Lecture 1: Introduction to Scilab

Ahmed Kebaier
kebaier@math.univ-paris13.fr

HEC, Paris

Outline

(1) First Steps with Scilab
(2) Vector and Matrix

Outline

(1) First Steps with Scilab
(2) Vector and Matrix

- After launching Scilab, you can test the following commands
$-->$ help
$-->$ help mot-clé
$-->$ apropos mot-clé
$-->$ quit
// To open Scilab's help
// Get a description of the Keyword
// Get pages related to the Keyword
// To quit Scilab
- After launching Scilab, you can test the following commands
$-->$ help // To open Scilab's help
$-->$ help mot-clé
// Get a description of the Keyword
$-->$ apropos mot-clé
// Get pages related to the Keyword
$-->$ quit
// To quit Scilab
- The command-line interface clear, clc et clf erase respectively data in memory, the commands on the screen and the plots. These commands should be executed regularly to avoid errors and make the memory free.
- After launching Scilab, you can test the following commands
$-->$ help // To open Scilab's help
$-->$ help mot-clé
// Get a description of the Keyword
$-->$ apropos mot-clé
// Get pages related to the Keyword
$-->$ quit // To quit Scilab
- The command-line interface clear, clc et clf erase respectively data in memory, the commands on the screen and the plots. These commands should be executed regularly to avoid errors and make the memory free.
- Test the following command-line on the interface:
$->x=1$
$-->A=\operatorname{ones}(3,4)$
$->x+A$
- Often a file entitled for example test.sce, containing the following instructions:
clc;clf;clear;
A=ones $(3,4)$
$1+\mathrm{A}$
- Often a file entitled for example test.sce, containing the following instructions:
clc;clf;clear;
A=ones $(3,4)$
$1+$ A
- Under Scilab, tape : -- > exec("test.sce")
- We can also create a function "*.sci". For this,
(1) Open a file entitled for example carre.sci, containing the following instructions:
function $d=$ carre(x)
$\mathrm{d}=\mathrm{x} . * \mathrm{x}$ endfunction
(2) Under Scilab load and execute the file carre.sci : $-->\operatorname{getf}($ "carre.sci") // if the file is in the current folder.

Function carre is now defined under scilab :
$-->x=[0,1,2,3,4]$
$-->\operatorname{carre}(x)$

Exercise

Plot the cos function on the interval $[-\pi, \pi]$. Create a mesh of 11 points.

Exercise

Plot the cos function on the interval $[-\pi, \pi]$. Create a mesh of 11 points.

Solution: Enter the following lines in the command window x=linspace(-\%pi,\%pi,11); $\mathrm{y}=\cos (\mathrm{x}) . /\left(1+\mathrm{x} .{ }^{\wedge} 2\right)$;
clf()
plot(x,y,b)

Outline

(1) First Steps with Scilab

(2) Vector and Matrix

- The easiest way to define a matrix $n \times m$ under Scilab is to write all its components using the keyboard:

$$
A=\left[a_{1,1}, \ldots, a_{1, m} ; \ldots ; a_{n, 1}, \ldots, a_{n, m}\right]
$$

- The easiest way to define a matrix $n \times m$ under Scilab is to write all its components using the keyboard:

$$
A=\left[a_{1,1}, \ldots, a_{1, m} ; \ldots ; a_{n, 1}, \ldots, a_{n, m}\right]
$$

- Elementary operations. Test on examples !

$$
\begin{array}{lll}
--> & \mathrm{A}+\mathrm{B} & \text { //sum } \\
--> & \mathrm{A} * \mathrm{~B} & \text { //product } \\
--> & \mathrm{A}^{*} \mathrm{~B} & \text { //operations are performed component wise } \\
--> & \mathrm{A}^{\wedge} 2 & \text { //equivalent to } \mathrm{A}^{*} \mathrm{~A} \\
--> & \mathrm{A.}^{\wedge} 2 & \text { //equivalent to } \mathrm{A} .^{*} \mathrm{~A} \\
--> & \operatorname{det}(\mathrm{A}) & \text { //determinent of } \mathrm{A} \\
--> & \mathrm{A}^{\prime} & \text { //transpose of } \mathrm{A} \\
--> & \operatorname{inv}(\mathrm{A}) & \text { //inverse of } \mathrm{A}
\end{array}
$$

- if A is a matrix but not a vector $\operatorname{diag}(\mathrm{A}, \mathrm{k})$ extracts the diagonal number k as a column vector.
- $A * B$ is the matrix product of the matrices A and B (or product between a scalar and a vector or matrix).
- A' performs the transposition of matrix A.
- If A is a square invertible matrix you can solve the linear system $A x=b$ using $x=A \backslash b$
(a $\mathrm{P} A=\mathrm{LU}$ factorization of the matrix, followed by an estimation of its condition number, and finally by solving the 2 triangular systems, are done in a transparent manner)

Exercise

- give a value to the variable n then define the $n \times n$ matrix :

$$
A=\left(\begin{array}{ccccc}
2 & -1 & 0 & \ldots & 0 \\
-1 & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & -1 \\
0 & \ldots & 0 & -1 & 2
\end{array}\right)
$$

- Define a vector $b \in \mathbb{R}^{n}$ using rand ($\mathrm{n}, 1$), compute the solution of $\mathrm{Ax}=\mathrm{b}$. Compute the relative residual $\|A x-b\| /\|b\|$ using the function norm.
- Compute $E=\frac{1}{2} x^{T} A x-b^{T} x$. Define another vector $y \in \mathbb{R}^{n}$ using rand, compute $F=\frac{1}{2} y^{\top} A y-b^{T} y$ and verify that $E<F$.
- Build the following matrix: $B=A=\left(\begin{array}{cc}A & I_{n} \\ I_{n} & A\end{array}\right)$

Solution

$$
\begin{aligned}
& \mathrm{n}=7 \\
& \mathrm{v}=-\operatorname{ones}(1, \mathrm{n}-1) \\
& \mathrm{A}=\operatorname{diag}(\mathrm{v},-1)+2 * \operatorname{eye}(\mathrm{n}, \mathrm{n})+\operatorname{diag}(\mathrm{v}, 1)
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \mathrm{n}=7 \\
& \mathrm{v}=-\operatorname{ones}(1, \mathrm{n}-1) ; \\
& \mathrm{A}=\operatorname{diag}(\mathrm{v},-1)+2 * \operatorname{eye}(\mathrm{n}, \mathrm{n})+\operatorname{diag}(\mathrm{v}, 1) \\
& / / \operatorname{another} \text { solution } \\
& / / \mathrm{A}=\operatorname{diag}(\mathrm{v},-1)+\operatorname{diag}(2 * \operatorname{ones}(1, \mathrm{n}))+\operatorname{diag}(\mathrm{v}, 1)
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \mathrm{n}=7 ; \\
& \mathrm{v}=-\operatorname{ones}(1, \mathrm{n}-1) ; \\
& \mathrm{A}=\operatorname{diag}(\mathrm{v},-1)+2 * \operatorname{eye}(\mathrm{n}, \mathrm{n})+\operatorname{diag}(\mathrm{v}, 1) \\
& / / \operatorname{another} \operatorname{solution} \\
& / / \mathrm{A}=\operatorname{diag}(\mathrm{v},-1)+\operatorname{diag}(2 * \operatorname{ones}(1, \mathrm{n}))+\operatorname{diag}(\mathrm{v}, 1) \\
& \mathrm{b}=\operatorname{rand}(\mathrm{n}, 1) ; \\
& \mathrm{x}=\mathrm{A} \backslash \mathrm{~b} \\
& \mathrm{res}=\operatorname{norm}(\mathrm{A} * \mathrm{x}-\mathrm{b}) / \operatorname{norm}(\mathrm{b}) \\
& \mathrm{E}=0.5 * \mathrm{x}^{\prime} * \mathrm{~A} * \mathrm{x}-\mathrm{b} \cdot * \mathrm{x}
\end{aligned}
$$

Solution

```
n = 7;
v = -ones(1,n-1);
A = diag(v,-1) + 2*eye(n,n) + diag(v,1)
// another solution
// A = diag(v,-1) + diag(2*ones(1,n)) + diag(v,1)
b = rand(n,1);
x = A\ b
res = norm(A*x-b)/norm(b)
E=0.5*x'*A*x - b'*x
y=rand(n,1);
F=0.5*y'*A*y - b'*y
```


Solution

```
n = 7;
v = -ones(1,n-1);
A = diag(v,-1) + 2*eye(n,n) + diag(v,1)
// another solution
// A = diag(v,-1) + diag(2*ones(1,n)) + diag(v,1)
b = rand(n,1);
x = A\ b
res = norm(A*x-b)/norm(b)
E=0.5*x'*A*x - b'*x
y=rand (n,1);
F=0.5*y'*A*y - b'*y
E<F
```


Solution

```
n = 7;
v = -ones(1,n-1);
A = diag(v,-1) + 2*eye(n,n) + diag(v,1)
// another solution
// A = diag(v,-1) + diag(2*ones(1,n)) + diag(v,1)
b = rand(n,1);
x = A\ b
res = norm(A*x-b)/norm(b)
E=0.5*x'*A*x - b'*x
y=rand(n,1);
F=0.5*y'*A*y - b'*y
E<F
B = [ A , eye(n,n) ;... eye(n,n), A ]
```


Assignments and extractions

Try: A = rand $(3,4) / /$ create a matrix
// change coef $(2,2)$ of A

Assignments and extractions

Try: A $=$ rand $(3,4) / /$ create a matrix
// change coef $(2,2)$ of A
$\mathrm{A}(2,2)=-1$
// extract coef (2,3) of A and assign it to variable c

Assignments and extractions

Try: A = rand $(3,4) / /$ create a matrix
// change coef $(2,2)$ of A
$\mathrm{A}(2,2)=-1$
// extract coef (2,3) of A and assign it to variable
c
$c=A(2,3)$
// extract row 2 of A (it is assigned to ans)

Assignments and extractions

Try: A $=$ rand $(3,4) / /$ create a matrix
// change coef $(2,2)$ of A
$\mathrm{A}(2,2)=-1$
// extract coef (2,3) of A and assign it to variable
c
$c=A(2,3)$
// extract row 2 of A (it is assigned to ans) A(2,:) // change row 2 of A

Assignments and extractions

Try: A = rand $(3,4) / /$ create a matrix
// change coef $(2,2)$ of A
$\mathrm{A}(2,2)=-1$
// extract coef (2,3) of A and assign it to variable
c
$c=A(2,3)$
// extract row 2 of A (it is assigned to ans)
A(2,:) // change row 2 of A
$\mathrm{A}(2,:)=$ ones $(1,4)$
// change column 3 of A

Assignments and extractions

Try: A = rand $(3,4) / /$ create a matrix
// change coef $(2,2)$ of A
$\mathrm{A}(2,2)=-1$
// extract coef (2,3) of A and assign it to variable C
$c=A(2,3)$
// extract row 2 of A (it is assigned to ans) A(2,:) // change row 2 of A
$\mathrm{A}(2,:)=$ ones $(1,4)$
// change column 3 of A
$A(:, 3)=0 / /$ extract submat $(1,3) x(1,2)$ and assign
it to B

Assignments and extractions

Try: $A=\operatorname{rand}(3,4) / /$ create a matrix
// change coef $(2,2)$ of A
$\mathrm{A}(2,2)=-1$
// extract coef (2,3) of A and assign it to variable
C
$c=A(2,3)$
// extract row 2 of A (it is assigned to ans)
A(2,:) // change row 2 of A
$\mathrm{A}(2,:)=$ ones $(1,4)$
// change column 3 of A
$A(:, 3)=0 / /$ extract submat $(1,3) x(1,2)$ and assign
it to B
B $=A\left([1,3],\left[\begin{array}{ll}1 & 2\end{array}\right)\right.$
// change the same sub-matrix

Assignments and extractions

Try: $A=\operatorname{rand}(3,4) / /$ create a matrix
// change coef $(2,2)$ of A
$\mathrm{A}(2,2)=-1$
// extract coef $(2,3)$ of A and assign it to variable
C
$c=A(2,3)$
// extract row 2 of A (it is assigned to ans)
A(2,:) // change row 2 of A
$\mathrm{A}(2,:)=$ ones $(1,4)$
// change column 3 of A
$A(:, 3)=0 / /$ extract submat $(1,3) x(1,2)$ and assign
it to B
B $=A\left([1,3],\left[\begin{array}{ll}1 & 2\end{array}\right)\right.$
// change the same sub-matrix
$\mathrm{A}([1,3],[12])=[-10,-20 ;-30,-40]$

Another very useful vector constructor In the command window

Try the following expressions:
I = 1:5
J = 1:2:6
// try also J = 1:2:7 which give the same vector
$\mathrm{K}=10:-1: 5$
The syntax is init val:inc:lim and this builds a row vector with init val as the first coefficient, the others components being obtained from the previous one by adding it inc until lim is not overtaken.

Exercise 3

(1) Copy-paste your previous script exercise2.sce in a new file exercise3.sce and use a small value for n (e.g. $n=5$) (Rmk: we need only the part of the code which defines A and B : you can remove unuseful lines of code).
(2) Continue the script by creating the following new matrices:
(1) C such that $C_{i, j}=A_{i, n+1-j}$ i.e. by reversing the column order of A;
(2) D such that $C_{i, j}=A_{2 i-1, j}$ i.e. taking one row over two of matrix A;
(3) E the matrix formed by the B submatrix of rows and columns $n-2, n-1, n, n+1, n+2, n+3$.

Solution

```
n=5;
v=-ones(1,n-1);
A=diag(v,-1) + 2*eye(n,n) + diag(v,1)
B=[ A , eye(n,n) ;... eye(n,n), A ]
```


Solution

```
n=5;
v=-ones(1,n-1);
A=diag(v,-1) + 2*eye(n,n) + diag(v,1)
B=[ A , eye(n,n) ;... eye(n,n), A ]
C = A(:, n:-1:1)
```


Solution

```
n=5;
v=-ones(1,n-1);
A=diag(v,-1) + 2*eye(n,n) + diag(v,1)
B=[ A , eye(n,n) ;... eye(n,n), A ]
C = A(:, n:-1:1)
D = A(1:2:n,:)
```


Solution

```
n=5;
v=-ones(1,n-1);
A=diag(v,-1) + 2*eye(n,n) + diag(v,1)
B=[ A , eye(n,n) ;... eye(n,n), A ]
C = A(:,n:-1:1)
D = A(1:2:n,:)
E = B(n-2:n+3,n-2:n+3)
```


The component-wise algebra

Three useful operators .*, ./ and .^ :
(1) x and y matrices with the same dimensions:

- $\mathrm{z}=\mathrm{x} . * \mathrm{y}$ is the component-wise product, i.e. $z_{i, j}=x_{i, j} y_{i, j}$
- $\mathrm{z}=\mathrm{x} . / \mathrm{y}$ is the component-wise product, i.e. $z_{i, j}=x_{i, j} / y_{i, j}$
- Useful shortcut: if s is a scalar, $\mathrm{z}=\mathrm{s}$./y gives $z_{i, j}=s_{i, j} / y_{i, j}$ but $z=1 . / y$ doesn't work as expected! (use $z=1 . / y$).
(2) x matrix and p scalar:
- $\mathrm{z}=\mathrm{x} .{ }^{\wedge} \mathrm{p}$ is the component-wise power: $z_{i, j}=x_{i, j}^{p}$.
- $\mathrm{z}=\mathrm{p} .{ }^{\wedge} \mathrm{x}$ is the component-wise power: $z_{i, j}=p^{x_{i, j}}$.

The plot function I

$\mathrm{x}=\operatorname{linspace}(0,2 * \% \mathrm{pi}, 31)$;

The plot function I

$$
\begin{aligned}
& \mathrm{x}=\operatorname{linspace}(0,2 * \% \mathrm{pi}, 31) ; \\
& \mathrm{y} 1=\sin (\mathrm{x}) ; \mathrm{y} 2=\cos (\mathrm{x}) ;
\end{aligned}
$$

The plot function I

$$
\begin{aligned}
& x=\operatorname{linspace}(0,2 * \% \mathrm{pi}, 31) ; \\
& \mathrm{y} 1=\sin (\mathrm{x}) ; \mathrm{y} 2=\cos (\mathrm{x}) ; \\
& \text { scf }(0) ; / / \text { select graphic window } 0 \text { to be the default } \\
& \text { graphic window }
\end{aligned}
$$

The plot function I

```
x = linspace(0,2*%pi,31);
y1 = sin(x); y2 = cos(x);
scf(0); // select graphic window 0 to be the default
graphic window
clf(); // clear the graphic window
```


The plot function I

$\mathrm{x}=\operatorname{linspace}(0,2 * \% \mathrm{pi}, 31) ;$
$\mathrm{y} 1=\sin (\mathrm{x}) ; \mathrm{y} 2=\cos (\mathrm{x}) ;$
scf(0); // select graphic window 0 to be the default graphic window
clf(); // clear the graphic window
plot(x,y1,"b-",x,y2,"r--"); // only lines

The plot function I

$\mathrm{x}=\operatorname{linspace(0,2*\% pi,31)}$;
$\mathrm{y} 1=\sin (\mathrm{x})$; $\mathrm{y} 2=\cos (\mathrm{x})$;
scf(0); // select graphic window 0 to be the default graphic window
clf(); // clear the graphic window
plot(x,y1,"b-",x,y2,"r--"); // only lines
scf(1); // select graphic window 1 to be the default graphic window

The plot function I

$\mathrm{x}=\operatorname{linspace(0,2*\% pi,31)}$;
$\mathrm{y} 1=\sin (\mathrm{x})$; $\mathrm{y} 2=\cos (\mathrm{x})$;
scf(0); // select graphic window 0 to be the default graphic window
clf(); // clear the graphic window
plot(x,y1,"b-",x,y2,"r--"); // only lines
scf(1); // select graphic window 1 to be the default graphic window
clf(); // clear the graphic window

The plot function I

$\mathrm{x}=\operatorname{linspace(0,2*\% pi,31)}$;
$\mathrm{y} 1=\sin (\mathrm{x})$; $\mathrm{y} 2=\cos (\mathrm{x})$;
scf(0); // select graphic window 0 to be the default
graphic window
clf(); // clear the graphic window
plot(x,y1,"b-",x,y2,"r--"); // only lines
scf(1); // select graphic window 1 to be the default graphic window
clf(); // clear the graphic window
subplot(2,1,1); // split the graphic window and use subpart 1

The plot function I

$\mathrm{x}=\operatorname{linspace(0,2*\% pi,31)}$;
y1 = $\sin (\mathrm{x})$; $\mathrm{y} 2=\cos (\mathrm{x})$;
scf(0); // select graphic window 0 to be the default
graphic window
clf(); // clear the graphic window
plot(x,y1,"b-",x,y2,"r--"); // only lines
scf(1); // select graphic window 1 to be the default graphic window
clf(); // clear the graphic window
subplot(2,1,1); // split the graphic window and use subpart 1
plot(x,y1,"ro",x,y2,"bx"); // only symbols

The plot function I

$\mathrm{x}=\operatorname{linspace(0,2*\% pi,31)}$;
$\mathrm{y} 1=\sin (\mathrm{x})$; $\mathrm{y} 2=\cos (\mathrm{x})$;
scf(0); // select graphic window 0 to be the default
graphic window
clf(); // clear the graphic window
plot(x,y1,"b-",x,y2,"r--"); // only lines
scf(1); // select graphic window 1 to be the default graphic window
clf(); // clear the graphic window
subplot(2,1,1); // split the graphic window and use subpart 1
plot(x,y1,"ro",x,y2,"bx"); // only symbols subplot(2,1,2); // split the graphic window and use subpart 2

The plot function I

$\mathrm{x}=\operatorname{linspace(0,2*\% pi,31)}$;
$\mathrm{y} 1=\sin (\mathrm{x})$; $\mathrm{y} 2=\cos (\mathrm{x})$;
scf(0); // select graphic window 0 to be the default
graphic window
clf(); // clear the graphic window
plot(x,y1,"b-",x,y2,"r--"); // only lines
scf(1); // select graphic window 1 to be the default graphic window
clf(); // clear the graphic window
subplot(2,1,1); // split the graphic window and use subpart 1
plot(x,y1,"ro",x,y2,"bx"); // only symbols subplot(2,1,2); // split the graphic window and use subpart 2
plot(x,y1,"r--o", x,y2,"g-x"); // both lines and symbols

The plot function II

(1) A title with title(string title).
(2) x and y labels with xlabel (string xlabel) and ylabel(string ylabel)
(3) A legend for the curves with legend(curve1 leg, curve2 leg)

Programming tools I

Functions. In scilab a function definition takes the form:
function [y1,y2,...,yn] = function_name(x1,x2,..xm)
// the body of the function define the output arguments y1,...,yn
// in function of the input arguments $x 1, \ldots, x m$ endfunction

Such a definition can be written in a script (before the part of the script which uses it) or better in another file (with a name traditionaly ending with .sci). You can write any number of functions in a file. In this case you have to load the file in scilab before we can use them.

Programming tools II

if tests

They permit to execute different blocks of code depending on boolean expressions:
if bool_expression then
// block executed when bool_expression is TRUE
.....
else
// block executed when bool_expression is FALSE
end

Example

$\mathrm{x}=\mathrm{rand}()$
if $\mathrm{x}<0.5$ then
$\mathrm{y}=-1$;
else
y = 1;
end

Programming tools III

For loop

for i $=$ row_vector
// body of the loop
end

- the number of iterations equal the number of components of the row vector
- at iteration k the loop variable i is equal to row_vector (k).
- Very often the row vector is of the form first val:inc:lim.

Programming tools III

For loop

for i $=$ row_vector
// body of the loop
end

- the number of iterations equal the number of components of the row vector
- at iteration k the loop variable i is equal to row_vector (k).
- Very often the row vector is of the form first val:inc:lim.

It is possible to exit prematurely a for loop using the break statement:
for $\mathrm{i}=1: \mathrm{n}$
if special_condition_test then, break, end end

Programming tools IV

while loop

A while loop allows to repeat a block of code while a boolean expression is true:
while bool_expression
// block
end

Programming tools IV

while loop

A while loop allows to repeat a block of code while a boolean expression is true:
while bool_expression
// block
end

Try:
$\mathrm{x}=1$;
while $x<1000, x=2 * x$, end

Programming tools IV

while loop

A while loop allows to repeat a block of code while a boolean expression is true:
while bool_expression
// block
end

Try:
$\mathrm{x}=1$;
while $x<1000, x=2 * x$, end

It is also possible to exit prematurely a while loop with the break statement.

