Lecture 3: Monte Carlo methods

Ahmed Kebaier
kebaier@math.univ-paris13.fr

HEC, Paris

Outline of The Talk

Change of variable method

Lemma 1

Let ϕ denote a \mathcal{C}^{1}-diffeomorphism from $\mathcal{O} \subset \mathbb{R}^{d}$ to $\mathcal{O}^{\prime} \subset \mathbb{R}^{d}$ and $g: \mathcal{O} \rightarrow \mathbb{R}$ an integrable function.

$$
\int_{\mathcal{O}} g(v) d v=\int_{\mathcal{O}^{\prime}} g \circ \phi^{-1}(u)\left|\operatorname{det}\left(\nabla \phi^{-1}(u)\right)\right| d u
$$

Change of variable method

Lemma 1

Let ϕ denote a \mathcal{C}^{1}-diffeomorphism from $\mathcal{O} \subset \mathbb{R}^{d}$ to $\mathcal{O}^{\prime} \subset \mathbb{R}^{d}$ and $g: \mathcal{O} \rightarrow \mathbb{R}$ an integrable function.

$$
\int_{\mathcal{O}} g(v) d v=\int_{\mathcal{O}^{\prime}} g \circ \phi^{-1}(u)\left|\operatorname{det}\left(\nabla \phi^{-1}(u)\right)\right| d u
$$

Theorem 2 (Box-Müller)

Let U and V be two independent uniform random variables on $[0,1]$. We set

$$
X=\sqrt{-2 \ln (U)} \cos (2 \pi V), \quad Y=\sqrt{-2 \ln (U)} \sin (2 \pi V)
$$

Then,

$$
(X, Y) \sim \mathcal{N}\left(0, I_{2}\right)
$$

Box-Müller on scilab

```
function [y1,y2] = randnorm(n) // assumes n even
m = n/2
x1 = rand (1,m)
x2 = rand(1,m)
y1 = sin(2*%pi*x1).*sqrt(-2*log(x2));
y2 = cos(2*%pi*x1).*sqrt(-2*log(x2));
endfunction
-->x = randnorm(10000);
-->histplot(100,x)
```


Box-Müller on scilab

```
function [y1,y2] = randnorm(n) // assumes n even
m = n/2
x1 = rand (1,m)
x2 = rand(1,m)
y1 = sin(2*%pi*x1).*sqrt(-2*log(x2));
y2 = cos(2*%pi*x1).*sqrt(-2*log(x2));
endfunction
-->x = randnorm(10000);
-->histplot(100,x)
We can compare the histogram to exact density:
\(-->x x=-4: 0.01: 4 ;\)
\(-->y y=\exp \left(-\left(x x .{ }^{\sim} 2\right) / 2\right) / \operatorname{sqrt}(2 * \% p i)\);
-->plot2d(xx, yy)
```


Simulation of Gaussian vectors

Theorem 3

Let $\mu \in \mathbb{R}^{d}$ and $\Gamma \in S_{d}^{+}$a $d \times d$ definite positive symmetric matrix.

- By Cholesky's algorithm, there exists a lower triangular matrix $A \in \mathbb{R}^{d \times d}$ such that $\Gamma=A A^{T}$
- If $G \sim \mathcal{N}\left(0, I_{d}\right)$, then $\mu+A G \sim \mathcal{N}(\mu, \Gamma)$

Simulation of Gaussian vectors

Theorem 3

Let $\mu \in \mathbb{R}^{d}$ and $\Gamma \in S_{d}^{+}$a $d \times d$ definite positive symmetric matrix.

- By Cholesky's algorithm, there exists a lower triangular matrix $A \in \mathbb{R}^{d \times d}$ such that $\Gamma=A A^{T}$
- If $G \sim \mathcal{N}\left(0, I_{d}\right)$, then $\mu+A G \sim \mathcal{N}(\mu, \Gamma)$

Exercise

For $\rho \in[-1,1]$, simulate a sample of size n of centred Gaussian couple $\left(G_{1}, G_{2}\right)$ with covariance matrix $\left(\begin{array}{cc}1 & \rho \\ \rho & 1\end{array}\right)$.

Solution

```
function [] = gaussian_vector(rho)
if abs(rho) >1
disp('the correlation must be between -1 and 1 !')
disp('aborting...')
return
end
n=1000;
[g1,g2]=randnorm(n) ;
Gamma=[1,rho;rho,1];
A=chol(Gamma);
z=A*[g1;g2];
x=z(1,:);
y=z(2,:);
plot2d(x,y,-1)
endfunction
```


Outline

Principle of the method

Monte Carlo method is based on the Large Law numbers

Theorem 4

SLLN Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables with the same law as X. If $\mathbb{E}|X|<\infty$ then

$$
S_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E} X, \text { a.s. }
$$

The convergence holds also in L^{1}
Let us assume that $\mathbb{E} X=0$ and $\mathbb{E}|X|^{4}<\infty$.

Proof.

$$
\begin{aligned}
\mathbb{E} S_{n}^{4} & =\frac{1}{n^{4}}\left(\sum_{k=1}^{n} \mathbb{E}\left(X_{k}^{4}\right)+6 \sum_{i<j} \mathbb{E}\left(X_{i}^{2}\right) \mathbb{E}\left(X_{j}^{2}\right)\right) \\
& =\frac{1}{n^{4}}\left(n \mathbb{E}\left(X^{4}\right)+3 n(n-1) \mathbb{E}\left(X^{2}\right)^{2}\right) \\
& \leq \frac{3 \mathbb{E}\left(X^{4}\right)}{n^{2}}
\end{aligned}
$$

By the monotone convergence Theorem we deduce $\mathbb{E}\left(\sum_{n=1}^{\infty} S_{n}^{4}\right)<\infty$ which implies that $\sum_{n=1}^{\infty} S_{n}^{4}<\infty$ a.s. This completes the proof.

Central Limit Theorem

Theorem 5

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random copies of X. If $\mathbb{E}\left(|X|^{3}\right)<\infty$, then

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mathbb{E} X\right) \Rightarrow \mathcal{N}\left(0, \sigma^{2}\right), \quad \text { as } n \rightarrow \infty
$$

where $\sigma^{2}=\operatorname{Var}(X)$.

Sketch of the proof

- Without a loss of generality we can consider the case where $\mathbb{E}(X)=0$ and $d=1$. This implies that $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)=\sigma^{2}$.

Sketch of the proof

- Without a loss of generality we can consider the case where $\mathbb{E}(X)=0$ and $d=1$. This implies that $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)=\sigma^{2}$.
- We set

$$
\bar{S}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and compute the characteristic function associated to $\sqrt{n} S_{n}$.

Sketch of the proof

- Without a loss of generality we can consider the case where $\mathbb{E}(X)=0$ and $d=1$. This implies that $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)=\sigma^{2}$.
- We set

$$
\bar{S}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and compute the characteristic function associated to $\sqrt{n} S_{n}$.

- For all $u \in \mathbb{R}$

$$
\psi_{\sqrt{n} S_{n}}(u):=\mathbb{E}\left[\exp \left(i u \sqrt{n} S_{n}\right)\right]=\left(\mathbb{E}\left[\exp \left(\frac{i u X}{\sqrt{n}}\right)\right]\right)^{n}
$$

- By Taylor expansion

$$
\left|e^{i y}-1-i y+\frac{y^{2}}{2}\right| \leq \min \left(\frac{|y|^{3}}{6}, y^{2}\right) .
$$

- Then it follows that

$$
\begin{gathered}
\exp \left(\frac{i u X}{\sqrt{n}}\right)=1+\frac{i u X}{\sqrt{n}}-\frac{u^{2} X^{2}}{2 n}+h_{n}(X), \text { where } \\
\left|h_{n}(X)\right| \leq \frac{u^{2}}{n} \min \left(\frac{u|X|^{3}}{6 \sqrt{n}}, X^{2}\right)
\end{gathered}
$$

- Note that the sequence $\left(n h_{n}(X)\right)_{n}$ is uniformly dominated by $u^{2} X^{2}$ and

$$
\mathbb{E}\left[\exp \left(\frac{i u X}{\sqrt{n}}\right)\right]=1-\frac{u^{2} \sigma^{2}}{2 n}+\mathbb{E}\left[h_{n}(X)\right]
$$

- Thnaks to the Dominated convergence theorem we get

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[n h_{n}(X)\right]=0
$$

- We deduce that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\exp \left(\frac{i u X}{\sqrt{n}}\right)\right] & =\lim _{n \rightarrow \infty}\left(1-\frac{u^{2} \sigma^{2}}{2 n}+o\left(n^{-1}\right)\right)^{n} \\
& =\exp \left(-\frac{u^{2} \sigma^{2}}{2}\right) \\
& =\mathbb{E}[\exp (i u G)]
\end{aligned}
$$

where $G \sim \mathcal{N}(0,1)$

Exercise

We consider a sample $\left(Z_{1}, \ldots, Z_{n}\right)$ with Z_{i} sont i.i.d random variables with the same law as $\sqrt{12 p}\left(\frac{1}{p} \sum_{i=1}^{p} U_{i}-\frac{1}{2}\right)$, the random variables $\left(U_{i}, i \leq p\right)$ are i.i.d with uniform distribution on the interval $[0,1]$. Use the following function to plot the histogram of $\left(Z_{i}, i \leq n\right)$ with $n c$ classes. Vary $n, p, n c$ we can take $p=1$, $p=12$ with large and small values of $n c$. We will take n of order 1000.

solution

```
function [] = tcl(n, p, nc)
X=rand (n,p);
Z=sqrt(12/p)*(sum(X,'c') - p/2); // sum of columns,
centred and renormalised
histplot(nc,Z)
C=[-5:1/1000:5];
plot2d(C,exp(-C.^ 2/2)/sqrt(2*%pi),3) // plobability
density of standad distribution
endfunction
```

