
Antithetic Variables

Lecture 5: Variance Reduction

Ahmed Kebaier
kebaier@math.univ-paris13.fr

HEC, Paris



Antithetic Variables

Outline of The Talk

1 Antithetic Variables



Antithetic Variables

Outline

1 Antithetic Variables



Antithetic Variables
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Assume that we aim at computing π = E(g(U)), where
U ∼ U([0, 1]).

We simulate a sample (U1, . . . ,Un) of indepedentent copies of U
and we approximate target π by

Sn =
1

n

n∑
i=1

g(Ui ).

Noticing that U
Law
= 1− U, suppose n is even, then one can

consider the new estimator

Ŝn =
1

n

n/2∑
i=1

g(Ui ) + g(1− Ui ).

Compute Var(Ŝn) and compare with Var(Sn) ?
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Ŝn =
1

n

n/2∑
i=1

g(Ui ) + g(1− Ui ).
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Answer: Var(Ŝn) = Var(Sn) + 1
nCov (g(U), g(1− U))

Theorem 1

Let X be a random variable, f and g be two non-decreasing
functions. Then

Cov (f (X ), g(X )) ≥ 0.

Hint: Consider Y an independent copy of X and use that
(f (X )− f (Y ))(g(X )− g(Y )) ≥ 0



Antithetic Variables
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Exercise

The aim of the following exercise is to use antithetic variables
when computing the price of a call option in the Black-Scholes
model with maturity T and strike K . More precisely, let

ψ(x) = e−rT (λeσ
√
Tx − K )+, where λ = S0e

(r−σ2

2
)T .

For G ∼ N (0, 1), our aim is to compute

E(ψ(G )).

Noticing that G
Law
= −G use a variance reduction method based on

antithetic variables and compare the variances.
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Solution

function y=BSCallAntithetic(S0,K,T,r,sigma,M)

tic();

X=rand(1,M,’normal’);

G=X(1:M/2);

C=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*X+(r-sigma^ 2/2)*T)-K,0);

hatC=exp(-r*T)*max(S0*exp(sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0)

+exp(-r*T)*max(S0*exp(-sigma*sqrt(T)*G+(r-sigma^ 2/2)*T)-K,0);

price=sum(C)/M;

hatprice=sum(hatC)/M;

VarEst=sum((C-price).^ 2)/(M-1);

hatVarEst=sum((hatC-hatprice).^ 2)/(M-1);

RMSE=sqrt(VarEst)/sqrt(M);

hatRMSE=sqrt(hatVarEst)/sqrt(M);

time=toc();

y=[price hatprice RMSE hatRMSE]

endfunction
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Importance Sampling

Importance sampling involves a change of probability measure.
Instead of taking X from a distribution with density p(x) we
instead take it from a different distribution Y with density p̃(x).
We can write

E(f (X )) =

∫
f (x)

p(x)

p̃(x)
p̃(x)dx

= E
(
f (Y )

p(Y )

p̃(Y )

)
We want the new variance Var

(
f (Y )p(Y )

p̃(Y )

)
<< Var(f (X )).

Var

(
f (Y )

p(Y )

p̃(Y )

)
=

∫
f (x)2p(x)2

p̃(x)
dx − E(f (X ))2

The optimal choice is then

p̃(x) =
p(x)f (x)

Ef (X )
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Gaussian variables

Our aim is to compute π = E(f (G )) where G ∼ N (0, Id). Then,
prove that for all µ ∈ Rd we have

π = E(f (G )) = E
(
f (G + µ)e−

|µ|2
2
−µ·G

)
.

The variance associated to the estimation of the term on r.h.s f
the above relation is of order

E
(
f 2(G + µ)e−|µ|

2−2µ·G
)

= E
(
f 2(G )e

|µ|2
2
−µ·G

)
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Exercise

The aim of the following exercise is to use an Importance Sampling
method when computing the price of a call option in the
Black-Scholes model with maturity T and strike K . More precisely,
let

ψ(x) = e−rT (λeσ
√
Tx − K )+, where λ = S0e

(r−σ2

2
)T .

For G ∼ N (0, 1), our aim is to compute E(ψ(G )).

Noticing that
for λ ∈ R

π = E(ψ(G )) = E
(
f (G + λ)e−

λ2

2
−λG

)
.

1 Use this last relation to implement a Monte Carlo methods
and compute the associated variance v(λ).

2 Prove tha λ 7→ v(λ) is a deacrising function on the interval
(−∞, log(K/λ)/σ].
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Generalisation

Let (Ω,F = (Ft)0≤t≤T ,P) be a filtred probability space with finite
Horizon T . Assume that (B)0≤t≤T is a standard F-Brownian
motion and θ ∈ Rd be an F-adapted process such that∫ T
0 |θs |

2ds <∞ a.s. If the process

Lθt = exp

(
−
∫ t

0
θsdBs −

1

2

∫ T

0
|θs |2ds

)
is a martingale then under the probability Q defined by

dQ
dP

= LθT

then the process

Wt = Bt +

∫ t

0
θsds

is a Brownian motion under Q.
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