Lecture 5: Variance Reduction

Ahmed Kebaier kebaier@math.univ-paris13.fr

HEC, Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline of The Talk

Assume that we aim at computing $\pi = \mathbb{E}(g(U))$, where $U \sim \mathcal{U}([0, 1])$. • We simulate a sample (U_1, \ldots, U_n) of indepedentent copies of U

• We simulate a sample (U_1, \ldots, U_n) of indepedentent copies of Uand we approximate target π by

$$S_n = \frac{1}{n} \sum_{i=1}^n g(U_i).$$

Assume that we aim at computing $\pi = \mathbb{E}(g(U))$, where $U \sim \mathcal{U}([0, 1])$.

• We simulate a sample (U_1, \ldots, U_n) of independent copies of U and we approximate target π by

$$S_n=\frac{1}{n}\sum_{i=1}^n g(U_i).$$

• Noticing that $U \stackrel{Law}{=} 1 - U$, suppose *n* is even, then one can consider the new estimator

$$\hat{S}_n = \frac{1}{n} \sum_{i=1}^{n/2} g(U_i) + g(1 - U_i).$$

Assume that we aim at computing $\pi = \mathbb{E}(g(U))$, where $U \sim \mathcal{U}([0, 1])$.

• We simulate a sample (U_1, \ldots, U_n) of independent copies of U and we approximate target π by

$$S_n=\frac{1}{n}\sum_{i=1}^n g(U_i).$$

• Noticing that $U \stackrel{Law}{=} 1 - U$, suppose *n* is even, then one can consider the new estimator

$$\hat{S}_n = \frac{1}{n} \sum_{i=1}^{n/2} g(U_i) + g(1 - U_i).$$

• Compute $\operatorname{Var}(\hat{S}_n)$ and compare with $\operatorname{Var}(S_n)$?

• Answer: $\operatorname{Var}(\hat{S}_n) = \operatorname{Var}(S_n) + \frac{1}{n} \operatorname{Cov} (g(U), g(1-U))$

・ロト・日本・モト・モート ヨー うへで

• Answer:
$$\operatorname{Var}(\hat{S}_n) = \operatorname{Var}(S_n) + \frac{1}{n} \operatorname{Cov} (g(U), g(1-U))$$

Theorem 1

Let X be a random variable, f and g be two non-decreasing functions. Then

 $\operatorname{Cov}(f(X),g(X)) \geq 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Answer:
$$\operatorname{Var}(\hat{S}_n) = \operatorname{Var}(S_n) + \frac{1}{n} \operatorname{Cov} (g(U), g(1-U))$$

Theorem 1

Let X be a random variable, f and g be two non-decreasing functions. Then $\operatorname{Cov}(f(X), g(X)) \ge 0.$

Hint: Consider Y an independent copy of X and use that $(f(X) - f(Y))(g(X) - g(Y)) \ge 0$

Exercise

The aim of the following exercise is to use antithetic variables when computing the price of a call option in the Black-Scholes model with maturity T and strike K. More precisely, let

$$\psi(x) = e^{-rT} (\lambda e^{\sigma \sqrt{T}x} - K)_+, \quad \text{where } \lambda = S_0 e^{(r - \frac{\sigma^2}{2})T}.$$

For $G \sim \mathcal{N}(0,1)$, our aim is to compute

 $\mathbb{E}(\psi(G)).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exercise

The aim of the following exercise is to use antithetic variables when computing the price of a call option in the Black-Scholes model with maturity T and strike K. More precisely, let

$$\psi(x) = e^{-rT} (\lambda e^{\sigma \sqrt{T}x} - K)_+, \quad \text{where } \lambda = S_0 e^{(r - \frac{\sigma^2}{2})T}.$$

For $G \sim \mathcal{N}(0,1)$, our aim is to compute

$$\mathbb{E}(\psi(G)).$$

Noticing that $G \stackrel{Law}{=} -G$ use a variance reduction method based on antithetic variables and compare the variances.

Solution

```
function y=BSCallAntithetic(S0,K,T,r,sigma,M)
tic();
X=rand(1,M,'normal');
G=X(1:M/2);
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Solution

```
function y=BSCallAntithetic(S0,K,T,r,sigma,M)
tic();
X=rand(1,M,'normal');
G=X(1:M/2);
C=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*X+(r-sigma^ 2/2)*T)-K,0);
hatC=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0);
+exp(-r*T)*max(S0*exp(-sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0);
price=sum(C)/M;
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Solution

```
function y=BSCallAntithetic(S0,K,T,r,sigma,M)
tic();
X=rand(1,M,'normal');
G=X(1:M/2);
C=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*X+(r-sigma^ 2/2)*T)-K,0);
hatC=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*G+(r-sigma<sup>2</sup>/2)*T)-K,0)
+\exp(-r*T)*\max(S0*\exp(-sigma*sqrt(T)*G+(r-sigma^{2/2})*T)-K,0);
price=sum(C)/M;
hatprice=sum(hatC)/M;
VarEst=sum((C-price).^ 2)/(M-1);
hatVarEst=sum((hatC-hatprice).^ 2)/(M-1);
RMSE=sqrt(VarEst)/sqrt(M);
hatRMSE=sqrt(hatVarEst)/sqrt(M);
time=toc():
y=[price hatprice RMSE hatRMSE]
endfunction
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Importance Sampling

Importance sampling involves a change of probability measure. Instead of taking X from a distribution with density p(x) we instead take it from a different distribution Y with density $\tilde{p}(x)$. We can write

$$\mathbb{E}(f(X)) = \int f(x) \frac{p(x)}{\tilde{p}(x)} \tilde{p}(x) dx$$
$$= \mathbb{E}\left(f(Y) \frac{p(Y)}{\tilde{p}(Y)}\right)$$
We want the new variance $\operatorname{Var}\left(f(Y) \frac{p(Y)}{\tilde{p}(Y)}\right) << \operatorname{Var}(f(X)).$

Importance Sampling

Importance sampling involves a change of probability measure. Instead of taking X from a distribution with density p(x) we instead take it from a different distribution Y with density $\tilde{p}(x)$. We can write

$$\mathbb{E}(f(X)) = \int f(x) \frac{p(x)}{\tilde{p}(x)} \tilde{p}(x) dx$$
$$= \mathbb{E}\left(f(Y) \frac{p(Y)}{\tilde{p}(Y)}\right)$$

We want the new variance $\operatorname{Var}\left(f(Y)\frac{p(Y)}{\tilde{p}(Y)}\right) << \operatorname{Var}(f(X)).$

$$\operatorname{Var}\left(f(Y)\frac{p(Y)}{\tilde{p}(Y)}\right) = \int \frac{f(x)^2 p(x)^2}{\tilde{p}(x)} dx - \mathbb{E}(f(X))^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Importance Sampling

Importance sampling involves a change of probability measure. Instead of taking X from a distribution with density p(x) we instead take it from a different distribution Y with density $\tilde{p}(x)$. We can write

$$\mathbb{E}(f(X)) = \int f(x) \frac{p(x)}{\tilde{p}(x)} \tilde{p}(x) dx$$
$$= \mathbb{E}\left(f(Y) \frac{p(Y)}{\tilde{p}(Y)}\right)$$

We want the new variance $\operatorname{Var}\left(f(Y)\frac{p(Y)}{\tilde{p}(Y)}\right) << \operatorname{Var}(f(X)).$

$$\operatorname{Var}\left(f(Y)\frac{p(Y)}{\tilde{p}(Y)}\right) = \int \frac{f(x)^2 p(x)^2}{\tilde{p}(x)} dx - \mathbb{E}(f(X))^2$$

The optimal choice is then

$$ilde{p}(x) = rac{p(x)f(x)}{\mathbb{E}f(X)}$$

Gaussian variables

Our aim is to compute $\pi = \mathbb{E}(f(G))$ where $G \sim \mathcal{N}(0, I_d)$. Then, prove that for all $\mu \in \mathbb{R}^d$ we have

$$\pi = \mathbb{E}(f(G)) = \mathbb{E}\left(f(G+\mu)e^{-\frac{|\mu|^2}{2}-\mu \cdot G}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gaussian variables

Our aim is to compute $\pi = \mathbb{E}(f(G))$ where $G \sim \mathcal{N}(0, I_d)$. Then, prove that for all $\mu \in \mathbb{R}^d$ we have

$$\pi = \mathbb{E}(f(G)) = \mathbb{E}\left(f(G+\mu)e^{-rac{|\mu|^2}{2}-\mu \cdot G}
ight)$$

The variance associated to the estimation of the term on r.h.s f the above relation is of order

$$\mathbb{E}\left(f^{2}(G+\mu)e^{-|\mu|^{2}-2\mu\cdot G}\right)=\mathbb{E}\left(f^{2}(G)e^{\frac{|\mu|^{2}}{2}-\mu\cdot G}\right)$$

Exercise

The aim of the following exercise is to use an Importance Sampling method when computing the price of a call option in the Black-Scholes model with maturity T and strike K. More precisely, let

$$\psi(x) = e^{-rT} (\lambda e^{\sigma \sqrt{T_X}} - K)_+, \quad \text{where } \lambda = S_0 e^{(r - \frac{\sigma^2}{2})T}$$

For $G \sim \mathcal{N}(0, 1)$, our aim is to compute $\mathbb{E}(\psi(G))$.

Exercise

The aim of the following exercise is to use an Importance Sampling method when computing the price of a call option in the Black-Scholes model with maturity T and strike K. More precisely, let

$$\psi(x) = e^{-rT} (\lambda e^{\sigma \sqrt{T_X}} - K)_+, \quad \text{where } \lambda = S_0 e^{(r - \frac{\sigma^2}{2})T}$$

For $G \sim \mathcal{N}(0,1)$, our aim is to compute $\mathbb{E}(\psi(G))$. Noticing that for $\lambda \in \mathbb{R}$

$$\pi = \mathbb{E}(\psi(G)) = \mathbb{E}\left(f(G+\lambda)e^{-rac{\lambda^2}{2}-\lambda G}
ight).$$

- Use this last relation to implement a Monte Carlo methods and compute the associated variance v(λ).
- Prove tha λ → ν(λ) is a deacrising function on the interval (-∞, log(K/λ)/σ].

Generalisation

Let $(\Omega, \mathcal{F} = (\mathcal{F}_t)_{0 \le t \le T}, \mathbb{P})$ be a filtred probability space with finite Horizon \mathcal{T} . Assume that $(B)_{0 \le t \le T}$ is a standard \mathcal{F} -Brownian motion and $\theta \in \mathbb{R}^d$ be an \mathcal{F} -adapted process such that $\int_0^T |\theta_s|^2 ds < \infty$ a.s. If the process

$$L_t^{\theta} = \exp\left(-\int_0^t \theta_s dB_s - \frac{1}{2}\int_0^T |\theta_s|^2 ds\right)$$

is a martingale then under the probability ${\ensuremath{\mathbb Q}}$ defined by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = L^{\theta}_{T}$$

then the process

$$W_t = B_t + \int_0^t \theta_s ds$$

is a Brownian motion under \mathbb{Q} .