
Lecture 3: Monte Carlo methods

Ahmed Kebaier
kebaier@math.univ-paris13.fr

HEC, Paris



Outline of The Talk



Change of variable method

Lemma 1

Let φ denote a C1-diffeomorphism from O ⊂ Rd to O′ ⊂ Rd and
g : O → R an integrable function.∫

O
g(v)dv =

∫
O′

g ◦ φ−1(u)| det(∇φ−1(u))|du

Theorem 2 (Box-Müller)

Let U and V be two independent uniform random variables on
[0, 1]. We set

X =
√
−2 ln(U) cos(2πV ), Y =

√
−2 ln(U) sin(2πV ).

Then,
(X ,Y ) ∼ N (0, I2).
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Box-Müller on scilab

function [y1,y2] = randnorm(n) // assumes n even

m = n/2

x1 = rand(1,m)

x2 = rand(1,m)

y1 = sin(2*%pi*x1).*sqrt(-2*log(x2));

y2 = cos(2*%pi*x1).*sqrt(-2*log(x2));

endfunction

-->x = randnorm(10000);

-->histplot(100,x)

We can compare the histogram to exact density:
-->xx = -4:0.01:4;

-->yy = exp(-(xx.^ 2)/2)/sqrt(2*%pi);

-->plot2d(xx, yy)
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Simulation of Gaussian vectors

Theorem 3

Let µ ∈ Rd and Γ ∈ S+
d a d × d definite positive symmetric

matrix.

By Cholesky’s algorithm, there exists a lower triangular matrix
A ∈ Rd×d such that Γ = AAT

If G ∼ N (0, Id), then µ+ AG ∼ N (µ, Γ)

Exercise
For ρ ∈ [−1, 1], simulate a sample of size n of centred Gaussian

couple (G1,G2) with covariance matrix

(
1 ρ
ρ 1

)
.
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Solution

function [] = gaussian vector(rho)

if abs(rho) >1

disp(’the correlation must be between -1 and 1 !’)

disp(’aborting...’)

return

end

n=1000;

[g1,g2]=randnorm(n) ;

Gamma=[1,rho;rho,1];

A=chol(Gamma);

z=A*[g1;g2];

x=z(1,:);

y=z(2,:);

plot2d(x,y,-1)

endfunction



Outline



Principle of the method

Monte Carlo method is based on the Large Law numbers

Theorem 4

SLLN Let (Xn)n≥1 be a sequence of i.i.d. random variables with
the same law as X . If E|X | <∞ then

Sn :=
1

n

n∑
i=1

Xi −→
n→∞

EX , a.s.

The convergence holds also in L1

Let us assume that EX = 0 and E|X |4 <∞.



Proof.

ES4
n =

1

n4

 n∑
k=1

E(X 4
k ) + 6

∑
i<j

E(X 2
i )E(X 2

j )


=

1

n4

(
nE(X 4) + 3n(n − 1)E(X 2)2

)
≤ 3E(X 4)

n2

By the monotone convergence Theorem we deduce
E(
∑∞

n=1 S4
n ) <∞ which implies that

∑∞
n=1 S4

n <∞ a.s. This
completes the proof.



Central Limit Theorem

Theorem 5

Let (Xn)n≥1 be a sequence of independent random copies of X . If
E(|X |3) <∞, then

√
n

(
1

n

n∑
i=1

Xi − EX

)
⇒ N (0, σ2), as n→∞

where σ2 = Var(X ).



Sketch of the proof

Without a loss of generality we can consider the case where
E(X ) = 0 and d = 1. This implies that Var(X ) = E(X 2) = σ2.

We set

S̄n :=
1

n

n∑
i=1

Xi

and compute the characteristic function associated to
√

nSn.

For all u ∈ R

ψ√nSn(u) := E
[
exp(iu

√
nSn)

]
=

(
E
[

exp

(
iuX√

n

)])n

By Taylor expansion∣∣∣∣e iy − 1− iy +
y2

2

∣∣∣∣ ≤ min

(
|y |3

6
, y2

)
.
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Then it follows that

exp

(
iuX√

n

)
= 1 +

iuX√
n
− u2X 2

2n
+ hn(X ), where

|hn(X )| ≤ u2

n
min

(
u|X |3

6
√

n
,X 2

)
Note that the sequence (nhn(X ))n is uniformly dominated by

u2X 2 and

E
[

exp

(
iuX√

n

)]
= 1− u2σ2

2n
+ E[hn(X )],



Thnaks to the Dominated convergence theorem we get

lim
n→∞

E[nhn(X )] = 0

We deduce that

lim
n→∞

E
[

exp

(
iuX√

n

)]
= lim

n→∞

(
1− u2σ2

2n
+ o(n−1)

)n

= exp

(
−u2σ2

2

)
= E[exp(iuG )]

where G ∼ N (0, 1)



Exercise

We consider a sample (Z1, . . . ,Zn) with Zi sont i.i.d random

variables with the same law as
√

12p
(
1
p

∑p
i=1 Ui − 1

2

)
, the

random variables (Ui , i ≤ p) are i.i.d with uniform distribution on
the interval [0, 1]. Use the following function to plot the histogram
of (Zi , i ≤ n) with nc classes. Vary n, p, nc we can take p = 1,
p = 12with large and small values of nc . We will take n of order
1000.



solution

function [] = tcl(n, p, nc)

X=rand(n,p);

Z=sqrt(12/p)*(sum(X,’c’) - p/2); // sum of columns,

centred and renormalised

histplot(nc,Z)

C=[-5:1/1000:5];

plot2d(C,exp(-C.^ 2/2)/sqrt(2*%pi),3) // plobability

density of standad distribution

endfunction
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