The phase of the Daubechies filters

Djalil Kateb and Pierre Gilles Lemarié-Rieusset

Abstract. We give the first term of the asymptotic development for the phase of the N-th (minimum-phased) Daubechies filter as N goes to $+\infty$. We obtain this result through the description of the complex zeros of the associated polynomial of degree 2N+1.

0. Introduction.

The Daubechies filters $m_N(\xi)$ are defined in the following way [2]:

i) $m_N(\xi)$ is a trigonometric polynomial of degree 2N+1

(1)
$$m_N(\xi) = \sum_{k=0}^{2N+1} a_{N,k} e^{-ik\xi}$$

with real-valued coefficients $a_{N,k}$.

ii) $\sqrt{2} m_N(\xi)$ and $\sqrt{2} e^{-i\xi} \overline{m}_N(\xi+\pi)$ are conjugate quadrature filters

(2)
$$|m_N(\xi)|^2 + |m_N(\xi + \pi)|^2 = 1.$$

iii) $m_N(\xi)$ satisfies at 0 and π

(3)
$$m_N(0) = 1$$
,

(4)
$$\frac{\partial^p}{\partial \xi^p} m_N(\pi) = 0, \quad \text{for } p \in \{0, 1, \dots, N\}.$$

The importance of those filters is due to the following facts: the associated wavelet ψ_N defined by

$$\hat{\psi}_N(\xi) = e^{-i\xi/2} \, \overline{m}_N \left(\frac{\xi}{2} + \pi \right) \prod_{j=2}^{+\infty} m_N \left(\frac{\xi}{2^j} \right),$$

generates an orthonormal basis of $L^2(\mathbb{R})$ $\{2^{j/2}\psi_N(2^jx-k)\}_{j\in\mathbb{Z},k\in\mathbb{Z}}$ and satisfies the cancellation properties

$$\int x^p \psi_N(x) dx = 0$$
, for $p \in \{0, 1, \dots, N\}$,

and has a support of minimal length among all orthonormal wavelets satisfying (6).

Conditions (1) to (4) don't define m_N in an unique way. As a matter of fact, there is exactly $2^{[(N+1)/2]}$ solutions m_N (where [x] is the integer part of x). Indeed, conditions (1) to (4) determine only the modulus of m_N

$$(7) |m_N(\xi)|^2 = Q_N(\cos \xi),$$

(8)
$$Q_N(X) = \left(\frac{1+X}{2}\right)^{N+1} \sum_{k=0}^{N} {N+k \choose k} {1-X \choose 2}^k.$$

We are going to check easily the following result on the roots of Q_N .

Proposition 1. The roots of Q_N are X = -1 with multiplicity N + 1 and N roots $X_{N,1}, \dots, X_{N,N}$ with multiplicity 1 such that

i) for
$$1 \le k \le N$$
, Re $X_{N,k} > 0$ and $X_{N,N+1-k} = \overline{X_{N,k}}$,

ii) for
$$1 \le k \le [N/2]$$
, Im $X_{N,k} > 0$,

iii) if N is odd,
$$X_{N,(N+1)/2} > 1$$
.

With help of Proposition 1, we may easily describe the solutions m_N of (1) to (4). Indeed, if $X_{N,k} = (z_{N,k} + 1/z_{N,k})/2$ with $|z_{N,k}| > 1$, then we have

(9)
$$m_N(\xi) = \prod_{k=1}^{[(N+1)/2]} S_{N,k}(\xi) \left(\frac{1+e^{-i\xi}}{2}\right)^{N+1},$$

where, for $1 \le k \le \lfloor N/2 \rfloor$,

(10)
$$S_{N,k}(\xi) = \frac{(e^{-i\xi} - z_{N,k}) (e^{-i\xi} - \overline{z}_{N,k})}{|1 - z_{N,k}|^2}$$
$$\text{or} \qquad S_{N,k}(\xi) = \frac{(1 - z_{N,k} e^{-i\xi}) (1 - \overline{z}_{N,k} e^{-i\xi})}{|1 - z_{N,k}|^2}.$$

If N is odd,

(11)
$$S_{N,(N+1)/2}(\xi) = \frac{e^{-i\xi} - z_{N,(N+1)/2}}{1 - z_{N,(N+1)/2}}$$
or
$$S_{N,(N+1)/2}(\xi) = \frac{1 - z_{N,(N+1)/2}e^{-i\xi}}{1 - z_{N,(N+1)/2}}.$$

The case where all the roots of $M_N(z)$ (the polynomial such that $m_N(\xi) = M_N(e^{-i\xi})$) are outside the unit disk is the *minimum-phased Daubechies filter*

(12)
$$m_N(\xi) = \left(\frac{1 + e^{-i\xi}}{2}\right)^{N+1} \prod_{k=1}^N \frac{e^{-i\xi} - z_{N,k}}{1 - z_{N,k}} .$$

The aim of this paper is to describe the phase of the Daubechies filters as N goes to $+\infty$. Indeed, the modulus of m_N is described by (7) and (8) and one easily checks that

(13)
$$\lim_{N \to +\infty} |m_N(\xi)| = \begin{cases} 1, & \text{if } |\xi| < \frac{\pi}{2}, \\ \frac{1}{\sqrt{2}}, & \text{if } |\xi| = \frac{\pi}{2}, \\ 0, & \text{if } \frac{\pi}{2} < |\xi| \le \pi. \end{cases}$$

The phase of m_N , on the other hand, is much more delicate to study: it depends of course on the choice of the factors $S_{N,k}$ in (9), but even for the case of minimum-phased filters we are not aware of any previous results on the behaviour of the phase.

We are going to give an approximate value of $z_{N,k}$ which allows the determination of the phase of m_N . More precisely, if Z_1, \ldots, Z_N are N complex numbers such that for $k \in \{1, \ldots, N\}$, $|Z_k| \neq 1$ and if

$$\Pi(Z_1,\ldots,Z_N)(\xi) = \prod_{k=1}^N \frac{e^{-i\xi} - Z_k}{1 - Z_k} ,$$

we define the phase $\omega(Z_1,\ldots,Z_N)(\xi)$ as the C^{∞} real-valued function such that $\omega(0)=0$ and

$$\Pi(Z_1,\ldots,Z_N)(\xi) = \prod_{k=1}^N \left| \frac{e^{-i\xi} - Z_k}{1 - Z_k} \right| e^{-i\omega(Z_1,\ldots,Z_N)(\xi)}.$$

This function is easily computed as

(14)
$$\omega(Z_1, ..., Z_N)(\xi) = \operatorname{Im} \left(\int_0^{\xi} \sum_{k=1}^N \frac{i e^{-is}}{e^{-is} - Z_k} ds \right).$$

Theorem 1. Let $Q_N(X)$ be given by $(8), X_{N,1}, \ldots, X_{N,N}$ be its roots which are not equal to -1 ordered by:

• for
$$1 \le k \le [(N+1)/2]$$
, Im $X_{N,k} \ge 0$ and $X_{N,N+1-k} = \overline{X_{N,k}}$,

•
$$|X_{N,1}| < |X_{N,2}| < \cdots < |X_{N,\lceil (N+1)/2 \rceil}|$$

and let $z_{N,k}$ be defined by $X_{N,k} = (z_{N,k} + 1/z_{N,k})/2$ and $|z_{N,k}| > 1$.

For $1 \le k \le N$, we approximate $z_{N,k}$ by $Z_{N,k}$ where:

- i) for $1 \leq k \leq \lfloor (N^{1/5})/\log N \rfloor$, $Z_{N,k} = i \overline{\gamma_k}/\sqrt{N}$, where $\gamma_1, \gamma_2, \ldots, \gamma_k, \ldots$ are the roots of $\operatorname{erfc}(z) = 1 (2/\sqrt{\pi}) \int_0^z e^{-s^2} ds$, such that $\operatorname{Im} \gamma_k > 0$ and ordered by $|\gamma_1| < |\gamma_2| < \cdots < |\gamma_k| < \ldots$,
- ii) for $[(N^{1/5})/\text{Log }N] < k \le [(N+1)/2], Z_{N,k} = \theta_{N,k} + \sqrt{\theta_{N,k}^2 1},$ where

(15.a)
$$\operatorname{Im} \theta_{N,k} > 0$$
,

(15.b)
$$1 - \theta_{N,k}^2 = \left(1 + \frac{1}{N} \log(2\sqrt{2N\pi \sin \varphi_{N,k}})\right) e^{-2i\varphi_{N,k}},$$

and

(16)
$$\varphi_{N,k} = \frac{8k-1}{8N+6}\pi,$$

iii) for
$$[(N+1)/2] < k \le N$$
, $Z_{N,k} = \overline{Z}_{N,N+1-k}$.

Then for any choice

$$m_N(\xi) = \left(\frac{1 + e^{-i\xi}}{2}\right)^{N+1} \Pi(z_{N,1}^{\varepsilon_1}, \dots, z_{N,N}^{\varepsilon_N})(\xi)$$

of the Daubechies filter m_N (where $\varepsilon_k = \pm 1$ and $\varepsilon_{N+1-k} = \varepsilon_k$), the approximation

$$\tilde{m}_N(\xi) = \left(\frac{1 + e^{-i\xi}}{2}\right)^{N+1} \Pi(Z_{N,1}^{\varepsilon_1}, \dots, Z_{N,N}^{\varepsilon_N})(\xi)$$

satisfies

$$(17) \quad |\omega(z_{N,1}^{\varepsilon_1},\ldots,z_{N,N}^{\varepsilon_N})(\xi) - \omega(Z_{N,1}^{\varepsilon_1},\ldots,Z_{N,N}^{\varepsilon_N})(\xi)| \le C_0 \frac{(\text{Log } N)^2}{N^{1/5}} ,$$

for all $\xi \in \mathbb{R}$, where C_0 doesn't depend neither on $N \geq 2$ nor on ξ nor on the ε_k 's.

Thus, due to Theorem 1, we may give the phase of m_N with an o(1) precision! Of course, we need the knowledge of the roots of the complementary error function; these roots are described in [3] and our results give again the same estimates, as we shall see.

We may greatly simplify the approximating $Z_{N,k}$'s if we accept to get a greater error. For instance, we may characterize easily the minimum-phased filters with an $O(\sqrt{N})$ error:

Theorem 2. Let

$$m_N(\xi) = \left(\frac{1 + e^{-i\xi}}{2}\right)^{N+1} \Pi(z_{N,1}, \dots, z_{N,N})(\xi)$$

be the N-th minimum-phased Daubechies filter. Then the phase

$$\omega(z_{N,1},\ldots,z_{N,N})(\xi)$$

satisfies

(18)
$$|\omega(z_{N,1},\ldots,z_{N,N})(\xi) - N\omega(\xi)| \leq C_0 \sqrt{N}$$
, for all $\xi \in \mathbb{R}$,

where C_0 doesn't depend on ξ nor on N and where

(19)
$$\omega(\xi) = \frac{1}{2\pi} \left(\text{Li}_2(-\sin \xi) - \text{Li}_2(\sin \xi) \right) = \frac{-1}{\pi} \sum_{k=0}^{+\infty} \frac{(\sin \xi)^{2k+1}}{(2k+1)^2}.$$

The Li_2 function is the polylogarithm of order 2

(20)
$$\operatorname{Li}_{2}(z) = \sum_{k=1}^{\infty} \frac{z^{k}}{k^{2}} = \int_{0}^{z} \frac{1}{u} \operatorname{Log} \frac{1}{1-u} du.$$

The function $(\text{Li}_2(z) - \text{Li}_2(-z))/2$ is known under the name of Legendre's χ_2 function.

Theorem 2 will be proved by approximating m_N by

$$\tilde{m}_N(\xi) = \left(\frac{1 + e^{-i\xi}}{2}\right)^{N+1} \pi(\tilde{Z}_{N,1}, \dots, \tilde{Z}_{N,N})(\xi)$$

with

$$\tilde{Z}_{N,k} = \sqrt{e^{-i\theta_{N,k}}} + \sqrt{1 + e^{-i\theta_{N,k}}}, \qquad \theta_{N,k} = -\pi + \frac{16k - 2}{8N + 6}\pi,$$

Then $\omega(\tilde{Z}_{N,1},\ldots,\tilde{Z}_{N,N})/N$ is identified with a Riemann sum for the integral

$$\frac{1}{2\pi} \operatorname{Im} \int_{-\pi}^{\pi} \operatorname{Log} \frac{1}{\sqrt{e^{-i\theta} + \sqrt{1 + e^{-i\theta}} - e^{-i\xi}}} d\theta = \omega(\xi).$$

This approximating $\tilde{Z}_{N,k}$ is a simplified version of the approximating $Z_{N,k}$ of Theorem 1, obtained by neglecting the term

$$\frac{1}{N} \log 2\sqrt{2N\pi \sin \varphi_{N,k}} .$$

We will be also able to give a description of a family of almost linearphased Daubechies filters:

Theorem 3. Let

$$m_N(\xi) = \left(\frac{1 + e^{-i\xi}}{2}\right)^{N+1} \pi(z_{N,1}^{\varepsilon_{N,1}}, \dots, z_{N,N}^{\varepsilon_{N,N}})(\xi)$$

be the N-th Daubechies filter with $N=4\,q$ and with the following choice of $\varepsilon_{N,k}$: for $1 \leq p \leq q$, $\varepsilon_{N,4p-3} = \varepsilon_{N,4p} = 1$ and $\varepsilon_{N,4p-2} = \varepsilon_{4p-1} = -1$ (so that $\varepsilon_{N,N+1-k} = \varepsilon_{N,k}$). Then the phase $\omega(z_{N,1}^{\varepsilon_{N,1}}, \ldots, z_{N,N}^{\varepsilon_{N,N}})(\xi)$ satisfies:

(21)
$$\left|\omega(z_{N,1}^{\varepsilon_{N,1}},\ldots,z_{N,N}^{\varepsilon_{N,N}})(\xi) - \frac{1}{2}N\xi\right| \leq C_0, \quad \text{for all } \xi \in \mathbb{R},$$

where C_0 doesn't depend on ξ nor on N.

We are now going to prove Theorem 1 (and obtain theorems 2 and 3 as corollaries). Of course, it amounts to give a precise description of the roots $X_{N,k}$ of $Q_N(X)$. If we neglect the term $\text{Log } 2\sqrt{2N\pi}\sin\varphi_{N,k}/N$ in $Z_{N,k}$, we obtain as a first approximation that the $z_{N,k}$ are close to the arc $\{|z-1|=\sqrt{2}, \text{Re }z\geq 0\}$ (which can be parameterized as $\{\sqrt{e^{-i\theta}}+\sqrt{1+e^{-i\theta}}, -\pi\leq\theta\leq\pi\}$), or equivalently that the $X_{N,k}$ are close to the half-lemniscate $\{|1-X_{N,k}^2|=1, \text{Re }X_{N,k}\geq 0\}$. This will be obtained by representing $Q_N(X)$ as a Bernstein polynomial on [-1,1] approximating the piecewise analytical function $\chi_{[0,1]}$

(22)
$$Q_N(X) = \sum_{k=N+1}^{2N+1} {2N+1 \choose k} \left(\frac{1+X}{2}\right)^k \left(\frac{1-X}{2}\right)^{2N+1-k}$$

(a formula pointed by many authors [1], [6], [11]). In that form, $Q_N(X)$ corresponds to a Herrmann filter [4] and it is precisely the figure in Herrmann's paper representing the $z_{N,k}$'s for Q_{21} which lead us to conjecture the behaviour of the $z_{N,k}$'s.

A classical theorem of Kantorovitch [5], [7] on the behaviour of Bernstein polynomials of piecewise analytical functions ensures that $Q_N(X)$ converges to 0 uniformly on any compact subset of the interior of the half lemniscat $\{|1-x^2|<1, \operatorname{Re} x<0\}$ and to 1 uniformly on any compact subset of $\{|1-x^2|<1, \operatorname{Re} x>0\}$. We will use similar tools to study $Q_N(X)$ outside of the convergence subsets.

Near the critical point X=0, the approximation by points on the lemniscat is no longer precise enough, and we will show that for the small roots $X_{N,k}$, $-\sqrt{N}X_{N,k}$ is to be approximated by a root of the complementary error function. Such an approximation occurs for instance in the study of the (spurious) zeros of the Taylor polynomials of the exponential function [12] and we will use quite similar tools to get our description. The main difference, however, is maybe that we are dealing with a divergent family of polynomials.

NOTATIONS. We will define as usually Log z and \sqrt{z} as the reciprocal functions of

$$z = \operatorname{Log} w \in \{ z \in \mathbb{C} : |\operatorname{Im} z| < \pi \} \longmapsto w = e^z \in \{ w \in \mathbb{C} : w \notin (-\infty, 0]) \},$$
$$z = \sqrt{w} \in \{ z \in \mathbb{C} : \operatorname{Re} z > 0 \} \longmapsto w = z^2 \in \{ w \in \mathbb{C} : w \notin (-\infty, 0] \}.$$

The paper will be organized in the following way:

- 1. Q_N as a Bernstein polynomial and other preliminary results.
- **2.** Small roots of Q_N : first estimates.
- **3.** Big roots of Q_N : first estimates.
- **4.** Big roots of Q_N : further estimates.
- **5.** Small roots of Q_N : further estimates.
- 6. The phase of a general Daubechies filter.
- 7. Minimum-phased Daubechies filters.
- 8. Almost linear-phased Daubechies filters.

1. Q_N as a Bernstein polynomial and other preliminary results.

We begin by proving a first localization result:

Result 1. For
$$N \ge 2$$
 and $t \ne -1$, if $Q_N(t) = 0$ then $|1 - t| < 1$.

PROOF. This will be the only time where we use the Daubechies formula (8) for $Q_N(X)$. This formula gives that if $Q_N(t) = 0$ and $t \neq -1$, then

(23)
$$\sum_{k=0}^{N} \frac{1}{2^k} {N+k \choose k} (1-t)^k = 0.$$

If we define α_k as $\alpha_k = \binom{N+k}{k}/2^k$, $0 \le k \le N$, then we have obviously $0 < \alpha_0 < \alpha_1 < \cdots < \alpha_{N-1} = \alpha_N$, and we may apply a very classical lemma of Eneström, Kakeya and Hurwirtz (quoted by G. Pólya and Szegö [10, Exercise III-22]):

Lemma 1. If $0 < a_0 < a_1 < \dots < a_{N-1} = a_N$ and if $\sum_{k=0}^{N} a_k s^k = 0$ then |s| < 1.

PROOF OF THE LEMMA. If $s \ge 0$ then $\sum_{k=0}^{N} a_k s^k > 0$; if $s \notin [0, +\infty)$, then

$$\left| a_0 + \sum_{k=1}^{N} (a_k - a_{k-1}) s^k \right| < a_0 + \sum_{k=1}^{N} (a_k - a_{k-1}) |s|^k,$$

thus if $|s| \ge 1$ (so that $|s|^k \le |s|^{N+1}$) and $s \notin [0, +\infty)$, we get

$$\left| (1-s) \sum_{k=0}^{N} a_k s^k \right| > |s|^{N+1} \left(a_N - \sum_{k=1}^{N} (a_k - a_{k-1}) - a_0 \right) = 0.$$

Thus, we have shown that the roots t of Q_N such that $t \neq -1$ are located in the open disk of radius 1 and of center 1, and that the associated values $1 - t^2$ are located in the interior of a cardioid.

From now until the end, we will use formula (22) instead of formula (8) to represent Q_N . The main interest in the representation of Q_N as a Bernstein polynomial is that Q_N is easily differentiated: (22) gives

(24)
$$\frac{d}{dt}Q_N(t) = \frac{(2N+1)!}{4^N(N!)^2} \frac{1}{2} (1-t^2)^N.$$

This expression can be easily related to the expression of $Q_N(\cos \xi)$ given by Y. Meyer ([8])

$$Q_N(\cos \xi) = \int_{-1}^{\cos \xi} \frac{(2N+1)!}{4^N(N!)^2} \frac{1}{2} (1-t^2)^N dt$$
$$= \int_{\xi}^{\pi} \frac{(2N+1)!}{4^N(N!)^2} \frac{1}{2} (\sin \theta)^{2N+1} d\theta.$$

We will use intensively formula (24) in the following. If t is small, we approximate $Q_N(t)$ by $Q_N(0) = 1/2$ and obtain

(25)
$$Q_N(t) = \frac{1}{2} \left(1 + \frac{(2N+1)!}{4^N(N!)^2} \int_0^t (1-s^2)^N ds \right),$$

while for a bigger t (with Re t > 0) we approximate $Q_N(t)$ by $Q_N(1) = 1$ and obtain

(26)
$$Q_N(t) = 1 - \frac{1}{2} \frac{(2N+1)!}{4^N (N!)^2} \int_t^1 (1-s^2)^N ds.$$

Stirling's formula $N! = (N/e)^N \sqrt{2\pi N} (1 + 1/(12N) + O(1/N^2))$ allows one to simplify formulas (25) and (26)

(27)
$$\frac{(2N+1)!}{4^N(N!)^2} = 2\sqrt{\frac{N}{\pi}} \left(1 + O\left(\frac{1}{N^2}\right)\right).$$

Thus $Q_N(t) = 0$ may be rewritten as

(28)
$$1 + \frac{2}{\sqrt{\pi}} \int_0^{\sqrt{N}t} \left(1 - \frac{s^2}{N}\right)^N ds = 1 - 2\frac{\sqrt{N}}{\sqrt{\pi}} \frac{4^N (N!)^2}{(2N+1)!} = O\left(\frac{1}{N^2}\right)$$

or as

(29)
$$\sqrt{N} \int_{t}^{1} (1 - s^{2})^{N} ds = 2 \frac{4^{N} (N!)^{2}}{(2N+1)!} = \sqrt{\pi} + O\left(\frac{1}{N^{2}}\right).$$

Formula (28) will be used for the small roots (sections 2 and 5) and formula (29) for the big roots (sections 3 and 4).

We mention a further application of (24) (which will not be used in the following): we may compute explicitly the generating series for $Q_N(t)$ when Re t < 0:

Proposition 2. Assume that Re t < 0 and $|(1 - t^2)u| < 1$. Then

(30)
$$\sum_{N=0}^{+\infty} Q_N(t) u^N = \frac{1}{2} \frac{1 - t^2}{\sqrt{1 - u(1 - t^2)} (-t + \sqrt{1 - u(1 - t^2)})}.$$

PROOF. We differentiate $\sum_{N=0}^{+\infty} Q_N(t) u^N$ with respect to t. Then (24) gives

$$\frac{\partial}{\partial t} \left(\sum_{N=0}^{+\infty} Q_N(t) u^N \right) = \sum_{N=0}^{+\infty} \frac{1}{2} \frac{(2N+1)!}{4^N N!} \frac{((1-t^2) u)^N}{N!}$$
$$= \frac{1}{2} (1 - u (1-t^2))^{-3/2},$$

hence

$$\sum_{N=0}^{+\infty} Q_N(t) \, u^N = \int_{-1}^t \frac{1}{2} \, \frac{ds}{(1 - (1 - s^2) \, u)^{3/2}} \, .$$

On the other hand, if we differentiate $t/(1-u\,(1-t^2))^{1/2}$, we get

$$\frac{\partial}{\partial t} \left(\frac{t}{(1 - u(1 - t^2))^{1/2}} \right) = \frac{1 - u(1 - t^2) - t^2 u}{(1 - u(1 - t^2))^{3/2}} = \frac{1 - u}{(1 - u(1 - t^2))^{3/2}}.$$

Thus we have

$$\sum_{N=0}^{+\infty} Q_N(t) u^N = \frac{1}{2(1-u)} \left(\frac{t}{(1-u(1-t^2))^{1/2}} + 1 \right)$$

$$= \frac{1}{2(1-u)} \frac{1-u(1-t^2)-t^2}{(1-u(1-t^2))^{1/2}((1-u(1-t^2))^{1/2}-t)}$$

$$= \frac{1}{2} \frac{1-t^2}{(1-u(1-t^2))^{1/2}((1-u(1-t^2))^{1/2}-t)}.$$

As a corollary, we get:

Result 2. If $t \in \mathbb{C}$ is such that $|1 - t^2| > 1$, then

$$\limsup_{N\to+\infty}|Q_N(t)|=+\infty.$$

PROOF. If Re t < 0, this is obvious by formula (30); the right-hand term of equality (30) has $1/|1-t^2|$ as its radius of convergence in u, so that

$$\limsup_{N \to +\infty} |Q_N(t)|^{1/N} = |1 - t^2|.$$

If Re t > 0, then $Q_N(t) = 1 - Q_N(-t)$ so that again

$$\limsup_{N \to +\infty} |Q_N(t)|^{1/N} = |1 - t^2|.$$

If Re t = 0 and $t \neq 0$, then

$$|Q_N(t)| \sim \frac{1}{2} 2 \sqrt{\frac{N}{\pi}} \int_0^{|t|} (1+\rho^2)^N d\rho \longrightarrow +\infty, \quad \text{as } N \longrightarrow +\infty.$$

A last (and direct) application of formula (24) is Proposition 1.

Result 3.

- i) If t is a root of $Q_N(t)$ and $t \neq -1$, then t has multiplicity 1.
- ii) If N is even, t = -1 is the unique real root of Q_N .
- iii) If N is odd, Q_N has only one other real root $x_{N,(N+1)/2} \neq -1$, and $x_{N,(N+1)/2} > 1$.

PROOF. By (24), we know that the only roots of dQ_N/dt are 1 and -1, so i) is obvious. Moreover, if N is even, dQ_N/dt is non-negative on \mathbb{R} and thus Q_N is increasing: -1 is the unique real root of Q_N . If N is odd, then Q_N decreases on $(-\infty, -1]$, vanishes at -1, increases between -1 and 1, and decreases again from the value 1 at t = 1 to the value $-\infty$ at $t = +\infty$: Q_N has another real root $x_{N,(N+1)/2} > 1$.

Results 1 and 3 imply obviously Proposition 1.

2. Small roots of Q_N : first estimates.

In this section, we are going to prove the following result:

Result 4. Let $\varepsilon_0 \in (0, 1/2)$ and $K = [\varepsilon_0 \text{Log } N/(2\pi)]$. Then, if N is big enough, the number of roots t of $Q_N(t)$ such that $\text{Im } t \geq 0$ and $|t| \leq \sqrt{2K\pi/N}$ is exactly K. Moreover, if we list those roots as $x_{N,1}, \ldots, x_{N,K}$ with $|x_{N,k}| < |x_{N,k+1}|$ and fix $\varepsilon_1 \in (\varepsilon_0, 1/2)$, we have

(31)
$$\left| x_{N,k} + \frac{1}{\sqrt{N}} \, \overline{\gamma}_k \right| \le C(\varepsilon_0, \varepsilon_1) \, \frac{1}{\sqrt{N} \, N^{1 - 2\varepsilon_1}} \,,$$

where $\gamma_1, \ldots, \gamma_K$ are the K first roots γ of $\operatorname{erfc}(\gamma) = 0$ with $\operatorname{Im} \gamma \geq 0$.

PROOF. Assume that $|t| \leq \sqrt{\alpha_1 \operatorname{Log} N/N}$ for some fixed $\alpha_1 > 0$. Then, using formulas (25) and (27), we write

$$Q_N(t) = \left(\frac{1}{2} + \eta_N\right) \left(1 + \eta_N' + \frac{2}{\sqrt{\pi}} \int_0^{\sqrt{N}t} \left(1 - \frac{s^2}{N}\right)^N ds\right),$$

where η_N , η'_N are two constants (depending only on N) which are $O(1/N^2)$. Now, if $|u| \leq \sqrt{\alpha_1 \operatorname{Log} N}$, we have

$$\frac{|u^4|}{N} \le \alpha_1^2 \frac{(\operatorname{Log} N)^2}{N} = o(1),$$

hence one may find $C_0 \geq 0$ so that for N big enough $(N \geq N_0)$ where N_0 depends only on α_1

$$\left| \left(1 - \frac{u^2}{N} \right)^N - e^{-u^2} \right| \le C_0 \left| e^{-u^2} \frac{u^4}{N} \right| \le C_0 \alpha_1^2 \frac{(\text{Log } N)^2}{N^{1-\alpha_1}}.$$

Hence we get for fixed $\alpha_1 > 0$ and for $N \geq N_0(\alpha_1)$

(32)
$$\left| \left(\frac{1}{2} + \eta_N \right)^{-1} Q_N(t) - \operatorname{erfc}(-\sqrt{N} t) \right| \le C_1 \frac{(\operatorname{Log} N)^{5/2}}{N^{1-\alpha_1}},$$

for $|t| \leq \sqrt{\alpha_1 \log N/N}$, where C_1 depends only on α_1 .

Now, assume that θ is such that $Q_N(\theta) = 0$ or $\operatorname{erfc}(-\sqrt{N}\theta) = 0$ and that $|\theta| \leq \sqrt{\alpha_1 \log N/N}$; in every case we have

$$|\operatorname{erfc}(-\sqrt{N}\theta)| \le C_1 \frac{(\operatorname{Log} N)^{5/2}}{N^{1-\alpha_1}}.$$

We are going to show that for δ_0 small enough, $\operatorname{erfc}(-\sqrt{N}\theta + z)$ is not too small on $|z| = \delta_0$. Indeed we have

$$|\operatorname{erfc}(-\sqrt{N}\,\theta + z) - \operatorname{erfc}(-\sqrt{N}\,\theta)| = \frac{2}{\sqrt{\pi}} \left| \int_0^z e^{-N\theta^2} e^{2\sqrt{N}\,\theta s} e^{-s^2} \,ds \right|$$
$$\geq \frac{1}{2} \frac{2}{\sqrt{\pi}} \left| e^{-N\theta^2} \right| |z| \geq \frac{1}{\sqrt{\pi}} N^{-\alpha_1} |z|,$$

provided that

$$|z| \le \min \left\{ 2\sqrt{\alpha_1 \operatorname{Log} N}, \frac{1}{8C_2\sqrt{\alpha_1 \operatorname{Log} N}} \right\},$$

where $C_2 = \max_{|w| \le 1} |(e^w - 1)/w|$.

Thus, if $|\theta| \leq \sqrt{\alpha_2 \operatorname{Log} N/N}$, where $\alpha_2 < \alpha_1 < 1/2$, and if N is big enough so that

$$\sqrt{\alpha_2 \frac{\log N}{N}} + \frac{1}{8 C_2 \sqrt{\alpha_1 N \log N}} < \sqrt{\alpha_1 \frac{\log N}{N}}$$

and

$$C_1 \sqrt{\pi} \frac{(\text{Log } N)^{5/2}}{N^{1-2\alpha_1}} < \frac{1}{8 C_2 \sqrt{\alpha_1 \text{Log } N}} < 2\sqrt{\alpha_1 \text{Log } N},$$

we obtain that $Q_N(t)$ and $\operatorname{erfc}(-\sqrt{N}t)$ have the same number of zeros inside the open disk $D(\theta, C_1\sqrt{\pi}(\log N)^{5/2}/N^{3/2-2\alpha_1})$ (by Rouché's theorem).

In order to conclude, we need some information on the zeros of $\operatorname{erfc}(z)$. A theorem by Fettis, Cuslin and Cramer ([3]) gives a development of γ_k

(33)
$$\gamma_k = e^{3i\pi/4} \left(\sqrt{\left(2k - \frac{1}{4}\right)\pi} \right. \\ \left. - \frac{i}{2\sqrt{\left(2k - \frac{1}{4}\right)\pi}} \operatorname{Log}\left(2\sqrt{\pi}\sqrt{\left(2k - \frac{1}{4}\right)\pi}\right) + O\left(\frac{(\operatorname{Log} k)^2}{k\sqrt{k}}\right) \right).$$

Thus if M_0 is a fixed number in $(-\pi/4, 3\pi/4)$, the number of roots γ of $\operatorname{erfc}(\gamma) = 0$ such that $\operatorname{Im} \gamma \geq 0$ and $|\gamma| \leq \sqrt{2k\pi + M_0}$ is exactly k when k is large enough.

Now we may prove Result 4. Let $\varepsilon_0 < 1/2$ and $K = [\varepsilon_0 \operatorname{Log} N/(2\pi)]$. For each root t of $Q_N(s)$ such that $|\operatorname{Im} t| \geq 0$ and $|t| \leq \sqrt{2K\pi/N} \leq \sqrt{\varepsilon_0 \operatorname{Log} N/N}$ there is a root θ of $\operatorname{erfc}(-\sqrt{N}s)$ such that

$$|\theta - t| \le C_1 \sqrt{\pi} \, \frac{(\operatorname{Log} N)^{5/2}}{N^{3/2 - 2\varepsilon_1}} \;,$$

(where $\varepsilon_0 < \varepsilon_1 < 1/2$ and $N \ge N_1(\varepsilon_1)$). Then we have

$$|\sqrt{N}\,\theta| \le \sqrt{2K\pi} + C_1\sqrt{\pi} \, \frac{(\text{Log } N)^{5/2}}{N^{1-2\varepsilon_1}}$$
$$\le \sqrt{2K\pi} + \frac{\pi}{16\sqrt{2K\pi}}$$
$$\le \sqrt{\left(2K + \frac{1}{8}\right)\pi}$$

provided that $N \geq N_2(\varepsilon_1)$. But we know that there are exactly 2K roots of $\operatorname{erfc}(-\sqrt{N}s)$ inside the disk $D(0, \sqrt{(2K+1/4)\pi}/\sqrt{N})$. Conversely, if θ is a root of $\operatorname{erfc}(-\sqrt{N}s)$ such that

$$|\theta| \le \sqrt{\frac{2K\pi}{N}} - C_1\sqrt{\pi} \frac{(\log N)^{5/2}}{N^{3/2} - 2\varepsilon_1} \le \sqrt{\varepsilon_0 \frac{\log N}{N}},$$

there is a root t of $Q_N(s)$ such that

$$|\theta - t| \le C_1 \sqrt{\pi} \frac{(\text{Log } N)^{5/2}}{N^{3/2 - 2\varepsilon_1}},$$

hence $|t| \leq \sqrt{2K\pi/N}$; moreover for $N \geq N_2(\varepsilon_1)$ we have

$$\sqrt{2K\pi} - C_1\sqrt{\pi} \frac{(\log N)^{5/2}}{N^{1-2\varepsilon_1}} > \sqrt{2K\pi} - \frac{\pi}{16\sqrt{2K\pi}} > \sqrt{\left(2K - \frac{1}{8}\right)\pi}$$

so that we have again 2K roots of $\operatorname{erfc}(-\sqrt{N}s)$ such that

$$|\theta| \le \sqrt{\frac{2K\pi}{N}} - C_1\sqrt{\pi} \frac{(\operatorname{Log} N)^{5/2}}{N^{1-2\varepsilon_1}}.$$

Finally, we conclude by noticing that (33) shows us that if $\operatorname{erfc}(-\sqrt{N}\theta_i)$ = 0, $i = 1, 2, \ \theta_1 \neq \theta_2$ and $|\theta_i| \leq \sqrt{(2K + 1/8)\pi/N}$ then $|\theta_1 - \theta_2| \geq$

 C_0/\sqrt{KN} and $|\text{Im }\theta_i| \ge C_0\sqrt{K/N}$ for some positive C_0 which doesn't depend on K nor N; hence the balls

$$D\left(\theta_i, C_1 \sqrt{\pi} \, \frac{(\log N)^{5/2}}{N^{3/2 - 2\varepsilon_1}}\right)$$

are disjoint and don't meet the real axis (for N large enough). Thus (31) is proved, if we notice that

$$\frac{(\operatorname{Log} N)^{5/2}}{N^{1-2\varepsilon_1}} < \frac{1}{N^{1-2\varepsilon_1'}}$$

for $\varepsilon_1 < \varepsilon_1' < 1/2$ and N large enough.

3. Big roots of Q_N : first estimates.

In this section, we are going to devote our attention to formula (26). A straigthforward application of (26) is the following one:

Result 5. For N large enough, if $t \neq -1$ and $Q_N(t) = 0$, then $|1-t^2| > 1$.

PROOF. If $Q_N(t) = 0$, then we have $\sqrt{N} \int_t^1 (1 - s^2)^N ds = \sqrt{\pi} (1 + \eta_N)$ with $\eta_N = O(1/N^2)$. Now, since Re t > 0 (due to Result 1), we may write

$$\begin{split} \int_{t}^{1} (1-s^{2})^{N} \, ds &= \int_{0}^{1-t^{2}} \omega^{N} \, \frac{d\omega}{2\sqrt{1-\omega}} \\ &= (1-t^{2})^{N+1} \int_{0}^{1} \lambda^{N} \, \frac{d\lambda}{2\sqrt{1-\lambda(1-t^{2})}} \; . \end{split}$$

We write $\Omega = 1 - t^2$. If $|\Omega| \le 1$ then we will prove that

$$\inf_{\lambda \in [0,1]} |1 - \lambda \Omega| \ge \frac{1}{2} |1 - \Omega|.$$

This is obvious if Re $\Omega \leq 0$: we have $|1 - \lambda \Omega| \geq 1$ and $|1 - \Omega| \leq 2$. If Re $\Omega > 0$, $\Omega = \rho e^{i\varphi}$ (0 < $\rho \leq 1$, $\varphi \in (-\pi/2, \pi/2)$), we distinguish the case $\rho \leq \sin \varphi$ and $\rho > \sin \varphi$. If $\rho \leq \sin \varphi$, it is easily checked that $|1 - \lambda \Omega| \ge |1 - \Omega|$. If $\rho > \sin \varphi$, we have $|1 - \lambda \Omega| \ge \sin \varphi$ and $|1 - \Omega| \le |1 - e^{i\varphi}| = 2 |\sin (\varphi/2)|$; hence

$$|1 - \lambda \Omega| \ge \left|\cos \frac{\varphi}{2}\right| |1 - \Omega| \ge \frac{\sqrt{2}}{2} |1 - \Omega|.$$

Thus, we have for Re t > 0 and $|1 - t^2| \le 1$

$$\left| \int_{t}^{1} (1 - s^{2})^{N} ds \right| \leq \frac{|1 - t^{2}|^{N+1}}{N+1} \frac{1}{|t|} \leq \frac{1}{\sqrt{N}} \left(\frac{1}{\sqrt{N} |t|} \right).$$

If $|t\sqrt{N}| \ge 2/\sqrt{\pi}$, we get

$$\left| \sqrt{N} \int_t^1 (1-s^2)^N \, ds \right| \le \frac{1}{2} \sqrt{\pi} \;,$$

and thus $Q_N(t) \neq 0$ (for N large enough so that $|\eta_N| < 1/2$). If $\sqrt{N} |t| \leq 2/\sqrt{\pi}$, then $t \sim -\overline{\gamma}/\sqrt{N}$ for a root γ of $\operatorname{erfc}(z)$ such that $|\gamma| \leq 2/\sqrt{\pi}$; but the roots of $\operatorname{erfc}(z)$ satisfy $\pi/2 < |\operatorname{Arg} \gamma| < 3\pi/4$ so that (for N large enough) $|\operatorname{Arg} t| > \pi/4$ and t cannot lie inside the lemniscate $|1-t^2| \leq 1$.

We may now enter the core of our computations. We are going to give a precise description of $\int_t^1 (1-s^2)^N ds$. Integration by parts gives us

$$\begin{split} \int_t^1 (1-s^2)^N \, ds &= \frac{(1-t^2)^{N+1}}{2\,t\,(N+1)} - \int_t^1 \frac{(1-s^2)^{N+1}}{2\,s^2(N+1)} \, ds \\ &= \frac{(1-t^2)^{N+1}}{2\,t\,(N+1)} - \frac{(1-t^2)^{N+2}}{4\,(N+1)} \int_0^1 \frac{\lambda^{N+1} \, d\lambda}{(1-\lambda\,(1-t^2))^{3/2}} \, . \end{split}$$

We then define $\eta(t)$ as

(34)
$$\eta(t) = \frac{|t^2|}{\inf_{\lambda \in [0,1]} |1 - \lambda (1 - t^2)|}.$$

We have

(35)
$$\int_{t}^{1} (1-s^{2})^{N} ds = \frac{(1-t^{2})^{N+1}}{2t(N+1)} \left(1 + \frac{(1-t^{2})}{2(N+2)t^{2}} \mu_{N}(t)\right),$$

for $\operatorname{Re} t > 0$ with

(36)
$$|\mu_N(t)| \le \eta(t)^{3/2}.$$

Of course, (35) is a good formula if $\mu_N(t)$ cannot explode. As a matter of fact, we will show that in the neighbourhood of the roots of $Q_N(s)$ we have $|\eta(t)| \leq C_0$ where C_0 doesn't depend on N nor t; but we are still far from being able to prove it! The only obvious estimations on η are the following ones: if $\text{Re } t^2 \geq 1$, we have of course $|\eta(t)| = |t^2|$, while if $\text{Re } t^2 < 1$ and $|1 - t^2| > 1$ we have

$$|\eta(t)| = \frac{|t^2|}{|\sin(\text{Arg}(1-t^2))|}$$
.

With help of formula (35) and a careful estimate of $\eta(t)$ in (36), we are going to prove:

Result 6. Let $\varphi_{N,k} = (8k-1)\pi/(8N+6)$. Then for N large enough, the roots $x_{N,1}, \ldots, x_{N,N}$ of Q_N such that $x_{N,k} \neq -1$, ordered by

• for
$$1 \le k \le [(N+1)/2]$$
, Re $x_{N,k} \ge 0$ and $x_{N,N+1-k} = \overline{x_{N,k}}$

•
$$|x_{N,1}| < |x_{N,2}| < \cdots < |x_{N,\lceil (N+1)/2 \rceil}|$$

satisfy

$$\left| x_{N,k} - \sqrt{2\sin\varphi_{N,k}} \, e^{i(\pi/4 - \varphi_{N,k})/2} - \frac{e^{i(3\pi/4 - 3\varphi_{N,k}/2)}}{2N\sqrt{2\sin\varphi_{N,k}}} \operatorname{Log}\left(2\sqrt{2N\pi\sin\varphi_{N,k}}\right) \right|$$
(37)
$$\leq C \, \frac{1}{\sqrt{N}} \, \max\left\{ \frac{(1 + \log k)^2}{k^{3/2}}, \, \frac{(1 + \log N + 1 - k)^2}{(N + 1 - k)^{3/2}} \right\},$$

where C doesn't depend on k nor N.

PROOF. Since $\varphi_{N,N+1-k} = \pi - \varphi_{N,k}$, it is enough to prove (37), for $1 \leq k \leq [(N+1)/2]$, *i.e.* for the roots which lie in the upper half-plane. The proof is decomposed in the following steps: one first proves that $\operatorname{Arg}(1-x_{N,k}^2)$ cannot be too small, so that we have a first control on $\mu_N(x_{N,k})$; then one gives through (35) a first estimate on $x_{N,k}$ and on the related error; this gives us a more precise information on $\operatorname{Arg}(1-x_{N,k}^2)$ and thus we may conclude with our final estimate.

Step 1. We want to estimate $\operatorname{Arg}(1-x_{N,k}^2)$. We fix $\theta_0 \in (\pi/4,\pi/2)$ so that the sector $\{z:\pi/2 \leq |\operatorname{Arg} z| \leq \pi - \theta_0\}$ contains no zero of $\operatorname{erfc}(z)$ (remember that $\lim_{k \to +\infty} \operatorname{Arg} \gamma_k = 3\pi/4$). We now distinguish the cases $\operatorname{Arg} x_{N,k} \in [0,\theta_0]$ and $\operatorname{Arg} x_{N,k} \in [\theta_0,\pi/2]$. If $\operatorname{Re} 1-x_{N,k}^2 \leq 0$, we know that $\eta(x_{N,k}) \leq |x_{N,k}|^2 \leq 4$. If $\operatorname{Re} 1-x_{N,k}^2 > 0$ and $\operatorname{Arg} x_{N,k} \in [0,\pi/4]$, then we see that $|x_{N,k}|^2 \leq |\tan\operatorname{Arg}(1-x_{N,k}^2)|$ (because $\omega = 1-x_{N,k}^2$ satisfies $\operatorname{Re} \omega \in (0,1]$ and $|\omega| > 1$ so that $|\sin\operatorname{Arg} \omega| \leq |1-\omega| \leq |\tan\operatorname{Arg} \omega|$); moreover we have $|x_{N,k}|^2 \leq 4$; thus if $|\tan(\operatorname{Arg}(1-x_{N,k}^2))| \leq 4$, then we have

$$|\sin(\operatorname{Arg}(1-x_{N,k}^2))| = \frac{|\tan(\operatorname{Arg}(1-x_{N,k}^2)|}{\sqrt{1+\tan^2(\operatorname{Arg}(1-x_{N,k}^2))}} \ge \frac{|x_{N,k}|^2}{\sqrt{17}}$$

and $\eta(x_{N,k}) \leq \sqrt{17}$. On the other hand, if $|\tan(\operatorname{Arg}(1-x_{N,k}^2))| \geq 4$, then we have $|\operatorname{Arg}(1-x_{N,k}^2)| \in [\operatorname{Arg}\tan 4, \pi/2]$ and thus

$$|\sin(\operatorname{Arg}(1-x_{N,k}^2))| \ge \sin\operatorname{Arg}\tan 4 = \frac{4}{\sqrt{17}} \ge \frac{|x_{N,k}|^2}{\sqrt{17}}$$

and $\eta(x_{N,k}) \leq \sqrt{17}$ again.

If $Arg(x_{N,k}) \in [\pi/4, \theta_0]$, we have

$$|\operatorname{Im}(1 - x_{N,k}^2)| = |x_{N,k}^2| |\sin 2\operatorname{Arg} x_{N,k}|$$

so that

$$|\operatorname{Im}(1 - x_{N,k}^2)| \ge |x_{N,k}|^2 |\sin 2\theta_0|,$$

while

$$|\sin \operatorname{Arg}(1 - x_{N,k}^2)| = \frac{|\operatorname{Im}(1 - x_{N,k}^2)|}{|1 - x_{N,k}^2|} \ge \frac{1}{3} |\operatorname{Im}(1 - x_{N,k}^2)|,$$

so that

$$\eta(x_{N,k}) \leq \frac{3}{|\sin 2\theta_0|}.$$

The difficult case is when $\theta_0 \leq \operatorname{Arg} x_{N,k} \leq \pi/2$ (as a matter of fact, we will see in step 3 that this case never occurs when N is big enough!). For the moment, we will show that we have necessarily for such an $x_{N,k}$ (and provided N is large enough) the inequality

$$N|x_{N,k}|^4 \ge \frac{|\cos \theta_0|}{100 C_0^2} = \varepsilon_1$$
,

where C_0 is given by

$$C_0 = \max \left\{ \sup_{|\sigma| \le 1/2} \left| \frac{\sigma^2 + \operatorname{Log}(1 - \sigma^2)}{\sigma^4} \right|, \sup_{|\sigma| \le 1} \frac{|e^{\sigma} - 1|}{|\sigma|} \right\}.$$

Indeed, let $A_0 > 0$ be large enough so that for $A \ge A_0$, $e^{3A^2\cos{(2\theta_0)}/4}$ $(1 + A^2/2) < 1/100$ (remember that $\cos{2\theta_0} < 0$), $4/(A^2|\cos{2\theta_0}|) < 1/100$ and $A e^{A^2\cos{(2\theta_0)}/4} < 1/100$. If $\sqrt{N}|x_{N,k}| \ge A_0$ and $N|x_{N,k}|^4 \le \varepsilon_1$, we write

$$Q_N(x_{N,k}) = \frac{1}{2} + \left(1 + O\left(\frac{1}{N^2}\right)\right) \sqrt{\frac{N}{\pi}} \int_0^{x_{N,k}} (1 - s^2)^N ds$$

and thus

$$|Q_N(x_{N,k})| \ge \frac{1}{10} \sqrt{N} \left| \int_0^{x_{N,k}} (1-s^2)^N ds \right| - \frac{1}{2}.$$

We write

$$(1 - s^2)^N = e^{-Ns^2} e^{N(s^2 - \text{Log}(1 - s^2))},$$

since $|s| \leq \sqrt{\varepsilon_1/N}/4$, we have $|s| \leq 1/2$ for N large enough, thus

$$|N(s^2 - \text{Log}(1 - s^2)| \le C_0 |N s^4| \le \frac{1}{100}$$

thus

$$|e^{N(s^2-\log(1-s^2))}-1| \le C_0^2 |N s^4|$$
.

Thus, writing $x_{N,k} = \rho_{N,k} e^{i\theta_{N,k}}$, we get

$$|Q_N(x_{N,k})| \ge \frac{1}{10} \left| \int_0^{\sqrt{N}x_{N,k}} e^{-s^2} ds \right|$$

$$- \frac{C_0^2}{10} \int_0^{\sqrt{N}\rho_{N,k}} e^{-s^2 \cos 2\theta_{N,k}} \frac{s^4}{N} ds - \frac{1}{2}$$

$$\ge \frac{1}{10} \left| \int_0^{\sqrt{N}x_{N,k}} e^{-s^2} ds \right|$$

$$- \frac{C_0^2}{10} \frac{(\sqrt{N}\rho_{N,k})^3}{N |\cos 2\theta_{N,k}|}$$

$$\cdot \int_{0}^{\sqrt{N}\rho_{N,k}} e^{-s^{2}\cos 2\theta_{N,k}} s |\cos 2\theta_{N,k}| ds - \frac{1}{2}$$

$$\geq \frac{1}{10} \left| \int_{0}^{\sqrt{N}x_{N,k}} e^{-s^{2}} ds \right|$$

$$- \frac{e^{-N\rho_{N,k}^{2}\cos 2\theta_{N,k}}}{2\sqrt{N}\rho_{N,k}} \left(\frac{C_{0}^{2} (\sqrt{N}\rho_{N,k})^{4}}{10 |\cos 2\theta_{0}|} \right) - \frac{1}{2} .$$

We have now to estimate $\int_0^{\sqrt{N}x_{N,k}} e^{-s^2} ds$. We write

$$\int_{0}^{\sqrt{N}x_{N,k}} e^{-s^{2}} ds$$

$$= e^{i\theta_{N,k}} \left(\int_{0}^{\sqrt{N}\rho_{N,k}/2} e^{-s^{2}e^{2i\theta_{N,k}}} ds + \int_{\sqrt{N}\rho_{N,k}/2}^{\sqrt{N}\rho_{N,k}} e^{-s^{2}e^{2i\theta_{N,k}}} ds \right)$$

$$= e^{i\theta_{N,k}} (I_{1} + I_{2}).$$

We have $|I_1| \le e^{-N\rho_{N,k}^2 \cos{(2\theta_{N,k})}/4} \rho_{N,k} \sqrt{N}/2$, while

$$\begin{split} I_2 &= \left[\frac{e^{-s^2 e^{2i\theta_{N,k}}}}{-2\,s\,e^{2i\theta_{N,k}}}\right]_{\sqrt{N}\rho_{N,k}/2}^{\sqrt{N}\rho_{N,k}} - \int_{\sqrt{N}\rho_{N,k}/2}^{\sqrt{N}\rho_{N,k}} \frac{e^{-s^2 e^{2i\theta_{N,k}}}}{2\,s^2 e^{2i\theta_{N,k}}}\,ds \\ &= \frac{e^{-N\rho_{N,k}^2 e^{2i\theta_{N,k}}}}{-2\sqrt{N}\,\rho_{N,k}\,e^{2i\theta_{N,k}}} - \frac{e^{-N\rho_{N,k}^2 e^{2i\theta_{N,k}/4}}}{-\sqrt{N}\,\rho_{N,k}\,e^{2i\theta_{N,k}}} - I_3 \;. \end{split}$$

We have

$$|I_{3}| \leq \frac{1}{4\left(\frac{1}{2}\sqrt{N}\,\rho_{N,k}\right)^{3} |\cos 2\,\theta_{N,k}|} \cdot \int_{\sqrt{N}\rho_{N,k}/2}^{\sqrt{N}\rho_{N,k}} e^{-s^{2}\cos 2\theta_{N,k}} 2\,s \, |\cos 2\,\theta_{N,k}| \, ds$$

$$\leq \frac{e^{-N\rho_{N,k}^{2}\cos 2\theta_{N,k}}}{4\left(\frac{1}{2}\sqrt{N}\,\rho_{N,k}\right)^{3} |\cos 2\,\theta_{0}|} \cdot$$

Thus we get

$$\begin{aligned} |Q_N(x_{N,k})| \\ &\geq \frac{1}{10} \frac{e^{-N\rho_{N,k}^2 \cos 2\theta_{N,k}}}{2\sqrt{N} \rho_{N,k}} \\ &\cdot \left(1 - 2e^{3N\rho_{N,k}^2 \cos 2\theta_{N,k}/4} - \frac{4}{N\rho_{N,k}^2 |\cos 2\theta_0|} \right. \\ &- N\rho_{N,k}^2 e^{3N\rho_{N,k}^2 \cos 2\theta_{N,k}/4} - \frac{C_0^2 \varepsilon_1}{|\cos 2\theta_0|} \\ &- 10\sqrt{N} \rho_{N,k} e^{N\rho_{N,k}^2 \cos 2\theta_{N,k}}\right) \\ &\geq \frac{1}{10} \frac{e^{-N\rho_{N,k}^2 \cos 2\theta_{N,k}}}{2\sqrt{N} \rho_{N,k}} \left(1 - \frac{2}{100} - \frac{1}{100} - \frac{1}{100} - \frac{10}{100} - \frac{10}{100}\right) > 0, \end{aligned}$$

which contradicts $Q_N(x_{N,k}) = 0$. Up to now, we have proved that if $\arg x_{N,k} > \theta_0$ then either $\sqrt{N} |x_{N,k}| \le A_0$ or $N |x_{N,k}|^4 \ge \varepsilon_1$. But if $|x_{N,k}| \le A_0/\sqrt{N}$ and N is large enough, Result 4 ensures that $-\sqrt{N} x_{N,k}$ is close to a zero of $\operatorname{erfc}(z)$. This is not possible for N large enough since the distance between $\{z : \pi/2 \le |\operatorname{Arg} z| \le \pi - \theta_0\}$ and $\{z : \operatorname{erfc}(z) = 0\}$ is positive.

Thus we must have $N|x_{N,k}|^4 \ge \varepsilon_1$. Write again $x_{N,k} = \rho_{N,k} e^{i\theta_{N,k}}$; since $|x_{N,k} - 1| \le 1$ by Result 1, we have $\rho_{N,k} \le 2\cos\theta_{N,k}$; thus $2\cos\theta_{N,k} \ge (\varepsilon_1/N)^{1/4}$ and

$$|\operatorname{Im} x_{N,k}^2| = |x_{N,k}^2| |\sin 2\theta_{N,k}| \ge \sin \theta_0 \left(\frac{\varepsilon_1}{N}\right)^{1/4} |x_{N,k}|^2.$$

We thus have proved

$$\eta(x_{N,k}) = \frac{|x_{N,k}|^2 |1 - x_{N,k}^2|}{|\operatorname{Im} x_{N,k}^2|} \le \frac{3 N^{1/4}}{(\sin \theta_0) \,\varepsilon_1^{1/4}} = C_1^{N^{1/4}}.$$

We thus have proved

• if $\operatorname{Arg} x_{N,k} < \theta_0$,

$$|\mu_N(x_{N,k})| \le \eta(x_{N,k})^{3/2} \le C_2$$
,

• if $\operatorname{Arg} x_{N,k} > \theta_0$,

$$\begin{aligned} |\mu_N(x_{N,k})| &\leq \eta(x_{N,k})^{3/2} \\ &\leq (C_1 N^{1/4})^{3/2} \\ &= C_1^{3/2} \frac{(N | x_{N,k}^2)^{3/4}}{(N (|x_{N,k}|^4)^{3/8})} \\ &\leq \frac{C_1^{3/2}}{\varepsilon_1^{3/8}} (N | x_{N,k} |^2)^{3/4}. \end{aligned}$$

In any case, we have

(38)
$$|\mu_N(x_{N,k})| \le C (N |x_{N,k}|^2)^{3/4}.$$

(Remember that $\lim_{N\to+\infty}\inf_k N|x_{N,k}|^2=|\gamma_1|^2>0$).

Step 2. We are now able to give an estimate for $x_{N,k}$. Let us consider a root $y \neq -1$ of Q_N such that Im $y \geq 0$. We have

$$\int_{y}^{1} (1 - s^{2})^{N} ds = 2 \frac{4^{N} (N!)^{2}}{(2N+1)!},$$

hence from (35) and (36),

(39)
$$\frac{(1-y^2)^{N+1}}{2(N+1)\sqrt{\pi}y} \left(1 + O\left(\frac{\eta(y)^{3/2}}{N|y|^2}\right)\right) = \sqrt{\frac{\pi}{N}} \left(1 + O\left(\frac{1}{N^2}\right)\right),$$

(where $\alpha = O(\varepsilon(N, y))$ means that $|\alpha|/\varepsilon(N, y) \leq C$ for a positive constant C which doesn't depend neither on N nor on y). Taking the (N+1)-th root of the modulus of both terms of equality (39), we get

$$\begin{aligned} |1 - y^2| &= 1 + \frac{1}{N+1} \operatorname{Log} \left(2\sqrt{N\pi} \, \frac{N+1}{N} \, |y| \right) \\ &+ O\left(\frac{(\operatorname{Log} N)^2}{N^2} \right) + O\left(\frac{1}{N^3} \right) + O\left(\frac{\eta(y)^{3/2}}{N^2 |y|^2} \right) \\ &= 1 + \frac{1}{N} \operatorname{Log} \left(2\sqrt{N\pi} \, |y| \right) + O\left(\frac{(\operatorname{Log} N)^2}{N^2} \right) + O\left(\frac{\eta(y)^{3/2}}{N^2 |y|^2} \right). \end{aligned}$$

Now, we write $1-y^2=\rho\,e^{-i\varphi}$ ($\varphi\in[0,\pi],\ \rho>0$), so that $y=\sqrt{1-\rho\,e^{-i\varphi}}$. We have found

$$|1 - \rho| = O\left(\frac{1}{N}\operatorname{Log}\left(\sqrt{N}|y|\right)\right) + O\left(\frac{(\operatorname{Log}N)^2}{N^2}\right) + O\left(\frac{\eta(y)^{3/2}}{N^2|y|^2}\right)$$
$$= O\left(\frac{1}{N}\operatorname{Log}\left(\sqrt{N}|y|\right)\right),$$

(since $1/CN \leq \text{Log}(\sqrt{N}|y|)/N \leq C \text{Log} N/N$, while $\eta(y)^{3/2}/(N^2|y|^2) \leq C/(N(N|y|^2)) \leq C'/N$). Thus $1 - \rho e^{-i\varphi} = 1 - e^{-i\varphi} + (1 - \rho) e^{-i\varphi}$ with

$$\left| \frac{(1-\rho)e^{-i\varphi}}{1-\rho e^{-i\varphi}} \right| = O\left(\frac{\operatorname{Log}(\sqrt{N}|y|)}{N|y|^2}\right)$$

and we find

$$\begin{split} y &= \sqrt{(1 - e^{-i\varphi}) \Big(1 + O\Big(\frac{\operatorname{Log}\sqrt{N} \, |y|}{N|y|^2}\Big) \Big)} \\ &= \sqrt{2 \sin\Big(\frac{\varphi}{2}\Big)} \, e^{i(\pi/4 - \varphi/4)} \Big(1 + O\Big(\frac{\operatorname{Log}\sqrt{N} \, |y|}{N|y|^2}\Big) \Big) \,. \end{split}$$

We insert this result in (39) and take the phase

$$-(N+1)\varphi - \frac{\pi}{4} + \frac{\varphi}{4} + O\left(\frac{\log\sqrt{N|y|}}{N|y|^2}\right) + O\left(\frac{\eta(y)^{3/2}}{N|y|^2}\right) = -2k\pi$$

or

(40)
$$\varphi = \frac{8k-1}{4N+3}\pi + O\left(\frac{\log\sqrt{N}|y|}{N^2|y|^2}\right) + O\left(\frac{\eta(y)^{3/2}}{N^2|y|^2}\right).$$

If we assume $\sqrt{N}|y| \ge A_0$ where A_0 is big enough so that

$$O\left(\frac{\operatorname{Log} A_0}{NA_0^{1/2}}\right) + O\left(\frac{1}{NA_0^{1/2}}\right)$$

is less than $4\pi/(4N+3)$ (A_0 being chosen independently from N), we see that $0 \le \varphi \le \pi$ implies $0 \le k \le \lceil (N+1)/2 \rceil$; moreover since

$$|y| = \sqrt{2\sin\left(\frac{\varphi}{2}\right)} \left(1 + O\left(\frac{\log\sqrt{N}|y|}{N|y|^2}\right)\right)$$

we must have

$$2\sin\left(\frac{\varphi}{2}\right) \geq \frac{A_0^2}{N} + O\left(\frac{\log\sqrt{N}\,|y|}{N^2|y|^2}\right).$$

We take $A_0^2 = \sqrt{2K_0\pi}$, where K_0 is big enough; we then see that we must have $k > K_0$.

If $\sqrt{N}|y| \leq \sqrt{2K_0\pi}$, we know that (provided N is big enough) $y \sim -\overline{\gamma}_k/\sqrt{N}$ for $k \in \{1,\ldots,K_0\}$. We have moreover found candidates $y_{N,k}$ for the remaining roots $x_{N,k}$, $K_0 < k \leq [(N+1)/2]$, which are given by

(41)
$$1 - y_{N,k}^2 = \left(1 + \frac{1}{N} \operatorname{Log} 2\sqrt{2N\pi \sin \varphi_{N,k}}\right) e^{-2i\varphi_{N,k}},$$

for $K_0 < k \le [(N+1)/2]$ and $\varphi_{N,k} = (8k-1)\pi/(8N+6)$.

More precisely, we have shown that if $Q_N(y) = 0$, Im $y \ge 0$, $y \ne -1$ and $\sqrt{N}|y| \geq \sqrt{2K_0\pi}$, then for some $k \in \{K_0+1,\ldots,\lceil (N+1)/2\rceil\}$ we

$$(42) \ 1 - y^2 = 1 - y_{N,k}^2 + O\left(\frac{(\log N)^2}{N^2}\right) + O\left(\frac{\eta(y)^{3/2}}{N^2|y|^2}\right) + O\left(\frac{\log \sqrt{N}|y|}{N^2|y|^2}\right).$$

We are going now to prove that, provided that K_0 is fixed large enough (and provided thereafter that N is large enough), for each $y_{N,k}$ there is exactly one root y satisfying (42). Notice that $|y_{N,k}^2 - y_{N,k+1}^2| \ge C_0/N$ while

$$\begin{split} O\Big(\frac{(\log N)^2}{N^2}\Big) + O\Big(\frac{\eta(y)^{3/2}}{N^2|y|^2}\Big) + O\Big(\frac{\log \sqrt{N}\,|y|}{N^2|y|^2}\Big) \\ & \leq C\,\frac{1}{N}\Big(\frac{(\log N)^2}{N} + \frac{1}{(\sqrt{N}\,|y|)^{1/2}}\Big)\,. \end{split}$$

Indeed, let's write $s = \sqrt{y_{N,k}^2 - v}$ where $|v| = \eta_0/N$, η_0 small enough. We are going to estimate $Q_N(s)$. We know that

$$\int_{s}^{1} (1 - \sigma^{2})^{N} d\sigma = \frac{(1 - s^{2})^{N+1}}{2 s (N+1)} \left(1 + O\left(\frac{\eta(s)}{N|s|^{2}}\right) \right),$$

where $\eta(s)$ is bounded independently of s provided that |1-s| < 1, $|1-s^2|>1$ and $|\text{Arg }s|<\theta_0$ (where $\theta_0\in(\pi/4,\pi/2)$). Thus, we are going to estimate |1-s|, $|1-s^2|$ and |Arg s|. We have obviously from (41)

$$y_{N,k}^2 = 1 - e^{-2i\varphi_{N,k}} + O\left(\frac{\log k}{N}\right) = (1 - e^{-2i\varphi_{N,k}})\left(1 + O\left(\frac{\log k}{k}\right)\right)$$

and such an estimate holds as well for s^2 . (We see also from (41) that

$$|1 - s^2| \ge 1 + \frac{1}{N} \operatorname{Log} 2 \sqrt{2N\pi \sin \varphi_{N,k}} - \frac{\eta_0}{N}$$
$$\ge 1 + \frac{1}{N} \operatorname{Log} 2 \sqrt{4\pi K_0} - \frac{\eta_0}{N}$$
$$> 1$$

provided η_0 is small enough). Thus we find that

$$\operatorname{Arg} s^{2} = \frac{\pi}{2} - \varphi_{N,k} + O\left(\frac{\operatorname{Log} k}{k}\right) < 2\theta_{0},$$

if K_0 is large enough (so that $O(\text{Log } K_0/K_0) < 2\theta_0 - \pi/2)$ and thus

$$\operatorname{Arg} s = \frac{\pi}{4} - \frac{1}{2} \varphi_{N,k} + O\left(\frac{\operatorname{Log} k}{k}\right) \in (-\theta_0, \theta_0).$$

Moreover,

$$|s| = \sqrt{2\sin\varphi_{N,k}} \left(1 + O\left(\frac{\log k}{k}\right)\right)$$

and this latter estimate gives $|s| < 2\cos(\operatorname{Arg} s)$: if $\varphi_{N,k} > \varepsilon_0$ (where ε_0 is fixed small enough as we shall see below) and K_0 and N are large enough we have

$$\sqrt{2\sin\varphi_{N,k}}\left(1+O\left(\frac{\log k}{k}\right)\right) \le \sqrt{2}\left(1+C\frac{\log K_0}{K_0}\right) \le \sqrt{2}\left(1+\frac{\varepsilon_0}{100}\right),$$

while

$$2\cos(\operatorname{Arg} s) \ge 2\cos\left(\frac{\pi}{4} - C\frac{\log K_0}{K_0}\right)$$
$$\ge 2\cos\left(\frac{\pi}{4} - \frac{\varepsilon_0}{3}\right)$$
$$\ge \sqrt{2}\left(1 + \frac{2\varepsilon_0}{3\pi} - \frac{\varepsilon_0^2}{2}\right).$$

On the other hand, if $\varphi_{N,k} < \varepsilon_0$ we find

$$\sqrt{2\sin\varphi_{N,k}}\Big(1+O\Big(\frac{\log k}{k}\Big)\Big) \leq \sqrt{2\,\varepsilon_0}\,\,\sqrt{1+C\,\frac{\log K_0}{K_0}} \leq C'\sqrt{\varepsilon_0}\,\,,$$

while $2\cos(\operatorname{Arg} s) \geq 2\cos\theta_0$; thus if ε_0 is small enough to ensure $\varepsilon_0 < 4/(3\pi) - 1/50$ and $\varepsilon_0 < 4\cos^2\theta_0/C'^2$ we find $|s| < 2\cos(\operatorname{Arg} s)$. But this latter inequality is equivalent to |1 - s| < 1. Thus we found

$$Q_N(s) = 1 - \left(1 + O\left(\frac{1}{N^2}\right)\right)\sqrt{\frac{N}{\pi}} \frac{(1 - s^2)^{N+1}}{2s(N+1)} \left(1 + O\left(\frac{1}{|Ns^2|}\right)\right).$$

We have moreover:

$$(1 - s^2)^{N+1} = (1 - y_{N,k}^2)^{N+1} \left(1 + \frac{v}{1 - y_{N,k}^2} \right)^{N+1}$$
$$= (1 - y_{N,k}^2)^{N+1} \left(1 + \frac{Nv}{1 - y_{N,k}^2} + O(N^2 v^2) \right)$$
$$s = \sqrt{y_{N,k}^2 - v} = y_{N,k} \left(1 - \frac{v}{2y_{N,k}^2} + O\left(\frac{v^2}{y_{N,k}^4}\right) \right).$$

This gives, since |s| has $\sqrt{k/N}$ as order of magnitude

$$\begin{split} Q_N(s) &= 1 - \left(1 + O\left(\frac{1}{k}\right)\right) \frac{(1 - y_{N,k}^2)^{N+1}}{2\sqrt{N\pi} \, y_{N,k}} \\ & \cdot \left(1 + \frac{Nv}{1 - y_{N,k}^2} + \frac{v}{2 \, y_{N,k}^2} + O\left(N^2 v^2\right) + O\left(\frac{v^2}{y_{N,k}^4}\right)\right). \end{split}$$

Moreover

$$|y_{N,k}| \ge 2\sqrt{\frac{8k-1}{8N+6}} \left(1 + O\left(\frac{1}{k}\operatorname{Log} k\right)\right)$$

and

$$y_{N,k} = \sqrt{2\sin\left(\frac{8k-1}{8N+6}\pi\right)} e^{i(\pi/4 - (8k-1)\pi/(16N+12))} \left(1 + O\left(\frac{1}{k}\log k\right)\right),$$

so that

$$\begin{split} &\frac{(1-y_{N,k}^2)^{N+1}}{2\sqrt{N\pi}\,y_{N,k}} \\ &= \frac{\left(1+\frac{1}{N}\operatorname{Log}2\sqrt{2N\pi\sin\left(\frac{8k-1}{8N+6}\,\pi\right)}\right)^N}{2\sqrt{2N\pi\sin\left(\frac{8k-1}{8N+6}\,\pi\right)}} \left(1+O\!\left(\frac{1}{k}\operatorname{Log}k\right)\right) \\ &= \left(1+O\!\left(\frac{1}{N^2}\left(\operatorname{Log}k\right)^2\right)\right)^N\!\left(1+O\!\left(\frac{1}{k}\operatorname{Log}k\right)\right) \end{split}$$

and finally

$$Q_N(s) = 1 - \left(1 + O\left(\frac{1}{k} (\log k)^2\right)\right)$$

$$\cdot \left(1 + \frac{Nv}{1 - y_{N,k}^2} + \frac{v}{2y_{N,k}^2} + O(N^2v^2) + O\left(\frac{v^2}{y_{N,k}^4}\right)\right).$$

Now, we write

$$R_{N,k}(s) = N \frac{v}{1 - y_{N,k}^2} = N \frac{y_{N,k}^2 - s^2}{1 - y_{N,k}^2}.$$

Since $|v| = \eta_0/N$, we have

$$|R_{N,k}(s)| = \eta_0 \left(1 + O\left(\frac{\log k}{N}\right)\right),$$

while

$$|Q_N(s) - R_{N,k}(s)| = O\left(\frac{(\operatorname{Log} k)^2}{k}\right) + O\left(\frac{\eta_0}{k}\right) + O\left(\eta_0^2\right).$$

We choose η_0 small enough to ensure that the $O(\eta_0^2)$ term is smaller than $\eta_0/2$ (independently of N and k), and then choose K_0 large enough to ensure that $O((\log k)^2/k) + O(\eta_0/k)$ is smaller than $\eta_0/4$ for $k > K_0$. For this choice of K_0 , we get

$$|Q_N(s) - R_{N,k}(s)| < \frac{3}{4} \eta_0 < |R_{N,k}(s)|$$
.

Thus, by Rouché's theorem, $Q_N(s)$ and $R_{N,k}(s)$ have the same number of roots inside the domain $\{|y_{N,k}^2 - s^2| \le \eta_0/N, \text{Re } s > 0\}$.

Step 3. We have thus found a number K_0 so that for N large enough we may list the roots $x_{N,1}, \ldots, x_{N,\lceil (N+1)/2 \rceil}$ of Q_N with $x_{N,k} \neq -1$, $\operatorname{Im} x_{N,k} \geq 0$, $|x_{N,k}| < |x_{N,k+1}|$ in the following way:

- for $k \leq K_0$, $|x_{N,k}| < \sqrt{2K_0\pi/N}$ and $x_{N,k} \sim -\overline{\gamma}_k/\sqrt{N}$,
- for $k \geq K_0$,

$$|x_{N,k}^2 - y_{N,k}^2| = O\left(\frac{\eta(x_{N,k})^{3/2}}{N^2|x_{N,k}|^2}\right) + O\left(\frac{\log\left(\sqrt{N}|x_{N,k}|\right)}{N^2|x_{N,k}|^2}\right),$$

where $y_{N,k}$ is given by (41).

Moreover, we have seen in step 2 that in that case we must have $\operatorname{Arg} x_{N,k} < \theta_0$, hence $\eta(x_{N,k})$ is bounded independently of N and k. Moreover $x_{N,k}$ is of order of magnitude $\sqrt{k/N}$, hence

$$|x_{N,k}^2 - y_{N,k}^2| = O\left(\frac{\log k}{Nk}\right).$$

Thus we find

(43)
$$1 - x_{N,k}^2 = \left(1 + \frac{1}{N} \log 2 \sqrt{2N\pi \sin\left(\frac{8k-1}{8N+6}\pi\right)}\right) \cdot e^{-2i\pi(8k-1)/(8N+6)} + O\left(\frac{\log k}{Nk}\right)$$

and thus

$$x_{N,k}^{2} = \left(1 - e^{-2i\pi(8k-1)/(8N+6)}\right)$$

$$\cdot \left(1 - \frac{e^{-2i\pi(8k-1)/(8N+6)}}{N(1 - e^{-2i\pi(8k-1)/(8N+6)})} \operatorname{Log} 2\sqrt{2N\pi \sin\left(\frac{8k-1}{8N+6}\pi\right)}\right)$$

$$+ O\left(\frac{\operatorname{Log} k}{k^{2}}\right)$$

which gives

$$x_{N,k} = e^{i(\pi/4 - (8k-1)\pi/(16N+12)} \sqrt{2\sin\left(\frac{8k-1}{8N+6}\pi\right)}$$

$$(44)$$

$$\cdot \left(1 + \frac{e^{i(\pi/2 - (8k-1)\pi/(8N+6))}}{4N\sin\left(\frac{8k-1}{8N+6}\pi\right)} \operatorname{Log} 2\sqrt{2N\pi\sin\left(\frac{8k-1}{8N+6}\pi\right)} + O\left(\frac{\operatorname{Log} k}{k^2}\right)\right),$$

which gives (37) for $k > K_0$. For $k \le K_0$, (37) says only that $x_{N,k}$ is $O(1/\sqrt{N})$, which we already known since $\sqrt{N}|x_{N,k}| \le \sqrt{2K_0\pi}$. Thus we have proved Result 6.

A nice corollary of Result 6 is that we may recover formula (33) on the roots of $\operatorname{erfc}(z)$:

Corollary. The k-th root γ_k of erfc(z) such that Im $\gamma_k > 0$ is given by

$$\gamma_{k} = e^{3i\pi/4} \sqrt{\left(2k - \frac{1}{4}\right)\pi}$$

$$(45)$$

$$\cdot \left(1 - \frac{i}{2\left(2k - \frac{1}{4}\right)\pi} \operatorname{Log} 2\sqrt{\pi} \sqrt{\left(2k - \frac{1}{4}\right)\pi} + O\left(\frac{(\operatorname{Log} k)^{2}}{k^{2}}\right)\right).$$

PROOF. It is enough to use formula (37) for $x_{N,k}$ with $N, k \to +\infty$ and $k < \log N/8$: we have

$$x_{N,k} = -\frac{\overline{\gamma}_k}{\sqrt{N}} + O\left(\frac{1}{N}\right)$$
 and $\frac{k}{N} = O\left(\frac{\log N}{N}\right)$,

thus we find γ_k . The only thing to check is the exact number of roots γ such that $|\gamma| \leq \sqrt{2K_0\pi}$ (since we used formula (33) to give it). But this is an old and classical result of Nevanlinna [9], and thus we may recover formula (33) from formula (37).

4. Big roots of Q_N : further estimates.

Though Result 6 is enough for the proof of theorems 1 to 3 (provided we improve result n° 4 for the smaller roots), we may give even more precise estimations for the roots $x_{N,k}$. For instance, we may integrate by parts one step further formula (35) and thus get an $O((\log k)^3/Nk^2)$ error instead of $O(\log k/Nk)$ for $1 - x_{N,k}^2$.

More generally, how far can we compute $\int_t^1 (1-s^2)^N ds$? We have

$$\int_t^1 (1-s^2)^N \, ds = (1-t^2)^{N+1} \int_0^1 \lambda^N \frac{d\lambda}{2\sqrt{1-\lambda(1-t^2)}} \; .$$

If we write

$$1 - \lambda(1 - t^2) = t^2 \left(1 + \frac{1 - t^2}{t^2} (1 - \lambda) \right),$$

we see that if $\operatorname{Re} t^2 > 1/2$ (so that $|1-t^2| < t^2$), we may develop $(\sqrt{1-\lambda(1-t^2)})^{-1}$ as a Taylor series in $(1-\lambda)$ and find (for $\operatorname{Re} t^2 > 1/2$)

$$\frac{1}{\sqrt{1-\lambda(1-t^2)}} = \frac{1}{t} \sum_{k=0}^{+\infty} (-1)^k \frac{2k!}{4^k(k!)^2} \left(\frac{(1-\lambda)(1-t^2)}{t^2}\right)^k,$$

which gives

(46)
$$\begin{cases} \text{for Re } t > 0 \text{ and Re } t^2 > \frac{1}{2} ,\\ \int_t^1 (1 - s^2)^N ds \\ = \frac{(1 - t^2)^{N+1}}{2t} \sum_{k=0}^{+\infty} (-1)^k \frac{(2k)!}{4^k (k!)^2} \frac{N! \, k!}{(N+k+1)!} \left(\frac{1 - t^2}{t^2}\right)^k . \end{cases}$$

Unfortunately, we are mostly interested in small t's (remember that $x_{N,k} = O(\sqrt{k/N})$). (46) has to be replaced by an asymptotic formula (which is obtained by repeatedly integrating by parts)

(47)
$$\begin{cases} \text{for Re } t > 0 \text{ and } M \in \mathbb{N}, \\ \int_{t}^{1} (1 - s^{2})^{N} ds \\ = \frac{(1 - t^{2})^{N+1}}{2t} \sum_{k=0}^{M} (-1)^{k} \frac{(2k)!}{4^{k} (k!)^{2}} \frac{N! \, k!}{(N+k+1)!} \left(\frac{1 - t^{2}}{t^{2}}\right)^{k} \\ + R_{M,N}(t), \end{cases}$$

where the remainder

$$R_{M,N}(t) = (-1)^{M+1} (1-t^2)^{N+M+2} \frac{(2M+2)!}{4^{M+1} ((M+1)!)^2} \cdot \frac{N! (M+1)!}{(N+M+2)!} \int_0^1 \frac{\lambda^{N+M+1} d\lambda}{(1-\lambda(1-t^2))^{1/2+M+1}}$$

may be estimated by

(48)
$$|R_{M,N}(t)| \le \left| \frac{(1-t^2)^{N+1}}{2t} \right| \frac{(2M+2)!}{4^{M+1}((M+1)!)^2} \frac{(M+1)! N!}{(N+M+2)!} \cdot \left| \frac{1-t^2}{t^2} \right|^{M+1} \eta(t)^{1/2+M+1} .$$

M=0 gave Result 6. M=1 gives the following result:

Result 7. Writing $\varphi_{N,k} = (8k-1)\pi/(8N+6)$ and

$$\lambda_k = \operatorname{Log} 2\sqrt{2N\pi\sin\varphi_{N,k}} ,$$

we have more precisely for all $k \in \{1, ..., N\}$

$$1 - x_{N,k}^{2} = e^{-2i\varphi_{N,k}}$$

$$(49) \qquad \cdot \left(1 + \frac{1}{N}\lambda_{k} + \frac{1}{N^{2}} + \frac{\lambda_{k}}{N^{2}} + \frac{\lambda_{k}^{2}}{2N^{2}} + \frac{i e^{-i\varphi_{N,k}}}{4N^{2}\sin\varphi_{N,k}} (\lambda_{k} - 1)\right) + \varepsilon_{N,k},$$

where

$$|\varepsilon_{N,k}| \le C \max\left\{\frac{1 + (\log k)^3}{Nk^2}, \frac{1 + \log(N + 1 - k)^3}{N(N + 1 - k)^2}\right\}$$

and C doesn't depend neither on N nor on K.

PROOF. We assume $k \leq [(N+1)/2]$. We write $1 - x_{N,k}^2 = 1 - y_{N,k}^2 + v$ and the problem is to estimate v. We already know $v = O(\log k/(Nk))$. Furthermore, we know that

$$\int_{x_{N,k}}^{1} (1 - s^2)^N ds = \frac{2 \, 4^N (N!)^2}{(2N+1)!} = \sqrt{\frac{\pi}{N}} \left(1 + O\left(\frac{1}{N^2}\right) \right)$$

and

$$\int_{x_{N,k}}^{1} (1-s^2)^N \, ds = \frac{(1-x_{N,k}^2)^{N+1}}{2\left(N+1\right)x_{N,k}} \left(1 - \frac{1-x_{N,k}^2}{2\left(N+2\right)x_{N,k}^2} + O\left(\frac{1}{N^2x_{N,k}^4}\right)\right).$$

Now, write

$$\begin{split} \frac{1 - x_{N,k}^2}{2\left(N + 2\right)x_{N,k}^2} &= \frac{1 - y_{N,k}^2}{2\left(N + 2\right)y_{N,k}^2} + O\left(\frac{v}{k}\right) + O\left(\frac{Nv}{k^2}\right) \\ &= \frac{1 - y_{N,k}^2}{2\left(N + 2\right)y_{N,k}^2} + O\left(\frac{\log k}{k^3}\right) \end{split}$$

and

$$\begin{split} \frac{1 - y_{N,k}^2}{2\left(N + 2\right)y_{N,k}^2} &= \frac{e^{-2i\varphi_{N,k}}}{2\left(N + 2\right)y_{N,k}^2} + O\Big(\frac{\log k}{Nk}\Big) \\ &= \frac{e^{-2i\varphi_{N,k}}}{2N(1 - e^{-2i\varphi_{N,k}})} + O\Big(\frac{\log k}{k^2}\Big)\,, \end{split}$$

so that

$$1 - \frac{1 - x_{N,k}^2}{2(N+2)x_{N,k}^2} + O\left(\frac{1}{N^2 x_{N,k}^4}\right) = 1 + \frac{i e^{-i\varphi_{N,k}}}{4N\sin\varphi_{N,k}} + O\left(\frac{\log k}{k^2}\right).$$

We now turn our attention to $(1-x_{N,k}^2)^{N+1}/(2(N+1)x_{N,k})$. We have

$$\begin{split} 2\left(N+1\right)x_{N,k}\sqrt{\frac{\pi}{N}} \\ &= 2\left(1+\frac{1}{N}\right)\sqrt{N\pi}\sqrt{y_{N,k}^2-v} \\ &= 2\left(1+\frac{1}{N}\right)\sqrt{N\pi}\sqrt{1-e^{-2i\varphi_{N,k}}} - \frac{e^{-2i\varphi_{N,k}}}{N}\lambda_{N,k} + O\left(\frac{\log k}{Nk}\right) \\ &= 2\left(1+\frac{1}{N}\right)\sqrt{N\pi}\sqrt{2\sin\varphi_{N,k}} \ e^{i(\pi/4-\varphi_{N,k}/2)} \\ &\quad \cdot \left(1+\frac{i\,e^{-i\varphi_{N,k}}}{4N\sin\varphi_{N,k}}\lambda_{N,k} + O\left(\frac{(\log k)^2}{k^2}\right)\right) \end{split}$$

and

$$(1 - x_{N,k}^2)^{N+1} = (1 - y_{N,k}^2)^{N+1} \left(1 + \frac{v}{1 - y_{N,k}^2} \right)^{N+1}$$

$$= (1 - y_{N,k}^2)^{N+1} \left(1 + \frac{(N+1)v}{1 - y_{N,k}^2} + O\left(\frac{(\log k)^2}{k^2}\right) \right)$$

$$= (1 - y_{N,k}^2)^{N+1} \left(1 + Nv e^{2i\varphi_{N,k}} + O\left(\frac{(\log k)^2}{k^2}\right) \right).$$

Finally we have

$$\begin{split} &\frac{(1-y_{N,k}^2)^{N+1}}{2\sqrt{2N\pi\sin\varphi_{N,k}}} e^{i(\pi/4-\varphi_{N,k}/2)} \\ &= \left(\frac{1+\frac{1}{N}\lambda_{N,k}}{1+\frac{1}{N+1}\lambda_{N,k}+\frac{1}{2(N+1)^2}\lambda_{N,k}^2+O\left(\frac{(\text{Log }k)^3}{N^3}\right)}\right)^{N+1} \\ &= 1-\frac{1}{N}\lambda_{N,k}-\frac{1}{2N}\lambda_{N,k}^2+O\left(\frac{(\text{Log }k)^3}{N^2}\right). \end{split}$$

We have thus obtained

$$\begin{split} \Big(1 + \frac{1}{N}\Big) \Big(1 + O\Big(\frac{1}{N^2}\Big)\Big) \\ &= \frac{(1 - x_{N,k}^2)^{N+1}}{2\sqrt{N\pi} \, x_{N,k}} \Big(1 - \frac{1 - x_{N,k}^2}{2 \, (N+2) \, x_{N,k}^2} + O\Big(\frac{1}{N^2 x_{N,k}^4}\Big)\Big) \\ &= 1 - \frac{\lambda_{N,k}}{N} - \frac{1}{2N} \, \lambda_{N,k}^2 - \frac{i \, e^{-i\varphi_{N,k}}}{4N \sin \varphi_{N,k}} \, \lambda_{N,k} + Nv \, e^{2i\varphi_{N,k}} \\ &+ \frac{i \, e^{-i\varphi_{N,k}}}{4N \sin \varphi_{N,k}} + O\Big(\frac{(\text{Log }k)^3}{k^2}\Big) \end{split}$$

which gives the value of v with an $O((\log k)^3/(Nk^2))$ error.

As a corollary, we find a further development of γ_k , which is exactly the formula given in [3]:

Corollary. If $\mu_k = (2k - 1/4)\pi$, then

$$\gamma_{k} = e^{-3i\pi/4} \sqrt{\mu_{k}} \left(1 - \frac{i}{2\mu_{k}} \operatorname{Log} 2\sqrt{\pi\mu_{k}} - \frac{1}{4\mu_{k}^{2}} \operatorname{Log} 2\sqrt{\pi\mu_{k}} + \frac{1}{4\mu_{k}^{2}} \right) + \frac{1}{8\mu_{k}^{2}} \left(\operatorname{Log} 2\sqrt{\pi\mu_{k}} \right)^{2} + O\left(\frac{(\operatorname{Log} k)^{3}}{k^{3}}\right).$$

PROOF. From (31) and (49), we get

$$1 - \frac{\overline{\gamma}_k^2}{N} = \left(1 - i\frac{\mu_k}{N}\right) \left(1 + \frac{1}{N} \operatorname{Log} 2\sqrt{\pi} \sqrt{\mu_k} + \frac{i}{2N\mu_k} \left(\operatorname{Log} 2\sqrt{\pi} \sqrt{\mu_k} - 1\right)\right) + O\left(\frac{(\operatorname{Log} k)^3}{Nk^2}\right),$$

hence

$$\gamma_k^2 = -i\,\mu_k - \text{Log}\,2\,\sqrt{\pi\mu_k} + \frac{i}{2\,\mu_k}\,\text{Log}\,2\,\sqrt{\pi\mu_k} - \frac{i}{2\,\mu_k} + O\Big(\frac{(\text{Log}\,k)^3}{k^2}\Big)$$

and

$$\gamma_k = \sqrt{-i\,\mu_k} \left(1 - \frac{i}{2\,\mu_k} \text{Log} \, 2\,\sqrt{\pi\mu_k} - \frac{1}{4\,\mu_k^2} \, \text{Log} \, 2\,\sqrt{\pi\mu_k} \right) + \frac{1}{4\,\mu_k^2} + \frac{1}{8\,\mu_k^2} \, \left(\text{Log} \, 2\,\sqrt{\pi\mu_k} \right)^2 + O\left(\frac{(\text{Log} \, k)^3}{k^3}\right) \right)$$

and the corollary is proved.

5. Small roots of Q_N : further estimates.

We are now able to give a much better estimate for the small roots of Q_N . Indeed, we used the rough estimate $|e^{-Nx_{N,k}^2}| \le e^{N|x_{N,k}^2|}$ which is far from being good since $x_{N,k}$ accumulates on the line x = y for k big (and $k^2 = O(N)$), so that $e^{-Nx_{N,k}^2}$ is much smaller than $e^{N|x_{N,k}|^2}$: indeed if $k^2 = O(N)$ we find that

$$x_{N,k}^2 = -\frac{1}{N} \log 2 \sqrt{\pi \left(2k - \frac{1}{4}\right)\pi} + \frac{i}{N} \left(2k - \frac{1}{4}\right)\pi + O\left(\frac{\log k}{Nk}\right),$$

hence

$$|e^{-Nx_{N,k}^2}| = e^{\log 2\sqrt{\pi(2k-1/4)\pi}} e^{O(\log k/k)}$$
$$= 2\sqrt{\pi} \sqrt{\left(2k - \frac{1}{4}\right)\pi} \left(1 + O\left(\frac{\log k}{k}\right)\right),$$

while

$$e^{N|x_{N,k}|^2} \ge e^{(2k-1/4)\pi} \left(1 + O\left(\frac{\log k}{k}\right)\right).$$

Thus, we may improve Result 4 in an impressive manner: for a much bigger set of indexes k, $-\overline{\gamma}_k/\sqrt{N}$ provides a very precise approximation of $x_{N,k}$:

Result 8. There exist $\eta_0 > 0$ and $C_0 > 0$ so that for N large enough and $k \leq \eta_0 N^{1/5}/(\log N)^{2/5}$ we have

(51)
$$\left| x_{N,k} + \frac{\overline{\gamma}_k}{\sqrt{N}} \right| \le C_0 \frac{1}{N\sqrt{N}} \left(\frac{k^{5/2}}{1 + \log k} \right).$$

PROOF. We write

$$\tilde{Q}_N(t) = 4\sqrt{\frac{N}{\pi}} \frac{4^N (N!)^2}{(2N+1)!} Q_N(t) = 1 + O\left(\frac{1}{N^2}\right) + 2\sqrt{\frac{N}{\pi}} \int_0^t (1-s^2)^N ds$$

and approximate $(1-s^2)^N$ by e^{-Ns^2} (provided that Nt^4 remains bounded: $|Nt^4| \leq A_0$)

$$(1-s^2)^4 = e^{N \log(1-s^2)} = e^{-Ns^2} (1 + O(Ns^4))$$
.

Thus

$$\tilde{Q}_N(t) = \operatorname{erfc}(-\sqrt{N}\,t) + O\left(\frac{1}{N^2}\right) + \sqrt{N} \int_0^t e^{-Ns^2} O\left(Ns^4\right) ds.$$

Let $\theta = \operatorname{Arg} t$ and assume $\theta \in (\pi/4, \pi/2)$. Then we have

$$\left| \sqrt{N} \int_0^t e^{-Ns^2} O(Ns^4) \, ds \right| \le C N \sqrt{N} |t|^3 \int_0^{|t|} e^{-N\lambda^2 \cos 2\theta} \lambda \, d\lambda$$
$$\le C \frac{|e^{-Nt^2}| \sqrt{N} |t|^3}{2 |\cos 2\theta|} .$$

We have thus proved that for $|Nt^4| \leq A_0$ and $\operatorname{Arg} t \in (\pi/4, \pi/2)$ we have

$$|\tilde{Q}_N(t) - \operatorname{erfc}(-\sqrt{N}t)| \le C\left(\frac{1}{N^2} + \sqrt{N}|t|^3 \frac{|e^{-Nt^2}|}{2|\cos 2\operatorname{Arg}t|}\right).$$

Now, we write $t = x_{N,k} + \delta$, $|\delta| \leq \delta_0/N$. Remember that we have

$$|x_{N,k}| \approx \sqrt{\frac{\left(2k - \frac{1}{4}\right)\pi}{N}}$$

(hence we will look at $k \leq \sqrt{A_0 N/(2\pi)}$) and

$$\operatorname{Arg} x_{N,k} = \frac{\pi}{4} - \frac{1}{2} \varphi_{N,k} + \operatorname{Arg} \left(1 + \frac{i e^{-i\varphi_{N,k}}}{4N \sin \varphi_{N,k}} \operatorname{Log} \left(2\sqrt{2N\pi \sin \varphi_{N,k}} \right) \right)$$
$$+ O\left(\frac{(\operatorname{Log} k)}{k^2} \right)$$
$$= \frac{\pi}{4} + \frac{\operatorname{Log} \left(2\sqrt{\pi} \sqrt{\left(2k - \frac{1}{4} \right)\pi} \right)}{2\left(2k - \frac{1}{4} \right)\pi} + O\left(\frac{(\operatorname{Log} k)^2}{k^2} \right) + O\left(\frac{k}{N} \right),$$

hence if $k \geq k_0$ where k_0 is large enough so that

$$O\left(\frac{(\operatorname{Log} k)^2}{k^2}\right) + O\left(\frac{k}{N}\right) = O\left(\frac{(\operatorname{Log} k)^2}{k^2}\right) + O\left(\frac{1}{k}\right)$$

is smaller than

$$\frac{1}{2} \frac{\operatorname{Log} 2\sqrt{\pi} \sqrt{\left(2k - \frac{1}{4}\right)\pi}}{2\left(2k - \frac{1}{4}\right)\pi} ,$$

we find that $\operatorname{Arg} x_{N,k} \in (\pi/4, \pi/2)$. (This is also true for $k \leq k_0$, if N is large enough, since $x_{N,k} \sim -\overline{\gamma}_k/\sqrt{N}$).

Moreover

 $\cos\left(2\operatorname{Arg}x_{N,k}\right)$

$$\begin{split} &=-\sin\left(\frac{\operatorname{Log}\left(2\sqrt{\pi}\,\sqrt{\left(2k-\frac{1}{4}\right)\pi}\right)}{\left(2k-\frac{1}{4}\right)\pi}+O\!\left(\frac{(\operatorname{Log}k)^2}{k^2}\right)+O\!\left(\frac{k}{N}\right)\right)\\ &=-\frac{\operatorname{Log}\!\left(2\sqrt{\pi}\,\sqrt{\left(2k-\frac{1}{4}\right)\pi}\right)}{\left(2k-\frac{1}{4}\right)\pi}+O\!\left(\frac{(\operatorname{Log}k)^2}{k^2}\right)+O\!\left(\frac{k}{N}\right), \end{split}$$

hence $\cos(2\operatorname{Arg} x_{N,k})$ has order of magnitude $\operatorname{Log} k/k$. Thus we obtain for δ_0 small enough

•
$$t = x_{N,k} \left(1 + O\left(\frac{1}{\sqrt{Nk}}\right) \right),$$

• $e^{-Nt^2} = e^{-Nx_{N,k}^2} \left(1 + O\left(\sqrt{\frac{k}{N}}\right) + O\left(\frac{1}{N}\right) \right),$
• $\operatorname{Arg} t = \operatorname{Arg} x_{N,k} + O\left(\frac{1}{\sqrt{Nk}}\right) = \operatorname{Arg} x_{N,k} + O\left(\frac{1}{k\sqrt{k}}\right),$

thus we have

$$|\tilde{Q}_N(t) - \operatorname{erfc}(-\sqrt{N}t)| \le C\left(\frac{1}{N^2} + \sqrt{N}\left(\frac{k}{N}\right)^{3/2} \frac{\sqrt{k}}{(\log k)/k}\right)$$

$$\le C' \frac{k^3}{N \log k}.$$

On the other hand we have

$$\begin{aligned} |\operatorname{erfc}(-\sqrt{N}\,t) - \operatorname{erfc}(-\sqrt{N}\,x_{N,k})| \\ &= \left| 2\sqrt{\frac{N}{\pi}} \int_{x_{N,k}}^{t} e^{-Ns^{2}} \,ds \right| \\ &= \left| e^{-Nx_{N,k}^{2}} \right| 2\sqrt{\frac{N}{\pi}} \left| \int_{0}^{\delta} e^{-2Nx_{N,k}s - Ns^{2}} \,ds \right|. \end{aligned}$$

We notice that

$$|2Nx_{N,k} s + Ns^2| \le 2 |x_{N,k}| \delta_0 + \frac{\delta_0^2}{N} \le C \frac{\delta_0}{\sqrt{N}},$$

so that if N is large enough,

$$|e^{-2Nx_{N,k}s-Ns^2}-1| \le \frac{1}{2}$$
,

which gives

$$\left|\operatorname{erfc}(-\sqrt{N}t) - \operatorname{erfc}(-\sqrt{N}x_{N,k})\right| \ge 2\sqrt{\frac{N}{\pi}} \left|e^{-Nx_{N,k}^2}\right| \frac{1}{2} \left|\delta\right| \ge C\sqrt{Nk} \left|\delta\right|.$$

Thus

(52)
$$\begin{cases} |\operatorname{erfc}(-\sqrt{N}t)| \ge C_1 \sqrt{N} k \, \delta - C_2 \, \frac{k^3}{N \log k} , \\ |\operatorname{erfc}(-\sqrt{N}t) - \tilde{Q}_N(t)| \le C_2 \, \frac{k^3}{\sqrt{N} \log k} . \end{cases}$$

Now choose

$$\delta_{N,k} = \frac{3C_2}{C_1} \, \frac{k^{5/2}}{N^{3/2} \text{Log} \, k}$$

(we have $\delta_{N,k} < \delta_0/N$ if $k^{5/2}/\text{Log}\,k < \delta_0 C_1 \sqrt{N}/(3C_2)$); we obtain that

$$\sup_{|t-x_{N,k}|=\delta_{N,k}}\left|\operatorname{erfc}(-\sqrt{N}\,t)-\tilde{Q}_N(t)\right|\leq \frac{1}{2}\,\inf_{|t-x_{N,k}|=\delta_{N,k}}\left|\operatorname{erfc}(-\sqrt{N}\,t)\right|,$$

hence by Rouché's theorem we find that \tilde{Q}_N and $\operatorname{erfc}(-\sqrt{N}t)$ have the same number of roots in the disk $|t - x_{N,k}| < \delta_{N,k}$. Since

$$|x_{N,k} - x_{N,k+1}| \approx \sqrt{\frac{\pi}{2kN}}$$

and

$$\sqrt{kN}\,\delta_{N,k} = O\left(\frac{k^3}{N\log k}\right) = O\left(\frac{1}{N^{2/5}(\log N)^{7/5}}\right) = o\left(1\right)$$

(if $k \le CN^{1/5}/(\log N)^{2/5}$), we find: for $k \le \eta_0 N^{1/5}/(\log N)^{2/5}$ (η_0 small enough)

$$|x_{N,k} + \frac{\overline{\gamma}_k}{\sqrt{N}}| \le C \frac{1}{N\sqrt{N}} \left(\frac{k^{5/2}}{\log k}\right).$$

Result 8 is proved.

Result 8 is enough for what we want to prove. But, of course, we may develop a bit further $(1-s^2)^N$ and get a better approximation for $x_{N,k}$:

Result 9. For $k \leq \eta_0 N^{1/5}/(\log N)^{2/5}$ we have more precisely

$$x_{N,k} = -\frac{\overline{\gamma}_k}{\sqrt{N}} + \frac{1}{N\sqrt{N}} \left(\frac{1}{2} \overline{\gamma}_k^3 + \frac{3}{8} \overline{\gamma}_k + O\left(\sqrt{\log k}\right) \right).$$

PROOF. We write $\text{Log}(1-s^2) = -s^2 - s^4/2 + O(s^6)$. Hence we have

$$(1 - s^2)^N = e^{-Ns^2} \left(1 - N \frac{s^4}{2} + O(Ns^6) + O(N^2s^8) \right),$$

provided that $|s| \leq A_0/N^{1/4}$.

Thus we have for $|t| \le A_0/N^{1/4}$ and $\operatorname{Arg} t \in (\pi/4, \pi/2)$

$$\left| \tilde{Q}_N(t) - \operatorname{erfc}(-\sqrt{N}t) + 2\sqrt{\frac{N}{\pi}} N \int_0^t e^{-Ns^2} s^4 ds \right|$$

$$\leq C \left(\frac{1}{N^2} + \sqrt{N} \left| \frac{t^5 e^{-Nt^2}}{\cos(2\operatorname{Arg}t)} \right| + N\sqrt{N} \left| \frac{t^7 e^{-Nt^2}}{\cos(2\operatorname{Arg}t)} \right| \right).$$

Moreover we have

$$N \int_0^t e^{-Ns^2} s^4 ds = \left[\frac{-e^{-Ns^2} s^3}{2} \right]_0^t + \frac{3}{2} \int_0^t e^{-Ns^2} s^2 ds$$
$$= \frac{-e^{-Nt^2} t^3}{2} - \frac{3}{4N} e^{-Nt^2} t + \frac{3}{4N} \int_0^t e^{-Ns^2} ds.$$

Now, we write $\eta = 1/\sqrt{2N|\cos{(2 \operatorname{Arg} t)}|}$ (if $t \approx x_{N,k}$, we have $\eta \approx \sqrt{4k/(N \log k)} < |t|$) and we write

$$\left| \int_{0}^{t} e^{-Ns^{2}} ds \right| \leq \int_{0}^{\eta} |e^{-Nt^{2}}| ds + \int_{\eta}^{|t|} e^{-Ns^{2} \cos(2\operatorname{Arg} t)} \frac{s ds}{\eta}$$

$$\leq \eta |e^{-Nt^{2}}| + \frac{|e^{-Nt^{2}}|}{2N|\cos(2\operatorname{Arg} t)|\eta}$$

$$= \frac{2|e^{-Nt^{2}}|}{\sqrt{2N|\cos(2\operatorname{Arg} t)|}}.$$

Finally we get

$$\operatorname{erfc}(-\sqrt{N} \, x_{N,k}) = e^{-Nx_{N,k}^2} \, \sqrt{\frac{N}{\pi}} \, x_{N,k}^3 + e^{-Nx_{N,k}^2} \, \frac{3}{4\sqrt{N\pi}} \, x_{N,k}$$
$$+ O\left(\frac{1}{N^2}\right) + O\left(\frac{k^4}{N^2 \log k}\right) + O\left(\frac{k^5}{N^2 \log k}\right)$$
$$+ O\left(\frac{\sqrt{\log k}}{N}\right)$$

and, assuming again $k < \eta_0 N^{1/5}/(\log N)^{2/5}$,

$$\operatorname{erfc}(-\sqrt{N} x_{N,k}) = e^{-Nx_{N,k}^2} \sqrt{\frac{N}{\pi}} x_{N,k}^3 \left(1 + O\left(\frac{1}{k}\right)\right)$$

On the other hand, we have $x_{N,k} = -\overline{\gamma}_k/\sqrt{N} + s$ with

$$s = O\left(\frac{1}{N\sqrt{N}} \frac{k^{5/2}}{\log k}\right)$$

and we want a better estimate for s. We have

$$\sqrt{N} \, s \, \overline{\gamma}_k = O\Big(\frac{1}{N} \, \frac{k^3}{\operatorname{Log} k}\Big) = O\Big(\frac{1}{N^{2/5}}\Big)$$

and thus we may develop

$$\begin{split} \mathrm{erfc}(\overline{\gamma}_k - \sqrt{N}\,s) &= e^{-\overline{\gamma}_k^2}\,\frac{2}{\sqrt{\pi}}\int_0^{-\sqrt{N}\,s} e^{-2\overline{\gamma}_k u - u^2}\,du \\ &= -\frac{2}{\sqrt{\pi}}\,e^{-\overline{\gamma}_k^2}\,\sqrt{N}\,s\left(1 + O\left(\sqrt{N}\,s\,\overline{\gamma}_k\right) + O\left(Ns^2\right)\right). \end{split}$$

Hence we find

$$-\frac{2}{\sqrt{\pi}}e^{-\overline{\gamma}_k^2}\sqrt{N}\,s\sim\sqrt{\frac{N}{\pi}}\,x_{N,k}^3\,e^{-Nx_{N,k}^2}$$

and therefore

$$s \sim -\frac{1}{2} x_{N,k}^3 = O\left(\frac{k^{3/2}}{N^{3/2}}\right),$$

so that

$$-e^{-\overline{\gamma}_{k}^{2}} \frac{2}{\sqrt{\pi}} \sqrt{N} s \left(1 + O\left(\frac{k^{2}}{N}\right) + O\left(\frac{k^{3}}{N^{2}}\right)\right)$$

$$= \sqrt{\frac{N}{\pi}} x_{N,k}^{3} e^{-Nx_{N,k}^{2}} + \frac{3}{4\sqrt{N\pi}} x_{N,k} e^{-Nx_{N,k}^{2}} + O\left(\frac{\sqrt{\log k}}{N}\right),$$

so that (since $e^{-Nx_{N,k}^2+\overline{\gamma}_k^2}=1+O(\sqrt{N}s\,\overline{\gamma}_k)=1+O(k^2/N)$)

$$s = -\frac{1}{2} x_{N,k}^3 - \frac{3}{8N} x_{N,k} + O\left(\frac{\sqrt{\log k}}{N\sqrt{N}}\right)$$
$$= \frac{1}{2} \frac{\overline{\gamma}_k^3}{N\sqrt{N}} + \frac{3\overline{\gamma}_k}{8N\sqrt{N}} + O\left(\frac{\sqrt{\log k}}{N\sqrt{N}}\right)$$

and Result 9 is proved.

6. The phase of a general Daubechies filter.

We have now almost achieved the proof of Theorem 1. Indeed, we have given estimates for $x_{N,k}$, hence for $z_{N,k}$, which is the solution of $x_{N,k} = (z_{N,k} + 1/z_{N,k})/2$ with $\text{Re } z_{N,k} > 0$, hence which is given by $z_{N,k} = x_{N,k} + \sqrt{x_{N,k}^2 - 1}$. We thus have proved:

Proposition 3. Let P_N be the N-th polynomial of I. Daubechies

(54)
$$P_N(z) = \left(\frac{1+z}{2}\right)^{2N+2} \sum_{k=0}^{N} (-1)^k \binom{N+k}{k} \left(\frac{1-z}{2}\right)^{2k}$$

which is related to Q_N by

(55)
$$e^{i(2N+1)\xi}P_N(e^{-i\xi}) = Q_N(\cos\xi)$$

or equivalently

(56)
$$P_N(z) = z^{2N+1} Q_N\left(\frac{1}{2}\left(z + \frac{1}{z}\right)\right).$$

Then the roots of P_N are precisely given as the following ones:

• z = -1 with multiplicity 2N + 2,

• 2N roots with multiplicity 1 which can be decomposed into

$$\left\{z_{N,k},\overline{z_{N,k}},\frac{1}{z_{N,k}},\frac{1}{\overline{z}_{N,k}}\right\}_{1\leq k\leq [N/2]},$$

(together with $\{z_{N,(N+1)/2}, 1/z_{N,(N+1)/2}\}\$ if N is odd), where $\text{Im }z_{N,k} \geq 0$, $\text{Re }z_{N,k} \geq 0$, $|z_{N,k}| > 1$, $\text{Im }z_{N,k} > 0$ for k < [(N+1)/2] and $\text{Im }z_{N,(N+1)/2} = 0$.

Moreover we have, for N large enough:

• if $k \le \eta_0 N^{1/5}/(\log N)^{2/5}$ (where η_0 is fixed independently of N and is small enough)

(57)
$$z_{N,k} = i - \frac{\overline{\gamma}_k}{\sqrt{N}} + O\left(\frac{k}{N}\right),$$

where γ_k is the k-th zero γ of $\operatorname{erfc}(z)$ with $\operatorname{Im} \gamma > 0$

• for all k

(58)
$$z_{N,k} = y_{N,k} + \sqrt{y_{N,k}^2 - 1} + O\left(\frac{1 + \log k}{k\sqrt{Nk}}\right),$$

where

$$y_{N,k} = \left(1 - e^{-2i(8k-1)\pi/(8N+6)} - \frac{1}{N} e^{-2i(8k-1)\pi/(8N+6)} \operatorname{Log} 2\sqrt{2N\pi \sin\left(\frac{8k-1}{8N+6}\pi\right)}\right)^{1/2}.$$

PROOF. Just write $z_{N,k} = x_{N,k} + \sqrt{x_{N,k}^2 - 1}$ and apply results 6 and 8.

Of course, we could give better estimates using results 7 and 9, but we won't need them. We have easy estimates for $1/z_{N,k}$ as well since $1/z_{N,k} = x_{N,k} - \sqrt{x_{N,k}^2 - 1}$.

We are now going to use proposition 3 in the estimation of the phase of a Daubechies filter. We want to approximate for $\xi \in [-\pi, \pi]$, $1/(e^{-i\xi} - \lambda_{N,k})$ where

$$\lambda_{N,k} \in \left\{ z_{N,k}, rac{1}{z_{N,k}}, \overline{z}_{N,k}, rac{1}{\overline{z}_{N,k}}
ight\}.$$

A direct consequence of Proposition 3 is the following proposition:

Proposition 4. Let $\xi \in [-\pi, \pi]$ and let $z_{N,k}$, $1 \le k \le [(N+1)/2]$ be the roots of P_N described in Proposition 3. Let $\lambda_{N,k} \in \{z_{N,k}, 1/z_{N,k}, \overline{z}_{N,k}, 1/\overline{z}_{N,k}\}$. Then

i) for $1 \le k \le \eta_0 N^{1/5}/(\log N)^{2/5}$ we have, writing $\widetilde{z_{N,k}} = i - \overline{\gamma_k}/\sqrt{N}$,

$$\left| \frac{1}{e^{-i\xi} - \lambda_{N,k}} - \frac{1}{e^{-i\xi} - \widetilde{\lambda_{N,k}}} \right| \le C \frac{k}{N} \frac{1}{\frac{k}{N} + |\cos \xi|^2},$$

where C doesn't depend neither on N nor on k nor on ξ (and where $\widetilde{\lambda_{N,k}} = \widetilde{z_{N,k}}$ if $\lambda_{N,k} = z_{N,k}$, $1/\widetilde{z_{N,k}}$, if $\lambda_{N,k} = 1/z_{N,k}$ and so on ...).

ii) for $k \ge k_0$ (k_0 large enough independently of N) we have, writing $\widehat{z_{N,k}} = y_{N,k} + \sqrt{y_{N,k}^2 - 1}$ as in formula (58),

(60)
$$\left| \frac{1}{e^{-i\xi} - \lambda_{N,k}} - \frac{1}{e^{-i\xi} - \widehat{\lambda_{N,k}}} \right| \le C \frac{\operatorname{Log} k}{k\sqrt{Nk}} \frac{1}{\frac{k}{N} + |\cos \xi|^2}.$$

PROOF. Of course, we may assume $\xi \in [0, \pi]$. If $\xi \in [\pi/2, \pi]$, the estimation is easy since $\operatorname{Re} e^{-i\xi} < 0$ and $\operatorname{Re} \lambda_{N,k} > 0$ (as well $\operatorname{Re} \widehat{\lambda_{N,k}}$). Thus,

$$|e^{-i\xi} - \lambda_{N,k}| \ge \operatorname{Re}(-e^{-i\xi} + \lambda_{N,k}) \ge C\sqrt{\frac{k}{N}} + |\cos \xi|$$

and the same for $|e^{-i\xi} - \widehat{\lambda_{N,k}}|$ and $|e^{-i\xi} - \widehat{\lambda_{N,k}}|$. Of course, we must prove that min $\{\operatorname{Re} \lambda_{N,k}, \operatorname{Re} \widehat{\lambda_{N,k}}, \operatorname{Re} \widehat{\lambda_{N,k}}\} \geq C\sqrt{k/N}$. For $\operatorname{Re} \widehat{\lambda_{N,k}}$, it is obvious, since

$$\operatorname{Re} \widetilde{\lambda_{N,k}} \geq \frac{-\operatorname{Re} \gamma_k}{\sqrt{N} \left| i - \frac{\overline{\gamma}_k}{\sqrt{N}} \right|^2} \approx \sqrt{\frac{k\pi}{N}} .$$

For Re $\lambda_{N,k}$, if $k < \eta_0 N^{1/5}/(\log N)^{2/5}$, we deduce that Re $\lambda_{N,k} \ge C\sqrt{k/N}$ since

$$|\lambda_{N,k} - \widetilde{\lambda_{N,k}}| \le |z_{N,k} - \widetilde{z_{N,k}}| \le C \frac{k}{N} \le \sqrt{\frac{k}{N}} C' N^{-2/5}.$$

We thus turn our attention to $\operatorname{Re} \widehat{\lambda_{N,k}} \geq \operatorname{Re} \widehat{z_{N,k}}/|\widehat{z_{N,k}}|^2$ and $\operatorname{Re} \lambda_{N,k} \geq \operatorname{Re} z_{N,k}/|z_{N,k}|^2$ for large k's. We define $\mu_{N,k} = \sqrt{1 - e^{-2i(8k-1)\pi/(8N+6)}}$ and $\xi_{N,k} = \mu_{N,k} + \sqrt{\mu_{N,k}^2 - 1}$. We have

$$\xi_{N,k} = \sqrt{2\sin\left(\frac{8k-1}{8N+6}\right)} e^{i(\pi/4 - (8k-1)\pi/(2(8N+6)))}$$

$$+ e^{i(\pi/2 - (8k-1)\pi/(8N+6))}$$

$$= 1 + \sqrt{2} e^{i(\pi/4 - (8k-1)\pi/(2(8N+6)) + \arcsin\sqrt{2}\sin(\pi/4 - (8k-1)\pi/2(8N+6)))}$$

and thus we study $1 + \sqrt{2} e^{i(\omega + \arcsin \sqrt{2} \sin \omega)}$ for $\omega \in [0, \pi/4]$. We have

$$\operatorname{Re}\left(1+\sqrt{2}\,e^{i(\omega+\arcsin\sqrt{2}\sin\omega)}\right)$$

$$=\sqrt{1-2\sin^2\omega}\left(\sqrt{1-2\sin^2\omega}+\sqrt{2\cos^2\omega}\right)$$

$$=\sqrt{\cos 2\omega}\left(\sqrt{2\cos^2\omega}+\sqrt{1-2\sin^2\omega}\right)\geq\sqrt{\frac{4}{\pi}\left(\frac{\pi}{4}-\omega\right)},$$

which gives

$$\operatorname{Re} \xi_{N,k} \ge \sqrt{2 \, \frac{8k-1}{8N+6}} \ge \sqrt{\frac{k}{N}} \; .$$

Now we have

$$|\widehat{z_{N,k}} - \xi_{N,k}| \le C\sqrt{\frac{k}{N}} \frac{\log k}{k} ,$$

so that if k is large enough we have

$$\operatorname{Re} \widehat{z_{N,k}} \geq C' \sqrt{\frac{k}{N}}$$
.

Moreover

$$|z_{N,k} - \widehat{z_{N,k}}| \le C\sqrt{\frac{k}{N}} \frac{\log k}{k^2}$$

and thus

$$\operatorname{Re} z_{N,k} \geq C'' \sqrt{\frac{k}{N}}$$
.

Finally, we control $|z_{N,k}|$ and $|\widehat{z_{N,k}}|$ by

$$|z_{N,k}| + |\widehat{z_{N,k}}| \le 1 + \sqrt{2} + O\left(\sqrt{\frac{k}{N}} \frac{\log k}{k}\right) \le C$$
.

Thus we obtain

$$\operatorname{Re} \lambda_{N,k} \geq C \sqrt{\frac{k}{N}}$$
 and $\operatorname{Re} \widehat{\lambda_{N,k}} \geq C \sqrt{\frac{k}{N}}$.

We are going to prove that

$$|e^{-i\xi} - \lambda_{N,k}| \ge C\left(\sqrt{\frac{k}{N}} + |\cos\xi|\right)$$

and

$$|e^{-i\xi} - \widehat{\lambda_{N,k}}| \ge C\left(\sqrt{\frac{k}{N}} + |\cos\xi|\right)$$

holds for $\xi \in [0, \pi/2]$ as well. Notice that if $|\lambda_{N,k}| < 1$, we have

$$|\lambda_{N,k} - e^{-i\xi}| = \left| \frac{1}{z_{N,k}} \right| \left| e^{-i\xi} - \frac{1}{\overline{\lambda_{N,k}}} \right| \ge \frac{1}{C'} \left| e^{-i\xi} - \frac{1}{\overline{\lambda_{N,k}}} \right|$$

(and the same for $|e^{-i\xi} - \widehat{\lambda_{N,k}}|$) so that we may assume $|\lambda_{N,k}| > 1$. If $\lambda_{N,k} = z_{N,k}$, our equality is obvious: for $\xi_{N,k}$ we have either $\operatorname{Im} \xi_{N,k} \geq 1$ or $\operatorname{Re} \xi_{N,k} \geq 2$ and, since $\operatorname{Im} e^{-i\xi} < 0$, we find $|e^{-i\xi} - \xi_{N,k}| \geq 1$, hence (for k large), $|e^{-i\xi} - z_{N,k}| \geq 1/2$ and $|e^{-i\xi} - \widehat{z_{N,k}}| \geq 1/2$, while

$$\frac{1}{2} \ge \frac{1}{4} \left(\sqrt{\frac{k}{N}} + |\cos \xi| \right).$$

Now if $\lambda_{N,k}$ is the conjugate of $z_{N,k}$ or $\widehat{z_{N,k}}$, we are going to show that

$$|e^{-i\xi} - \overline{\xi}_{N,k}| \ge C\left(\sqrt{\frac{k}{N}} + |\cos \xi|\right),$$

which gives the control over $|e^{-i\xi} - \lambda_{N,k}|$ for large k's. Thus we are led to show that

(61)
$$\begin{cases} \text{for } \xi \in \left[0, \frac{\pi}{2}\right] \text{ and } \omega \in \left[0, \frac{\pi}{4}\right], \\ |e^{-i\xi} - 1 - \sqrt{2} e^{-i(\omega + \arcsin\sqrt{2}\sin\omega)}| \\ \ge C\left(|\cos\xi| + \sqrt{\frac{\pi}{4} - \omega}\right). \end{cases}$$

We compute easily
$$\mu(\xi,\omega) = |e^{-i\xi} - 1 - \sqrt{2} e^{-i(\omega + \arcsin\sqrt{2}\sin\omega)}|^2$$

$$\mu(\xi,\omega) = \left(\cos\xi - \sqrt{1 - 2\sin^2\omega} \left(\sqrt{2}\cos\omega + \sqrt{1 - 2\sin^2\omega}\right)\right)^2 \\ + \left(\sin\xi - \sqrt{2}\sin\omega \left(\sqrt{2}\cos\omega + \sqrt{1 - 2\sin^2\omega}\right)\right)^2 \\ = 1 + \left(\sqrt{2}\cos\omega + \sqrt{1 - 2\sin^2\omega}\right)^2 \\ - 2\left(\sqrt{2}\cos\omega + \sqrt{1 - 2\sin^2\omega}\right) \\ \cdot \left(\cos\xi\sqrt{1 - 2\sin^2\omega} + \sin\xi\sqrt{2}\sin\omega\right) \\ = \left(\sqrt{2}\cos\omega - 1 + \sqrt{1 - 2\sin^2\omega}\right)^2 \\ + 2\left(\sqrt{2}\cos\omega + \sqrt{1 - 2\sin^2\omega}\right) \\ \cdot \left(1 - \cos\left(\xi - \arcsin\left(\sqrt{2}\sin\omega\right)\right)\right) \\ \ge 1 - 2\sin^2\omega + 2\left(1 - \cos\left(\xi - \arcsin\left(\sqrt{2}\sin\omega\right)\right)\right).$$

We have

$$1 - 2\sin^2 \omega = \cos 2\omega \ge \frac{2}{\pi} \left(\frac{\pi}{2} - 2\omega \right).$$

On the other hand, we have

$$1 - \cos(\xi - \arcsin\sqrt{2}\sin\omega) = 2\sin^2\left(\frac{\xi}{2} - \frac{1}{2}\arcsin\sqrt{2}\sin\omega\right)$$
$$\geq \frac{2}{\pi^2}|\xi - \arcsin\sqrt{2}\sin\omega|^2.$$

Moreover we have

$$\frac{\pi}{2} - \arcsin\sqrt{2}\sin\omega = \arcsin\sqrt{\cos 2\omega} \le \frac{\pi}{2}\sqrt{\cos 2\omega},$$

hence we have (using $|a+b|^2 \ge a^2/3 - b^2/2$)

$$\mu(\xi,\omega)^{2} \ge \cos 2\omega + \frac{4}{\pi^{2}} \Big| \xi - \frac{\pi}{2} + \frac{\pi}{2} - \arcsin \sqrt{2} \sin \omega \Big|^{2}$$

$$\ge \cos 2\omega + \frac{4}{3\pi^{2}} \Big| \xi - \frac{\pi}{2} \Big|^{2} - \frac{2}{\pi^{2}} \Big| \frac{\pi}{2} - \arcsin \sqrt{2} \sin \omega \Big|^{2}$$

$$\ge \frac{1}{2} \cos 2\omega + \frac{4}{3\pi^{2}} \cos^{2} \xi$$

$$\ge \frac{4}{3\pi^{2}} \Big(\cos^{2} \xi + \Big| \frac{\pi}{4} - \omega \Big| \Big)$$

and thus (61) is proved.

Proposition 4 is then obvious since

$$\left| \frac{1}{e^{-i\xi} - \lambda_{N,k}} - \frac{1}{e^{-i\xi} - \tilde{\lambda}_{N,k}} \right| = \frac{|\lambda_{N,k} - \tilde{\lambda}_{N,k}|}{|e^{-i\xi} - \lambda_{N,k}| |e^{-i\xi} - \tilde{\lambda}_{N,k}|}$$

and since we control each term due to (61) or to Proposition 3.

We may now obtain Theorem 1 as a corollary of Proposition 4:

Corollary. With the same notation as in Proposition 4, if $k_0 \le k_N \le \eta_0 N^{1/5}/(\log N)^{2/5}$ then

$$\int_{0}^{2\pi} \left| \sum_{k=1}^{[(N+1)/2]} \frac{i e^{-i\xi}}{e^{-i\xi} - \lambda_{N,k}} \right| d\xi$$
(62)
$$- \sum_{k=1}^{k_{N}} \frac{i e^{-i\xi}}{e^{-i\xi} - \tilde{\lambda}_{N,k}} - \sum_{k_{N}+1}^{[(N+1)/2]} \frac{i e^{-i\xi}}{e^{-i\xi} - \hat{\lambda}_{N,k}} \right| d\xi$$

$$\leq C \left(\frac{k_{N}^{3/2}}{\sqrt{N}} + \frac{\text{Log } k_{N}}{k_{N}} \right).$$

PROOF. Using Proposition 4, and writing $I_N(\xi)$ for

$$I_N(\xi) = \sum_{k=1}^N \frac{i e^{-i\xi}}{e^{-i\xi} - \lambda_{N,k}} - \sum_{k=1}^{k_N} \frac{i e^{-i\xi}}{e^{-i\xi} - \tilde{\lambda}_{N,k}} - \sum_{k_N+1}^{[(N+1)/2]} \frac{i e^{-i\xi}}{e^{-i\xi} - \tilde{\lambda}_{N,k}} ,$$

we get

$$I_N(\xi) \le \sum_{k=1}^{k_N} C \frac{k}{N} \frac{1}{\frac{k}{N} + |\cos \xi|^2} + \sum_{k_N+1}^{[(N+1)/2]} C \frac{\log k}{k \sqrt{Nk}} \frac{1}{\frac{k}{N} + |\cos \xi|^2}.$$

Thus we have to estimate

$$\int_0^{2\pi} \frac{d\xi}{k+N|\cos\xi|^2} \le 4 \int_0^{\arccos\sqrt{k/N}} \frac{d\xi}{N\cos^2\xi} + 4 \int_{\arccos\sqrt{k/N}}^{\pi/2} \frac{d\xi}{k}$$

$$= \frac{4}{N} \tan\left(\arccos\sqrt{\frac{k}{N}}\right) + \frac{4}{k} \left(\frac{\pi}{2} - \arccos\sqrt{\frac{k}{N}}\right)$$

$$\le \frac{4}{\sqrt{Nk}} + \frac{2\pi}{\sqrt{Nk}},$$

so that

$$\int_0^{2\pi} I_N(\xi) \, d\xi \le C' \left(\sum_{k=1}^{k_N} \sqrt{\frac{k}{N}} + \sum_{k_N+1}^{[(N+1)/2]} \frac{\log k}{k^2} \right) \le C'' \left(\frac{k_N^{3/2}}{\sqrt{N}} + \frac{\log k_N}{k_N} \right).$$

Now Theorem 1 is proved with $k_N = [N^{1/5}/\text{Log }N]$. At least, we have proved it for $\xi \in [0, 2\pi]$. But $\omega(z_{N,1}^{\varepsilon_1}, \ldots, z_{N,N}^{\varepsilon_N}) - \omega(Z_{N,1}^{\varepsilon_1}, \ldots, Z_{N,N}^{\varepsilon_N})$ is 2π -periodical, since $\omega(Z_1, \ldots, Z_N)(\xi + 2\pi) - \omega(Z_1, \ldots, Z_N)(\xi) = 2i\pi M$ where M is the number of Z_k 's which lie inside the open disk |Z| < 1.

7. Minimum-phased Daubechies filters.

This section is devoted to the proof of Theorem 2.

Result 10. We have the following inequality

(63)
$$\left| \frac{d}{d\xi} \omega(z_{N,1}, \dots, z_{N,N})(\xi) - \frac{N}{2\pi} \operatorname{Im} \int_{-\pi}^{\pi} \frac{i e^{-i\xi}}{e^{-i\xi} - \xi(\omega)} d\omega \right| \leq C\sqrt{N}$$
,

where
$$\xi(\omega) = \sqrt{e^{-i\omega}} + \sqrt{1 + e^{-i\omega}}$$
.

PROOF. We approximate $z_{N,k}$ by $Z_{N,k} = Z((8k-1)\pi/(8N+6)),$ $(1 \le k \le N)$ where

$$Z(\omega) = \sqrt{2\sin\omega} e^{i(\pi/4 - \omega/2)} + e^{i(\pi/2 - \omega)}.$$

We have shown that for $k_0 \leq k \leq [(N+1)/2]$, $(k_0 \text{ large enough})$ we have

$$\left| \frac{1}{e^{-i\xi} - z_{N,k}} - \frac{1}{e^{-i\xi} - Z_{N,k}} \right| \le C \frac{\operatorname{Log} k}{\sqrt{Nk}} \frac{1}{\frac{k}{N} + \cos^2 \xi}$$

and

$$\left| \frac{1}{e^{-i\xi} - \overline{z}_{N,k}} - \frac{1}{e^{-i\xi} - \overline{Z}_{N,k}} \right| \le C \frac{\operatorname{Log} k}{\sqrt{Nk}} \frac{1}{\frac{k}{N} + \cos^2 \xi}$$

(notice that $z_{N,N+1-k} = \overline{z}_{N,k}$ and $Z_{N,N+1-k} = \overline{Z}_{N,k}$). If $k < k_0$, we have to prove similarly

$$\left| \frac{1}{e^{-i\xi} - z_{N,k}} - \frac{1}{e^{-i\xi} - Z_{N,k}} \right| \le C \frac{1}{\sqrt{N}} \frac{1}{\frac{1}{N} + \cos^2 \xi}$$

and

$$\left| \frac{1}{e^{-i\xi} - \overline{z}_{N,k}} - \frac{1}{e^{-i\xi} - \overline{Z}_{N,k}} \right| \le C \frac{1}{\sqrt{N}} \frac{1}{\frac{1}{N} + \cos^2 \xi}.$$

We have of course

$$|z_{N,k} - Z_{N,k}| \le |z_{N,k}| + |Z_{N,k}| \le \frac{C}{\sqrt{N}}$$
,

so that we only have to check that

$$|e^{-i\xi} - Z_{N,k}| \ge \frac{1}{C} \left(\frac{1}{\sqrt{N}} + |\cos \xi| \right)$$

(which is an easy consequence of (61)) and that

$$|e^{-i\xi}-z_{N,k}| \geq \frac{1}{C}\left(\frac{1}{\sqrt{N}}+|\cos\xi|\right).$$

If $|\xi + \pi/2| \ge 3 |\gamma_{k_0}|/\sqrt{N}$ and $\xi \in [-2\pi, 0]$, we find

$$e^{-i\xi} - z_{N,k} = 2e^{-i(\xi/2+\pi/4)}\sin\left(\frac{\xi}{2} + \frac{\pi}{4}\right) - \frac{\overline{\gamma}_k}{\sqrt{N}} + O\left(\frac{1}{N}\right),$$

hence

$$|e^{-i\xi} - z_{N,k}| \ge \left| \sin\left(\frac{\xi}{2} + \frac{\pi}{4}\right) \right| - \frac{|\gamma_{k_0}|}{\sqrt{N}} + O\left(\frac{1}{N}\right)$$

$$\ge \frac{1}{2} \left| \sin\left(\frac{\xi}{2} + \frac{\pi}{4}\right) \right|$$

$$\ge \max\left\{ \frac{1}{4} \left| \cos\xi \right|, \frac{6}{\pi} \frac{|\gamma_{k_0}|}{\sqrt{N}} \right\}.$$

On the other hand, if $|\xi + \pi/2| \le 3 |\gamma_{k_0}|/\sqrt{N}$, we have

$$e^{-i\xi} - z_{N,k} = -\left(\frac{\xi}{2} + \frac{\pi}{4}\right) - \frac{\overline{\gamma}_k}{\sqrt{N}} + O\left(\frac{1}{N}\right),$$

hence

$$|e^{-i\xi} - z_{N,k}| \ge \frac{1}{2} \frac{\inf \operatorname{Im} \gamma_k}{\sqrt{N}} = \frac{c_0}{\sqrt{N}} \ge C_0 \max \left\{ \frac{1}{\sqrt{N}}, \frac{1}{6 |\gamma_{k_0}|} |\cos \xi| \right\}.$$

Thus we have obtained

$$\left| \frac{d}{d\xi} \omega(z_{N,1}, \dots, z_{N,N})(\xi) - \sum_{k=1}^{N} \operatorname{Im} \frac{i e^{-i\xi}}{e^{-i\xi} - Z_{N,k}} \right|$$

$$\leq C \sum_{k=1}^{N} \frac{(1 + \operatorname{Log} k)}{\sqrt{Nk}} \frac{1}{\frac{k}{N} + \cos^{2} \xi}$$

$$\leq C \sqrt{N} \sum_{k=1}^{\infty} \frac{1 + \operatorname{Log} k}{k \sqrt{k}}.$$

Now we look at

$$S_N(\xi) = \operatorname{Im} \sum_{k=1}^{N} \frac{i e^{-i\xi}}{e^{-i\xi} - Z_{N,k}}$$

as at a Riemann sum: we have

$$\frac{\pi}{N} S_N(\xi) \xrightarrow[N \to \infty]{} \operatorname{Im} \int_0^{\pi} \frac{i e^{-i\xi} d\omega}{e^{-i\xi} - Z(\omega)}.$$

If $\xi \neq \pm \pi/2$, we have a proper Riemann integral; if $\xi = \pm \pi/2$, the integrand is unbounded at 0 ($\xi = -\pi/2$) or π ($\xi = \pi/2$); but for $\xi = -\pi/2$ we have $e^{-i\xi} - Z(\omega) = e^{i\pi/4}\sqrt{2\omega} + O(\omega)$ near $\omega = 0$ and thus

$$\int_0^{\pi} \frac{1}{|i - Z(\omega)|} d\omega < +\infty.$$

It is easy to evaluate the distance between $\pi S_N/N$ and the integral. We have

$$\left| \int_{0}^{7\pi/(8N+6)} \frac{d\omega}{e^{-i\xi} - Z(\omega)} \right| \le C \int_{0}^{7\pi/(8N+6)} \frac{d\omega}{\sqrt{\omega}} \le C' \frac{1}{\sqrt{N}} ,$$

$$\left| \int_{(8N-1)\pi/(8N+6)}^{\pi} \frac{d\omega}{e^{-i\xi} - Z(\omega)} \right| \le C \int_{(8N-1)\pi/(8N+6)}^{\pi} \frac{d\omega}{\sqrt{\pi - \omega}}$$

$$\le C' \frac{1}{\sqrt{N}} ,$$

$$\frac{1}{N} \left| \frac{1}{e^{-i\xi} - Z\left(\frac{8N-1}{2N+6}\pi\right)} \right| \le C' \frac{\sqrt{N}}{N} ,$$

and finally for $1 \le k < N$

$$\left| \int_{(8k-1)\pi/(8N+6)}^{(8k+7)\pi/(8N+6)} \frac{1}{e^{-i\xi} - Z(\omega)} d\omega - \frac{8\pi}{8N+6} \frac{1}{e^{-i\xi} - Z\left(\frac{8k-1}{8N+6}\right)\pi} \right|$$

$$\leq C \int_{(8k-1)/(8N+6)}^{(8k+7)\pi/(8N+6)} \frac{\left| Z(\omega) - Z\left(\frac{8k-1}{8N+6}\right)\pi \right|}{\left| e^{-i\xi} - Z(\omega) \right| \left| e^{-i\xi} - Z\left(\frac{8k-1}{8N+6}\right) \right|} d\omega$$

$$\leq C' \int_{(8k-1)\pi/(8N+6)}^{(8k+7)\pi/(8N+6)} \frac{\frac{1}{\sqrt{Nk}}}{\sqrt{\frac{k}{N}} \sqrt{\frac{k}{N}}} d\omega$$

$$\leq C'' \frac{1}{k^{3/2}\sqrt{N}}$$

and thus

$$\left| \frac{\pi}{N} S_N(\xi) - \operatorname{Im} \int_0^{\pi} i \, e^{-i\xi} \, \frac{d\omega}{e^{-i\xi} - Z(\omega)} \right| \le C \, \frac{1}{\sqrt{N}} \, .$$

Thus, Result 10 is proved since writing $-e^{-2i\omega} = e^{-i\sigma}$ gives

$$\int_0^{\pi} i e^{-i\xi} \frac{d\omega}{e^{-i\xi} - \sqrt{2\sin\omega} e^{i(\pi/4 - \omega/2)} - e^{i(\pi/2 - \omega)}}$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} i e^{-i\xi} \frac{d\sigma}{e^{-i\xi} - \sqrt{e^{-i\sigma}} - \sqrt{1 + e^{-i\sigma}}}.$$

We will easily prove Theorem 2 if we know the value of $I(\xi)=\int_{-\pi}^{\pi}i\,e^{-i\xi}\,d\sigma/(e^{-i\xi}-\xi(\sigma))$:

Result 11. Let $\xi(\sigma) = \sqrt{e^{-i\xi}} + \sqrt{1 + e^{-i\sigma}}$ and $\xi \in [-\pi, \pi]$. Then

$$\int_{-\pi}^{\pi} i e^{-i\xi} \frac{d\sigma}{e^{-i\xi} - \xi(\sigma)}$$

$$= \begin{cases}
-\pi \tan\left(\frac{\xi}{2}\right) + i \frac{\cos \xi}{\sin \xi} \operatorname{Log}\left(\frac{1 - \sin \xi}{1 + \sin \xi}\right), & \text{if } |\xi| \leq \frac{\pi}{2}, \\
-\pi \cot \left(\frac{\xi}{2}\right) + i \frac{\cos \xi}{\sin \xi} \operatorname{Log}\left(\frac{1 - \sin \xi}{1 + \sin \xi}\right), & \text{if } |\xi| \geq \frac{\pi}{2}.
\end{cases}$$

We find that $I(\xi)$ is continuous, which is obvious since by (61)

$$|e^{-i\xi} - \xi(\sigma)| \ge C\sqrt{\pi^2 - \sigma^2}$$
,

so that we may apply Lebesgue's dominated convergence theorem.

PROOF. Since $\xi(\sigma) = \overline{\xi}(-\sigma)$, we find that

$$I(-\xi) = -\overline{\int_{-\pi}^{\pi} \frac{i e^{-i\xi}}{e^{-i\xi} - \overline{\xi}(\sigma)} d\sigma} = -\overline{I(\xi)},$$

so that it is enough to compute $I(\xi)$ for $\xi \in [0, \pi]$. Writing $e^{-i\sigma} = u$, we may write

$$I(\xi) = \int_{-1+i0}^{-1-i0} \frac{e^{-i\xi}}{\sqrt{u} + \sqrt{1+u} - e^{-i\xi}} \frac{du}{u} ,$$

where u runs clockwise on the circle |u|=1. The function

$$f(z) = \frac{e^{-i\xi}}{z(\sqrt{z} + \sqrt{1+z} - e^{-i\xi})}$$

is analytical on $\mathbb{C}\setminus(-\infty,0]$ and may be extended continuously to $(-\infty,0]+i0$ and $(-\infty,0]-i0$ but at three points: z=0 (both a pole and a branching point), z=-1 (a branching point) and if $\xi\in[0,\pi/2]$ at $-\sin^2\xi-i0=z_\xi$. Thus we may write:

• for
$$\xi \in [\pi/2, \pi]$$

$$I(\xi) = \lim_{\varepsilon \to 0} \int_{-1}^{-\varepsilon} \frac{e^{-i\xi}}{\sqrt{u+i\,0} + \sqrt{1+u} - e^{-i\xi}} \frac{du}{u}$$

$$+ \int_{-\varepsilon}^{-1} \frac{e^{-i\xi}}{\sqrt{u-i\,0} + \sqrt{1+u} - e^{-i\xi}} \frac{du}{u}$$

$$+ \int_{-\varepsilon+i0}^{-\varepsilon-i0} \frac{e^{-i\xi}}{\sqrt{u} + \sqrt{1+u} - e^{-i\xi}} \frac{du}{u}$$

$$= 2i \int_{0}^{1} \frac{dt}{\cos \xi - \sqrt{1-t^2}} - 2i\pi \frac{e^{-i\xi}}{1 - e^{-i\xi}}$$

$$= 2i \int_{0}^{\pi/2} \frac{\cos \alpha}{\cos \xi - \cos \alpha} d\alpha - \pi \cot \left(\frac{\xi}{2}\right) + \pi i.$$

• if
$$\xi \in (0, \pi/2)$$
 we have, writing $t_{\varepsilon}^{+} = \sqrt{\sin^{2} \xi + \varepsilon}$ and $t_{\varepsilon}^{-} = \sqrt{\sin^{2} \xi - \varepsilon}$

$$I(\xi) = \lim_{\epsilon \to 0} A_{\varepsilon} + B_{\varepsilon} + C_{\varepsilon},$$

where

$$A_{\varepsilon} = \int_{-1}^{-(t_{\varepsilon}^{+})^{2}} + \int_{-(t_{\varepsilon}^{-})^{2}}^{-\varepsilon} \frac{e^{-i\xi}}{\sqrt{u+i0} + \sqrt{1+u} - e^{-i\xi}} \frac{du}{u}$$

$$+ \int_{-\varepsilon}^{-(t_{\varepsilon}^{-})^{2}} + \int_{-(t_{\varepsilon}^{+})^{2}}^{-1} \frac{e^{-i\xi}}{\sqrt{u-i0} + \sqrt{1+u} - e^{-i\xi}} \frac{du}{u}$$

$$= 2i \int_{\sqrt{\varepsilon}}^{t_{\varepsilon}^{-}} + \int_{t_{\varepsilon}^{+}}^{1} \frac{dt}{\cos \xi - \sqrt{1-t^{2}}}$$

$$B_{\varepsilon} = \int_{-\varepsilon+i0}^{-\varepsilon-i0} \frac{e^{-i\xi}}{\sqrt{u+\sqrt{1+u} - e^{-i\xi}}} \frac{du}{u}$$

$$= -2i \pi \frac{e^{-i\xi}}{1 - e^{-i\xi}} + O(\sqrt{\varepsilon})$$

$$= -\pi \cot \left(\frac{\xi}{2}\right) + i \pi + O(\sqrt{\varepsilon}),$$

$$C_{\varepsilon} = \int_{-(t_{\varepsilon}^{+})^{2}}^{-(t_{\varepsilon}^{-})^{2}} \frac{e^{-i\xi}}{\sqrt{u+i0} + \sqrt{1+u} - e^{-i\xi}} \frac{du}{u}$$

$$+ \int_{z_{\xi}+\varepsilon}^{z_{\xi}-\varepsilon} \frac{e^{-i\xi} du}{(\sqrt{u} + \sqrt{1+u} - e^{-i\xi}) u}$$

$$= -i \pi 2i \cot \xi + O(\varepsilon)$$

$$= 2\pi \cot \xi + O(\varepsilon),$$

since the residue of

$$f(\xi) = \frac{e^{-i\xi}}{\sqrt{u} + \sqrt{1+u} - e^{-i\xi}} \frac{1}{u}$$

at $z_{\xi} = -\sin^2 \xi - i 0$ is equal to

$$\frac{e^{-i\xi}}{\frac{1}{2}\frac{1}{\sqrt{z_{\xi}}} + \frac{1}{2}\frac{1}{\sqrt{1+z_{\xi}}}} \frac{1}{z_{\xi}} = \frac{2\sqrt{z_{\xi}}\sqrt{1+z_{\xi}}}{z_{\xi}} = 2i\cot \xi.$$

Hence we have

$$\begin{split} I(\xi) &= \pi \Big(2 \cot \alpha \xi - \cot \alpha \Big(\frac{\xi}{2} \Big) \Big) \\ &+ i \, \pi + 2 \, i \lim_{\varepsilon \to 0} \int_0^{t_{\varepsilon}^-} + \int_{t_{\varepsilon}^+}^1 \frac{dt}{\cos \xi - \sqrt{1 - t^2}} \\ &= -\pi \tan \Big(\frac{\xi}{2} \Big) + i \, \pi + 2 \, i \lim_{\varepsilon \to 0} \int_0^{\alpha_{\varepsilon}^-} + \int_{\alpha_{\varepsilon}^+}^{\pi/2} \frac{\cos \alpha \, d\alpha}{\cos \xi - \cos \alpha} \;, \end{split}$$

where $\alpha_{\varepsilon}^{-} = \arcsin t_{\varepsilon}^{-}$ and $\alpha_{\varepsilon}^{+} = \arcsin t_{\varepsilon}^{+}$.

Thus, for proving Result 11, we just have to estimate for $\xi \in (0, \pi)$, $\xi \neq \pi/2$

$$A(\xi) = \lim_{\varepsilon \to 0} \int_0^{\alpha_{\varepsilon}^-} + \int_{\alpha_{\varepsilon}^+}^{\pi/2} \frac{\cos \alpha \, d\alpha}{\cos \xi - \cos \alpha}$$

with $\alpha_{\varepsilon}^{-} = \arcsin \sqrt{\sin^{2} \xi - \varepsilon}$ and $\alpha_{\varepsilon}^{+} = \arcsin \sqrt{\sin^{2} \xi + \varepsilon}$. We do the usual change of variable $\beta = \tan (\alpha/2)$. Then

$$A(\xi) = \lim_{\varepsilon \to 0} \int_0^{\beta_\varepsilon^-} + \int_{\beta_\varepsilon^+}^1 \frac{2\left(1-\beta^2\right)}{\left(1+\beta^2\right)\left(\left(1+\beta^2\right)\cos\xi - \left(1-\beta^2\right)\right)} \, d\beta \, .$$

We write

$$(1+\beta^2)\cos\xi - (1-\beta^2) = \beta^2(1+\cos\xi) - (1-\cos\xi)$$
$$= 2\beta^2\cos^2\left(\frac{\xi}{2}\right) - 2\sin^2\left(\frac{\xi}{2}\right),$$

hence

$$A(\xi) = \frac{1}{\cos^2\left(\frac{\xi}{2}\right)} \lim_{\varepsilon \to 0} \int_0^{\beta_\varepsilon^-} + \int_{\beta_\varepsilon^+}^1 \frac{1 - \beta^2}{(1 + \beta^2)\left(\beta^2 - \tan^2\left(\frac{\xi}{2}\right)\right)} d\beta$$

$$= \frac{1}{\cos^2\left(\frac{\xi}{2}\right)} \lim_{\varepsilon \to 0} \int_0^{\beta_\varepsilon^-} + \int_{\beta_\varepsilon^+}^1 \left(\frac{-2}{1 + \tan^2\left(\frac{\xi}{2}\right)} \frac{1}{1 + \beta^2} + \frac{1 - \tan^2\left(\frac{\xi}{2}\right)}{1 + \tan^2\left(\frac{\xi}{2}\right)} \frac{1}{\beta^2 - \tan^2\left(\frac{\xi}{2}\right)} d\beta$$

$$= \lim_{\varepsilon \to 0} \int_{0}^{\beta_{\varepsilon}^{-}} + \int_{\beta_{\varepsilon}^{+}}^{1} \left(\frac{-2}{1 + \beta^{2}} \right) d\beta$$

$$+ \frac{\cos \xi}{\sin \xi} \left(\frac{1}{\beta - \tan\left(\frac{\xi}{2}\right)} - \frac{1}{\beta + \tan\left(\frac{\xi}{2}\right)} \right) d\beta$$

$$= \lim_{\varepsilon \to 0} -\frac{\pi}{2} + \frac{\cos \xi}{\sin \xi} \operatorname{Log} \left| \frac{1 - \tan\left(\frac{\xi}{2}\right)}{1 + \tan\left(\frac{\xi}{2}\right)} \right|$$

$$- \frac{\cos \xi}{\sin \xi} \operatorname{Log} \left| \frac{\beta_{\varepsilon}^{+} - \tan\left(\frac{\xi}{2}\right)}{\beta_{\varepsilon}^{+} + \tan\left(\frac{\xi}{2}\right)} \right| + \frac{\cos \xi}{\sin \xi} \operatorname{Log} \left| \frac{\beta_{\varepsilon}^{-} - \tan\left(\frac{\xi}{2}\right)}{\beta_{\varepsilon}^{-} + \tan\left(\frac{\xi}{2}\right)} \right|$$

$$= -\frac{\pi}{2} + \frac{\cos \xi}{2 \sin \xi} \operatorname{Log} \left(\frac{1 - \tan\left(\frac{\xi}{2}\right)}{1 + \tan\left(\frac{\xi}{2}\right)} \right)^{2}$$

$$+ \frac{\cos \xi}{\sin \xi} \lim_{\varepsilon \to 0} \operatorname{Log} \left| \frac{\beta_{\varepsilon}^{-} - \tan\left(\frac{\xi}{2}\right)}{\beta_{\varepsilon}^{+} - \tan\left(\frac{\xi}{2}\right)} \right|.$$

Now we have

$$\left(\frac{1-\tan\left(\frac{\xi}{2}\right)}{1+\tan\left(\frac{\xi}{2}\right)}\right)^2 = \frac{\cos^2\left(\frac{\xi}{2}\right) - 2\sin\left(\frac{\xi}{2}\right)\cos\left(\frac{\xi}{2}\right) + \sin^2\left(\frac{\xi}{2}\right)}{\cos^2\left(\frac{\xi}{2}\right) + 2\sin\left(\frac{\xi}{2}\right)\cos\left(\frac{\xi}{2}\right) + \sin^2\left(\frac{\xi}{2}\right)}$$
$$= \frac{1-\sin\xi}{1+\sin\xi},$$

while we have for $\xi \in (0, \pi/2)$

$$\beta_{\varepsilon}^{-} - \tan\left(\frac{\xi}{2}\right) \sim \frac{1}{2} \left(1 + \tan^{2}\left(\frac{\xi}{2}\right)\right) (\alpha_{\varepsilon}^{-} - \xi)$$

$$\sim \frac{1}{2} \left(1 + \tan^{2}\left(\frac{\xi}{2}\right)\right) \frac{\sqrt{\sin^{2}\xi - \varepsilon} - \sin\xi}{\cos\xi}$$

$$\sim \frac{-\varepsilon \left(1 + \tan^{2}\left(\frac{\xi}{2}\right)\right)}{4\sin\xi\cos\xi}$$

and

$$\beta_{\varepsilon}^{+} - \tan\left(\frac{\xi}{2}\right) \sim \frac{+\varepsilon\left(1 + \tan^{2}\frac{\xi}{2}\right)}{4\sin\xi\cos\xi} \sim -\left(\beta_{\varepsilon}^{-} - \tan\left(\frac{\xi}{2}\right)\right).$$

Thus

$$A(\xi) = -\frac{\pi}{2} + \frac{\cos \xi}{2\sin \xi} \operatorname{Log} \frac{1 - \sin \xi}{1 + \sin \xi}$$

and Result 11 is proved.

Now, (63) gives

$$\left| \frac{d}{d\xi} \omega(z_{N,1}, \dots, z_{N,N})(\xi) - \frac{N}{2\pi} \frac{\cos \xi}{\sin \xi} \operatorname{Log} \frac{1 - \sin \xi}{1 + \sin \xi} \right| \le C\sqrt{N}.$$

Integrating this for $\xi \in [-\pi, \pi]$ we get

$$\left|\omega(z_{N,1},\ldots,z_{N,N})(\xi)-\frac{N}{2\pi}\left(\mathrm{Li}_2(-\sin\xi)-\mathrm{Li}_2(\sin\xi)\right)\right|\leq C\sqrt{N}.$$

Since both functions are 2π -periodical, this inequality can be extended to all $\xi \in \mathbb{R}$ and Theorem 2 is proved.

8. Almost linear-phased Daubechies filters.

In this section, we prove Theorem 3. The proof is very easy. Indeed, we want to estimate for N=4q, $\omega(z_{N,1}^{\varepsilon_{N,1}},\ldots,z_{N,N}^{\varepsilon_{N,N}})(\xi)$ with $\varepsilon_{N,k}=1$ if k=0 mod 4 or k=1 mod 4, and $\varepsilon_{N,k}=-1$ otherwise. We have (writing ω_N for $\omega(z_{N,1}^{\varepsilon_{N,1}},\ldots,z_{N,N}^{\varepsilon_{N,N}})$, K_N for $\{k\in\mathbb{N}:1\leq 1\}$

 $k \leq N$, $\varepsilon_{N,k} = 1$ and \tilde{K}_N for $\{k \in \mathbb{N} : 1 \leq k \leq N, \ \varepsilon_{N,k} = -1\}$)

$$\frac{d\omega_N}{d\xi} = \operatorname{Im} \sum_{k \in K_N} \frac{i e^{-i\xi}}{e^{-i\xi} - z_{N,k}} + \sum_{k \in \tilde{K}_N} \frac{i e^{-i\xi}}{e^{-i\xi} - \frac{1}{\overline{z}_{N,k}}}$$

(we have used that for $k \in \tilde{K}_N$, $N+1-k \in \tilde{K}_N$ and $z_{N,k} = \overline{z}_{N,N+1-k}$). Hence we have

$$\frac{d\omega_N}{d\xi} = \operatorname{Im}\left(\sum_{k \in K_N} \frac{i e^{-i\xi}}{e^{-i\xi} - z_{N,k}} - \sum_{k \in \tilde{K}_N} \frac{i e^{-i\xi}}{e^{-i\xi} - z_{N,k}}\right) + \operatorname{Im}\left(\sum_{k \in \tilde{K}_N} \frac{i e^{-i\xi}}{e^{-i\xi} - z_{N,k}} + \frac{i e^{-i\xi}}{e^{-i\xi} - \frac{1}{Z_{N,k}}}\right).$$

But we have

$$\begin{split} \frac{i\,e^{-i\xi}}{e^{-i\xi}-Z} + \frac{i\,e^{-i\xi}}{e^{-i\xi}-\frac{1}{\overline{Z}}} &= \frac{i\,e^{-i\xi}}{e^{-i\xi}-Z} + \frac{i\,\overline{Z}}{\overline{Z}-e^{+i\xi}} \\ &= \frac{i\,e^{-i\xi}(e^{i\xi}-\overline{Z}) + i\,\overline{Z}\,(-e^{-i\xi}+Z)}{|e^{-i\xi}-Z|^2} \\ &= \frac{i\,(1-2\,\overline{Z}\,e^{-i\xi}+|Z|^2)}{|Z-e^{-i\xi}|^2} \\ &= i + \frac{i\,(Z\,e^{i\xi}-\overline{Z}\,e^{-i\xi})}{|Z-e^{-i\xi}|^2} \;, \end{split}$$

hence

$$\operatorname{Im}\left(\frac{i\,e^{-i\xi}}{e^{-i\xi}-Z}+\frac{i\,e^{-i\xi}}{e^{-i\xi}-\frac{1}{\overline{Z}}}\right)=1.$$

Thus, we have obtained

$$\frac{d\omega_N}{d\xi} = \frac{N}{2} + \operatorname{Im} \sum_{k=1}^q i \, e^{-i\xi} \left(\frac{1}{e^{-i\xi} - z_{N,4k-3}} - \frac{1}{e^{-i\xi} - z_{N,4k-2}} - \frac{1}{e^{-i\xi} - z_{N,4k-1}} + \frac{1}{e^{-i\xi} - z_{N,4k}} \right).$$

Now we write, for $r \in \{1, 2, 3\}$

$$\begin{split} \frac{1}{e^{-i\xi}-z_{N,4k-r}} &= \frac{1}{e^{-i\xi}-z_{N,4k}} + \frac{z_{N,4k-r}-z_{N,4k}}{\left(e^{-i\xi}-z_{N,4k}\right)\left(e^{-i\xi}-z_{N,4k-r}\right)} \\ &= \frac{1}{e^{-i\xi}-z_{N,4k}} + \frac{z_{N,4k-r}-z_{N,4k}}{\left(e^{-i\xi}-z_{N,4k}\right)^2} \\ &\quad + \frac{(z_{N,4k-r}-z_{N,4k})^2}{\left(e^{-i\xi}-z_{N,4k-r}\right)} \,. \end{split}$$

We have, writing $\tilde{k} = \min\{k, q+1-k\}$

$$\left| \frac{(z_{N,4k-r} - z_{N,4k})^2}{(e^{-i\xi} - z_{N,4k})^2 (e^{-i\xi} - z_{N,4k-r})} \right| \le C \frac{\frac{1}{N\tilde{k}}}{\left(\frac{\tilde{k}}{N} + \cos^2 \xi\right)^{3/2}} \le \frac{C \frac{1}{\tilde{k}} \sqrt{\frac{1}{N\tilde{k}}}}{\frac{\tilde{k}}{N} + \cos^2 \xi}$$

and

$$\int_{-\pi}^{\pi} \frac{d\xi}{\frac{\tilde{k}}{N} + \cos^{2} \xi} \leq 4 \int_{0}^{\arccos \sqrt{\tilde{k}/N}} \frac{d\xi}{\cos^{2} \xi} + \frac{4N}{\tilde{k}} \int_{\arccos \sqrt{\tilde{k}/N}}^{\pi/2} d\xi$$

$$= 4\sqrt{\frac{N}{\tilde{k}}} \sin\left(\arccos\sqrt{\frac{\tilde{k}}{N}}\right) + \frac{4N}{\tilde{k}} \arcsin\sqrt{\frac{\tilde{k}}{N}}$$

$$\leq 4\sqrt{\frac{N}{\tilde{k}}} + 2\pi\sqrt{\frac{N}{\tilde{k}}},$$

so that

$$\int_{-\pi}^{\pi} \left| \frac{d\omega_N}{d\xi} - \frac{N}{2} - \text{Im} \sum_{k=1}^{q} \frac{z_{N,4k-3} - z_{N,4k-2} - z_{N,4k-1} + z_{N,4k}}{(e^{-i\xi} - z_{N,4k})^2} \right|$$

$$\leq C \sum_{k=1}^{\infty} \frac{1}{k^2} = C' < +\infty$$

and

$$\int_{-\pi}^{\pi} \left| \frac{d\omega_{N}}{d\xi} - \frac{N}{2} \right| d\xi
\leq C' + C \sum_{k=1}^{q} \sqrt{\frac{N}{\tilde{k}}} \left| z_{N,4k-3} - z_{N,4k-2} - z_{N,4k-1} + z_{N,4k} \right|.$$

When $\tilde{k} \leq k_0$, we write

$$|z_{N,4k-r} - z_{N,4k+1-r}| = O\left(\frac{1}{\sqrt{N\tilde{k}}}\right)$$

and obtain

$$\sum_{\tilde{k} \le k_0} \sqrt{\frac{N}{\tilde{k}}} |z_{N,4k-3} - z_{N,4k-2} - z_{N,4k-1} + z_{N,4k}| \le C \operatorname{Log} k_0.$$

When $\tilde{k} \geq k_0$, we may write as in formula (58)

$$z_{N,4k-r} = y_{N,4k-r} + \sqrt{y_{N,4k-r}^2 - 1} + O\left(\frac{\log \tilde{k}}{\tilde{k}\sqrt{N\tilde{k}}}\right)$$
$$= \sqrt{\omega_{N,4k-r}} + \sqrt{\omega_{N,4k-r} + 1} + O\left(\frac{\log \tilde{k}}{\tilde{k}\sqrt{N\tilde{k}}}\right),$$

where

$$\omega_{N,\ell} = -e^{-2i\pi(8\ell-1)/(8N+6)}$$
$$-\frac{1}{N}e^{-2i\pi(8\ell-1)/(8N+6)}\operatorname{Log}\left(2\sqrt{2N\pi\sin\left(\frac{8\ell-1}{8N+6}\pi\right)}\right).$$

We write

$$\sqrt{\alpha + \beta} = \sqrt{\alpha} + \frac{\beta}{\sqrt{\alpha} + \sqrt{\alpha + \beta}} = \sqrt{\alpha} + \frac{\beta}{2\sqrt{\alpha}} - \frac{\beta^2}{2\sqrt{\alpha} (\sqrt{\alpha} + \sqrt{\alpha + \beta})^2}.$$

Now, we have: $\omega_{N,\ell}$ is order of magnitude 1, $\omega_{N,\ell} + 1$ is of order of magnitude min $\{\sqrt{\ell/N}, \sqrt{(N+1-\ell)/N}\}$ and $\omega_{N,\ell+1} - \omega_{N,\ell}$ is of order of magnitude 1/N. Thus, we may write

$$\sqrt{\omega_{N,4k-r}} = \sqrt{\omega_{N,4k}} + O\left(\frac{1}{N}\right)$$

$$\sqrt{1 + \omega_{N,4k-r}} = \sqrt{1 + \omega_{N,4k}} + \frac{\omega_{N,4k-r} - \omega_{N,4k}}{2\sqrt{1 + \omega_{N,4k}}} + O\left(\frac{1}{\tilde{k}\sqrt{N\tilde{k}}}\right)$$

$$= \sqrt{1 + \omega_{N,4k}} + \frac{e^{-2i\pi(32k-1)/(8N+6)}(1 - e^{2i8r\pi/(8N+6)})}{2\sqrt{1 + \omega_{N,4k}}}$$

$$+ O\left(\frac{\log \tilde{k}}{N^2}\right) + O\left(\frac{1}{\tilde{k}\sqrt{N\tilde{k}}}\right)$$

and finally

$$\begin{split} \frac{\sqrt{N}}{\tilde{k}} & |z_{N,4k-3} - z_{N,4k-2} - z_{N,4k-1} + z_{N,4k}| \\ & = \sqrt{\frac{N}{\tilde{k}}} \left| \frac{e^{2i24\pi/(8N+6)} - e^{2i16\pi/(8N+6)} - e^{2i8\pi/(8N+6)} + 1}{2\sqrt{1 + \omega_{N,4k}}} \right| \\ & + O\left(\frac{\log \tilde{k}}{\tilde{k}^2}\right) + O\left(\frac{1}{\sqrt{N\tilde{k}}}\right) + O\left(\frac{\log \tilde{k}}{N\sqrt{N\tilde{k}}}\right) \\ & = O\left(\frac{1}{N\tilde{k}}\right) + O\left(\frac{\log \tilde{k}}{\tilde{k}^2}\right) + O\left(\frac{1}{\sqrt{N\tilde{k}}}\right) + O\left(\frac{\log \tilde{k}}{N\sqrt{N\tilde{k}}}\right). \end{split}$$

We thus have proved Theorem 3, since

$$\sum_{1}^{N} \frac{1}{N\tilde{k}} \le C \frac{\log N}{N} = o(1),$$

$$\sum_{1}^{N} \frac{1}{\sqrt{N\tilde{k}}} \le C \frac{\sqrt{N}}{\sqrt{N}} = C < +\infty,$$

$$\sum_{1}^{\infty} \frac{\log \tilde{k}}{\tilde{k}^{2}} < +\infty,$$

$$\sum_{1}^{N} \frac{\log \tilde{k}}{N\sqrt{N\tilde{k}}} \le C \frac{1}{N\sqrt{N}} \sqrt{N} \log N = o(1).$$

References.

- [1] Caglar, H., Akansu, A. N., A generalized parametric PR-QMF design technique based on Bernstein polynomial approximation. *IEEE Trans. Signal Processing* **41** (1993), 2314-2321.
- [2] Daubechies, I., Orthonormal bases of compactly supported wavelets. *Comm. Pure Appl. Math.* **41** (1988), 909-996.
- [3] Fettis, H. E., Caslin, J. C., Cramer, K. R., Complex zeros of the error function and of the complementary error function. *Math. Comp.* **27** (1973), 401-407.
- [4] Herrmann, O., On the approximation problem in nonrecursive digital filter design. *IEEE Trans. on Circuit Theory* (1971), 411-413.
- [5] Kantorovich, L. V., Sur la convergence de la suite des polynômes de S. Bernstein en dehors de l'intervalle fondamental. *Bull. Acad. Sci. URSS* (1931), 1103-1115.
- [6] Lemarié-Rieusset, P. G., Polynômes de Bernstein en théorie des ondelettes. C. R. Acad. Sci. Paris 319 (1994), 21-24.
- [7] Lorentz, G. G., Bernstein polynomials. Chelsea Publ., 1986.
- [8] Meyer, Y., Ondelettes et opérateurs. vol. I. Hermann, 1990.
- [9] Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Gauthier-Villars, 1929.
- [10] Pólya, G., Szegö, G., Problems and theorems in Analysis, I. Springer-Verlag, 1986.

- [11] Strichartz, R., How to make wavelets. *Amer. Math. Monthy* **100** (1993), 539-556.
- [12] Varga, R. S., Edrei, A., Saff, E. B., Zeros of sections of power series. Lecture Notes in Math. 1002 (1983), Springer-Verlag.

Recibido: 20 de febrero de 1.995 Revisado: 10 de noviembre de 1.995

> Djalil Kateb Université Technologique de Compiègne Mathématiques Centre de Royallieu BP 649 60206 Compiègne Cedex FRANCE Djalil.Kateb@dna.utc.fr

> > and

Pierre Gilles Lemarié-Rieusset
Université d'Evry
Mathématiques
Bd des Coquibus
91025 Evry Cedex
FRANCE
lemarie@lami.univ-evry.fr