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Abstract

The purpose of this paper is to study the problem of pricing Asian options using the
multilevel Monte Carlo method recently introduced by Giles [8] and to prove a central
limit theorem of Lindeberg Feller type for the obtained algorithm. Indeed, the imple-
mentation of such a method requires first a discretization of the integral of the payoff
process. To do so, we use two well-known second order discretization schemes, namely,
the Riemann scheme and the trapezoidal scheme. More precisely, for each one of these
schemes we prove a stable law convergence result for the error on two consecutive levels
of the algorithm. This allows us to go further and prove two central limit theorems on
the multilevel algorithm providing us a precise description on the choice of the associated
parameters with an explicit representation of the limiting variance. For this setting of
second order schemes, we give new optimal parameters leading to the convergence of the
central limit theorem. A complexity of the multilevel Monte Carlo algorithm is carried
out.

AMS 2000 Mathematics Subject Classification. 60F05, 62F12, 65C05, 60H35.
Key Words and Phrases. Central limit theorem, Multilevel Monte Carlo methods,
Asian options, finance.

1 Introduction

Let S be the Black and Scholes model on a probability space B = (Ω,F , (Ft)t≥0,P) satisfying

dSt = St(rdt+ σdWt), with t ∈ [0, T ], T > 0,
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where σ and r are real constants, with σ > 0 and (Wt)t∈[0,T ] is a standard Brownian motion on

B. The solution of the last equation is given by St = S0 exp
(

(r− σ2

2
)t+σWt

)

where S0 > 0. The

payoff of an Asian option is related to the integral of the asset price process IT = 1
T

∫ T

0
Su du.

Our aim is to evaluate e−rT
E f(IT ), where f is a given real valued function. In a financial

setting, if f(x) = (x−K)+ then this last quantity stands for the price of an Asian call option
with fixed strike K. In this case there is no explicit formula that gives the real price. So, in
order to compute this price by a probabilistic method, we need first to approach the integral IT
using a discretization scheme (Int )0≤t≤T , with time step T/n. Then, we approximate E f (InT )
by 1

N

∑N
i=1 f(I

n
T,i), where f(InT,i)1≤i≤N is a sample of N independent copies of f(InT ). This

approximation is affected respectively by a discretization error and a statistical error

εn := E (f(InT )− f(IT )) and
1

N

N
∑

i=1

f(InT,i)− Ef(InT ).

On one hand, Lapeyre and Temam [19] have proved that εn ∼ c/n, c ∈ R, for either Riemann
or trapezoidal scheme. On the other hand, the statistical error is controlled by the central limit
theorem with order 1/

√
N . Further, the optimal choice of the sample size N in the classical

Monte Carlo method mainly depends on the order of the discretization error. More precisely,
it turns out that for order 1/n the optimal choice of N is n2. This leads to a total complexity
in the Monte Carlo method of order n3.

Recently, Giles [8] has introduced a new multilevel approach which reduces the complexity
to O(n2) when using a second order scheme which is the case for the Riemann and trapezoidal
schemes in the setting of pricing Asian options. This multilevel approach is an extension of the
two-level method of Kebaier [17] known as the statistical Romberg method and reducing the
complexity of the crude Monte Carlo method to O(n7/3), for the same setting above. There are
also similarities to Heinrich’s multilevel method approach for parametric integration [12] (see
also Ben Alaya and Kebaier [1], Creutzig, Dereich, Müller-Gronbach and Ritter [4], Dereich
[5], Giles [7], Giles, Higham and Mao [9], Giles and Szpruch [10], Heinrich [11], Heinrich and
Sindambiwe [13] and Hutzenthaler, Jentzen and Kloeden [14] for related results).

Using the telescoping series representation with decreasing step sizes

E(f(InT )) = E
(

f(I1T )
)

+

L
∑

ℓ=1

E

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
)

the multilevel Monte Carlo method consists in computing the L + 1 expectations by L + 1
independent empirical means and approximating the quantity Ef(IT ) by

Qn =
1

N0

N0
∑

k=1

f(I1T,k) +
L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Iℓ,m
ℓ

T,k )− f(Iℓ,m
ℓ−1

T,k )
)

, m ∈ N \ {0, 1},

where the fine discretization step is equal to T/n thereby L = logn
logm

. For ℓ ∈ {1, · · · , L} and

k ∈ {1, · · · , Nℓ} the processes (Iℓ,m
ℓ

t,k , Iℓ,m
ℓ−1

t,k )0≤t≤T are independent copies of (Iℓ,m
ℓ

t , Iℓ,m
ℓ−1

t )0≤t≤T

whose components denote the discretization schemes with time steps m−ℓT and m−(ℓ−1)T .
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However, for fixed ℓ, the simulation of (Iℓ,I
ℓ

t )0≤t≤T and (Iℓ,m
ℓ−1

t )0≤t≤T have to be based on the
same Brownian path. Concerning the first empirical mean, for k ∈ {1, · · · , N0} the processes
(I1t,k)0≤t≤T are independent copies of (I1t )0≤t≤T which denotes the discretization scheme with
time step T . Here, it is important to point out that all these L + 1 Monte Carlo estimators
have to be based on different independent samples. Due to the above independence assumption
for the paths, the variance of the multilevel estimator is given by

σ2 := V ar(Qn) = N−1
0 V ar(f(I1T )) +

L
∑

ℓ=1

N−1
ℓ σ2

ℓ ,

where σ2
ℓ = V ar

(

f(Iℓ,m
ℓ

T )− f(Iℓ,m
ℓ−1

T )
)

. If we assume that the function f is Lipschitz continu-

ous and if we have an approximation scheme of second order satisfying E(InT − IT )
2 = O(1/n2)∗

then

σ2 ≤ c
L
∑

ℓ=0

N−1
ℓ m−2ℓ

for some positive constant c. In order to minimize the time complexity
∑L

ℓ=0N
−1
ℓ m−ℓ, for a

given root mean square error (RMSE) of order 1/n, Giles obtains an optimal choice of the
parameters given by (see Theorem 3.1 of [8])

Nℓ = 2cn2
√
T

(√
m− 1√
m

)(

T

mℓ

)3/2

for ℓ ∈ {0, · · · , L} and L =
log n

logm
. (1)

This choice leads to an optimal complexity for the multilevel Monte Carlo proportional to n2.

More recently, in a previous work we have proved a central limit theorem for the multilevel
approach when using an Euler path discretization† for an European option [1]. So, in that
setting we have studied a first order scheme for a non-path-dependent option. However, in the
present paper we are rather interested by studying a second order scheme for a path-dependent
option. Actually, we investigate the central limit theorem for the multilevel method when using
the Riemann scheme or the trapezoidal scheme for an Asian option. Our main results are two
Lindeberg Feller central limit theorems for the multilevel Monte Carlo algorithm associated
to both Riemann and trapezoidal schemes. To do so, we first prove a stable law convergence
theorem for each approximation error on two consecutive levels mℓ−1 and mℓ. More precisely,

we study the asymptotic behavior of the distribution of the error
√

mℓ

(m−1)T
(Iℓ,m

ℓ − Iℓ,m
ℓ−1

)

associated to both Riemann and trapezoidal schemes, as ℓ tends to ∞. (See Theorem 3 and
Theorem 4). These results are stated and proved in section 3.

In section 4, we take advantage of this study to establish two new Lindeberg Feller central
limit theorems (see Theorem 5 and Theorem 6 ). We also obtain a Berry-Essen type Bound
on these central limit theorems. These results provide us a precise description for the choice of
the parameters in the multilevel Monte Carlo method when used to price Asian options.

∗This is the case for the Riemann and the trapezoidal schemes (see subsection 2.2 for more details).
†For more details on the Euler discretization scheme see e.g. Bouleau and Lépingle [3], Kloeden and Platen

[18] and Talay and Tubaro [20].
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Section 5 is devoted to the complexity analysis of the algorithm. The optimal sequence of
sample sizes (Nℓ)0≤ℓ≤L is given by

Nℓ =
m2 − 1

m3ℓ/2(
√
m− 1)

n2

(

1− 1√
n

)

, for ℓ ∈ {0, · · · , L} and L =
log n

logm
. (2)

By comparing relations (1) and (2), we note that our optimal sequence of sample sizes (Nℓ)0≤ℓ≤L

is in line with the choice proposed by Giles [8] in the context of second order schemes. Nev-
ertheless, this choice given by (2) does not satisfy the so called Lyapunov assumption of the
Lindeberg Feller central limit theorem (see section 4 and 5 for more details). Finally, we provide
three possible choices of sample sizes (Nℓ)0≤ℓ≤L satisfying this assumption and for which the
optimal complexity can be closer to the order n2. Section 2 below is devoted to recall some
useful stochastic limit theorems and to introduce our notations. The final section indicates the
direction of future research.

2 General framework

2.1 Preliminaries

Let (Xn) be a sequence of random variables with values in a Polish space E defined on a
probability space (Ω,F ,P). Let (Ω̃, F̃ , P̃) be an extension of (Ω,F ,P), and let X be an E-
valued random variable on the extension. We say that (Xn) converges in law to X stably and
write Xn ⇒stably X , if

E(Uh(Xn)) → Ẽ(Uh(X))

for all h : E → R bounded continuous and all bounded random variable U on (Ω,F) . This
convergence is obviously stronger than convergence in law that we will denote here by “⇒”.
According to section 2 of Jacod [15] and Lemma 2.1 of Jacod and Protter [16], we have the
following result.

Lemma 1 let Vn and V be defined on (Ω,F) with values in another metric space E ′.

if Vn
P→ V, Xn ⇒stably X then (Vn, Xn) ⇒stably (V,X).

Conversely, if (V,Xn) ⇒ (V,X) and V generates the σ-field F , we can realize this limit as
(V,X) with X defined on an extension of (Ω,F ,P) and Xn ⇒stably X.

Now, we recall a result on the convergence of stochastic integrals formulated from Theorem 2.3
in Jacod and Protter [16]. This is a simplified version but it is sufficient for our study. Let Xn =
(Xn,i)1≤i≤d be a sequence of Rd-valued continuous semimartingales with the decomposition

Xn,i
t = Xn,i

0 + An,i
t +Mn,i

t , 0 ≤ t ≤ T

where, for each n ∈ N and 1 ≤ i ≤ d, An,i is a predictable process with finite variation, null at
0 and Mn,i is a martingale null at 0.

4



Theorem 1 Assume that the sequence (Xn) is such that

〈Mn,i〉T +

∫ T

0

∣

∣dAn,i
s

∣

∣

is tight. Let Hn and H be a sequence of adapted, right-continuous and left-hand limited pro-
cesses all defined on the same filtered probability space. If (Hn, Xn) ⇒ (H,X) then X is a
semimartingale with respect to the filtration generated by the limit process (H,X), and we have
(Hn, Xn,

∫

HndXn) ⇒ (H,X,
∫

HdX).

We recall also the following Lindeberg Feller central limit theorem that will be used in the
sequel (see for instance Theorem 7.2 and 7.3 in [2]).

Theorem 2 (central limit theorem for triangular array) Let (kn)n∈N be a sequence such
that kn −→ ∞ as n −→ ∞. For each n, let Xn,1, · · · , Xn,kn be kn independent random variables
with finite variance such that E(Xn,k) = 0 for all k ∈ {1, · · · , kn}. Suppose that the following
conditions hold.

A1. limn→∞
∑kn

k=1 E|Xn,k|2 = σ2, σ > 0.

A2. Lindeberg’s condition: for all ε > 0, limn→∞
∑kn

k=1 E
(

|Xn,k|21{|Xn,k|>ε}
)

= 0. Then

kn
∑

k=1

Xn,k ⇒ N (0, σ2) as n → ∞.

Moreover, if the Xn,k have moments of order p > 2, then the Lindeberg’s condition can be
obtained by the following one

A3 Lyapunov’s condition: limn→∞
∑kn

k=1 E|Xn,k|p = 0.

2.2 Asian Option

There are several approximation schemes used in practice and one can consider either Riemann
scheme or the trapezoidal scheme. We have

InT =
1

n

n−1
∑

k=0

Skδ, and Jn
T =

1

n

n−1
∑

k=0

Skδ + S(k+1)δ

2
, where δ =

T

n
.

We recall some results proved by Lapeyre and Temam [19] on the expansions for the strong
and weak errors associated with both Riemann and trapezoidal schemes. Indeed, concerning
the strong errors, see the proposition on page 98 of [19], they prove that for p ≥ 1, there exist
Kp(T ) > 0 and K̃p(T ) > 0 such that

PR1) E sup
t∈[0,T ]

|Int − It|2p ≤
Kp(T )

n1/2p
,

PT 1) E sup
t∈[0,T ]

|Jn
t − It|2p ≤

K̃p(T )

n1/2p
.
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Hence, it is obvious that both schemes are of second order. Concerning the weak errors, see the
theorem on page 108 of [19], they prove that for any R-valued function f satisfying condition

(Hf ) |f(x)− f(y)| ≤ C(1 + |x|p + |y|p)|x− y|, for some C, p > 0,

if P(IT /∈ Dḟ) = 0, where Dḟ := {x ∈ R
d; f is differentiable at x}, then there exist real

constants CI
f and CJ

f such that

PR2) lim
n→∞

n
(

Ef(InT )− Ef(IT )
)

= CI
f ,

PT 2) lim
n→∞

n
(

Ef(Jn
T )− Ef(IT )

)

= CJ
f .

3 Stable limit theorems

In order to obtain central limit theorems for the multilevel Monte Carlo method associated with
both Riemann and Trapezoidal schemes, we study the asymptotic behavior of the distribution
errors. We establish a stable convergence theorem for each scheme on two consecutive levels
mℓ−1 and mℓ.

3.1 Stable convergence of the Riemann scheme error

The Riemann approximation of the process is given by

Int =
1

T

∫ t

0

Sηn(u)du =
1

n

[t/δ]−1
∑

k=0

Skδ +
t− ηn(t)

T
Sηn(t)

with ηn(t) = [t/δ]δ. Note that the study of the error Im
ℓ − Im

ℓ−1

as ℓ → ∞ can be reduced to
the study of the error Imn − In as n → ∞.

Theorem 3 We have the following result

mn√
m2 − 1

(Imn − In) ⇒stably ξ

where ξ is the process defined by

ξt :=

√

m− 1

m+ 1

St − S0

2
+

1

2
√
3

∫ t

0

σSudBu,

with B a standard Brownian motion on an extension B̂ of B, which is independent of W .

Proof The error, Emn,n
t , is given by

Emn,n
t := Imn

t − Int =
1

T

∫ t

0

(

Sηmn(s) − Sηn(s)

)

ds.
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Noting that the integrand vanishes on the interval [ηn(s), ηn(s)+
1

mn
[, this error can be written

as follows

Emn,n
t =

1

T

∫ t

0

(

Sηmn(s) − Sηn(s)

)

1{ηn(s)+ 1

mn
≤s<ηn(s)+

1

n
}ds+Rmn,n

t

=
1

mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

(

S(mk+ℓ)δ/m − Skδ

)

+Rmn,n
t ,

where Rmn,n
t =

1

T

∫ t

ηn(t)

(

Sηmn(s) − Sηn(s)

)

ds. Now, using the dynamic of St we get

Emn,n
t =

1

mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (mk+ℓ)δ/m

kδ

rSudu+
1

mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (mk+ℓ)δ/m

kδ

σSudWu +Rmn,n
t

=
1

mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (k+1)δ

kδ

Su1{kδ≤u<(mk+ℓ)δ/m}(rdu+ σdWu) +Rmn,n
t

=
1

mn

∫ ηn(t)

0

rSu

m−1
∑

ℓ=1

dmn,n
ℓ (u)du+

1

mn

∫ ηn(t)

0

σSu

m−1
∑

ℓ=1

dmn,n
ℓ (u)dWu +Rmn,n

t

with the digital function defined, for ℓ ∈ {1, · · · , m− 1}, by

dmn,n
ℓ (u) := 1{ηn(u)≤u<ηn(u)+ℓδ/m}.

Hence we get

mnEmn,n
t =

∫ t

0

rSudD
mn,n
u +

∫ t

0

σSudM
mn,n
u +mnRmn,n

t

with the martingale integrand

Mmn,n
t :=

∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)dWu,

and a drift term with bounded variation

Dmn,n
t :=

∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)du.

To study the convergence of the martingale, we compute its quadratic variation

〈Mmn,n〉t =
∫ ηn(t)

0

m−1
∑

ℓ=1

(dmn,n
ℓ (u))

2
du+ 2

∫ ηn(t)

0

∑

1≤ℓ<ℓ′≤m−1

dmn,n
ℓ (u)dmn,n

ℓ′ (u)du (3)

For the first term, we note

m−1
∑

ℓ=1

(dmn,n
ℓ (u))2 =

m−1
∑

ℓ=1

1{ηn(u)≤u<ηn(u)+ℓδ/m}.
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Concerning the second integral, since for 1 ≤ ℓ < ℓ′ ≤ m− 1 we have

ηn(u) ≤ ηn(u) + ℓδ/m ≤ ηn(u) + ℓ′δ/m ≤ ηn(u) + δ,

the expansion of dmn,n
ℓ (u)dmn,n

ℓ′ (u) = dmn,n
ℓ (u). Therefore, coming back to the bracket (3), we

get after computation

〈Mmn,n〉t =
[t/δ]δ

m

m−1
∑

ℓ=1

ℓ+
2[t/δ]δ

m

∑

1≤ℓ<ℓ′≤m−1

ℓ −→
n→∞

(m− 1)(2m− 1)

6
t.

Furthermore, by simple computation we get

〈Mmn,n,W 〉t =
∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)du =

[t/δ]δ

m

m−1
∑

ℓ=1

ℓ =
m− 1

2
[t/δ]δ −→

n→∞

m− 1

2
t.

Besides, using this last computation it is easy to check that

sup
0≤t≤T

∣

∣

∣
Dmn,n

t − m− 1

2
t
∣

∣

∣
=

m− 1

2
sup

0≤t≤T

∣

∣

∣
[t/δ]δ − t

∣

∣

∣
−→
n→∞

0.

By virtue of Theorem 2-1 in Jacod [15] we obtain the stable convergence of

rDmn,n
t + σMmn,n

t ⇒stably m− 1

2
rt +

m− 1

2
σWt +

√

m2 − 1

12
σBt

where (Bt)t≥0 is a Brownian motion independent of (Wt)t≥0. Moreover, according to the above

computations, it is easy to check the tightness of 〈Mmn,n〉T +
∫ T

0
d|Dmn,n

t | and thanks to Lemma
1 and Theorem 1 we get

∫ t

0

rSudD
mn,n
u +

∫ t

0

σSudM
mn,n
u ⇒stably (m− 1)

St − S0

2
+

√

m2 − 1

12

∫ t

0

σSudBu.

Now, it remains to prove the convergence of sup
0≤t≤T

|mnRmn,n
t | in probability to zero. This rest

term is bounded up to a constant factor by sup0≤t≤T |Sηmn(t) − Sηn(t)|. Finally, the proof is
completed using the Hölder regularity of the process S.

�

The subsection below is devoted to the study of the trapezoidal scheme error.

3.2 Stable convergence of the trapezoidal scheme error

The trapezoidal approximation of the process is given by

Jn
t =

1

T

∫ t

0

Sηn(u) + S(ηn(u)+δ)∧t
2

du =
1

n

[t/δ]−1
∑

k=0

Skδ + S(k+1)δ

2
+ (t− ηn(t))

Sηn(t) + St

2T

with ηn(t) = [t/δ]δ. One have to study the error process given by Jmn − Jn.

8



Theorem 4 We have the following result

mn√
m2 − 1

(Jmn − Jn) ⇒stably χ

where χ is the process defined by

χt :=
1

2
√
3

∫ t

0

σSudBu,

with B a standard Brownian motion on an extension B̂ of B, which is independent of W .

Remark 1 The process χ above is the same limit process given in Theorem 4.1 of Kebaier [17].
In fact, he proves that

mℓ(Jmℓ − J)⇒stably χ, as ℓ → ∞.

This latter convergence can not be used to prove our Theorem 6 below, since the multilevel
Monte Carlo method involves the error process Jmℓ − Jmℓ−1

rather than Jmℓ − J . For this
reason, we are led to make a further study adapted to our setting.

Proof: Considering the trapezoidal scheme, for the fine time discretization step δ/m, we
can write it as follows

Jmn
t =

1

2T

∫ ηn(t)

0

(Sηmn(u) + S(ηmn(u)+δ/m))du+
1

2T

∫ t

ηn(t)

(Sηmn(u) + S(ηmn(u)+δ/m)∧t)du

=
1

2mn

m−1
∑

ℓ=0

[t/δ]−1
∑

k=0

(

S(mk+ℓ)δ/m + S(mk+ℓ+1)δ/m

)

+
1

2T

∫ t

ηn(t)

(Sηmn(u) + S(ηmn(u)+δ/m)∧t)du.

The first term in the right-hand side, can be arranged as follows

1

2mn

[t/δ]−1
∑

k=0

(

Skδ + S(k+1)δ

)

+
1

mn

m−1
∑

ℓ=1

[t/δ]−1
∑

k=0

S(mk+ℓ)δ/m.

So that, the error, Emn,n
t , can be arranged as follows

Emn,n
t := Jmn

t − Jn
t =

1−m

2mn

[t/δ]−1
∑

k=0

(Skδ + S(k+1)δ) +
1

mn

m−1
∑

ℓ=1

[t/δ]−1
∑

k=0

S(mk+ℓ)δ/m +Rmn,n
t ,

with

Rmn,n
t =

1

2T

∫ t

ηn(t)

(Sηmn(u) + S(ηmn(u)+δ/m)∧t − Sηn(u) − S(ηn(u)+δ)∧t)du.

Furthermore, we rewrite the error as

Emn,n
t = − 1

2mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

((

S(k+1)δ − S(mk+ℓ)δ/m

)

−
(

S(mk+ℓ)δ/m − Skδ

))

+Rmn,n
t .

9



Now, using the dynamic of St we get

Emn,n
t = − 1

2mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (k+1)δ

kδ

rSu

(

1{(mk+ℓ)δ/m≤u<(k+1)δ} − 1{kδ≤u<(mk+ℓ)δ/m}
)

du

− 1

2mn

[t/δ]−1
∑

k=0

m−1
∑

ℓ=1

∫ (k+1)δ

kδ

σSu

(

1{(mk+ℓ)δ/m≤u<(k+1)δ} − 1{kδ≤u<(mk+ℓ)δ/m}
)

dWu +Rmn,n
t

= − 1

2mn

∫ ηn(t)

0

rSu

m−1
∑

ℓ=1

dmn,n
ℓ (u)du− 1

2mn

∫ ηn(t)

0

σSu

m−1
∑

ℓ=1

dmn,n
ℓ (u)dWu +Rmn,n

t

where the digital function defined, for ℓ ∈ {1, · · · , m− 1}, by

dmn,n
ℓ (u) := 1{ηn(u)+ℓδ/m≤u<ηn(u)+δ} − 1{ηn(u)≤u<ηn(u)+ℓδ/m}.

Hence, we get

mnEmn,n
t =

∫ t

0

rSudD
mn,n
u +

∫ t

0

σSudM
mn,n
u +mnRmn,n

t

with the martingale integrand

Mmn,n
t := −1

2

∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)dWu,

and a drift term

Dmn,n
t := −1

2

∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)du.

To study the convergence of the martingale, we compute its quadratic variation

4〈Mmn,n〉t =
∫ ηn(t)

0

m−1
∑

ℓ=1

(dmn,n
ℓ (u))

2
du+ 2

∫ ηn(t)

0

∑

1≤ℓ<ℓ′≤m−1

dmn,n
ℓ (u)dmn,n

ℓ′ (u)du (4)

For the first term, we note that

m−1
∑

ℓ=1

(dmn,n
ℓ (u))

2
=

m−1
∑

ℓ=1

1{ηn(u)+ℓδ/m≤u<ηn(u)+δ} + 1{ηn(u)≤u<ηn(u)+ℓδ/m}

=

m−1
∑

ℓ=1

1{ηn(u)≤u<ηn(u)+δ} = (m− 1).

Concerning the second integral, since for 1 ≤ ℓ < ℓ′ ≤ m− 1 we have

ηn(u) ≤ ηn(u) + ℓδ/m ≤ ηn(u) + ℓ′δ/m ≤ ηn(u) + δ,

the expansion of dmn,n
ℓ (u)dmn,n

ℓ′ (u) is equal to

1{ηn(u)+ℓ′δ/m≤u<ηn(u)+δ} − 1{ηn(u)+ℓδ/m≤u<ηn(u)+ℓ′δ/m} + 1{ηn(u)≤u<ηn(u)+ℓδ/m}

10



that we rewrite as 1 − 2 × 1{ηn(u)+ℓδ/m≤u<ηn(u)+ℓ′δ/m}. Coming back to the bracket (4), we get
after computation

4〈Mmn,n〉t = (m− 1)2t− 4[t/δ]δ

m

∑

1≤ℓ<ℓ′≤m−1

(ℓ′ − ℓ) −→
n→∞

m2 − 1

3
t.

Furthermore, by simple computation we get

−2〈Mmn,n,W 〉t =
∫ ηn(t)

0

m−1
∑

ℓ=1

dmn,n
ℓ (u)du =

[t/δ]δ

m

m−1
∑

ℓ=1

(m− ℓ)− [t/δ]δ

m

m−1
∑

ℓ=1

ℓ = 0.

Finally, We can proceed analogously to the Riemann case to achieve the proof. �

We can now formulate our main results for both Riemann and trapezoidal schemes.

4 Central Limit Theorems

It is worth to note that the advantage of the central limit theorem is to construct a more
accurate confidence interval. In fact, for a given root mean square error (RMSE), the radius of
the 90%-confidence interval by the central limit theorem is 1.64×RMSE. However, if we just
have a control of the variance without any central limit theorem, we can use only Chebyshev’s
inequality which yields a radius equal to 3.16×RMSE. To do so, we consider a real sequence
(aℓ)ℓ≥1 of positive terms satisfying

(W) lim
n→∞

L
∑

ℓ=1

aℓ = ∞ and lim
n→∞

1
(

∑L
ℓ=1 aℓ

)p/2

L
∑

ℓ=1

a
p/2
ℓ = 0, for p > 2. (5)

Let us assume that the sample sizes Nℓ, for ℓ ∈ {1, · · · , L}, for the multilevel Monte Carlo
method, have the following form

Nℓ =
n2(m2 − 1)

m2ℓaℓ

L
∑

ℓ=1

aℓ, ℓ ∈ {0, · · · , L} and L =
log n

logm
. (6)

4.1 Riemann Scheme

Now, we consider the Riemann scheme

E(f(InT )) = E
(

f(I1T )
)

+

L
∑

ℓ=1

E

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
)

. (7)

It is worth to note that f(I1T ) is deterministic equal to f(s0). Hence, the multilevel method in
this case can be written as

Qn = f(s0) +

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Iℓ,m
ℓ

T,k )− f(Iℓ,m
ℓ−1

T,k )
)

. (8)

We can now state the Central limit theorem in this setting.

11



Theorem 5 Let f be a R-valued function satisfying condition (Hf ) and such that P(IT /∈ Dḟ) =

0, where Dḟ := {x ∈ R
d; f is differentiable at x}. We have

n
(

Qn − E (f(IT ))
)

⇒ N
(

CI
f , σ

2
)

where σ2 = Ṽ ar
(

f ′(IT )ξT
)

and CI
f is given by property PR2). Here ξ is the limit process in

Theorem 3.

Proof : Combining relations (7) and (8) we obtain

Qn − E (f(IT )) = Q̂n + E (f(InT ))− E (f(IT )) ,

where

Q̂n =

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Iℓ,m
ℓ

T,k )− f(Iℓ,m
ℓ−1

T,k )− E

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
))

Using assumption PR2), we obviously obtain the term CI
f in the limit. So, we have only to

establish
nQ̂n ⇒ N

(

0, Ṽ ar
(

f ′(IT )ξT
)

)

.

To do so, we plan to use Theorem 2 with Lyapunov condition and we set

Xn,ℓ :=
n

Nℓ

Nℓ
∑

k=1

Zmℓ,mℓ−1

T,k and Zmℓ,mℓ−1

T,k := f(Iℓ,m
ℓ

T,k )− f(Iℓ,m
ℓ−1

T,k )− E

(

f(Im
ℓ

T,K)− f(Im
ℓ−1

T,k )
)

, (9)

and we have only to check the following conditions :
• limn→∞

∑L
ℓ=1 E(Xn,ℓ)

2 = Ṽ ar
(

f ′(IT )ξT
)

• (Lyapunov condition) there exists p > 2 such that limn→∞
∑L

ℓ=1 E |Xn,ℓ|p = 0.
For the first one, we have

L
∑

ℓ=1

E(Xn,ℓ)
2 =

L
∑

ℓ=1

V ar(Xn,ℓ) =

L
∑

ℓ=1

n2

Nℓ
V ar

(

Zmℓ,mℓ−1

T,1

)

=
1

∑L
ℓ=1 aℓ

L
∑

ℓ=1

aℓ
m2ℓ

m2 − 1
V ar

(

Zmℓ,mℓ−1

T,1

)

. (10)

Otherwise, since P(IT /∈ Df) = 0, applying the Taylor expansion theorem twice we get

f(Iℓ,m
ℓ

T )− f(Iℓ,m
ℓ−1

T ) = f ′(IT )(I
ℓ,mℓ

T − Iℓ,m
ℓ−1

T )+

(Iℓ,m
ℓ

T − IT )ε(IT , I
ℓ,mℓ

T − IT )− (Iℓ,m
ℓ−1

T − IT )ε(IT , I
ℓ,mℓ−1

T − IT ).

The function ε is given by the Taylor-Young expansion, so it satisfies ε(IT , I
ℓ,mℓ

T − IT ))
P−→

ℓ→∞
0

and ε(IT , I
ℓ,mℓ−1

T − IT ))
P−→

ℓ→∞
0. By property PR1), we get the tightness of

12



mℓ
√
m2−1

(Iℓ,m
ℓ

T − IT ) and
mℓ

√
m2−1

(Iℓ,m
ℓ−1

T − IT ) and we deduce

mℓ

√
m2 − 1

(

(Iℓ,m
ℓ

T − IT )ε(IT , I
ℓ,mℓ

T − IT )− (Iℓ,m
ℓ−1

T − IT )ε(IT , I
ℓ,mℓ−1

T − IT )
)

P−→
ℓ→∞

0.

So, according to Lemma 1 and Theorem 3 we conclude that

mℓ

√
m2 − 1

(

f(Iℓ,m
ℓ

T )− f(Iℓ,m
ℓ−1

T )
)

⇒stably f ′(IT )ξT , as ℓ → ∞. (11)

Now, using (Hf ) it follows from property PR1) that

∀ε > 0, sup
ℓ

E

∣

∣

∣

∣

mℓ

√
m2 − 1

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
)

∣

∣

∣

∣

2+ε

< ∞.

We deduce using (11) that

E

(

mℓ

√
m2 − 1

(

f(Im
ℓ

T )− f(Im
ℓ−1

T )
)

)k

→ Ẽ

(

f ′(IT )ξT

)k

< ∞ with k ∈ {1, 2}.

Consequently,
m2ℓ

m2 − 1
V ar(Zmℓ,mℓ−1

T,1 ) −→ Ṽ ar (f ′(IT )ξT ) < ∞.

Combining this last convergence with relation (10), we obtain the first condition a using Toeplitz
lemma. Concerning the second one, by Burkholder’s inequality and elementary computations,
we get for p > 2

E|Xn,ℓ|p =
np

Np
ℓ

E

∣

∣

∣

∣

∣

Nℓ
∑

ℓ=1

Zmℓ,mℓ−1

T,1

∣

∣

∣

∣

∣

p

≤ Cp
np

N
p/2
ℓ

E

∣

∣

∣
Zmℓ,mℓ−1

T,1

∣

∣

∣

p

, (12)

where Cp is a numerical constant that depends on p only. Otherwise, property PR1) ensures
the existence of a constant Kp > 0 such that

E
∣

∣Zmℓ,mℓ−1

T,1

∣

∣

p ≤ Kp

mpℓ
.

Therefore,

L
∑

ℓ=1

E |Xn,ℓ|p ≤ C̃p

L
∑

ℓ=1

np

N
p/2
ℓ mpℓ

≤ C̃p
(

∑L
ℓ=1 aℓ

)p/2

L
∑

ℓ=1

a
p/2
ℓ −→

n→∞
0. (13)

This completes the proof. �

Remark 2 From Theorem 2 page 544 in [6], we prove a Berry-Essen type bound on our central
limit theorem. This improves the relevance of the above result. Indeed, put

s2n =
L
∑

ℓ=1

E|Xn,ℓ|2, ρn =
L
∑

ℓ=1

E|Xn,ℓ|3
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with Xn,ℓ given by relation (9), ℓ ∈ {1, · · · , L}, and denote by Fn the distribution function of
n(Qn − Ef(Xn

T ))/sn. Then for all x ∈ R and n ∈ N
∗

|Fn(x)−G(x)| ≤ 6
ρn
s3n

, (14)

where G is the distribution function of a standard Gaussian random variable. According to
the above proof, it is clear that sn behaves like a constant and for ρn, taking p = 3 in both
inequalities (12) and (13) gives us an upper bound. In fact, when f is Lipschitz, there exists a
positive constant C depending on b, σ, T and f such that

ρn ≤ C
(

∑L
ℓ=1 aℓ

)3/2

L
∑

ℓ=1

a
3/2
ℓ .

Hence, the order of the Berry-Essen type bound depend on the choice of aℓ. For example, for
aℓ = 1 the obtained Berry-Essen type bound is of order 1/

√
logn and for aℓ = 1/ℓ the bound is

of order 1/(log log n)
3

2 .

4.2 Trapezoidal Scheme

The multilevel method in this case can be written as

Qn =
1

N0

N0
∑

k=1

f

(

S0 + ST,k

2

)

+
L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(J ℓ,mℓ

T,k )− f(J ℓ,mℓ−1

T,k )
)

.

In the following we consider the same real sequence (aℓ)ℓ≥1 of positive terms given by relation
(5) and the sequence of sample sizes (Nℓ)0≤ℓ≤L given by relation (6). We can now state the
Central limit theorem for the trapezoidal scheme.

Theorem 6 Let f be a R-valued function satisfying condition (Hf ) and such that P(IT /∈ Dḟ) =

0, where Dḟ := {x ∈ R
d; f is differentiable at x}. We have

n
(

Qn − E (f(IT ))
)

⇒ N
(

CJ
f , σ

2
)

where σ2 = Ṽ ar
(

f ′(IT )χT

)

and CJ
f is given by property PT 2). Here, χ is the limit process in

Theorem 4.

Proof: We can write

Qn − E (f(IT )) = Q̂1
n + Q̂2

n + E (f(Jn
T ))− E (f(IT )) ,

where

Q̂1
n =

1

N0

N0
∑

k=1

(

f(Jm0

T,k)− E

(

f(Jm0

T )
))

Q̂2
n =

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(J ℓ,mℓ

T,k )− f(J ℓ,mℓ−1

T,k )− E

(

f(Jmℓ

T )− f(Jmℓ−1

T )
))

.
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Using assumption PT 2) we obviously obtain the term CJ
f in the limit. Afterward, one can

apply the classical central limit theorem for the quantity Q̂1
n to get nQ̂1

n
P→ 0.

On the other hand, the convergence of nQ̂2
n is obtained by following the proof steps of the

Central Limit Theorem for the Riemann scheme, Theorem 5. Using this approach, we have only
to use respectively property PT 1) and Theorem 4 instead of PR1) and Theorem 3. Hence, we
obtain the following convergence

nQ̂2
n ⇒ N

(

0, Ṽ ar
(

f ′(IT )χT

)

)

.

This completes the proof.
�

Remark 3 As in remark 2, we have also a Berry-Essen type bound. Indeed, let Xn,0 =

nQ̂1
n, Xn,ℓ =

1
Nℓ

∑Nℓ

k=1

(

f(J ℓ,mℓ

T,k )− f(J ℓ,mℓ−1

T,k )− E

(

f(Jmℓ

T )− f(Jmℓ−1

T )
))

, ℓ ∈ {1, · · · , L}, s2n =
∑L

ℓ=0 E|Xn,ℓ|2 and ρn =
∑L

ℓ=0E|Xn,ℓ|3. If we denote by Fn the distribution function of n(Qn −
Ef(Jn

T ))/sn, then relation (14) and the analysis on factors sn and ρn, given in remark 2, remain
valid.

5 The complexity

The following complexity analysis is available for any second order discretization scheme.
Thanks to Theorem 5 and 6, we note that for a total error of order 1/n the computational
effort necessary to run the multilevel algorithm applied to the Riemann or trapezoidal scheme,
with step numbers mℓ, (m, ℓ) ∈ N \ {0, 1} × {1, · · · , L}, corresponds to the sequence of sam-
ple sizes (Nℓ)0≤ℓ≤L given by relation (6). Consequently, the time complexity in the multilevel
Monte Carlo method for these second order schemes is given by

CMMC = C ×
L
∑

ℓ=1

Nℓ(m
ℓ +mℓ−1) with C > 0

= C × (m+ 1)2(m− 1)

m
n2

L
∑

ℓ=1

1

mℓaℓ

L
∑

ℓ=1

aℓ.

The minimum of this complexity is reached for the choice of weights a∗ℓ = m−ℓ/2, ℓ ∈ {1, · · · , L},
since the Cauchy-Schwartz inequality ensures that

(

∑L
ℓ=1m

−ℓ/2
)2

≤ ∑L
ℓ=1

1
mℓaℓ

∑L
ℓ=1 aℓ, and

the optimal complexity for the multilevel Monte Carlo method for this choice is given by

C
a∗
ℓ

MMC = C × (m+ 1)2(m− 1)

m
n2

(

L
∑

ℓ=1

m−ℓ/2

)2

= O
(

n2
)

.

Note that this optimal choice a∗ℓ = m−ℓ/2 corresponds to the sample size

Nℓ =
m2 − 1

m3ℓ/2(
√
m− 1)

n2

(

1− 1√
n

)

(15)
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of the ℓth level in the multilevel algorithm, which is consistent with the complexity analysis
given by Giles. More precisely, by taking β = 2 in Theorem 3.1 of [8] we recover the same
complexity as well as the same order of sample sizes (Nℓ)0≤ℓ≤L (see also relation (1) ).
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Figure 1: Numerical tests for the optimal choice a∗ℓ = m−ℓ/2.

However, this optimal choice a∗ℓ , leading to the complexity n2, does not satisfy condition
(W) and even the Lyapunov condition. Then, it seems natural to try to check experimentally if
the central limit theorem is satisfied or not and we proceed to some numerical tests. In Figure
1 we plot at the left the data histogram of 1000 samples of Qn correctly renormalized and at
the right we proceed to the quantile-quantile test where the horizontal axis means quantiles of a
standard normal distribution and the vertical axis indicates the empirical quantiles of the same
data. According to these numerical tests, the central limit theorem seems to be true despite
the lack of theoretical proof.

Now, we shall exhibit three sequences (al)1≤ℓ≤L satisfying our condition (W) and reducing
significantly the complexity and for which the complexity is explicit.

a) The choice aℓ,1 = 1, corresponds to the sample size Nℓ,1 =
m2 − 1

m2ℓ
n2L, ℓ ∈ {1, · · · , L}.

This leads to a complexity C
aℓ,1
MMC = C×

(

(m+ 1)2

m logm
n2 log n

)

= O (n2 log n) . In this case,

the optimal choice of the parameter m is equal to 4 and N0 = n2 logn
logm

.
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b) For aℓ,2 = 1/ℓ, we get Nℓ,2 =
(m2 − 1)ℓ

m2ℓ
n2
∑L

ℓ=1
1
ℓ
. This leads to a complexity

C
aℓ,2
MMC = C ×

(

(m+ 1)2(m− 1)

m
n2

L
∑

ℓ=1

ℓ

mℓ

L
∑

ℓ=1

1

ℓ

)

∼ C × (m+ 1)2

m− 1
n2 log logn = O

(

n2 log log n
)

and the optimal choice of the parameter m is equal to 3.

c) For aℓ,3 = 1/(ℓ log ℓ), we get Nℓ,3 =
(m2 − 1)ℓ log ℓ

m2ℓ
n2
∑L

ℓ=1
1

ℓ log ℓ
and a complexity

C
aℓ,3
MMC = C ×

(

(m+ 1)2(m− 1)

m
n2

L
∑

ℓ=1

ℓ log ℓ

mℓ

L
∑

ℓ=1

1

ℓ log ℓ

)

∼ C × (m+ 1)2(m− 1)

m
n2

∞
∑

ℓ=1

ℓ log ℓ

mℓ
n2 log log log n = O

(

n2 log log log n
)

.

In this last case, the factor depending on m, in the above complexity, can be interpreted

as (m+1)2

m
E (Gm log(Gm)), where Gm

law
= Geometric(1 − 1/m). So, a simple Monte Carlo

approximation yields the optimal choice of the parameter m which is equal to 5.

Through these examples, we note that the central limit theorem is conserved and the complexity
can be very close to the order n2 which is clearly better than the complexity n3 achieved by a
crude Monte Carlo method for the same error of order 1/n.

6 Conclusion

The central limit theorems derived in this paper confirm the superiority of the multilevel Monte
Carlo approach even when using second order schemes with a path-dependent payoff and fills
the gap in the literature for this setting. A next natural question consists on studying central
limit theorems for multilevel Monte Carlo when using high order discretization schemes for a
general setting of stochastic differential equation for a given payoff function.

References

[1] M. Ben Alaya and A. Kebaier. Central limit theorem for the multilevel monte carlo euler
method. Annals of Applied probability, To appear, 2013.

[2] P. Billingsley. Convergence of probability measures. John Wiley & Sons Inc., New York,
1968.

17
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