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The phase of
the Daubechies filters

Djalil Kateb and Pierre Gilles Lemarié-Rieusset

Abstract. We give the first term of the asymptotic development for
the phase of the N-th (minimum-phased) Daubechies filter as N goes
to +00. We obtain this result through the description of the complex
zeros of the associated polynomial of degree 2N + 1.

0. Introduction.

The Daubechies filters my(£) are defined in the following way [2]:
i) my(£) is a trigonometric polynomial of degree 2N + 1

2N+1

(1) my (€)= Y anpe
k=0

with real-valued coefficients an .

i) vV2my (€) and v/2 e~ iy (E+7) are conjugate quadrature filters

(2) Imn (6))2 + [mn (€ +7)2=1.
iii) my (&) satisfies at 0 and 7
(3) my(0) =1,

(4) —mpy(7) =0, for p € {0,1,...,N}.
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The importance of those filters is due to the following facts: the asso-
ciated wavelet ¢ defined by

int6) =P (§ ) [ (£).

=2

generates an orthonormal basis of L2(R) {27/2¢n (29x — k)} ez kez and
satisfies the cancellation properties

[aruw@dz =0, forpe o N},

and has a support of minimal length among all orthonormal wavelets
satisfying (6).

Conditions (1) to (4) don’t define my in an unique way. As a
matter of fact, there is exactly 2[V+1/2] solutions my (where [z] is
the integer part of x). Indeed, conditions (1) to (4) determine only the
modulus of mpy

(7) mu(§)]* = Qn(cos€),
N k
14+ X\N+1 N+EkE\(/1-X
® x-S0 (%)
k=0
We are going to check easily the following result on the roots of Q.

Proposition 1. The roots of Qn are X = —1 with multiplicity N + 1
and N roots Xy 1, -+, Xn N with multiplicity 1 such that
i) for1 <k <N,ReXnyi >0 and Xy nt1-k = XN ks

ii) for 1 <k <[N/2], ImXn >0,

iii) if N is odd, Xy (v41y/2 > 1.

With help of Proposition 1, we may easily describe the solutions
mpy of (1) to (4) Indeed, if XN,k = (ZN,k -+ 1/ZN,k)/2 with ‘ZN,k| > 1,
then we have

[(N+1)/2]

e~ €\ N+1
© mv@© =[] swe®(~5—)"
k=1
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where, for 1 < k£ < [N/2],

(e — zni) (67 — ZN k)

SN,k(é): |]-_ZNI<:‘2
1o (1 )1 -Znge ™)
o — ZN,k € — ZN,k €
or  Swal()= . -
If N is odd,
e % — 2
SN,(N+1)/2(§) = M)/

1—2zn,(v41)/2
(11) (N+1)/

1—zn(Nt1y2e %

or S £) =
N, (v+1)/2(E) R,
The case where all the roots of My(z) (the polynomial such that

my (&) = Mn(e%)) are outside the unit disk is the minimum-phased
Daubechies filter

(12) ma () = (—

1-2
paie N,k

The aim of this paper is to describe the phase of the Daubechies filters
as N goes to +o0. Indeed, the modulus of my is described by (7) and
(8) and one easily checks that

™

1 if i

: if [§] < 5

1 T

. )L T

(13) Ny imy (§)] o €l=3,
0, ifg<|g|g7r.

The phase of mpy, on the other hand, is much more delicate to study:
it depends of course on the choice of the factors Sy in (9), but even
for the case of minimum-phased filters we are not aware of any previous
results on the behaviour of the phase.

We are going to give an approximate value of zy; which allows
the determination of the phase of my. More precisely, if Z1, ..., Zn are
N complex numbers such that for £ € {1,..., N}, [Zg| # 1 and if

N

M7, Z0)(©) = [

k=1

e_’{—Zk
1-27;
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we define the phase w(Zq,...,Zn)(§) as the C™ real-valued function
such that w(0) =0 and

e_‘f - Zk

0(Z,...,Zn)(€) = H‘ 1— 7,

k=1

‘e_iw(zl,...,ZN)(f) .

This function is easily computed as

(14) w(zl,...,zN)(g)=Im</§§:Ld8)_

e~ s — 7
0 k—1 k

Theorem 1. Let Qn(X) be given by (8), Xn.1,..., XN N be its roots
which are not equal to —1 ordered by:

e for 1<k<[N+1)/2],ImXnr >0 and Xy N+1-k = XNk,
o [ Xyl <[Xnpo| <+ < |Xnv+1)/2]

and let zn i, be defined by Xy = (2nk + 1/2nk)/2 and |zn k| > 1.
For 1 <k < N, we approzimate znx by Zn i where:

i) for 1 <k < [(NY5)/LogN], Zny =i — %%5/V'N, where v1,7a,
e sYks-- - are the roots of erfc(z) = 1 — (2//) foz e™*" ds, such that
Im~g > 0 and ordered by |y1| < |ya| <+ < |yl <...,

i) for [(N'/%)/Log N] < k < [(N+1)/2], Znx = On + /9,2\,,,c —1,

where
(15.a) ImbOny >0,

1 ‘
(15.b) 1-— 912V,k = (1 + v Log (2/2N7 sin @N,Ic)) e~ 2PNk

and

_ 8k —1
<PN,k—8N+67T;

(16)

lll) for [(N-l— 1)/2] <k<N, ZN,k; = 7N,N+1—k-

Then for any choice

1+e %\ N+t
) IR ()

my(©) = (—
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of the Daubechies filter my (where e, = +£1 and eny1-k = €), the
approrimation

1 -l—e_’f)NJrl

(€)= (—

I(Z3 15 ZFN)(E)

satisfies

(17) w(zy 155 20N (E) —w(Zx 15, 2NN ()] < Co

for all £ € R, where Cy doesn’t depend neither on N > 2 nor on & nor
on the ey, ’s.

Thus, due to Theorem 1, we may give the phase of my with an
o (1) precision! Of course, we need the knowledge of the roots of the
complementary error function; these roots are described in [3] and our
results give again the same estimates, as we shall see.

We may greatly simplify the approximating Zy y’s if we accept
to get a greater error. For instance, we may characterize easily the
minimum-phased filters with an O (v/N) error:

Theorem 2. Let

vt~ (L)

O(zn1,---528,n5) ()

be the N-th minimum-phased Daubechies filter. Then the phase
w(Zn,1,---,28,n)(§)

satisfies

(18)  |w(zn1,-- 2 N)(§) = Nw(€)| < CoVN . for all§ €R,

where Cy doesn’t depend on & nor on N and where

1 _ o -1 X (sing)2k+?
(19)  w(§) = o (Liz(—sin) — Lis(sing)) = - kzzo k12
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The Liy function is the polylogarithm of order 2

|

2 o) =S 2= [ Liog—t 4
(20) ()= _/OE o8 ——du.
k=1
The function (Lig(z) — Liz(—2))/2 is known under the name of Legen-
dre’s x, function.
Theorem 2 will be proved by approximating my by

8 1+e 8\N+1 .
mN(f): (T) 7T(ZN,1;---7ZN,N)(§)
with
- _ - 16k — 2
VA = \/ —i0N, K 1 —iON,k 4] —
N,k e +\/ +e ) Nk W+8N+67T’

Then w(ZN,l, ceey ZN’N)/N is identified with a Riemann sum for the
integral
1 4 1
o-Im [ Log . . ,
27 . \/6_7'6 + \/1 L e i€

do = w(§).

This approximating Z N,k 1s a simplified version of the approximating
Zn i of Theorem 1, obtained by neglecting the term

1
N Log2+/2Nmsin oy f -

We will be also able to give a description of a family of almost linear-
phased Daubechies filters:

Theorem 3. Let

1+ e %\ N+l
——) AR

m(€) = (

be the N -th Daubechies filter with N = 4 q and with the following choice
of eng: for 1 < p < q, enap-3 =¢€Nngp =1 and engp 2 = €4p_1 =
—1 (s0 that en Ny1-k = ng). Then the phase w(zy's---> 2y )(€)
satisfies:

EN,1 EN,N 1
(21) W(ZN,i oo ANN )(€) — §N§ <Cy, for all £ € R,
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where Cy doesn’t depend on & nor on N.

We are now going to prove Theorem 1 (and obtain theorems 2 and 3
as corollaries). Of course, it amounts to give a precise description of the
roots Xy of Qn(X). If we neglect the term Log2./2N7sin gy /N
in Zn, we obtain as a first approximation that the zy are close
to the arc {|z — 1| = v/2, Rez > 0} (which can be parameterized as
{Ve=19 + 1+ e # —x <0 <7}), or equivalently that the XN are
close to the half-lemniscate {[1 — X% | = 1,Re X 3 > 0}. This will be
obtained by representing Qn(X) as a Bernstein polynomial on [—1,1]
approximating the piecewise analytical function y

0,1]

(22) Qn(X) = 2%51 (2Nk+1><1—;X)k<1_2X)2N+1_k

k=N+1

(a formula pointed by many authors [1], [6], [11]). In that form, Qn(X)
corresponds to a Herrmann filter [4] and it is precisely the figure in
Herrmann’s paper representing the zy ;’s for Q21 which lead us to con-
jecture the behaviour of the zy ’s.

A classical theorem of Kantorovitch [5], [7] on the behaviour of
Bernstein polynomials of piecewise analytical functions ensures that
Qn(X) converges to 0 uniformly on any compact subset of the interior
of the half lemniscat {|1 — 22| < 1, Rexz < 0} and to 1 uniformly on
any compact subset of {|1 — 22| < 1, Rex > 0}. We will use similar
tools to study Qn(X) outside of the convergence subsets.

Near the critical point X = 0, the approximation by points on
the lemniscat is no longer precise enough, and we will show that for
the small roots Xy g, —vVNX N,k is to be approximated by a root of
the complementary error function. Such an approximation occurs for
instance in the study of the (spurious) zeros of the Taylor polynomials
of the exponential function [12] and we will use quite similar tools to
get our description. The main difference, however, is maybe that we
are dealing with a divergent family of polynomials.

NoTATIONS. We will define as usually Logz and +/z as the reciprocal
functions of

z=Logwe{zeC:|Imz|<n}r—w=e*c{weC:w¢(—0,0])},

z=ywe€{z€C:Rez>0}—w=2>c{weC:w¢g(—o0,0]}.
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The paper will be organized in the following way:

1. QN as a Bernstein polynomial and other preliminary results.
Small roots of QQn: first estimates.

Big roots of Qn: first estimates.

Big roots of Q)n: further estimates.

Small roots of Qn: further estimates.

The phase of a general Daubechies filter.

Minimum-phased Daubechies filters.

Almost linear-phased Daubechies filters.

e o ol

1. @Qn as a Bernstein polynomial and other preliminary re-
sults.

We begin by proving a first localization result:
Result 1. For N >2 andt # -1, if Qn(t) =0 then |1 -t |< 1.

Proor. This will be the only time where we use the Daubechies formula
(8) for QN (X). This formula gives that if Qn(t) = 0 and t # —1, then

(23) Z%(N;:k)u—t)’“:o.

k=0

If we define oy as ap = (N,:'k) /2’“, 0 < k < N, then we have obviously
O<ay<a; <---<any_1 = an, and we may apply a very classical
lemma, of Enestrom, Kakeya and Hurwirtz (quoted by G. Pélya and
Szego [10, Exercise I11-22)):

Lemma 1. [f0<ag<a1 <---<any_1=an and ikaNZOaksk =0
then |s| < 1.

PROOF OF THE LEMMA. If s > 0 then Zszo ars® > 0; if s & [0, +00),
then

N N
‘ao + (k- ak—l)sk‘ <ao+ Y (ak—ax) sl
k=1 k=1

thus if |s| > 1 (so that |s|* < |s|V*1) and s € [0, +cc), we get

‘(1 —5) g:aksk‘ > [s|NVH <aN - g:(ak —ag—1) — ao) =0.

k=0 k=1
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Thus, we have shown that the roots t of () y such that ¢t  —1 are located
in the open disk of radius 1 and of center 1, and that the associated
values 1 — t2 are located in the interior of a cardioid.

From now until the end, we will use formula (22) instead of formula
(8) to represent @ . The main interest in the representation of Qn as
a Bernstein polynomial is that @ is easily differentiated: (22) gives

2N +1)'1

vy 2 1m0

(24) QN( ) =

This expression can be easily related to the expression of Qn(cos§)
given by Y. Meyer ([8])

o8& (IN +1)!

1

Qn(cos) :/_ AN (N1)2 5(1_752)th
TN +1)!1 .,

- 3 e .

We will use intensively formula (24) in the following. If ¢ is small, we
approximate Qn(t) by @n(0) = 1/2 and obtain

(25) Qn(t) = %(1 + %/O (1—s)N ds) ,

while for a bigger ¢ (with Ret > 0) we approximate Qn(t) by Qn (1) =1
and obtain

(26) Q) =1— M/la _ sV g

1
2 4N(N1)2

Stirling’s formula N! = (N/e)Nv/2rN(1+1/(12N)+ O (1/N?)) allows
one to simplify formulas (25) and (26)

(27) %zzﬁ(wo(%)).

Thus Qn(t) = 0 may be rewritten as

\/_t 2 Nd \/N 4N(N!)2 1
1+—/ N 8_1_2\/77(2N+1)!_
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or as

(29) \/JV/t (1—32)Nds:2%:\/7?+0(%>.

Formula (28) will be used for the small roots (sections 2 and 5) and
formula (29) for the big roots (sections 3 and 4).

We mention a further application of (24) (which will not be used
in the following): we may compute explicitly the generating series for
Qn(t) when Ret < 0:

Proposition 2. Assume that Ret < 0 and [(1 —t*)u| < 1. Then

1—¢2

VI—u(—0) (—t+/I—u(l—)

PrOOF. We differentiate Y12, Qn (t) uV with respect to t. Then (24)
gives

+oo 1
(30) Y Qn(t)u" =g

8 /X X1@eN+1) (1=t u)N
E<N§)QN (") = 245 4NN i
— 5 —u(-) 2,

hence

+oo t
1 ds
QN t ’LLN :/ - .
0= - e
On the other hand, if we differentiate ¢/(1 — u (1 — t2))1/2, we get

0 t )_1—u(1—t2)—t2u 1-—u

§<(1_u(1_t2))1/2 T A—u(1-2))32 T (I—u(1—12)3/2

Thus we have

= N 1 t

NZ;OQN“)“ T 2(1-u) <(1—u(1—t2))1/2 +1)
1 1—u(l—1t%)—t2
T2(1-uw) I-—u(l—e2)72(1—u(l-t2)/2—1)
1 1—1?
2 (1—u(l-2)VA((1—u(l—2) V2 —1)
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As a corollary, we get:
Result 2. Ift € C is such that |1 — t?| > 1, then

limsup |Qn(t)| = +o0.
N—+oco

Proor. If Ret < 0, this is obvious by formula (30); the right-hand
term of equality (30) has 1/|1 — ¢?| as its radius of convergence in u, so
that

limsup [@n ()Y = |1 - #?|.
N—+oco

If Ret > 0, then Qn(t) =1 — Qn(—t) so that again

limsup |Q (£)[VN = |1 - #%].
N—+o0

If Ret =0 and ¢ # 0, then
1. [N [l o\ N
|QN(t)\~§2 ;/ (1+p5)"dp — 400, as N — 400.
0

A last (and direct) application of formula (24) is Proposition 1.

Result 3.
i) Ift is a root of Qn(t) and t # —1, then t has multiplicity 1.
ii) If N is even, t = —1 is the unique real root of Q.

iii) If N is odd, QN has only one other real root TN(N+1)/2 7 — 1,
and TN(N+1)/2 > 1.

PRrROOF. By (24), we know that the only roots of dQy/dt are 1 and
—1, so i) is obvious. Moreover, if N is even, dQy/dt is non-negative
on R and thus @)y is increasing: —1 is the unique real root of Qn. If
N is odd, then @y decreases on (—oo, —1], vanishes at —1, increases
between —1 and 1, and decreases again from the value 1 at t = 1 to the
value —oo at ¢ = +o0: QN has another real root Ty (n41)/2 > 1.

Results 1 and 3 imply obviously Proposition 1.
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2. Small roots of Qn: first estimates.

In this section, we are going to prove the following result:

Result 4. Let gy € (0,1/2) and K = [egLog N/(2x)]. Then, if N

is big enough, the number of roots t of Qn(t) such that Imt > 0

and |t| < /2Kw/N is exactly K. Moreover, if we list those roots

S TN 1,---, TN K With |[tn k| < |TN k41| and fixer € (g0,1/2), we have
1 1

N VN N2

where 1, ...,vk are the K first roots v of erfc(y) = 0 with Im~y > 0.

(31) [+ = 7| < Cleosen)

PROOF. Assume that |t| < y/a; Log N/N for some fixed ai; > 0. Then,
using formulas (25) and (27), we write

Qn(t) = (3 + ) (1+n§v+%/0mt (1-2) " as).

where 1y, 1 are two constants (depending only on N) which are
O (1/N?). Now, if |u| < \/a; Log N, we have

u] _ 5 (LogN)?

W Sy —=0(),

hence one may find Cy > 0 so that for N big enough (N > Ny where
Ny depends only on aq)

ul\N e 2 ut 5 (Log N)?
(1-F) -l <ale < cnt T
Hence we get for fixed @y > 0 and for N > Ny(a)
1 -1 (Log N)®/2

for [t| < \/a1 Log N/N, where C; depends only on «;.
Now, assume that @ is such that Qx () = 0 or erfc(—vV/N#8) = 0
and that |#| < \/a; Log N/N; in every case we have
(Log N)*/2

‘erfC(_\/NQN S C]_W .
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We are going to show that for &y small enough, erfc(—v/N 0 + 2) is not
too small on |z| = dg. Indeed we have

2 # 2 2
lerfc(—V N 0 + z) — erfc(—V N 0)| = T‘/ e N 2VN b5 =5" g
T Jo

1 2 2 1
> = |V > — N
> 5 o= e |22 SN,
provided that
1
z<min{2 ay Log N, },
12l < 1108 8 Cyy/a1 Log N

where Co = max|,|<1 |(e” — 1)/w|.

Thus, if |#| < y/azLog N/N, where ay < a1 < 1/2, and if N is
big enough so that

Log N 1 Log N
+ < aq
N 8 Cav/a1 N Log N N

2

and

C \F(LogN)S/z < ! < 24/a1Log N
T (0% 0]
L Ni-2a1 80y /aLog N 108

we obtain that Qn(t) and erfc(—v/Nt) have the same number of ze-
ros inside the open disk D (8, C1+/7 (Log N)%/2 /N3/2=221) (by Rouché’s
theorem).

In order to conclude, we need some information on the zeros of
erfc(z). A theorem by Fettis, Cuslin and Cramer ([3]) gives a develop-
ment of v

(33) 24/(25 - i)w !
~o(E)).

Thus if My is a fixed number in (—n /4,37 /4), the number of roots -y
of erfc(y) = 0 such that Im~y > 0 and |y| < +/2kw + My is exactly k
when £ is large enough.
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Now we may prove Result 4. Let ¢g < 1/2 and K =[goLog N/(2m)].
For each root t of Qn(s) such that [Im¢| > 0 and |t| < /2K7/N <

\/eoLog N/N there is a root # of erfc(—v/N s) such that

(Log N)>/2

0—t < CrVm i

(where eg < e1 < 1/2 and N > Ny(e1)). Then we have

Log N)5/2
VN 6| < V2Kr + Clﬁ%

16\/7;K—7r
(2K + é)ﬂ'

provided that N > Nj(e1). But we know that there are exactly 2K roots
of erfc(—v/N s) inside the disk D(0, /(2K + 1/4)w/v/N). Conversely,
if § is a root of erfc(—+/N s) such that

2K T (Log N)®/2 /| LogN
< — < —_—
|0‘ = N Cl\/_ N3/2 — 251 >~ €0 N ’

there is a root t of Qn(s) such that

<V2Km+

(Log N)>/2

10—t < (,‘1\/7?7]\[3/2_261 ,

hence |t| < \/2K7/N; moreover for N > Ny(e1) we have

(Log N )5/ 2 1
VKT — 17 o — > V2K 16\/_ (26 - ).
so that we have again 2K roots of erfc(—+/N s) such that
2K7r (Log N)5/2
6] < —Cu/r B

Finally, we conclude by noticing that (33) shows us that if erfc(—v/N#6;)
=0,1=1,2,6; # 62 and |0;] < /(2K +1/8)7/N then |6; — 05| >
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Co/VKN and [Im6;| > Cy/K/N for some positive Cy which doesn’t
depend on K nor N; hence the balls

(LogN)5/2>

D(0:, Covr o

are disjoint and don’t meet the real axis (for N large enough). Thus
(31) is proved, if we notice that

(Log N)5/2 1
Ni—2e < Ni-2e]

for e; < €} < 1/2 and N large enough.

3. Big roots of Qy: first estimates.

In this section, we are going to devote our attention to formula
(26). A straigthforward application of (26) is the following one:

Result 5. For N large enough, ift#—1 and Qn(t) =0, then [1—t%|>1.
PRrOOF. If Qn(t) = 0, then we have \/thl(l —sHNds = /7 (1+1n)

with nxy = O (1/N?). Now, since Ret > 0 (due to Result 1), we may
write

1 - 1—¢2 N dw
1-—s ds:/ W ——
/t( ) 0 2¢/1 —w
dA

:(1—t2)N+1/1)\N :
o 2y/1=A(l—1¢2)

We write Q =1 — 2. If |2] < 1 then we will prove that

1
inf |1—)\Q\2—|1—Q\.
A€[0,1] 2

This is obvious if ReQ2 < 0: we have |1 — AQ| > 1 and [1 — Q| < 2.
If ReQ >0, Q=pe” (0< p<1, e (—n/2,7/2)), we distinguish
the case p < sing and p > sinp. If p < sin ¢, it is easily checked
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that |1 — AQ| > |1 — Q|. If p > sinp, we have |1 — AQ2| > sing and
1—Q| <|1-e*| =2]|sin(p/2)|; hence

2
|1—)\Q|2‘cos%“l—ngﬂ—m.

Thus, we have for Ret > 0 and |1 — 2| < 1

1 _ $2|N+1
‘/(1—32)Nd3‘§7|1 al lgi( ! )
‘ N+1 |t| = V/N\VN|t|

If [tv/N| > 2/\/7, we get
! 1
‘\/N/ (1—52)Nd3‘ < 5\/7?,
t

and thus Qn(t) # 0 (for N large enough so that |nn| < 1/2). If
VN |t| < 2/y/7, then t ~ —75/+/N for a root v of erfc(z) such that
lv] < 2/4/m; but the roots of erfc(z) satisfy 7/2 < |Argy| < 37w/4 so
that (for N large enough) |Argt| > m/4 and t cannot lie inside the
lemniscate |1 — 2| < 1.

We may now enter the core of our computations. We are going to
give a precise description of ftl(l — 52)N ds. Integration by parts gives
us

[ e
, 2t(N+1) J, 2s2(N+1)
(1 _ t2)N+1 (1 _ t2)N+2 1 )\N—}—l d\
)y @

T 2(NVED) AW NI =)

We then define 7(t) as

£

inf [1=X(1=¢%)"
Ag[%),l]l A(1—1t7)]

(34) n(t) =

We have

' 2\N (1—)N+! (1-1¢%)
(35) /t(l—s) dszm(1+mmv(t)>,
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for Ret > 0 with

(36) lun ()] < n(t)3/2.

Of course, (35) is a good formula if py (t) cannot explode. As a matter
of fact, we will show that in the neighbourhood of the roots of Qn(s)
we have |n(t)| < Cp where Cy doesn’t depend on N nor ¢; but we are
still far from being able to prove it! The only obvious estimations on
n are the following ones: if Ret? > 1, we have of course |n(t)| = [¢?|,
while if Ret? < 1 and |1 — 2| > 1 we have

_ 2]
O = T A (1= )]

With help of formula (35) and a careful estimate of 7(t) in (36), we are
going to prove:

Result 6. Let oy = (8k — 1) /(8N +6). Then for N large enough,
the roots N 1,...,xN,N of Qn such that xn i # —1, ordered by

e for1 <k < [(N+ 1)/2], ReacN,k >0 and TN N+1-k = TN,k

o lzn1| <|znpz| < - <[z Ni1)/2]

satisfy

‘xN,k — /280y €T/ AmeN /2

ei(3W/4_3(PN,k/2)
— Log (2 2N7rsin<pN,k)‘

2N /2sin pn i

1 {(l—l-Logk)2 (1+LogN+1—k)2}

SOUN ™ BR T (Nt 1- ke

where C' doesn’t depend on k nor N.

(37)

PROOF. Since ¢n N+1-k = ™ — ¢Nk, it is enough to prove (37), for
1<k <[(N+1)/2], i.-e. for the roots which lie in the upper half-plane.
The proof is decomposed in the following steps: one first proves that
Arg (1 — 2% ,) cannot be too small, so that we have a first control on
pn (N k); then one gives through (35) a first estimate on zn ; and on
the related error; this gives us a more precise information on Arg (1 —
m%\, ) and thus we may conclude with our final estimate.
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Step 1. We want to estimate Arg(1 — % ;). We fix 6y € (n/4,7/2)
so that the sector {z : 7/2 < |Argz| < m — 6y} contains no zero of
erfc(z) (remember that limg_, o Argyy = 37/4). We now distinguish
the cases Argzn i € [0,6] and Argzy , €]6, 7/2[. If Rel — x?v,k <0,
we know that n(zn i) < |znkl? < 4. If Rel —x%v,k > 0and Argzy i €
[0,7/4], then we see that |z |* < [tan Arg (1 — z3 )| (because w =
1 — a3, satisfies Rew € (0,1] and |w| > 1 so that |sin Argw| < |1 —
w| < |tan Argw|); moreover we have |z k|*> < 4; thus if | tan (Arg (1 —
z3%; )| < 4, then we have

)

tan (Arg (1 — z2 2
|sin (Arg (1 — x%k))‘ . | (Arg ( Nk)' > TN k|

N \/1+ta,n2(Arg(1 — %) TVIT

and 7(zy ) < V17. On the other hand, if | tan (Arg (1 — 23 ;)| > 4,
then we have [Arg (1 — 23 )| € [Argtan4,n/2] and thus

: . 4 ERTE
sin (Arg (1 — 22 > sin Argtan4 = > 2
sin (Arg (1 = 2,0)| > sin Argtand = — > 0L

and n(zn k) < V17 again.
If Arg (zn k) € [7/4,60], we have

IIm (1 — a5 4)| = |23 1| |sin2 Argan i |
so that
Im (1 = 237 5,)| > |z ,|? [sin26o],
while
. Im (1 — 23 ,)| _ 1
| sin Arg(l—a:?v’k)| = 12 ’| > g‘Im(l_x%V,k)‘,

N,k

so that 5

< —
n(ene) < 'sin 2 0|

The difficult case is when 0y < Argzn i < 7/2 (as a matter of fact, we
will see in step 3 that this case never occurs when N is big enough!).
For the moment, we will show that we have necessarily for such an zp x
(and provided N is large enough) the inequality
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where () is given by

2 1L 1— 2 7 _1
P rlos( o), 1 1)

Co = {
b = max< sup > S o]

lo|<1/2

Indeed, let Ay > 0 be large enough so that for A > Ay, g3A” cos (260)/4
(1+ A2?/2) < 1/100 (remember that cos268, < 0), 4/(A2|cos26y|) <
1/100 and A eA” s (280)/4 < 1/100. If /N |zn x| > Ag and N |zy 1 |* <
€1, we write

Qn(zNg) = ; (1+O \/7/ (1—s)Nds

and thus

Qn(zNng)| > — f‘/ (1-s?) ds‘—%

We write
(1- Sz)N _ e—Ns2eN(s2—L0g(1—s2)) ,

since |s| < y/e1/N /4, we have |s| < 1/2 for N large enough, thus

1
N (s> — Log (1 — < Cp|N st < — |
[N (s* ~ Log (1 - s*)| < ColN s < 155

thus
|eN(s*~Log(1=s) _ 1| < O2|N 4.

Thus, writing Ty x = PNk ewNﬁ’“, we get

1 \/NwN,k 2
Qn(znE)| > 10 ‘/ e~* ds‘
0

C'O \/_pNﬁk 6—32 cos 20N i i ds — l
10 N 2
VNz
1 N,k
> 10 ‘/ 6_82 ds‘
5 (VNpni)®

10 N |cos20nx|
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VNpN & 1
—s? cos20nN
: e : s|cos20N7k|ds—§
0

1 \/Nﬂ?N,k 2
> —‘/ e ® ds‘
10 | J,

e G /N )y 1
2V'N py 10 | cos 26| 2

\/NzN,k
0

We have now to estimate e—%"ds. We write

VNZN K R
/ e % ds
0

i0 VNPN K /2 262Nk VNPN,k _$2e%0N k
= "Nk e ds + e ds
0 VNpn,k/2

= eieN’k (Il + I2) .
We have |Iy| < e~ NPk cos@Oni)/4p /N /2, while

[6—8262i9N»k ]\/NPN,k / /Npn & 6_526219N,k

I2 = |72 — — s
—25e 0Nkl Non /2 S UNpy 2 2 82€20N 1
16 17 4
e_Np?V,k 2N,k e—Np?\,’ke2Z N.k/
= _ - - —1I3.
_2‘ /NPN,k 62191\’1]" _‘/NPN,k 62191\’1]"
We have

1

1 3
4(5 \/NpN,k) | cos20n k|

I3 <

VNpN & )
/ e™ CO820N.k9 5 | cos 20 | ds
VNpN,k/2

e—Npi,,k cos 20Nk

< — 3 :
4(5 \/NpN,k) | cos 2 6|
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Thus we get
QN (ZNk)]
1 e_Np?V,k cos 20Nk
>
]_O 2VNPN,k
. (1 i 263Np?\,’,g cos20n k/4 4
N p3 | cos 26|
2
. N,D?Vke?)Np?v’k cos 20N /4 _ ﬁ

| cos 2 6|

_ 10 /NkaeNp?V’k COSZQN,R>

>

1 e—Np?V,k cos 20N (1 2 1 1 1 10
1

— — >0,
10 2v/Npn )

00 100 100 100 100

which contradicts Qn(znx) = 0. Up to now, we have proved that if
argry, > 6o then either \/N\me| < Ap or Nlznil/* > e1. But
if [znyx| < Ao/V/N and N is large enough, Result 4 ensures that
—V/N zn, is close to a zero of erfc(z). This is not possible for N
large enough since the distance between {z : /2 < |Argz| < m — 6o}
and {z : erfc(z) = 0} is positive.

Thus we must have N \a:N,k\‘l > g1. Write again zy x = pn .k etON
since |zyk — 1] < 1 by Result 1, we have pyi < 2cosfOny; thus
2cosOn g > (e1/N)Y* and

. . €1\ /4
|Imx?v7k| = |x?\,k\ |sin26n k| > smﬁo(ﬁl) zn k|2

We thus have proved

n(TNk) = o1 — 2y JNVE
RS = =W
Tmads S gyt

We thus have proved

o if Arga:N,k < By,

lun (N g)| < n(eng)®? < Cq,
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o if AI‘g.TN,k > b,

lun(@ng)| < n(zw)®?

S (01N1/4)3/2
N|5U12V k)3/4
LN (Jevglt)3e

In any case, we have
(38) un ()| < O (N [zn i)
(Remember that imp_, oo infx N |2n ]2 = |[71]% > 0).

Step 2. We are now able to give an estimate for xx . Let us consider
a root y # —1 of Q such that Imy > 0. We have

! ) 4N (N1)2
/y(l—s)Nds:2ﬁ,

hence from (35) and (36),

_ a2\N+1 3/2 po
0 i (o) = R (+0()).

(where o = O (e(N,y)) means that |a|/e(N,y) < C for a positive
constant C' which doesn’t depend neither on N nor on y). Taking the
(N + 1)-th root of the modulus of both terms of equality (39), we get

1
1—g? =1+ N—HLog(wNw

+0(%57) +0(3s) +0 (i)

N+1| ‘)
N ¥
3/2

3/2

= 1+ 3 Log 2Vl + 0 (LE0) 4 o (M0,
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Now, we write 1 — 32 = pe™ (¢ € [0,7], p > 0), so that y =

V1 —pe=*. We have found

1= ol=0(testvm ) -0 M) o (R

= O(% Log(\/ﬁ|yl)) :

(since 1/CN < Log (vV/N |y|)/N < CLog N/N, while n(y)3/2/(N?|y|?)
< C/(N(Nly?) <C'/N). Thus 1 —pe ¥ =1—e % + (1 —p)e ™

with .
‘ (L—p)e*
1—pete

og (VN
=0(L g]g‘yl‘\glyl))

and we find

=01+ o)

Nly[?

= J2sin (£) eirimern (3 +O(LO§V|7V£@|)) _

We insert this result in (39) and take the phase

™

~(N+1D)e—7

Log\/ﬁly\) N O(n(y)3/2

+%+0( e )=—2k7r

or

(40) o= k1 +O(M) +0("(y)3/2).

TAN+3" NZ[yP2 N2Jy]2

If we assume /N |y| > Ay where Ay is big enough so that
Log Ag 1
o(Faz) +ol5am)
NAG N AO/

is less than 47 /(4N + 3) (Ao being chosen independently from N), we
see that 0 < ¢ < m implies 0 < k < [(N + 1)/2]; moreover since

. og VN
lyl = 2sm(§) (1+O(L§V|7yj|\£|y|>)
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we must have

mq@z§+q%%%%.

We take A2 = /2K,m, where K| is big enough; we then see that we
must have k£ > Kj.

If VN |y| < v2Kom, we know that (provided N is big enough)
y ~ 7. /VN for k € {1,...,Ky}. We have moreover found candidates
yn, for the remaining roots znx, Ko < k < [(N + 1)/2], which are
given by

1 )
(1) 1= gh = (1+ 1 Log2 VANT s oy e 2o,

for Ko < k <[(N+1)/2] and N = (8k — 1)7/(8N + 6).

More precisely, we have shown that if Qn(y) =0, Imy > 0,y # —1
and VN |y| > v/2Kor, then for some k € {Ko+1,...,[(N +1)/2]} we
have

Log NV)? n(y)*’? Log VN y|
42) 1-12 = 142 0((7) of )+o(rm) -
(42 17y YN N )TN ) PO ey
We are going now to prove that, provided that K is fixed large enough
(and provided thereafter that N is large enough), for each yy j there is
exactly one root y satisfying (42). Notice that \y%\,k — y%Vk 41/ > Co/N
while

o 2 3/2 og VN
o) +o(Rye) o (M)
1 /(LogN)? 1
<on (N wwma)

Indeed, let’s write s = 4 /4%, — v where [v] = n9/N, 7o small enough.

We are going to estimate Qn(s). We know that

s N+1 S
/(1 2)Nd0_(2s(N)+1) (1+O(]8(|s\)2))’

where 7)(s) is bounded independently of s provided that |1 — s| < 1,
11— s% > 1 and |Args| < 6y (where 0y € (7/4,7/2)). Thus, we are
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going to estimate |1 — s|, |1 — s?| and |Args|. We have obviously from
(41)

58) < 1=t 0(454)

and such an estimate holds as well for s2. (We see also from (41) that

1
1—s>1+ NL0g2 V2Nmsinpn i, — %0

1
> 1+ - Log2 /4K - "NO
>1

Yy =1—e 2onn 4 O(

provided 7o is small enough). Thus we find that

Logk
k

Arg32:g—g01v,k+0( )<290,

if Ky is large enough (so that O(Log Ko/ Kj) < 260y — 7/2) and thus

T 1
Args=1~— = of
s =7 2§0N,k+

Logk
k

) € (=60, ) -

Moreover,

|s| = \/M(1+O(L0[ggk)>

and this latter estimate gives |s| < 2cos(Args): if on x> o (where g
is fixed small enough as we shall see below) and Ky, and N are large
enough we have

m(1+O(L°§k)) < \/5(1+0L°Ig{f{°) < V2 (140,

while

T Log Ky
2cos (Args) > 2cos (5 — C )
cos (Args) > 2cos 2 K,

™ €o
~ 4COS 1 3
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On the other hand, if pn 1 < €9 we find

vEsmawa(1+0(2E8)) < vam i 0 8 o,

0

while 2 cos (Args) > 2cos6p; thus if gg is small enough to ensure g <
4/(3m) — 1/50 and g¢ < 4cos®By/C"? we find |s| < 2cos (Args). But
this latter inequality is equivalent to |1 — s| < 1. Thus we found

_ g2)N+1
ax=1- (1+0() X G (140 ().

We have moreover:

v N+1
(1= sV = (1= gk )V (14—
YNk
N
= (1= )V (14 75— + O (N2?)
YNk
2
v v
s =4/y3 —v:yN’k(l— —I—O(—)).
ok 2?/12v,k "lev,k

This gives, since |s| has \/k/N as order of magnitude

Qn(s) = 1—(1 + 0(1)) (1—y% )"t

k 2\/ waN,k
N 2
(14 4 o F O + 0 ).
L=yNgk 2Nk YNk
Moreover
8k —1 1
> 9 (1 (— L k))
vl 2 24 g (L + O 5 Los
and

YN g = \/2 sin (:]]\ﬂ[:_lﬁ w) oi(m/4—(8k—1)m/ (16N +12)) (1 n O(% Log k)) ,



THE PHASE OF THE DAUBECHIES FILTERS 271
so that

(1- yz2v k)N+1

2\/ N~ yNJC

. k— )
(1+%L0g2\/2N7T81n<88N+167T)) (1+O(1L0gk>>

_ k
2\/2N7rsin (:]I:f—i—lG 7r)
- (1+0( o))" (10 Lrow)

and finally

Qn(s) = 1—(1 + O(% (Log k)2))

Nv v v?
(14—t o FO (N + 0 ).
L—yne 20Nk YNk
Now, we write
2 2
v YNk — S
RN,k(S):Nl 3 =N 1 2 .

“ YNk ~ YNk

Since |v| = n9/N, we have

R i(s)] = mo(1+0(2EY)),

while

Qns) ~ Bva(o) = O HEE) L 0(™) Lo ).

We choose 79 small enough to ensure that the O (n2) term is smaller
than 79 /2 (independently of N and k), and then choose K large enough
to ensure that O ((Logk)?/k)+O (no/k) is smaller than 19 /4 for k > K.
For this choice of Ky, we get

|Qn(s) — Ry (s)| < 2770 < |Rnk(8)]-
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Thus, by Rouché’s theorem, Qn(s) and Ry x(s) have the same number
of roots inside the domain {|y3; , — s%| < no/N, Res > 0}.

Step 3. We have thus found a number Kj so that for N large enough
we may list the roots xn1,...,ZN (v41)/2) of QN With Ty # —1,
Imzyk >0, |[zn k| < |Zn k41| in the following way:

o for k < Ky, |zn x| < \/2Kon/N and zy ~ —7;/VN,

e for k > Ky,

_ O(n(mw,k)3/2> N O<Log (\/va,k\)) |

N2‘£L'N7k2 N2|37N,k2

|$%Vk - yJ2V,k

where yn 1 is given by (41).

Moreover, we have seen in step 2 that in that case we must have
Argzy i < 6o, hence n(zy ) is bounded independently of N and k.
Moreover z i is of order of magnituge /k/N, hence

~o(1524).

|x?\lk - ?Jz2v,k
Thus we find

1 8k —1
1 —:C]2V’k = (1—|— NLogQ\/2N7rsin(8N+67r) )

- Logk
. —2in(8k—1)/(8N+6) g
¢ +O( Nk )

(43)

and thus

x%\f,k _ (1 _ e—2i7r(8k—1)/(8N+6)>

o= 2im(8k—1)/(8N+6) \/ 8k —1
. (1 — N1 = ¢ 2inGh-D/EN10)) Log24/2Nmsin (SN 6 7'(')

ol ")
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which gives

TNk = ei(vr/4—(8k—1)7r/(16N+12)\/2 sin (88]]:[116 F)

(44)

ei(m/2—(8k—1)m /(8N +6)) \/ . (8k—1
.<1+ . 1 Log2 2N7rsm(8N+67T)
4N sin (

SN +6

o)

which gives (37) for k¥ > K. For k < K, (37) says only that xn x is
O (1/v/N), which we already known since v'N |zy x| < /2K
Thus we have proved Result 6.

A nice corollary of Result 6 is that we may recover formula (33)
on the roots of erfc(z):

Corollary. The k-th root 7y of erfc(z) such that Tm~y, > 0 is given by

vy, = 3/ <2k— i)w

(45)
Log2+/m (Qk— %)W-I—O((L()]%ky)) )

PROOF. It is enough to use formula (37) for z  with N,k — 400 and
k < Log N/8: we have

:L'N,k:—_—\/j_\’;—i-O(%) and %:O(LOJ%IN)’

thus we find vg. The only thing to check is the exact number of roots
v such that |y| < v/2Kym (since we used formula (33) to give it). But
this is an old and classical result of Nevanlinna [9], and thus we may
recover formula (33) from formula (37).
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4. Big roots of (Qn: further estimates.

Though Result 6 is enough for the proof of theorems 1 to 3 (pro-
vided we improve result n° 4 for the smaller roots), we may give even
more precise estimations for the roots zy ;. For instance, we may inte-
grate by parts one step further formula (35) and thus get an O ((Log k)3
/Nk?) error instead of O (Logk/Nk) for 1 —z% ;.

More generally, how far can we compute ftl(l —52)N ds? We have

1 1 d)\
/(1—32)Nds=(1—t2)N+1/ AN .
t o 2o

If we write
2 1—#?
1—A(1—12) =t (1+ P (1—)\)),
we see that if Ret? > 1/2 (so that |1 — 2| < ¢?), we may develop
(vV1=A(1—=1t2))"! as a Taylor series in (1 — A) and find (for Ret? >

1/2)

1 1R 2kl /(1 —X)(1—t2)\k
1T 1-1) ¢t kZ:O(_l)k IE ( 2 ) ’

which gives

( 1
for Ret > 0 and Ret? > R

T

(1- t2)N+1 +oo

= 72(_1)k (2k)! N'E! (1_t2)k
2t

\ — 4k(EN)2 (N+E+ 1)\ ¢2
Unfortunately, we are mostly interested in small ¢’s (remember that

znk = O (y/k/N)). (46) has to be replaced by an asymptotic formula
(which is obtained by repeatedly integrating by parts)

( for Ret >0 and M € N,

/tl(l —sHN ds

(1- t2)N+1 M

e T DG

2t

\ +Rm (1),
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where the remainder

(2M + 2)!
AMFL((M + 1)1)?
N!'(M +1)! /1 ANFMAL g )
(N+M+2)!Jy (1—=X1—1t2))1/2+M+1

Rasn(t) = (—1)MHL(1 — 2)N+M+2

may be estimated by

Ras ()] < ‘(1—t2)N+1 (2M + 2)! (M +1)!N!
(48) MV = 2¢ AMAT(M +1))2 (N + M + 2)!
. ‘1 —2t2 ‘M+1’r’(t)1/2+M+1.
t

M = 0 gave Result 6. M =1 gives the following result:

Result 7. Writing N = (8k — 1)w/(8N + 6) and

A = Log2+/2Nwsinpn ,

we have more precisely for all k € {1,..., N}

1—$?Vk:€_2i(pN’k
1 1 A bY; i e 1PNk
49 -(1 Sl W I : )\—1)
(49) TN NE TN T o T iy, O Y
+8N,ka

where

1+ (Logk)3 1+Log(N+1—k)3}

<
el < Cma{ Nk2 ' N(N+1-k)?

and C doesn’t depend neither on N nor on K.
PROOF. We assume k < [(N +1)/2]. We write 1 — 23, = 1—y% , +v

and the problem is to estimate v. We already know v = O (Log k/(Nk)).
Furthermore, we know that

/$ (1— )N ds = %z @ (1+0(5%))

N,k
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and

e N N
. 2(N+Dane N 2(N+2)aq, N2z /)

N,k

Now, write

L— a3, -y} s v Nv
2(N+2)2%,  2(N+2)v}, +O(E) +O<ﬁ)

1=y k O(Lo_gk)

2(N+2)yx s k3
and
1— vk e eNk 0 (Log k)
2(N+2) 9k 2(N+2)yky Nk
e~ 21PNk O Logk
~ 2N(1 — e~ 2ienk) ( k2 ) ’
so that

1—az% 1 ieTUPNk Logk
1- ’ o( )=1+———+0(257).
2(N +2)z%,, T N2z, * AN sin o i, - k?

We now turn our attention to (1 —z3 )V '/(2(N+1) zn1). We have

™
2(N+1)$N’kwﬁ

1
:2<1+N> VN7 y?\,’k—v
1 . e~ 21PN,k Log k
= 2(1 + N) VN \/1 — e~ 2PNk — TAN,k _|_0( Ngk )
1 )
= 2(14 ) VT \/Zsinpny e 7/ 4mone/D
7 e IPNk (Log k)2
( +4NsmgoNk)\N’k+0 k2
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and
v N+1
(1= 23" = (1= k) (14— )
L —ynk

—a _ylzv,k)N—}-l(l + % +O((L(%k)2))

= (1= g3 )" (14 Nuezions o LR

Finally we have

(1- 3/12v,k)N+1

2,\/2N7sin pp € (7/4=¢n.k/2)

1 N
1+ — +1
:< TN A
1 1 (Logk)3

1+——2A =2 Nk LA

TN T a2 N”“+O( N3 )
B 1 1 ., (Log k)3
=1 A g M+ O(S )

We have thus obtained

(1+5) (1+0(5))

_(1—$%V,k)N+1(1_ 1_-’1/'?\/',]; +O( 1 ))
2V NmzN 2(N +2) a3, N2z,

B )\N,k 1 9 e PNk

=1 — M e A Nu e Nk
N 2N MET INsmeny F TV
P o PNk Log k)3
ie” +0(( og k) )
AN sin oy i k?

which gives the value of v with an O ((Logk)3/(Nk?)) error.

As a corollary, we find a further development of 7, which is exactly
the formula given in [3]:
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Corollary. If uy = (2k — 1/4)w, then
Ve = 6_3”/4\/;7;6(1 — %Log2ﬂ— %LogZM—F %
I 4 py, 4 piy;
(50) gz (Log2 v + o HED)).
PROOF. From (31) and (49), we get

1—ﬁ=<1 Mk)(1+—L0g2\/_\/_+ (Log2\/_\/_k—1))

N NIUTN
ro(U5as).

hence
' i 1 Logk)3
fy’%:—zy,k—LogZN/ﬂ',u,k-l-—L0g2\/7TN'k_—+O(( gz) )
2 pg 2 pug k
and
. i 1
Ve = \/—1 bk (1—mL0g2\/Wuk—mL0g2vW“k
k

1 1 (Log k)3
—— + — (Log 2 y/mux)? + O —~
+4M% +8ui( 0g 2 \/Tur)* + ( 13 ))

and the corollary is proved.

5. Small roots of (Jn: further estimates.

We are now able to give a much better estimate for the small roots
of Qn. Indeed, we used the rough estimate \e_N”:?VH < eN1=x k] which
is far from being good since zx j accumulates on the line z = y for &k
big (and k2 = O (N)), so that e~NN.k is much smaller than eNlz~.xl’;
indeed if k2 = O(N) we find that

x?v’k _ _%LOgQ 7r(2k — i)w+ %(Qk — i)w+0(L](\)fgkk) ;
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hence
e—Na:?v’k| _ eLog2,/7r(2k—1/4)7r O (Logk/k)
1 Logk
— /T (2k— —)w(1+0( o8 )) ,
4 k
while

eNlzn kl? > e(2k—1/4)7 (1 + O(Lokgk)) )

Thus, we may improve Result 4 in an impressive manner: for a much
bigger set of indexes k, —7%;, /v N provides a very precise approximation
of x N,k-

Result 8. There exist ng > 0 and Cy > 0 so that for N large enough
and k < noN'/®/(Log N)?/% we have

1:5/2 )

(51) ‘m,ﬁj—%‘ < Co N\/N(1+Logk

PROOF. We write

N N
QN(t)=4\/F (‘;N(Ti) Qn(t) = 1+0(13) +2[/ g2

—Ns?

and approximate (1—s2)" by e (provided that Nt* remains bound-

ed: [Ntt| < Ayp)
(1 . 82)4 — eNLog(l—sz) — e—Ns2(1 + 9] (N5‘4)) )

Thus
Qn(t) = erfe(— \/_t)-l—O( +\/_/ N0 (Ns) ds .
Let 6 = Argt and assume 6 € (w/4,7/2). Then we have
t ) [t )
‘\/N/ e N0 (Ns?) ds‘ < CN\/N\tF’/ e VAT cos26 )
0 0
—Nt? 3
ol VE

- 2| cos246)|
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We have thus proved that for |[Ntt| < Ay and Argt € (7/4,7/2) we
have

_ 2
e ™|

~ 1
1Qn (t) —erfc(—VN )| < C(ﬁ + VN |t m) :

Now, we write t = zn k + 0, |0] < dp/N. Remember that we have

(hence we will look at k < \/AoN/(27)) and

PN e (2N
m Og( WSIHQON’]C))

hence if k > ko where kg is large enough so that

o(HEE) +o() = o( ML) +o(p)
is smaller than
1 Log2./m (2k— %)w

2 2(213—%)% 7

we find that Argzn , € (7/4,7/2). (This is also true for k£ < ko, if N
is large enough, since zn  ~ —7,/VN).
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Moreover
cos (2Argzn k)
Log| 2v/7 (2k—1>7r 0w k)2
(D) g
Log| 2y/m (2k—1>7r oo k)2
= T ) ottty o)

hence cos (2 Argzn i) has order of magnitude Log k/k. Thus we obtain
for §p small enough

cimema(10( 1)),

° e_Nt2 = @_Nﬁv’k (1 + O(\/%) * O(%>> ’

oArgt:Arng’k-i-O( ) Argme—i-O(

1
VNE k\/_)

thus we have

1Qn(t) — erfe(— \/_t)|<0(—+\/7( )3/2$)

, K
NLogk

On the other hand we have

lerfc(—V N t) — erfc(—VN zy )]

_‘ / / —Ns dS
N2 /N _ N2
— |6 NwN,k|2 _‘ e 2Nz N rs—Ns ds!.
m 0

52 do
2N Ns*| <2 0o + — —
‘ TNEkS+INS ‘ |xNk| O—I—N C\/N

We notice that
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so that if N is large enough,

2
‘6_2N$N,k3_N3 1‘ S
which gives

N 2 1
lerfc(—V/ N t) — erfc(—VN zy )| > 24/ - le=NVeN k| 2 10| > CV NE |§].

Thus
]{I3
|erfc( \/_t)|>01\/_k‘(5 02 y
N Logk
(52) B ]{23
fc(—vVNt) — ) <Cy—.
erfe(—VN 1) = Quv(0)| < o e

Now choose
3C, k52

C1 N3/2Logk
(we have 6 < 0o/N if k%/2/Logk < 6o0C1v/N/(3C2)); we obtain that

ONg =

sup lerfc(—VN t) — Qn(t)] < L inf |erfc(—VN t)],

[t—z N k| =0N,k 2 [t—z N,k [=0N,k

hence by Rouché’s theorem we find that Q and erfc(—v/Nt) have the
same number of roots in the disk |t — zn k| < dn . Since

™

|$N,k - SUN,k+1| ~ 2k—N

and

VEN i = 0(%;0 - O(N2/5(LigN)7/5) =o(1)

(if K < CN'Y5/(Log N)?/%), we find: for k < noN/5/(Log N)2/> (ng
small enough)
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Result 8 is proved.

Result 8 is enough for what we want to prove. But, of course, we
may develop a bit further (1 —s2)" and get a better approximation for

TN k-

Result 9. For k < n0N1/5/(Log N)?/5 we have more precisely

TNk = — \/— N\/—(l’yk—l-g’yk—i-O(\/Logk)).

PROOF. We write Log (1 — s?) = —s2 — 5*/2 + O (s5). Hence we have

9 4
(1— )N = Ns (1 ~N % +0(Ns®) +0 (N238)> ,

provided that |s| < Ag/N'/%.
Thus we have for [t| < Ayg/N'/* and Argt € (w/4,7/2)

Qn(t) — erfc(—VN t) +2[N/ °s ds

‘te

t7e—Nt2
cos (2 Argt) ‘

< m\)-

1
=t ‘+N\/JV

Moreover we have

t _Ns2 t
N/ e—Ns284 ds = [#}t + g/ e—Ns2s2 ds
0 0 0
—e~Nt*y3 3

t
—Nt2 3 _Ns?
- v o ds.
2 Nt tTan ) ¢ 5

Now, we write = 1/4/2N|cos (2 Argt)| (if ¢t ~ zn, we have n ~

4k /(N Logk) < |t|) and we write

t U Il sds
‘ / e—N32 ds‘ < / |6—Nt2| ds + / e—Ns2 cos (2 Argt)
0 0 n n

N2
e "]

2N|cos (2 Argt)|n
2 ‘E_Nt2 ‘

B V/2N|cos (2 Argt)| |

<nle™™| +
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Finally we get

w2 [N 2
erfc(—VNzng) = e "Nk — T e NNk

4 5
+O(%) +O(%ogk) +O(N2]iogk>

o458

and, assuming again k < noN'/®/(Log N)?/5,

erfc(—\/ﬁiﬂN,k) _ e—N~T?\],k\/§CL'?V7k (1 + O(%))

On the other hand, we have xx ; = —%,/V'N + s with

1 k5/2
ol i)
N+v/N Logk
and we want a better estimate for s. We have

VR 375 = 0y ag) = 575)

and thus we may develop

-V N
T Jo

- _% e T VNs(1+0 (VN s¥,) + O (Ns%).

™

Hence we find

and therefore
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so that
2 3
_ T2 Kk~ L
e kﬁ\/ﬁs(1+O(N)+O(N2)>
IN 3 _Na2, 3 _Nz2, vLogk
— - z, z, o)
’/TxN,ke +4*N7T$N’ke + ( N ),
so that (since e~ NNtk = 1 4 O(VN s7,) =1+ 0 (k?/N))
14 3 Logk
8__§xN’k_8—NmN’k+O< N\/N)
_1 Vi 3k —I-O(vLng)
2 NVN 8NVN NvVN

and Result 9 is proved.

6. The phase of a general Daubechies filter.
We have now almost achieved the proof of Theorem 1. Indeed, we

have given estimates for zx x, hence for zy , which is the solution of
Nk = (2nvk + 1/2nk)/2 with Rezy, > 0, hence which is given by

ZNE = TNk + /T — 1. We thus have proved:

Proposition 3. Let Py be the N-th polynomial of I. Daubechies

o0 = (55T R o (M) ()
k=0

which is related to Qn by

(55) eCNHVEPy (e7%) = Qn(cos €)

or equivalently

(56) Pn(z) = z2N+1QN(%(z+ %)) .

Then the roots of Py are precisely given as the following ones:

o z = —1 with multiplicity 2N + 2,
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e 2N roots with multiplicity 1 which can be decomposed into

1 1
ZN,kyZN,ks — s =

ZNg ZNk }1SkS[N/2] 7
(together with {zn (N+1)/2, 1/2N,(N+1)/2} if N is odd), where Im 2y >
0, Reznvie > 0, |zvg| > 1, Imzngx > 0 for k < [(N + 1)/2] and
Im zn,(n+1)/2 = 0.
Moreover we have, for N large enough:
o if k < noN'Y5/(Log N)?/5 (where ng is fizxed independently of N
and is small enough)

(57) ZN,k:’i—j—kN'i‘O(%)a

where 7y, is the k-th zero -y of erfc(z) with Im~y > 0

e for all k
1+ Logk
58 INE = + /¥4, -1+ 0(———=),
(58) Nk = YN,k YNk < PN )
where

YNk = (1 _ —2i(8k—1)m/(8N+6)

1/2
_ l —2i(8k—1)w/(8N+6) \/ . 8k —1
N Log?2 2N7rsm<8N+67r> .

PROOF. Just write zn gk = znv i + ,/x?\,’k — 1 and apply results 6 and
8.

Of course, we could give better estimates using results 7 and 9, but
we won't need them. We have easy estimates for 1/zy j as well since

— [ 2
1/ZN,k =ITN,k — mN,k_l'

We are now going to use proposition 3 in the estimation of the
phase of a Daubechies filter. We want to approximate for £ € [—m, 7],
1/(e™* — An ) where

1 1
ANE € Y2ZNky — 3 ZN,ks = .
2Nk ZN.k
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A direct consequence of Proposition 3 is the following proposition:

Proposition 4. Let{ € [—m, ] and let zn ., 1 < k < [(N+1)/2] be the
roots of Py described in Proposition 3. Let Anx € {2Nk, 1/2N ks ZN k>
1/2N,k}- Then

i) for 1 < k < noN/5/(Log N)*/® we have, writing zNy = i —
7k/ﬁ7
1 1 k 1

(59) . _ __|<ck 1
—iE _ . L 3
€ ANE  eT€ — Ay N —N+\Cos§|2

where C doesn’t depend neither on N nor on k nor on £ (and where
/\N,k = m ’L.f)\NJc = ZN,k; 1/%, Z.f)\N,k = 1/ZN,]<, and so on .. )
ii) for k > ko (ko large enough independently of N) we have, writing

Nk = YNk T ,/yfv’k — 1 as in formula (58),

1 Logk 1

(60) ‘ . — — ‘ < .
i _ i

€ ANE  e—iE — AN kv N + |COS£|2

PROOF. Of course, we may assume § € [0,x]. If & € [x/2,x], the
estimation is easy since Ree % < 0 and Re \ Nk > 0 (as well Re Ay
and Re Ay k). Thus,

le™® — Ank| > Re(—e ™ + Ayg) > C4/ % + | cos|

and the same for |e™% — )\Nk| and \e € _ Ay k\ Of course, we must

prove that mln{Re AN k,Re)\N k,Re)\N k} > C\/k/N For Re )\N k, 1t
is obvious, since

—Re g o km

p— 2N F.
\/N‘i—'y—’“
VN

ReAni >

For ReAny, if & < noN'®/(Log N)?/®, we deduce that ReAnj >
C+\/k/N since

k k
<= C' N5,
N — NC

AN —
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We thus turn our attention to Re )Cv\k > Rezni/l2nk|? and Re Ay g >

Re 2y 1/|2n 1|2 for large k’s. We define py j, = V1 — e~ 2i(8k—1)7/(8N+6)

and {n g = png + 1/M12V,k — 1. We have

B . (8K =1\ ix/a—(sk—1)n/(2(8N+6)))
Eng = \/25111 (8N+6> e
+ ¢i(m/2—(8k—1)m/(8N+6))

— 1+\/§ ei(7r/4—(8k—1)7r/(2(8N-|—6))+arcsin V2 sin(w /4—(8k—1)7 /2(8N+6)))
and thus we study 1 + /2 eilwtaresinV2sinw) for o) ¢ [0, 7r/4]. We have

Re(l + \/5 ei(w—l—arcsin \/Esinw))
= V1 -2sin%w (V1 - 2sin’w + V2 cos?w)

= V/cos 2w (\/2cos2w—|— 1—2sin2w) > —(——w) ,

8k — 1 k
>4 /2 >/
Rednk 2\ 2oy 5 2V N
k Logk

< _
—CVN e

so that if k is large enough we have

_ | k
RGZNJe ZCI N .

which gives

Now we have

Znk — &Nk

Moreover
_— | k Logk
_ < b
lzng — 2N < C N 2
and thus
k
Re ZN.k 2 C” N .
Finally, we control |zy x| and |Zn x| by
— k Logk
lzv k| + |2v k| < 1+\/§+O( ~ ]f ) <C.
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Thus we obtain

[ k — [ k
Re )\N,k Z C N and Re/\N,k Z C N .

We are gOiIlg to prove that
> C(\/—k + | §|)
COS
N

, — k
e™% — Ang| > C(\/ N ‘COS§|)

holds for £ € [0, 7/2] as well. Notice that if |An x| < 1, we have

\e_ig — )\N,k

and

1

AN K

L‘ ‘e—ia L B N

A ——iﬁz‘ =
AN —e wal O

ZN.k

(and the same for |e~% — /\/NE\) so that we may assume Ay | > 1. If
AN,k = 2Nk, our equality is obvious: for {x ; we have either Im&{n 5 > 1
or Refy . > 2 and, since Ime™% < 0, we find [e™% — &y | > 1, hence
(for k large), |[e™% — 2n | > 1/2 and e~ % — zy x| > 1/2, while

%2 %(\/%-Hcosg\).

Now if A i is the conjugate of zx i or Zn i, we are going to show that

20(\/%+|cos£|),

which gives the control over |e~% — Ay | for large k’s. Thus we are led
to show that

e

— &Nk

( for £ € [O,g] and w € [0,%}5

(61) < |€_i£ —-1- \/i e_i(w+arCSin\/§ Sinw)|

ZC(|COS§|+ %—w).
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We compute easily (&, w) = [e=% — 1 — /2 e-i(wtarcsin V2sinw) 2
p(é,w) = (cos§ —V1-2sin*w (\/5 cosw + V1 — 2sin? w))2
(sm§ V2 smw( 2 cosw + m))z
=1+ (\/5 cosw + my
—2(V2 cosw + m)
. (cos&\/l — 2sin? w + sin£v/2 sinw)
= (\/icosw— 1+ my
+ 2(\/5 cosw + m)
- (1 = cos (¢ — arcsin (V2 sinw)))
>1—2sin?w + 2 (1 — cos (¢ — arcsin (V2 sinw))).

We have
. 9 2/m
1—-2sin“w=-cos2w > —(——Qw).
m\2

On the other hand, we have

1
1 — cos (£ — arcsin V2 sinw) = 2sin® (% —3 arcsin V2 sin w)

— 1€ — arcsin V2 sinw|?.

Moreover we have

T . . . ™
5~ arcsin v 2 sin w = arcsin v cos 2 w 5 Veos2w ,

hence we have (using |a + b|?> > a?/3 — b?/2)
9 4 T . L
(€, w) zcos2w+—2‘§——+——arcsm\/§smw‘

2
2|7 . . 2
>cosQw+—‘§——‘ ——‘——arcsm\/ismw‘
w212
> 1 cos2w 2¢
2 5 052w + o5 cos

4

> g (e [T -])
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and thus (61) is proved.
Proposition 4 is then obvious since

| 1 B 1 _ AN — ANk
e~ % — )\N,k e~ — )\N,k |6_i6 — )\N,k;| \e"f — )\N,k|

and since we control each term due to (61) or to Proposition 3.
We may now obtain Theorem 1 as a corollary of Proposition 4:

Corollary. With the same notation as in Proposition 4, if kg < kny <
noN'/5/(Log N)?/5 then

ox  [(N+1)/2] i e—it
/O ‘ kgl e"f — )\N,k
(62 L P
R D ——— — | de¢
k§=:1 I )\N,k kg—;l e~ — )\N,k ‘

gc(’j’f_jﬂogjfv).

ProoOF. Using Proposition 4, and writing Iy (&) for

N ie % n ie % [(N+1)/2] je i
; e~ % — )\N,k l; e~ — )‘N,k k;l e~ — )\N,k
we get
kn [(N+1)/2]
k 1 Logk 1
k=1 N+\cos§| kn+1 N+|COS§‘

Thus we have to estimate

27 arccos\/k/N /2
/ L S 4/ % 4/ g
0 k+ N‘ COS&‘ 0 N cos?¢ arccos\/k/N k

= %tan (a.I‘CCOS\/£) + %(g —arCCOS\/ﬁ)

27

4
< + ,
~ VNk Nk
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so that

27 [(N+1)/2] 3/2
Logk kv~ Logkn
€)d¢ < C’ E \/ <c” .
/0 Jat < k2 ) (\/N+ kn )

Now Theorem 1 is proved with ky = [N'/®/Log N]. At least, we have
proved it for £ € [0,27]. But w(zy 1,---, 20 n) —W(Z3 15-- - Z3N) I8
27-periodical, since w(Z1, ..., Zn)(E+21) —w(Z1, .. ., Zn)(€) = 2inM
where M is the number of Zj’s which lie inside the open disk |Z| < 1.

7. Minimum-phased Daubechies filters.
This section is devoted to the proof of Theorem 2.

Result 10. We have the following inequality

(63) w(le,.. zNN)(g)——Im/ T;()dw < CVN,

where &(w) = Ve~ + /1 + e~iw,

PrOOF. We approximate zy i by Zni = Z((8k — 1)n/(8N + 6)),
(1 <k < N) where

Z(w) = V2sinw ei(m/4=w/2) 4 oi(n/2—w)

We have shown that for kg < k < [(IV + 1)/2], (ko large enough) we
have

‘ 1 1 ‘< Logk 1
\/Nkf %4—(3052&.

e —znk e —Zng

and

1 1 ‘ Logk 1
‘ <C
Nk % + cos? ¢

e —Znk e —Zng

(notice that zy Ny1-k = Zn g and Zy Ny1-k = ZN,k)- If £ < kg, we
have to prove similarly

‘ 1 1 ‘ 1 1
Vr L

e€ —anp e € —Z
N,k N,k COS2§
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and 1 1 1 1

. I

e —Znk e —Zyix! T VN L
N

+cos? ¢

We have of course

C
lznge — Zngl < |lzngel + 1 Zn k] < Wi

so that we only have to check that

\e_i’s —_ ZN,k

> é(\/%ﬂcosél)

(which is an easy consequence of (61)) and that

, 1 1
6™ —zn | > = (—= + | cos¢]) .
’ C N

If |¢ +7/2] > 3|y, |/VN and ¢ € [-27, 0], we find

. , ~ 1
e oy = 20~/ iy (g n E) _ e 0(_> ,

4 N

VN

hence

sin(ﬁ—i—z)‘—M—FO(l)

2 4 VN N
1
2 5l (5+7)
6
>max{1\cos£\,; ‘%}

On the other hand, if |¢ + 7/2| < 3 |y&,|/V N, we have

e — Znk =—(§+E) - i—i_O(i)’

293

2 4 VN N
hence
i 1 inf Imyg o 1 1
% — Zn gl > = = ZCOmaX{—,7|COSE‘}.
2 \/N \/N \/N 6|7k0|
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Thus we have obtained

d al o€
d_gw(Zle---;ZNN Z ’5—ZNk

| /\

i": (1 + Logk) 1

V-IVE %-I—cosﬁ

2.1+ Logk
oVNy Ltlosk
—  kVk

IN

Now we look at
- Imz z£ _ ZN k

as at a Riemann sum: we have

T T e % dw
— — 1 _— .
NN I e 7w

If £ # +n/2, we have a proper Riemann integral; if £ = +x/2, the
integrand is unbounded at 0 ({ = —n/2) or 7 ({ = n/2); but for
£ = —m/2 we have e”% — Z(w) = ¢/*/2w + O (w) near w = 0 and

thus . .
—  dw < +00.
/0 i — Z(w)]

It is easy to evaluate the distance between 7Sy /N and the integral.
We have

7r/(8N+6) do T/ (BN+6) g,
T ._\ Co [T
0 e — Z(w) 0 N VN’

‘/ ‘<C/ dw
8N—1)w/(8N+6) € 5 - 8N—1)n/(8N+6) VT — W
1
C'—,
- VN
l 1 <C’\/_N’
N ’§—Z(8N_17r> N
8N +6
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and finally for 1 <k < N

(8k+7)7r/(8N+6) 1 ] 87 .
—_— w p—
k 1)r/(8N+6) € % — Z(w) 8N+Ge—i€—Z(8k_1)7r
8N +6
8k —1
(8k+T7)7 /(8N +6) ‘Z(w) — <8N n 6)7T‘
=¢ y
BED/ENTO)  [e=it — Z(w)]||ei€ — 2 (),
+
1
(8k-+T7)7/(8N+6)
<’
(8k—1)m/(8N+6) / /
1
< C//
- k32N
and thus

T T , dw 1

T oSn(€) —Im [ iet — % <o

‘N ~(§) m/o et — )| < ~
Thus, Result 10 is proved since writing —e 2% = e~ gives

T ; dw
P
/0 re e~ — \/28inw eir/4—w/2) _ ¢i(r/2-w)

1 /™. . do
= - je % — , — .
2 - e—z& _ \/e—ur _ \/1 4
We will easily prove Theorem 2 if we know the value of I & =
J7, iem€ do/ (e~ — €(0):

Result 11. Let £(0) = Ve~ %€ + /1 + e~ and ¢ € [—m,n]. Then

/7r ie”% __do
1))

(o4 —ntan (§) i S op([oms) . lel <

13 .cos& 1—sin¢ ,
—7rcotan(§> +1 Siné Log(1 +sin§) , if gl >

R NN
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We find that I(£) is continuous, which is obvious since by (61)
e —¢(0)| > CV/n? — 02,

so that we may apply Lebesgue’s dominated convergence theorem.

PROOF. Since (o) = £(—0), we find that

T e —
I(—f):—/_wwdgz—f( )

so that it is enough to compute (&) for £ € [0, 7).
Writing e™*? = u, we may write

—1-0 e % du
I1(&) = — —
©) /—1+i0 Vu+Vli+tu—e € u

where u runs clockwise on the circle |u| = 1. The function

e %
 2(VZ VI F 2z —ei)
is analytical on C\(—o0, 0] and may be extended continuously to (—oo,
0] + 40 and (—o0,0] — 70 but at three points: z = 0 (both a pole and

a branching point), z = —1 (a branching point) and if £ € [0,7/2] at
—sin?¢é—i0 = z¢. Thus we may write:

o for £ € /2, 7]

f(2)

—€ e i du
I(¢) = lim — —
© e=0)_1 Vu+i0++vV/1+u—e%€ u
-1 e~ % du
+

e Vu—10++/1+u—e% w

n /_E_io e du
Cerio VutV14+u—e% u

e dt ) e
=21 — 21T ———
0 cosé—1—t2 1—e %

/2
:2i/ &da—wco‘can(§>+wi.
o cos&—cosa 2
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e if £ € (0,7/2) we have, writing tF = +/sin®¢ +¢ and t;7 =
2
Vsin“ € — ¢

1(¢) = lim A, + B, + C. ,
e—0

where

y _/—(ti)2+/—6 e~ du
o -1 (D)2 Vu+i0++V1+u—e% u
+/—(t;)2+/—1 e i€ du
e _(tF)? Vu—i0++vV1I+u—e% u

t_ 1 dt
:22‘/ +/
v  Jir cos€ — /1 —t2

B :/—s—iO e_ig d_u
: —eti0 Vut+V1+u—eT u
6_i£

= —Wcotan(g) +im+ O (Ve),

o /—(t;)2 e i€ du
T @ty Vut+i0+V1I+u—e"¥% u

+/z5_5 e % du
zete (WutV1itu—e é)u

= —im2icotan + O (¢g)

= 2mcotané + O (e),
since the residue of
e~ % 1
f(€) = i =
Vu+vV1+u—e % u
at zg = —sin?¢ — 40 is equal to
e—i§ 1_2\/%\/14-&5_2'
T 1 T T — = = 2icotan€.
<€ 2¢

il 4+ =
2\/5 2 1+ 2
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Hence we have

I1(¢) = 71'(2 cotan§ — cotan(%))

+z7r+2211m/ /
¢+ cos§ — \/1—152

& cos ada
:—Wtan<—>+27r+2zhm ,
2 cosf—cosa

where o = arcsint_ and o = arcsint].
Thus, for proving Result 11, we just have to estimate for £ € (0, 7),

£+ 1)2
_ hm/ / cos a da
e—0 cos§ — cos o

with of = arcsin /sin® ¢ — € and o = arcsin v/sin® € + . We do the

usual change of variable § = tan («/2). Then

B 2(1-5%)
iﬂ%/ /5 (1+62) (1 + %) cosg — (1 - 42))

We write

dg.

(14 5%)cos€ — (1 — %) = B2(1 + cos &) — (1 — cos )
= 2 3% cos? (g) — 2sin? (g) ,

hence
1
o= cos2 gl_r)%/ / (1+752) ( — tan? (g)) v
2 1
:cos2 gl_r)%/ / (l-l-tan g) 1+62

1—tan2(§) 1

14 tan2(g> B2 — tan2(g> dlB)

+
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Cf)Sf( 1 B 1 ))
+ sin& [ — tan (g) £+ tan (§> v

— lim 7 4 98 1_tan(§)
e=»0 2 siné 1+tan(g)
_COSf o8 ﬂ+tan(§)+cos§ ogﬁ tan(g)‘
sin & ,8++tan(§) sin & = + tan (g)

sing 1+ tan

)

|
DO [N [y
N——
N——
N}

™ =2

+ I

| |

-+ ot

& o

=] =]
/N |/
I I

Now we have

(1 — tan (g) >2 _ cos? (g) — 2sin (g) cos (g) + sin? (g)
1+ tan (%) cos? (g) + 2sin (g) CoS <g) + sin? (g)
1 —sin¢
- 1+sin¢’

while we have for ¢ € (0,7/2)

ﬁ_—tan(g) (1+ta ())
o ()

cosé
—6(1 + tan? (g))
4sin& cosé

~Y




300 D. KATEB AND P. G. LEMARIE-RIEUSSET

and

+5(1 + tan? g))

B — tan (g) ~ 4sin€ cos & N_(’B""—_tan<§>> '

Thus .
™ cosé 1 —siné

Ag) = 2 * 2siné 8 1+siné

and Result 11 is proved.
Now, (63) gives

d N cos¢ 1—sing
d_fw(zN 155 2N,N)(§) — o siné Log smg‘ <OVN.

Integrating this for & € [—n, ] we get

e, 2w ) (€)= 5 (Lin(—sin€) — Lin(sin€))] < OV

Since both functions are 2m-periodical, this inequality can be extended
to all £ € R and Theorem 2 is proved.

8. Almost linear-phased Daubechies filters.

In this section, we prove Theorem 3. The proof is very easy.

Indeed, we want to estimate for N = 4¢, w(zy5',---, 2y n )(€) with
engy=1if k=0mod 4 or k=1 mod 4, and enj = —1 otherwise.
We have (writing wy for w(zyi's. .., 2y ), Kn for {k e N:1 <

k < N, gN,k:1}andefor{keN:1gng st:—1})

dw ie %
- =1 Z z& + Z
d§ R — ZN,k N R
N k:EKN N,k

(we have used that for k € KN, N+1-k € KN and Zn k = ZN,N+1—k)-
Hence we have

d:i)_gvzlm( Z e_.z'e_"5 B Z e_.'ie_"5 )

1§ _ i€ _
kEK N ANk keER N ZN .k
ie % ie %
+ Im E . + ]
< - e—z§ — ZNk _it 1 )
kEKN 9 e —

ZNk
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But we have

ie ™ N ie”®  je% N iZ
e =7 o 1 e®-7 Z_erit
Z
B ie % (e —Z)+iZ(—e % + 2)
o |e—z‘§ _ Z|2
_i(1-2Ze % +|Z%)
- |Z — e—%|2
. i(Ze* —Ze )
=1+ - ,
|Z — e~i€|2
hence " "
re " 1e "
Im( . + ) =1.
e~ — 7 it _ i
Thus, we have obtained
dwy N E . 1 1
—— =—+1Im z'e_zg( . - —
d¢ 2 kzzzl e 8 — 2N ag—3 €% — 2N ap—2

1 1
I +— ) .
e % —znak—1 e % — ZNak

Now we write, for r € {1,2,3}

1 1 ZN Ak—r — ZN, Ak

= +

e — ZNap—r €7 — 2N 4k

1 ZN Ak—r — ZN, 4k
e % — ZN 4k (€% — zn ak)?

(2N ak—r — ZN,4k)2
(7% — 2N ak)?(e™ — ZNak—r)

+

We have, writing ¥ = min {k,q+1—k}

1 1 1
2 —— C ~ ~
(2N, 4k—r — ZN 4k) <C Nk kEV Nk

(€% — 2N ak) (7% — 2N ak—r)

301

(e7% — zn k)2 (e7% — ZN ak—r)
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and

| /\

T arccos \/ k/N d¢ AN /2
& L=t / de
/—7r 1 cos é_ / cos? § k  Jarccos Vk/N

E arccos E +4Nacs' E
”l; r N : resin N
coff T

k

dwy ——I Z ZN,4k—3 — ZN,4k—2 — ZN,4k—1 T ZN,4k ‘
(e™% — 2N 4k)?

E
N

so that

|1

— 1
<C) =0 <+

N
<C'+ CZ \/ 7 |2N 4k—3 — ZN4k—2 — ZN4k—1 + ZN 4k -
k=1

When k < ko, we write

1
|ZN ak—r — 2N akt1—r| = 0( )

<
okt

and obtain

N
E T |2N ak—3 — ZNak—2 — ZNak—1 + 2N k| < C'Logky .
k<ko

When k > ko, we may write as in formula (58)

Logl;
ZN,4k—r = YNdk—r T W + O(]; )

Logk
5

2
ol

(E]

= JWN 4k—r + /WNak—r + 1+ O(

2
okt
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where

WN o= _e—2i7r(8e—1)/(8N+6)

1 ainse—1)/(8N+6) \/ 801
Ne Log| 2 2N7rsm(8N+6ﬂ-) .

We write
7/ B J6] 62

+ 0 = + — + _ -

N eV e e Vet Ve

Now, we have: wpy is order of magnitude 1, wny ¢ + 1 is of order of
magnitude min {/4/N, /(N + 1 —£)/N} and wy,¢+1—wn ¢ is of order
of magnitude 1/N. Thus, we may write

VWN ak—r = \/WN 4k + O(%)

w =W
VIt Onanr = /1 wonap + 2tk 2k 4o

1
2 1+wN74k ]Nm/N]N{:)
~2im(326—1)/(8N+6) (] _ (2irm/(8N+6))

e
=,/1
V91+wnak + SN

+o(555) +0( =)

2

and finally

vVIN
i |ZN 4k—3 — ZN4k—2 — ZN 4k—1 + ZN 4k |
B \/ﬁ 21247/ (8N+6) _ ,2i16w/(8N+6) _ o2i8/(8N+6) | | ‘
k 2\/1+ wN

ro(MBF) co( L) vo( 2k

NV Nk

—o( L) +o(MER) fo() ro( ek,
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We thus have proved Theorem 3, since
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