3 00.05451530
4 0.02704138
5 0.09655332
6 00.06914172
7 00.16778700
8 0.08275964
9 0.46165201

10 0.45977020
11 0.14978820
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101MORE REGULAR WAVELETS

FIG. 2. Matzinger scaling function for L Å 4 and M Å 1.

Thus, we can see that for L ¢ 8 and M Å 1 the Matzinger wavelet is more regular
than the Daubechies wavelet fL/2M which has a support of the same size. This is a
general feature of the Matzinger wavelets for big enough values of L as we shall see
in the next section.

6. REGULARITY OF THE MATZINGER WAVELETS

We are now able to prove Theorem 1 in the following way.

THEOREM 3. Let l ú 0 . For N ¢ 1/l, let cN Å cM ,L be a Matzinger wavelet
(associated to a Q which has L zeros at 01 and 2M zeros at 01

2 ) of length 2N Å 2L

TABLE 3
Sobolev Exponent of the Matzinger Scaling Functions for M Å 1

L Length s

3 10 1.411
4 12 1.867
5 14 2.297
6 16 2.711
7 18 3.114
8 20 3.508
9 22 3.897

10 24 4.482
11 26 4.661
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102 LEMARIE-RIEUSSET AND ZAHROUNI

TABLE 4
Sobolev Exponent of the Matzinger Scaling Functions for M Å 2

L Length s

3 14 1.000
4 16 1.600
5 18 2.046
6 20 2.472
7 22 2.883
8 24 3.258
9 26 3.682

10 28 4.076
11 30 4.467

/ 4M with M Å [lN] . Then, if l is small enough, we have lim inf
Nr/`

(sN /2N) ú 1
2 0

ln 3/4 ln 2 (where sN is the Sobolev exponent of cN) .

Proof. We are going to prove more precisely: sN /2N ¢ 1
2 0 ln 3/4 ln 2 / m /

O(Log n /n) , where m is a positive constant.
We will always assume 2M ° L 0 1, hence l õ 1

4. Then we may prove the
following estimate.

LEMMA 5. There is a constant C(l) depending only on l such that:

∀N ¢ 1
l

, ∀x √ [01, 0] QM,L(x) ° C(l)
√

N(1 0 x 2)L(1 0 4x 2) 2M .

TABLE 5
Comparison of Sobolev Exponent of the Matzinger and

the Daubechies Scaling Functions

L Length sL,M sL/2M

3 9 1.411 2.096
4 11 1.807 2.469
5 13 2.297 2.701
6 15 2.711 2.914
7 17 3.114 3.161
8 19 3.508 3.402
9 21 3.897 3.639

10 23 4.482 3.875
11 25 4.661 4.106
12 27 5.036 4.336
13 29 5.405 4.566
14 31 5.771 4.792
15 33 6.131 5.019
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103MORE REGULAR WAVELETS

The lemma is easy to check; we have

QM ,L(x) ° 3aM ,Linf S*
x

01

(1 0 t 2)L01
É1 0 4t 2

É
2M01dt ,

Z*x

01/2

(1 0 t 2)L01
É1 0 4t 2

É
2M01dtZD .

Let us estimate aM ,L ,

1
aM ,L

Å *
1/2

01/2

(1 0 t 2)L01(1 0 4t 2) 2M01(1 0 bM ,Lt
2)dt

¢ *
1/2

01/2

(1 0 4t 2) 2M/L01dt

Å 1
2 *

1

01

(1 0 t 2)N01dt

Å 1
2

22N01

NS2N 0 1

N D
¢ C

1√
N

and thus aM ,L ° C
√

N .
Now, let us look at P(x) Å É(1 0 x 2)L01(1 0 4x 2) 2M01

É.
Clearly, P is increasing on [01, tM ,L] , decreasing on [ tM ,L , 01

2] and increasing on
[01

2, 0] , where tM ,L is the negative root of

(2M 0 1)(1 0 t 2) / 4(L 0 1)(1 0 4t 2) Å 0.

Thus,

QM ,L(X ) ° 3aM ,L(1 / X )(1 0 X 2)L01
É1 0 4X 2

É
2M01 if 01 ° X ° tM ,L

and

QM ,L(X ) ° 3aM ,LÉ
1
2
/ XÉ(1 0 X 2)L01

É1 0 4X 2
É

2M01 if tM ,L ° X ° 0,

and we get, finally,

QM ,L(X ) ° 3aM ,L(1 0 X 2)L(1 0 4X 2) 2MMaxS 1
É1 0 4t 2

M ,LÉ
,

1
2É1 0 t 2

M ,LÉ
D

on [01, 0] . But t 2
M ,L Ç (1 / 6l) /4. Thus, Lemma 5 is proved.
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104 LEMARIE-RIEUSSET AND ZAHROUNI

We are now going to estimate sN by estimating r1 in Lemma 2 in a way very
similar to the case of Daubechies filters ( the Daubechies filters correspond to the
value M Å 0 of a Matzinger wavelet) . As a matter of fact, r1 ° dM ,L Å Max

01°x°1
a(x) ,

where a(x) is defined by

• for 0 ° x ° 1, a(x) Å (2/(1 / x))L

• for 01
2 ° x õ 0, a(x) Å C(l)

√
N(2(1 0 x))L(1 0 4x 2) 2M

• for 0
√
2/2 ° x õ 01

2,

a(x) Å C(l)
√

N(8(1 0 x)(1 0 x 2))L /2 (1 0 4x 2) 2M
É3 0 4x 2

É
M

• for 01 ° x õ 0(0
√
2/2) , a(x) Å

√
C(l) N 1/4S2(1 0 x)

x 2 DL /2

(1 0 4x 2)M

(we have just used QM ,L(x) Å ((1 / x) /2)LAM ,L(x) and Lemma 5 and QM ,L(x) ° 1
in order to estimate the size of AM ,L(x) and of AM ,L(x)AM ,L(2x 2 0 1)) . Thus, we find

sN

2N
¢ 1

2N

1
2 ln 2

ln
4L

dM ,L

Å 1
4 ln 2

lnS 4L

dM ,L
D1/N

.

For M Å 0 (the Daubechies wavelets) , we find again sN /2N Ç (1/4 ln 2)ln 4
3 Å

0.103 rrr. Numerically, we find that for l Å 1
20, sN /2N ¢ 0.128 rrr.

We are going to prove that for 0 õ l õ ln (9/8)/2 ln 6 we have indeed that lim
inf(sN /2N) ú (1/4 ln 2)ln 4

3. We are going to prove more precisely that dM ,L °
C(l)3L(3

4)2MuN
√

N , where C(l) and u depends only on l and where 0 õ u õ 1:

• For x ¢ 0, a(x) ° 2L Å 3L( 3
4 )2M{(2

3)102l( 4
3 )2l}N .

• For 01
3 ° x õ 0, we write É1 0 4x 2

É ° 1; hence,

a(x) ° C(l)
√

NS8
3D

L

Å C(l)
√

N3LS3
4D

2MHS8
9D

102lS4
3D

2lJN

.

• For 0 1
2 ° x õ 0 1

3 , we write É1 0 4x 2
É ° 5

9 ; hence

a(x) ° C(l)
√

N3LS5
9D

2M

Å C(l)
√

N3LS3
4D

2MHS20
27D

2lJN

.

• For 0 5
8 ° x õ 0 1

2 we write (1 0 4x 2) 2M
É3 0 4x 2

É
M ° ((207

256 ) 1 ( 9
16 ))M

a(x) ° C(l)
√

N3LS 9 1 207
16 1 256D

M

Å C(l)
√

N3LS3
4D

2MHS207
256D

lJN

.
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• For 0
√
2/2 ° x õ 0 5

8 , we write (1 0 4x 2) 2M
É3 0 4x 2

É
M ° 1

a(x) ° C(l)
√

NS337
64 D

L /2

Å C(l)
√

N3LS3
4D

2MHS337
576D

1/20lS4
3D

2lJN

.

• For 01 ° x õ 0
√
2/2 we write É1 0 4x 2

É ° 3; hence

a(x) °
√
C(l) N 1/43M8L /2 ° C(l)

√
N3LS3

4D
2MHS8

9D
1/20lS16

3 D
lJN

.

Thus, we have proved dM ,L ° C(l)
√

N3L( 3
4 )2MuN with u Å Max{

√
8
9r6l , ( 207

256 )l}, and

u õ 1 as soon as l ln 6 õ 1
2 ln 9

8 . Theorem 3 is proved.

CONCLUSION

We have slightly improved the ratio between regularity and complexity. The natural
question which remains open is then the following one: which is the best asymptotic
ratio.

Remark. H. Volkmer achieved the construction of wavelets with the regularity
ratio 0.175rrr[9]; hence, they are better than the Matzinger wavelets.
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