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The Market model

Let (Wt)t≥0 be a brownian motion under P∗ the risk neutral
probability measure

Under P∗ the Black-Scholes model is solution to

dSt = rStdt + σStdWt , where r ≥ 0, σ > 0 and S0 > 0

with explicit solution given by

St = S0 exp

(
(r − σ2

2
)T + σWT

)
Let (Ft)t≥0 denotes the natural filtration associated to W .
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European option setting

A European option with maturity T and with payoff f (ST ) may
be exercised only at the expiration date T .

The price of this European option at time t ∈ [0,T ] is equal to
the value at time t of the associated hedging portfolio given by

Vt = H0
t e

rt + HtSt .

Under P∗, the process (S̃t)0≤t≤T given by S̃t = e−rtSt is an
Ft-martingale.

The portfolio V is self-financing then

Ṽt = V0 +

∫ t

0
HsdS̃s

Under P∗, the process (Ṽt)0≤t≤T is also an Ft-martingale.
Then

Vt = e−r(T−t)E∗(f (ST )|Ft).
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Bermudan options

Let us consider 0 = t0 < t1 < · · · < tn = T a discrete
subdivision of [0,T ].

A Bermudan option gives the right to the buyer to exercise at
any date t0, · · · , tn and pays f (Stk ) at time tk .

Let (Ṽt)0≤t≤T denote the associated hedging portfolio.
Then,

at date T = tn we have Vtn = f (Stn)
at date T = tn−1 we have

Vtn−1 = max
(
f (Stn−1) ; e−r(tn−tn−1)E∗[f (Stn)|Ftn−1 ]

)
= max

(
f (Stn−1) ; e−r(tn−tn−1)E∗[Vtn |Ftn−1 ]

)
In the same way we get ∀k ∈ {0, · · · , n − 1}{

VT = f (ST )

Vtk = max
(
f (Stk ) ; e−r(tk+1−tk )E∗[Vtk+1

|Ftk ]
)
,
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Remarks

Note that as the process (St)0≤t≤T is Markovian then

E∗
[
Vtk+1

|Ftk

]
= E∗

[
Vtk+1

|Stk
]
.

The price of a Bermudan option is more expensive than the price
of an European option.

For f (x) = (x − K )+ we have

e−r(tk+1−tk )E∗[Vtk+1
|Ftk ] ≥ f (Stk)

If we let n→∞ than the price of the Bermudan option tends to
the price of the American option.



Pricing American Options

Remarks

Note that as the process (St)0≤t≤T is Markovian then

E∗
[
Vtk+1

|Ftk

]
= E∗

[
Vtk+1

|Stk
]
.

The price of a Bermudan option is more expensive than the price
of an European option.

For f (x) = (x − K )+ we have

e−r(tk+1−tk )E∗[Vtk+1
|Ftk ] ≥ f (Stk)

If we let n→∞ than the price of the Bermudan option tends to
the price of the American option.



Pricing American Options

Theorem

Now if we consider ∀k ∈ {0, · · · , n − 1}{
VT = f (ST )

Vtk = max
(
f (Stk ) ; e−r(tk+1−tk )E∗[Vtk+1

|Ftk ]
)
,

Then,
Vtk = sup

τ∈{tk ,··· ,tn}
e−r(τ−tk )E∗ (f (Sτ )|Stk )

The stopping time

τ∗k = inf
{
ti ∈ {tk , · · · , tn} | f (Sti ) ≥ e−r(ti+1−ti )E∗

[
f (Sti+1)|Stk

]}
satifies

Vtk = e−r(τ
∗
k −tk )E∗

[
f (Sτ∗k )|Stk

]
.



Pricing American Options

Longstaff Schwarz algorithm

We consider the sequence (τ∗k )0≤k≤n where

τ∗k = inf
{
ti ∈ {tk , · · · , tn} | f (Sti ) ≥ e−r(ti+1−ti )E∗

[
f (Sti+1)|Stk

]}
The sequence (τ∗k )0≤k≤n satisfies a dynamic programming

principle{
τ∗n = T
τ∗k = tk1Bk

+ τ∗k+11Bc
k
, for 0 ≤ k ≤ n − 1

where
Bk =

{
f (Stk ) ≥ E∗[e−r(τ

∗
k+1−tk )f (Sτ∗k+1

)|Stk ]
}

How to approximate E∗[e−r(τ
∗
k+1−tk )f (Sτ∗k+1

)|Stk ] ?
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Regression

We write E∗[e−r(τ
∗
k+1−tk )f (Sτ∗k+1

)|Stk ] =
∑

`≥1 αk,`P`(Stk ) where
(P`)`≥1 is a basis function.

Using the definition of the conditional expectation, the sequence
(αk,`)`≥1 is the sequence that minimizes the distance

E∗
e−r(τ

∗
k+1−tk )f (Sτ∗k+1

)−
∑
`≥1

αk,`P`(Stk )

2
In practice we need to truncate the sum

∑
`≥1 αk,`P`(Stk ) and

approximate it by

L∑
`=1

αk,`P`(Stk ), where L > 1.
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Longstaff Schwarz algorithm

1 Simulate (S j
t0 , · · · , S

j
tn)1≤j≤M M copies of (St0 , · · · ,Stn)

2 For all 1 ≤ j ≤ M we set τj ,n = tn = T

3 Then compute the sequence (αj
k,`)1≤`≤L that minimizes

1

M

M∑
j=1

(e−r(τj,k+1−tk )f (S j
τj,k+1

)−
L∑
`=1

αk,`P`(S
j
tk )

)2


4 For all j ∈ {1, · · · ,M} we define

τj ,k = tk1Aj,k
+ τj ,k+11Ac

j,k
, for 0 ≤ k ≤ n − 1

where

Aj ,k =

{
f (S j

tk ) ≥
L∑
`=1

αj
k,`P`(S

j
tk )

}
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Price approximation

For k = 0 we the price of the Bermudan option is approximated
by

1

M

M∑
j=1

e−rτj,0f (S j
τj,0

)

The Longstaff Schwarz algorithm converges in L2 as L→∞ and
for fixed L converges almost surely as M →∞.
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Computing the coordinates (αk ,`)1≤`≤L

A Basic approach

For a fixed time step tk , this approach consists on simply solving
the following system P1(S1

tk
) · · · PL(S1

tk
)

...
...

...
P1(SM

tk
) · · · PL(SM

tk
)


 αk,1

...
αk,L

 =

 e−r(τ1,k+1−tk )f (S1
τ1,k+1

)
...

e−r(τM,k+1−tk )f (SM
τM,k+1

)


Advantage: easy to implement
Drawback: not a high accuracy.
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Computing the coordinates (αk ,`)1≤`≤L

An optimal approach
For a fixed time step tk we aim at computing the sequence

(αj
k,`)1≤`≤L that minimizes

M∑
j=1

(e−r(τj,k+1−tk )f (S j
τj,k+1

)−
L∑
`=1

αk,`P`(S
j
tk )

)2


we differentiate the above quantity with respect to αk,`0 and
solve

M∑
j=1

(
e−r(τj,k+1−tk )f (S j

τj,k+1
)−

L∑
`=1

αk,`P`(S
j
tk )

)
P`0(S j

tk ) = 0
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An optimal approach

This is equivelent to solve

L∑
`=1

 M∑
j=1

P`(S
j
tk )P`0(S j

tk )

αk,` =
M∑
j=1

e−r(τj,k+1−tk )f (S j
τj,k+1

)P`0(S j
tk )

Let H`0,` =
∑M

j=1 P`(S
j
tk )P`0(S j

tk ) we need to solve

L∑
`=1

H`0,`αk,` =
M∑
j=1

e−r(τj,k+1−tk )f (S j
τj,k+1

)P`0(S j
tk )

We can write this in a matrix equation given by

Hαk =
M∑
j=1

e−r(τj,k+1−tk )f (S j
τj,k+1

)P(S j
tk )

where

αk = (αk,1, · · · , αk,L) and P(S j
tk ) = (P1(S j

tk ), · · · ,PL(S j
tk ))
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