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The log-likelihood approach

Motivation

The pathwise method requires some restrictive regularity
assumptions on the payoff function of the option price, at least one
time differentiable. This is not the case of some particular payoffs
such as the digital options with a payoff function

hT = h(X x
T ) where h(x) = 1{x≥K}.

The Greek ∆ of such option cannot be evaluated using the

pathwise method.

Note also that for the same arguments we cannot use the
pathwise method to evaluate the Greek payoff Γ of a given vanilla
Call option.



The log-likelihood approach

General idea

Let us assume that the family of random variables (X (θ))
indexed by a parameter θ ∈ Θ (Θ an open set of R), admits
positive density function p(θ, y).

f (θ) = Eφ(X (θ)) =

∫
Rd

φ(y)p(θ, y)dy .

Theorem 1

Assume that the density function p(θ, y) taking values in r Θ×Rd

satisfies

i) θ 7→ p(θ, y) is differentiable on Θ almost every where

ii) ∃g : Rd 7→ R a measurable function such that∫
Rd φ(y)g(y)dy <∞ and ∀θ ∈ Θ |∂θp(θ, y)| ≤ g(y),Then

∀θ ∈ Θ, f ′(θ) = E
(
φ(X (θ))

∂ log p

∂θ
(θ,X (θ))

)
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Proof.

According to assumptions i) and ii) we have

f ′(θ) =
∂

∂θ
Eφ(X (θ)) =

∫
Rd

φ(y)
∂

∂θ
p(θ, y)dy .

Rewriting the above expression we get

f ′(θ) =

∫
Rd

φ(y)
∂
∂θp(θ, y)

p(θ, y)
p(θ, y)dy = E

(
φ(X (θ))

∂
∂θp(θ,X (θ))

p(θ,X (θ))

)
,

which completes the proof.
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Black Scholes Delta

Recall that the Black-Scholes model with parameters r , σ,T is
given by the explicit solution

ST = S0 exp
(

(r − σ2/2)T + σ
√
TG

)
, where G ∼ N (0, 1).

Consequently, for any given measurable function we get

Ef (ST ) = Ef
(
S0 exp

(
(r − σ2/2)T + σ

√
TG

))
=

∫
R
f
(
S0 exp

(
(r − σ2/2)T + σ

√
Ty
))

× 1√
2π

exp

(
−y2

2

)
dy .



The log-likelihood approach

Black Scholes Delta

Using the following change of variable

u = S0 exp
(

(r − σ2/2)T + σ
√
Ty
)

with

du = σ
√
TS0 exp

(
(r − σ2/2)T + σ

√
Ty
)
dy = uσ

√
Tdy

and y = ζ(u) where ζ(u) =
(
log(u/S0)− (r − σ2/2)T

)
/σ
√
T

we get

Ef (ST ) =

∫
R
f (y)

1

uσ
√
T
√

2π
exp

(
−ζ(u)2

2

)
du.
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Black Scholes Delta

Therefore we deduce that the density of the random variable ST
is given by

g(x) =
1

xσ
√
T
√

2π
exp

(
−ζ(x)2

2

)
.

Then

∂ log g(x)

∂S0
=

∂g
∂S0

(x)

g(x)
=

log(x/S0)− (r − σ2/2)T

S0σ2T
.
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Black Scholes Delta

Hence, according to the above theorem

∆ =
∂

∂S0
e−rTE(ST − K )+

= e−rTE
(

(ST − K )+
log(ST/S0)− (r − σ2/2)T

S0σ2T

)
= e−rTE

(
(ST − K )+

G

S0σ
√
T

)
.



The log-likelihood approach

Example: Path-dependent deltas

Let us consider the case of an Asian option. Since the associated
payoff involves the vector (St1 ,St2 , · · · ,Stn)

we need to make explicit the joint density of this vector if we
aim to apply the log-likelihood ratio method for the computation
of sensitivities associated to the Asian option price.

Using the Markovian property of the Brownian motion we can
rewrite the density associated to the above vector as follows

g(x1, · · · , xn) = g1(x1|S0)g2(x2|x1) · · · gn(xn|xn−1), with

gj(xj |xj−1) =
1

xiσ
√
tj − tj−1

ϕ(ζj(xj |xj−1)), where

ϕ(u) =
1√
2π

exp

(
−u2

2

)
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Example: Path-dependent deltas

ζj(xj |xj−1) =
log(xj/xj−1)− (r − σ2/2)(tj − tj−1)

σ
√
tj − tj−1

.

Consequently,

∂ log g

∂S0
(St1 , · · · ,Stn) =

∂ log g1
∂S0

(St1 |S0) =
G1

S0σ
√
t1
,

where G1 is the same Gaussian used for the simulation of St1 .

Finally, the value of the delta Asian call option using the
Log-likelihood ratio method is given by

∆ = e−rTE∗
(

(
1

n

n∑
i=1

Sti − K )+
G1

S0σ
√
t1

)
.
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