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We study the problem of density estimation of a non-degenerate diffusions
using kernel functions. Thanks to Malliavin calculus techniques, we obtain
an expansion of the discretisation error. Then, we introduce a new control
variate method in order to reduce the variance in the density estimation. We
prove a stable law convergence theorem of the type obtained in Jacod-Kurtz-
Protter, for the first Malliavin derivative of the error process, which leads us
to get a CLT for the new variance reduction algorithm. This CLT gives us a
precise description of the optimal parameters of the method.

1 Introduction

In this paper we estimate the density p(z) of a non-degenerate d-dimensional diffusion (X¢)o<i<T
using an Euler scheme X™ of time step T'/n. That is, if the diffusion X satisfies the Hérmander
condition (see Bally and Talay (1996)) then one obtains the following expansion for the density
diffusion

p(r) = pula) + = + o(1/n).

where p,,(x) is a regularized density of the Euler scheme X™.

In Kohatsu-Higa and Pettersson (2002), a simulation study together with a variance reduction
method were introduced. The procedure used can be described as follows.

Consider an integrable continuous function ¢ : R — R such that [; ¢(z)dz = 1 and define the
kernels functions

1 _
Oraly) = 70(!75), h>0 et weR.

Note that ¢p, — 0, as b — 0, in a weak sense, according to the assumptions on the function ¢.
The idea is then to approximate the density p(z) = Ed,(Xr) by E¢p, o (X7) where h =n~%, a > 0.
At this level, a first problem arises. That is, the problem of evaluating the weak error given by

En = E¢h,m (X’_?“) - p(l‘)

Kohatsu-Higa and Pettersson (2002) proved that |e,| < C/n if a > 1.

When using this approach a second problem arises, it concerns the problem of the explosion of
the variance of the r.v. ¢, »(X}) when using a Monte Carlo method. In their paper, Kohatsu-Higa
and Pettersson (2002) propose then instead the use of the integration by parts formula together with
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a localization method in order to reduce the variance of the method. The asymptotically optimal
localization function is found to be of exponential type.
In fact, using the integration by parts formula, Kohatsu-Higa and Pettersson (2002) obtain that

Eno(X7) = E(¥no(XP)Ha ).

where 1y, , is the primitive function of ¢, , and H,, is the weight given by the Malliavin calculus.
Using this idea, Kohatsu-Higa and Pettersson (2002) construct an efficient control variate which

reduces the variance in the Monte carlo estimation of E(z/)hym(X%)Hn). The disadvantage of this

method is that the computation time of their algorithm is higher than that of classical methods
using kernel density functions.

In this work, we propose an alternative approach using the kernel estimation method through the
calculation of E¢y, ,(X7) together with a control method based on the statistical Romberg method
(see Kebaier (2005) for more details on the regular case). The method uses two Euler schemes X7
and X 7' with m << n as follows. Simulate a large number, IV, of sample paths with the coarse time
discretization step T'//m and few additional sample paths of size N,, with the fine time discretization
step T'/n.

In this case, in contrast with the regular case studied in Kebaier (2005) there is still explosion
of variances. This will be controlled through an appropiate renormalization and a decomposition of
the derivatives of the kernel. We will see as a final consequence of Theorem 6.1 that the kernels, as
proposed before, in general do not lead to variance reduction. To obtain this variance reduction, one
has to consider a subclass of kernel functions known as super kernels of order s where s > 2(d+1) (see
Definition 3.1). If fact, otherwise there is no variance reduction with the control method proposed.

As these kernels do not correspond with the original ideas of Bally and Talay (1996), we start
by finding the expansion of the weak error €,. That is, we prove that

En = % +o(1/n)

(see theorem 3.1).

As the weak error €, is of order 1/n, we will suppose that all the parameters depends on the time
step number n. Hence, we set h =n~%, 0 < a < 1/2 (the window size of the kernel function ¢y, ;),
m = n?, 0 < B < 2/3 (the time step number of the auxiliary Euler scheme), N,, = n"*, 7, > 0
and N, = n", y9 > 0, where N,,, denotes he sample size for the coarse estimation of Egy, ,(X7)

by Ni EZN"{ ¢h,w(X$i), whereas N,, denotes the sample size needed for the fine estimation of

E{ 6n0(X3) = 00 (XF) } by 5 I {000 (XF) = bna(XE)}-

Our aim is to find the optimal parameters leading to an optimal complexity of the algorithm.
In order to obtain these optimal parameters we extend a result of Jacod and Protter (1998) for the
asymptotic behavior of the law of the first Malliavin derivative of the error in the Euler scheme.
Using this extension we prove a CLT, for our algorithm, giving us a precise description of the choice
of the optimal parameters m, N, and Ny, .

The usual version of the integration by parts formula of Malliavin Calculus in dimension d, see
Nualart (1995) (p.103, 2006 edition) is based on using d times the integration by parts formula.
Although it is feasible to prove the stable convergence of the high order weights, we propose instead
to use a new integration by parts formula introduced by Malliavin and Thalmaier (2006) which
significantly simplifies the proof in the general multi-dimension context.

The optimal parameters given by the CLT lead to an optimal complexity of the algorithm of
order n3+@+De which is less than the optimal complexity of the Monte Carlo method which is of
order n®t4 where a € (0, 1) is the parameter tuning the window size h and d is the dimension of
the problem. The gain obtained here is of order nz=, Consequently, we have an exact mathematical
estimate of when and how much variance reduction can be achieved. Whereas, there is less reduction
than in the regular case due to the explosion of the variance of our estimators (see section 6 for more
details).



The remainder of the paper is organized as follows. In the following section, we introduce some
basics of the Malliavin Calculus. In section 3, we study the discretization error ¢,. Section 4 is
devoted to prove the CLT for the classical Monte Carlo method. In section 5 we prove a stable
convergence theorem for the first Malliavin derivative of the error in the Euler scheme. In the last
section we prove a CLT for the statistical Romberg algorithm and we give the optimal parameters
leading to an optimal complexity of the method.

In the Appendices we give the proofs of technical lemmas used in the proofs.

2 Malliavin Calculus

2.1 Main definitions and properties

We follow the notations, definitions and results of Nualart (1995). Let (W})o<;<7 be a ¢ dimensional
standard Brownian motion defined on the filtered probability space (2, F, (F;),P) where (F;)o<i<r
denotes the standard filtration. D denotes the Malliavin derivative which takes values in H :=
L2([0,T);RY). The k-th order derivative of F for k € {1, ...,¢}" is denoted by D*F taking values in
H®¥ and given by

k _ k1 Kk
Dy 4. F=Df.  DMF

where |k| denotes the length of the multi-index k and k;, i = 1,..., |k| denote its elements.
Note that the operator D* is closed. For p > 1 and k € N, we denote D*?(W) the closure of the
space of smooth random variables with respect to the norm || - || p-
We denote D® (W)= (D*?(W). For F = (F',...,F%) € (D>®(W))4, we introduce vr the
p21k>1
Malliavin covariance matrix of F' given by

Vi@ =(DF',DF')y, 1<i,j<d

2.2 Duality and integration by parts formulas

Let 6 denote the adjoint operator of D, which is also called Skorokhod integral. The operator ¢ is
closed, we denote by Dom/(d) its domain (see for example Definition 1.3.1 of Nualart (1995)). Note
that if w € L*([0,T] x Q;RY) is an adapted process, then (see proposition 1.3.4 Nualart (1995))
u € Dom(9) and 6(u) coincides with the Ito integral.

If F € D'2 and u € Dom(§) then Fu € Dom(§) and we have

0(Fu) =Fo(u) — (DF,u)g.
In such a case we have the following duality formula
E[(u,DF)H} = E[Fo(u)]. (1)

In the following we give the definition of a non-degenerate random vector.

Definition 2.1. A random vector F = (F!,... F%) € (D>®(W))? is said to be non-degenerate if
the Malliavin covariance matriz of F is invertible a.s. and

(detyp) ™" € (LP(PY).

p>1

For a nondegenerate random vector, the following integration by parts formula plays a key role.
(For a proof of the following proposition see Nualart (1998)).

Proposition 2.1. Let F € (]D)OO(W))d be a non-degenerate random vector. Let f € C°(R™), and
let G € D>®*(W). Fiz k > 1. Then for any multi-index m = (m1,...,my) € {1,...,d}* we have

E[0,.f(F)G] = E[f(F)H,(F,G)],



where Op = O, - . . Om,, and the random variable H,, (F, G) is defined inductively as follows

Hiy(R.G) =Y, 0(DFiGHRYY)
H,.(F,G) :H(mk)(FvH(ml.,...,mk_l)(FvG))-

2.3 An extension of the integration by parts formula

In the following work we will deal with a d-dimensional diffusion X = (X!,..., X%) driven by a ¢-
dimensional Brownian motion W = (W', ... W49). In order to regularize the Euler scheme associated
to the diffusion X, we will employ d additional noises, corresponding to X', ..., X%, In order to
do that, we consider a d-dimensional Brownian motion W = (Wat! ... We+td) independent of
W= (W' ... ,W9), and we set

W= (WW)=W!' .. wiwit wird)

Therefore our random vectors are defined on the Wiener space of dimension r = ¢+ d, but we should
distinguish between the two Brownian motions W et W which play different roles in our calculation:
W drive the diffusion whereas W is an additional noise used for the regularization. Hence, by using
again the notations of the preceding subsection we obtain

D= (D,D)=(D',...,D%, D . DIt
and for @ = (u, @) = (u!,...,ud,u?t ... u?td) we have
6(a) = 6(u) + o(a).

The norms ||F|x,, are norms defined on D*? (W), thus it involves all the derivatives D = (D, D).
Similarly, the Malliavin covariance matrix of the random vector F is given by

The auxiliary noise, that we will use, is given by the random vector
4%
AN ES 17T7 8> 0.
; nito

In the following, we introduce the random vector F' = (Fy,..., Fy) which depends only on W =
(W*,...,W?) and the random variable G' which depends only on W = (W, W). The proposition
below, proved by Kohatsu-Higa and Pettersson (2002), gives us an explicit writing of H; which
appears in the integration by parts formula.

Proposition 2.2. Let F € (ID)OO(W))d be a non-degenerate random vector. Let f € Co°(R?), and
let G € DY2(W). Fiz k > 1. Then for any multi-index m = (my,...,mg) € {1,...,d}* we have

E[Omf(F + Zy,)G] =E[f(F + Zn,,) Hn(F, G)], (2)

T

where the random variable H,,(F, Q) is given by

M=

H,)(F.0) = Y 3(DF + 2, GGr L, )7)

1

.
Il

6(GGrtz, ) DF) + - ic?(G(’y;iZM)”DW%),

Il
<.
Il MR
o
<
Il
o

i

I:Im(Fa G) = H(mk)(F7I:I(m1,...,mk,1)(F7 G))7

with 6 and & are respectively the adjoint operators of D and D.



3 Weak convergence of the approximate density

Let (Xt),.,., be a R<-valued diffusion process which is the solution of the following stochastic dif-
ferential equation

dX; = b(X;)dt + o(Xy)dW;, Xo=x € R?, (3)

where W = (W',...,W9) is a ¢g-dimensional Brownian motion defined on the filtered probability
space B = (O, F, (Fi)i>0, P), where (F;);>0 denotes a filtration satisfying the usual conditions.
The functions b : R? — R? and ¢ : R? — R%*? are of class %de“?’. In what follows we denote for
0<k<gq

bl(Xt) Ull(Xt) e Ulq(Xt) dt f L

ba(Xy) o021(Xy) ... 02q(Xy) thl . 1,k+1
f(Xe) = : : : ,dY; = : and Y* =Yiy1, fr:i= :

ba(Xe) oar(Xe) ... oag(Xe) dWs fa k1

Therefore the stochastic differential equation (3) becomes:

dX, = f(X;)dY,.

The Euler scheme, denoted by X, associated to the diffusion X and with discretization step 6 = T'/n
is defined as:
dXy = f(X) )dYe,  nn(t) = [t/5]6.

The next result gives bounds on the error of the Euler scheme in the sense of || ||, ,-norms. For
a proof of this result see Kusuoka and Stroock (1984) and Hu and Watanabe (1996).

Proposition 3.1. With the previous notation, the following two properties are valid:
P,) vt >0, XpeD®

Py) Vp > 1, Vk € N* 3K > 0 such that:

sup || Xrllkp + sup [[X7llep < K(1+ [[2]]) (4)
te[0,T] te[0,T]
and
1 = Xy < — (5)
sup — X7llkp S —F=-
e P=Vn
Notation:

For a function V : R — R, we denote by DV the Jacobian matrix of V and by D2V, its Hessian
matrix. We suppose that the d-dimensional diffusion process (X;),_,.,., which is the solution of (3)
has coefficients o and b, which satisfy the Hérmander condition (see Section 2.3.2 of Nualart (1995)).
Therefore X admits a smooth density pr(zg, z) (see Kusuoka and Stroock (1985)) and in order
to simplify the notation, we denote
pr(xo,x) := p(x).

We consider the continuous Euler scheme X", with discretization step § = T'/n, defined by:

dth = b(Xn,,L(t))dt + U(Xnn(t))d‘wtv 7771,(75) = [f/5]5

We note here that the Hormander condition is not enough to guarantee that the Malliavin
covariance matrix associated to the Euler scheme X™, is invertible (this would be true under an
ellipticity condition).



To deal with this problem we will regularize the Euler scheme using X" + Z,, , instead of X",
Zy,, denotes a independent random variable defined in Section 2.3 through the relation
Wr
Zn,e = E
where W is a d-dimensional Brownian motion independent of W. Then we have the following result.

Proposition 3.2. For A € [0, 1] we introduce
XN = Xp 4+ MXP — X7p).

Then for all p > 1 there exists a constant Kr > 0 and parameters p’',p” > 1 such that

"

P
sup
n

Proof. We have that E (det~y

’

< Krp|(dety, )"

‘ (det’y

X;’A*'Znﬂ) p

)77]: A, + B,, with

S
;' +Zn,6

A, ::E{(detvx

N )
7200 !det'y —det'yXT }<§ det'yXT

X;’A'*'Znﬁ
and
B, = E{(det7

)1
XAz, 4 |det’y —det v, |>% det vy
T ’ !~ T

X2z,
T 5
As the diffusion X is non-degenerated in the sense of definition 2.1, we deduce that

sup A, < 2PE (det Vx, ) < 4oo.
On the other hand, we have that

= — 1.
Vgriz,, — Vxpr T i

As v is a positive definite matrix we deduce that

det > 7T ’
€ ’YX;,AJan’e = \ pl+eo :

XA
T

Therefore, one obtains that

T\ % 1
Bn S <n1+29) ]P)(|det’)/x?>\+z”,6 — dethT| Z idet’)/XT).

Therefore using the Markov inequality, we have that

—d
B, < 2F r ’ E{(det7 )‘Wdetv — dety ’}k
= nlt20 Xr X222y 4 Xr

T \ % k
k —k
<2 () o, et b0t 1
Therefore from the inequalities (4) and (5), we obtain that

k
H ’det fyx;vhrzn,g — det Vx, ‘ HL2 < g
where Cy, is a given constant. Finally, if we take k = 2dp(1 + 20) we obtain that

sup B, < o0.
n



In what follows we are interested in considering the approximation of the marginal density p(z)
of the diffusion X using kernel density estimation methods.

Definition 3.1. Let ¢ € Cp°(R;R), we say that ¢ is a super-kernel of order s > 2 if
/¢(m)dm=1, /:I:iqﬁ(as)dx:O, Vi=1,...s—1, and /ms¢(x)dx7é0.
R R R
In what follows, we suppose that ¢ satisfies the following properties:
a) / |z|*"t¢(x)| dz < 0o, where s denotes the order of the kernel,
R

b) /R|¢'(a:)|2dx < 0.

For h > 0, we define

onaly) = 16(10).

The parameter h is called the window size of the kernel. In the calculations to follows, we will also
use other kernels that stem from ¢. So, we define
y—zx )
o(%5

¢(2):/\¢’(x)\2dm and o :=/|¢(m)|idx, for i=1,....d

i

P2).h0(Y) = h(;@) [@(?J ; :c)r’ Ginaz(y) = h}éi

with

To construct super kernels on R?, we consider products of unidimensional super kernels.
That is, let ¢; : R+— R for i=1,...,d be given and define

P(ur, ..., uq) = d1(u1) x -+ x ¢a(ua)

and
1 Yy— d
bn,x(y) = Wd)( 5 ) = E¢zhx(yz)
We say that ¢ is a super kernel of order s if the functions ¢;, i = 1,...,d are unidimensional super

kernels of order s.
Remark 1. One can construct super kernels of infinite order in the following way. We take a

function ¢ € . (where . denotes the class of Schwarz tempered distributions) so that ¢(z) = 1 in
a neighborhood of zero. Next, we define ¢ as the inverse Fourier transform of ¢. That is,

oa) = 5- [ ewiyds, zer

Then the Fourier transform of ¢ is ¢ given by
P(€) = / e " p(x)dr, € cR.
R

As p®)(0) = 0, for all k¥ € N we conclude also that [, z¥¢(z)dz = 0 for all k € N and as
¥(0) = 1 we have that [, ¢(x)dx = 1. The inverse Fourier transform sends the functions .7 into
. Therefore ¢ € . and consequently, it verifies the conditions a) and b) above.

Also, one can easily contruct polynomials on compacts which lead to super kernels of order s
which are not of order s + 1.

The property that will interest us in the calculations to follow is that the super kernel of order
s approximate the Dirac delta function up to the order s+ 1. More precisely, we have the following
result.



Lemma 3.1. 1. Let ¢ : R* — R be a super kernel of order s, i.e. a d-dimensional super kernel
of the form ¢(x) = H?Zl ¢j(x;) where for j = 1,...,d, ¢; : R — R denote unidimensional
super kernels of order s. Let f € C;T'(R%R). Then

hs N n S .
10~ [ Swonaas 5 3 o1 [ TTwebtw i <on,

la|=s

where 0% f denotes the partial derivative of f with respect to «, for a given multi-index o =
(a1,...,ar), of length |a| = k. Whereas the integral

k
/ Huaigb(u) du, 1<k<s
Re 251
s a product of integrals of the form
/Ruﬁjqzﬁj(uj)duj, with j=1,...,d e 1<p; <k<s,
The constant C' is given by
¢ = (17 ) [ Il ot

where cs is a universal constant depending on s and || f1V) || is the sup norm of derivatives
of order s+ 1 of f.

2. Let ¢ : RY — R be a positive integrable and bounded function. Suppose that fRd o(z)dz = 1.
Let on2(y) = h%sﬁ(*”f

), then for every continuous and bounded function f we have

lim f( )‘Ph:v( )dy = f(x).

h—0

Proof. We have that

/ F@)bnaly) dy — f(z / ona (W) (F(y) — F(2)) dy
Rd
[ o)(fa+uh) ~ f(z) du

Using a Taylor serie expansion of order s we obtain

k
[ 1 @enswdy = sia A SR AE ) [ T oot

k=1 \a|k:

ha+1 s+1

Z // 1 —A)*0%f(x + \uh) Huagb dX\ du.
]Rd

Since (¢;)j=1,....a are super kernels of order s, we conclude that for 1 < p; < s — 1 we have

/]R u?j ¢j (uj) duj =0.



Consequently,

| 1@y =50 =5 ¥ 0 /RHum

)
\a|s “i=1

h5+1 s+1

Z // 1= X0 f(x + Muh) [ ] var, &(w0) dA due.
R4 i=1

In the following we evaluate the remainder term.

s+1

‘/ / (1 =X)?0%f(z + Auh) Hua o(u d)\du’ < 1| oo / ||| 5 | (u)| du.
R4 JRd

According to property a) of Definition 3.1, the right side of the inequality is finite and therefore the
result follows. The proof of the second assertion follows from the Lebesgue theorem. O

The main theorem of this section gives us an expansion of order 1 of the weak error in the
approximation of the density of the hypoelliptic diffusion X.

Before this we study the error process in a form that will also be useful when studying the stable
convergence problem.

The error process U™ = (U}*)o<i<r, defined by

U,;n - Xt — XZI,
satisfies the equation

q

duj* = Z(ftnj)(Xt - X:,l"(t)) dYtj7

=0
where

. 1

fr = /O Vi (X )+ MK = X)) dA.

Therefore the equation satisfied by U™ can be written as:

t 4
Up = / Z L dYI.UT + Gy, (6)
with
G = / (XP— X7 ) dYi. (7)
Note that

q

"M(S Z s '771( )) (8)

with f'; = fi(X}' ). In the following let (Ztn)ogth be the R?*? valued solution of

t 4
Zt”:Id—&—/ > o fravizy.
j=0

(=)

From Theorem 56 p.271 in Protter (1990) we obtain that there exists (Z7)~! for all s < T which

satisfies . .
t t
(Zm)y =1, / (201 S () 2ds - / (20 S frdv
=0

j=1



and that
t t T
o = zp{ [z tacr — [z Yo e - X, ) ds).
=1

J

We define Z; = D, X, and therefore we have that it satisfies
t a9 _
Z, =1, +/ > fejdY? Z,.
0 50

with f, j = V£ (Xy).
Furthermore Z, ! exists and satisfies the following explicit linear stochastic differential equation

(Ze)™ =Id—/0 (ZS)—lz(fs,j)%s—/o (Z)7'S o jdY?
j=0

Jj=1

Then using the same technique as in the proof of existence and uniqueness for stochastic differential
equations with Lipschitz coefficients (i.e. Gronwall inequality), we obtain that

vp>1  lim E| sup |27~ Z"| =0,
n—oo Lot

and

Vp>1 lim E{ sup H(Zt”)fl —(Z)™!
n— o0 0<t<T

P
B
Now we are ready to give the main theorem in this section.
Theorem 3.1. Under the above notations,
1. Let h=n"% a > 1/s. Then there exists a constant C; A > 0 depending on ¢, p(x) and s such
that

B[00 (X5 + Zna)] —ple) = Z52 10 (1) Q

2. let ¢ € C,fo(Rd;R) be a positive bounded and integrable function with bounded derivatives.
Suppose that [,, o(x)dx =1. Let

1 (y—x e
wh,m(y)zmw( ; ) h=n"% with o> 0,

then we have
lim E oy, (X7 + Zno) = p(a).

Proof. First we give the proof of the first assertion.
e Proof of the first assertion
We write the weak approximation error as follows

E|én.0 (X + Zna) | = p(2) =E |00 (X7 + Zn) | = E |60 (X1 + Zos)|
+E[6ne (X1 + Zns) | — E[one (Xr)]
+E[6n. (Xr)] - plo).

e Step 1:
We study the last term given by: E {(ﬁh@ (XT)] —p(x). In fact, using the regularity of the density of

10



the diffusion X (under the Hérmander conditions), we obtain using the first assertion of the previous
lemma that

h* >
Efone(X0)] =pt0) = 53 37 00t [ TLuaotwdu+on),

where 9%p is the partial derivative of p corresponding to the multi-index 3. Note that for h =
n~% «a > 1/s we have o(h®) = o(1/n).

e Step 2:

The second term is given by: E {gbh’m (XT + Zn,e)] — E[gf)h,,ﬂ (XT)], we have

1 d
E[ 0o (X1 + Zna)| = B[00 (X1)] = 5775 > E(0fdr.s (1)

1 1
g F / (1= N*(Zn0-V)  Gno (X1 + AZyn0) dA.
. 0

Using the integration by parts formula we obtain

1< 1<
E|@ha (X1 + Zns)| = B[ 0 (X1)| = 55735 3 (o) + e 3 / Ona ()i (ply) — pl)) dy

1 1
Tk / (1= N (Zn0:V) Ono (X + AZp0) dA,
. 0

Thanks to the first assertion of the previous lemma we obtain

. On.o(¥) 0k (p(y) — p(x)) dy = o(h*) = o(1/n).

In addition, since Z,, , and X are independent we obtain, after applying the integration by parts
formula four times, that

B (Z00-9) 00 (X0 4 020)| =B [ (2,0:9) 0000+ M)l

= E/ Ohz (y + )\Zn)g) (Zn79.V)4p(y) dy
R

Since ¢y, , is bounded we obtain that

4 C
‘E/]Rd Oh,x (y + >\Zn,e) (Zn,e-v) p(y) dy‘ < AT

The last inequality is immediate using the definition of Z,, and that V*p is integrable, since p
decreases exponentially fast (see Kusuoka and Stroock (1985)) . The result follows.

e Step 3:

Now we deal with the first term given by

An = E|6n0 (X5 + Zno) | = E|én0 (X1 + Z0s) |-
In fact, we have
1
A= [ B(V6na (G + Zua)-UR) i, (10)
0

where (§ = X7+ AN X} — X7). In what follows we use the ideas contained in Clement et al. (2004).
Recalling equations (6), (7) and (8) we have that

1 T ,
An= > E( /O Ve (CX + Zn,o)dNZ7 /0 (Z3) " F(s) (Y —Y,f(spdnk)

J:k=0

11



where Fj (s) = S”J]i"k If we define D° = I (the identity operator) then using the duality formula
(1), one obtains

i / / /n( )DJ {DET om0 (G + Zno) Z2HZ2) T Fli(s)} dudsd) ).

Next, if we apply the stochastic derivative operators one obtains that the above is a sum of terms
of the type

1 T s
E( / / 0" bn (CF + Zn,e)Gg;;vjvkdudsdA) (11)
n(s)

where j, £k =0,...,q and 7 is a multi-index of order 1 up to order 3. The random variables Gﬁjgvj’k
are given by

(DI D23} (22) ' Fiii(s) + DI 233 DL {(Z2) 7 FR(s)})" if r = (a)
(DG (i 2328 ) 7(5)" + (DHG D (Z2Di{(20) Fiis)}) " +
(D

(D

G (DHZp} (20 () i r = (a,0)
DD ) 1P (5))° i v = (a,b, ).

Here a, b, c € {1, ...,d} denote the component of the corresponding vector. Next for each term one
applied the integration by parts formula (2) to obtain that each term of the type (11) can be written
as

1 T s
B (i) = B( | / (GG i G ),
n(s)

where 7+ = (r,1,...,d) and ¢y, . (y f( 0rt2) dthw( ) dt
The proof of the first assertlon follows using the following two lemmas which are proved in the
appendix.

Lemma 3.2. Let g,9, : [0,T] x [0,T] = R, n € N. Suppose that

i) g is continuous on the compact [0,T] x [0,T].

i) sup |gn(s,u) —g(s,u)| — 0.
0<s,u<T n—oo

Then
T u 1 T
/ / gn(s,u)dsdu = —/ g(u,u) du+ o(1/n).
0 Jn,(u) 2n 0

Lemma 3.3. Under the previous notations we obtain
. I ik 1
Bu(r.j.k) = 5= ]E(l{XTM} H,. (X7, G )) du+o(~). (12)
0

with GT:3F is the limit process given by (here Fjp(s) = fa;fx(X1))

(DI D {(Zp}} (Z6) ' Fyi(s) + DE{Zp Y DI {(Zs) ' Fy(s)})" if r = (a)
(DE{Xr})" (Di{ZT}(Zs)’lek(S))b + (DH{ X)) (ZrDI{(Z:) " Fyi(s)})" +
(DX} (D Zr}(Z:)  Fiu(s)” if r = (a,)

(DIAXT D (DX (Zr(Z0) " Fy(s)® if = (a,b,c).

12



The proof of the second assertion follows as the first assertion with the exception that the rate
is not 1/n but 1/n2 if a < 1/2. We mention here that in the proof of the third step above we only
need the integrability of ¢ and that [, ¢(x)dz = 1. Consequently, the results obtained in this step
remain valid in the context of the second assertion of the theorem. O

4 Approximations of non-degenerated diffusions
through the Monte Carlo method

Let X be a hypoelliptic diffusion solution of the stochastic differential equation (3). The goal of
this section is to study an approximation of the density p(x) of X (T') using a Monte Carlo method
together with a kernel density estimate. That is, in order to evaluate p(x):

e One discretizes the diffusion X through an Euler scheme X™ of step T'/n regularized as X" + Z,, ,
Whe}re Zn, is an independent Gaussian random variable of mean zero and standard deviation
n—1/2-0.

e one approximates the distribution y — 0,(y) by the super-kernel ¢, (y) of order s , where h
denotes the window size.

e then finally one estimates E ¢y, (X% + Z,, ») using the Monte Carlo method. This procedure gives
the classical kernel estimator given by

N

an 1 n )

S N = N Z ¢h,$(XT,i + ZTL,H)
1=1

where (X7 ,)1<i<n and (Z;,g)lgigN are i.i.d. copies of X7 and Z, ,. In what follows, we prove a
central limit theorem analogue to a similar result proved by Duffie and Glynn (1995) which gives a
precise choice for the sample size N for the Monte Carlo method. This choice depends on the step
size parameter n from the Fuler scheme and is valid for the regular case. Here we extend this result
to the degenerate case, the problem is somewhat more complex as we have to decide the optimal
values of N and h in function of n.

In what follows we let N =n?, h =n~% where v > 0 and a > 1/s

Theorem 4.1. With the previous definitions and if we let v = 2 + ad then
n(S™N —p(z)) = oG + Cs.

with 0% = ¢3 p(x), G is a standard Gaussian random variable and C; , is the constant in the error
expansion given in Theorem 3.1 and ¢y = [L. |¢(u)|* du.

Proof. We have that

n’

S o (X8 + Z8) ~ Bl (X3 + Zu)] )
=1

n(s™N — p(a) = ——

+ 1 [E[6ne (X + Zn0)] - pl)]-
From Theorem 3.1, we have that

n[E [Oh.2(X7 + Zn)] —p(x)} —2. o

n—oo

. . P v n,h
Therefore it remains to prove a central limit theorem for —+ 1" | (" where

G = { (Xt + 20,) — El6n.a(X5 + Z)] .

13



We start considering the characteristic function of the previous sum

n,h

E e (5= 12 0] = [Eee(er)]”

= {”%(2717 SEIG P+ ECun(w ))}" ,

Here
u3 n,h

|Ec7l,h( )‘ — 6 2’Y 3 CT

To study the above terms we define the following kernels
2 (Y- ) _ 2(0) d
hd¢ QS ( ) ¢2 /Rd d) (U) U

b3.h,2(y) = hd1¢3‘¢3(y;x) ) ¢3 = /Rd |63 (u)| du.

These two positive functions are integrable and integrate to one. Therefore from the second assertion
of Theorem 3.1 we have

¢2,h,z( )

and

]E{@,h@(X;?‘ + ZM)} =p(z) +&(z), i=2,3.

with lim, ;(z) = 0 for i = 2, 3.
Let’s start studying the term given by E |C;"h |2. We have that

EIC" P =B [0 (X3 + Z0)%] — {E[0n0(XF + Z0)] }
= P28 (g0 (XF + Zu)] — {B [000(XF + Zu)] L

Therefore,

B = 2o + Zp@) + { %= 4 o(L) 4w}

where C  is the constant in the error expansion given in Theorem 3.1. Therefore, for h = n™=?,

T

—2—|—ad et a>1/s we have

1 n,h
W]E|<T ? o b2 p(z).

On the other hand, we have that

n,h

B¢

3
= B[00 (X} + Zn) — B[00 (X] + Zn)]|
< E|Gno(X2 + Zno)|” +3E | dno (X3 + Zno)[*|E 1,0 (X + Z0)|

AR dp o (X7 + Zn)|.

Therefore, as before, we obtain that

E|C" [P < W23 g o (X5 + Zno) + 3h™00E o po (X3t + Zin o) [E bpa (X5 + Zy)]
n 3
+ 4’E¢h,x(XT + Zn,e)‘

14



Finally,

B I < B0 (p(@) + 23(@)) + 36 [p(@) + <2@)| |2 +0( L) + p(a)

Cs. 1 3
+4’—n +0(E) +p(x)‘
forh=n"%v=2+ad and « > 1/s. This leads to

1 n,h
Bl P — 0.

— 00

which finishes the proof. O

The interpretation of the above result leads to the previously announced result. That is, in order
to approximate the density p(z) through a Monte Carlo method with a tolerance error of order 1/n,
the optimal asymptotic choice of parameters are h = n~® and N = n?T*? with o > 1/s where s
denotes the order of the super kernel used for the estimation. This leads to the following algorithmic
complexity (that is, number of calculations) of

— _ 3+ad
ijjc—CXnN—CXn a,

for a given C' > 0 (here the unit of calculation is one simulation of a random variable). Therefore
the optimal complexity of this algorithm is given by
C}k\/[c =Cx n3+g

Therefore we conclude that if the order s of the kernel is bigger then the complexity is smaller.

Nevertheless, one should keep in mind that the constant C; | | depends on s and the implemen-
tation of this algorithm for high order kernels carries some problems, such as non-positive estimates
and big constants in the error expansions. Therefore the practical choice of super kernel remains an
open problem from the practical point of view.

5 Asymptotic behaviour of the Malliavin derivative of the nor-
malised error

5.1 Malliavin derivative of the error process

In the following we denote W the d x d-dimensional process defined by

i rnig 2n [t
W=\ [ oviwy o awe.

According to the theorem 3.2 of Jacod and Protter (1998), the process W" converge stably in law
to a bi-dimensional Brownian motion W independent from W and the couple (W™, \/nU™) converge
stably in law to the couple (W,U) where the R%*%-valued process U is solution to

/fHUdYJ fZ/ fojfi(Xs) dWH. (13)

3,j=1
In order to obtain the equation satisfied by the Malliavin derivative of the error process with

respect to W, i =1, ..., q, we derive the equation (6):

DiUN = Z/ Di( dYJ + f1,UM {s<4y + DLGY. (14)
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Note that the above derivative exists due to the regularity properties of the coefficients of the
equation for X. Furthermore, using (7) and (8), we have that

q t
DIGY = fIl (X = X! (< ++ ) A D! [f;j.(xg — X7 )| aYd

and
q

i| fn n k
D (Xu 7777(71«) i| Z s u,j Y Y u)) +fu] fu 7,1{7777(1L)<S<u}
k=0

As D,Z = 0 for Z, which is F,-measurable (u < s), the relation (14) becomes for s < ¢,

DLU} = fL (U7 + XTI~ XD ) +Z / Ji DU AW+ G (15)
with
_ ) q t
Gri=3 / Difr UndYy + Z Di(fo, o) (VE = YE ) dY
j=0 j,k=0""

+Z/ fm P w<s<ay AYZ. (16)

From Theorem 56 p.271 in Protter (1990), it follows that (15) becomes for t > s,

DU = ZI(Z0) LU + X = X ()
t
+Zf{/( “dGTl - Z/ (Z3) ™M fud(G YY), } (17)

5.2 A law convergence theorem for the normalised Malliavin derivative

The Malliavin derivative of UZ is a random vector taking values in the Hilbert space H = L?([0,T7).
The aim of this section is to establish the convergence in law for the sequence /nDUJ.. Note that
the process U, limit of \/nU™, is an adapted process with respect to the filtration of W and Ww.
Using (13), we can compute the derivatives DU, and DU, with respect to both Wiener processes W
and W to obtain that DU, satisfies for 0 < s <t < T,

q t
DzUt f@ zU +Z/ fijZUq;de +Z/ Dlsfv,zUud}/vj
j=0"%

\/» Z DZ fvjfv k)dVVvJ, (18)

gk=1"7"%

or using again Theorem 56 p.271 in Protter (1990), we obtain for 0 < s <t¢ < T that,

t
DsUt = Zt(Zs)ilds,z’Us + Zf{/ ( ldGl Z/ u fu,] ->u}7 (19)
with

G;t_Z/ Dif, U, dY? + \/7 DZ (Fojfoi) AW, (20)

kls
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Theorem 5.1. Let (H{)o<i<T be a continuous sequence of R-valued process (possibly non adapted).
The random vector (v/nUZ, \/ﬁfoT HIDIUR ds) converges stably in law to (Ur, fOT HIDUr ds) where
DUy is the Malliavin derivative of U with respect to W' and solution of (19).

In order to prove this theorem, we use the two technical lemmas below. The proofs of these
lemmas are given in the appendix. (See Jacod and Protter (1998) for related results).

Lemma 5.1. Let (H = (Hfln, ey Hf"n))ogth be a sequence of continuous tight sequence of process
(possibly nmon adapted) taking values in R%. The sequence of random vectors (\/ﬁfOT Hin(Yys —
YJ (S))ds;i € {1,...,d},j €10,...,q})nen converge in probability to 0.

Lemma 5.2. Let (Hy)o<t<T be a continuous R-valued process (possibly non adapted) and let (K]))o<u<t
be a sequence of adapted and continuous processes taking values in R? and such that sup,, E fOT | K% du <

oo. Then the sequence (\/ﬁfOT HS(fOT Ly, (w)<s<u} Kot dAWi)ds)nen converge in probability to 0.

In the following we denote ~
U = /nUJ.
Lemma 5.8. Let H', K', L' be three real processes with continuous processes on [0,T] and let

(fi{u)ogsgugp (Cgfﬁ)ogsgugT be two processes, taking values in R¥?, with continuous trajectories
and such that

T u
]E/ du/ ds(max” su||p+max||C”kH ) oo for p>2,i=1,..,4q.
0 0 J

Then
(U$7/TH;U;L ds,/ K’ Z/ LU de)
0 0
\/>/ Lz Z/ Ci]de;L,kj)dS;izl,...,q)

Jk=1v¢

stably converge in law to

T
i 3 ij J
(lf'fa‘/0 HSU5d87‘/O K Z/ g dW
g e s

jk}l

Proof of Theorem 5.1. Using the relation (17), we have
DU} = ZHZ) LU+ X3 = X))
T a4 4T . o
vzp{ [ @racni -y [ e g ey
S 7:O S
Consequently,
/ HID'UNds = 7 / Hi(Z2) 7 1 (U2 + X2 = X7 o) ds + Z3 I3, (22)
where

, T T
= [ ([ - Z/ (Z0) 7 2 G Y ). ) ds.
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Using (19)
/ H!D'Urds = ZT/ H{(Z)  foiUsds + ZpIk (23)

I%:/OTH;'([( “lact, Z/ ) o (G YY).) ds.

with

Note that
T . .
/ HU(Z]) LU+ X2 = X)) ds—/ H(Z)  fo UM ds + €' (24)
0

with Plim, o0 (v/RE ) = 0, where we use the notation Plim for probability convergence.
In fact, the tightness of \/nU™ (see theorem 3.2 of Jacod and Protter (1998))and the convergence

in probability of limsupy,<p|(Z2)7! ;LJ —(Zs)" " fs;] to O give that

T
P lim \/ﬁ/ HL[(Z2) 7 e = (Zo) 7 fou) UM ds = 0.
0

n—oo

In the other hand, we can write

T
| i e - x ds—z / Hi(Z2) 7 fo, (v Y3 ) ds.

We note that
q T ) . B . - |
HZ/O HI[(ZD) M ffes — (Ze) M faif5(X6)] (Y] — Ynjn(s))dSH <
=0

q
T LA T ORCARTAIACS [ A EREIE

IS0 0Ss<T

and using that the sequence \/ﬁfoT Y7 — Yj,L(s)| ds is tight (since bounded in L!), it follows from
lemma 5.1 that

P lim \FZ/ H(Z) M o fr,d =v? %( ))ds = 0.

Let’s study now the sequence (I7). First, note that using (16) we obtain that
=y [ <Z£>1{A2;zﬂ Uz + 3 BEERYE Y >+03“1{W)gsgu}}inds (25)
=070 s k=0

where

q
D fy i — 1gj=0) Z TuiDsfi

=1

n,t,J
As,’u7

q
Bl = Di(fuifie) = Y=oy Y fia DL file)
=1

Ol = fuifi = 1= O}quzflfzfﬁz

=1
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Now we study each of the three terms in (25). First, the third term in (25) satisfies that
q T T N _
Z‘/ﬁ/ Hﬁ/ (Z:) 1O 1y, (wy<s<uydYds
=0 0 s
tends to zero due to Lemma 5.2. Now, consider the second term.
q T T N 4
Sova [ m [z e - vhavias
§,k=0:jk=0 0 s
tends to zero. Next, if we define Bi4* = D (fujfur)
S i [ [z Bt - B = Y avids
jk=1 s

tends to zero in L'(Q) as W™/ is bounded uniformly in LP(2) and Bpihik — BRIk converges to
zero in LP(Q x [0,7T]?), therefore this term also converges to zero. Then for the remaining

q T (T T o y
S5 [ [ eyt
j,k=1 S

we will apply Lemma 5.3 at the end together with the analysis for the first term of (25). For that
first term, consider as previously

S Vi / o / (Z) N (AT — AT YUY ds,
5=0 0 s

where ALJ = Défu,j o S fuiD! fu1. Again this term goes to zero in L'(£2) as the sequence
v/nU™ is bounded uniformly in LP(Q) and A2/ — A%LJ, converges to zero in LP(Q x [0,T]?). For the
remaining term one applies together with the previous term, Lemma 5.3. O

6 An optimal control variate method for density estimation

The aim of this section, is to analyze the statistical Romberg method as a control variate introduced
in Kebaier (2005) in the case of density estimation. In order to reduce variance in the density
estimation of a non-degenerate d-dimensional diffusion (X;)o<i<r, we will use another estimation of
the same density using less steps and simulation paths.

That is, we discretize the diffusion by two Euler schemes with time steps T'/n and T'/m (m << n).
Under the Hérmander condition, the statistical Romberg method approximates the density p(x) of
the diffusion (X;)o<i<r by

N, Nyom
1 - L0 7 : n 7 m i
N Z ¢h~,3€(XT,i + Zm.ﬁ) + N Z {(bh,x(XT,i + Zn,e) - ¢h’$(XT,i + an,e)} ’
L— nm -]

where X7 is a second Euler scheme with step T'/m and such that the Brownian paths used for X2
and X7 have to be independent of the Brownian paths used in order to simulate X7'. Furthermore

W W
—= Zm,a = —= 0 > 0,

m3+e’

Zn,a =

ns+e’

where W is a d-dimensional Brownian motion independent of W and W.
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In order to run the statistical Romberg algorithm, we have to optimize the parameters in the
method. In the same manner as in Kebaier (2005), we establish a central limit theorem which will
lead to a precise description of how to choose the parameters N,,, N, ,, m and h as functions of
n. The essential difference with the problem studied in Kebaier (2005) is that the variance of the
estimators explode. This issue will be resolved through an appropiate renormalization procedure
and an appropiate decomposition of the derivatives of the kernel function.

In the following, we suppose that for a given 0 < 8 < 2/3 we have

m:nﬁ7 Nn:n’yly Nn,m:n’w; h:n7a7

where 71,72 > 0, and o > 1/s (the parameter s denotes the order of the super-kernel ¢). We set

n'Yl n"f?
1 on’ 71 1 n 7 n? i
Vi = Z Gna (X7 + 236 ) + o Z {¢h,x(XT,i + 2y 5) — Ona( X7, + Znﬂ,s)} .
=1

n
] i=1

Theorem 6.1. Suppose that the first derivatives kernel function ¢ have the following decomposition

0
22 (2) = 614(x) — du(z)
with
$ji >0 and / |¢ji(x)|2dx < 400, for 1=1,...,d, j=1,2.
Rd
Define
JRA
Let

2 d
=Y Cz‘i/jj/(—l)ﬂj/{E[f;z(XT)U%U%/] +T5wp(x)1{9:o}},

g’ =14,i=1

where §,(.) stands for the Dirac delta function and 6, is the Kroeneker delta function. Assume that
h=n"% vy =2+4ad, o=(d+2)a+2—Fand1/s<a<f/(d+2) with 0 < 8 <2/3.
Then
n(V, — p(x)) =G+ C;,

where G is a standard Gaussian and C;  is the discretization constant of Theorem 3.1.

Before proving this lemma we introduce an essential result about the rate of explosion of the
variances of the estimators. In what follows we extend the previous notation to ¢;j; n.(y) = ¢;i(45)-

Lemma 6.1. Under the notation and assumptions of the above theorem, we have

2
1. nﬁia(2+d)E |:¢h,m(X7nﬂ/’ + Zn[i,g) — ¢h,x(XT)] E— 5’2.

n—oo

2
2. W OEYIE (g o (X3 + Zno) = Ona (X + Zyo )| —

n—00

We remark here that the assertion 1 above is satisfied also for 5 > 2/3.

Proof. Let’s prove the first assertion of the lemma.
e Step 1:
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The Taylor formula gives

(Z)h T

d
nf Ur i
¢h,$(XT +Zn5,e) ¢hw XT = g L z—f—Z 3 )
=1

d
1 0? ¢ B i n? i’
ilz:l Ox; a}gj e )(U';L " + Zn‘*,&) (U + Znﬁ )

where Up” = X" — Xr and & € [[(, [X4, X3 + Zi, ,]. Note that

¢, _

H ox; 8; <h (d+2)||¢”||om

(2
where [|¢" | o = max; ;i sUp,cpa (937;?6(::.)/ . Then there exists a constant Cr > 0 such that
s=actd) || ®Pnw it frmfi i R —aCEDB (g
noz = (& )UF "+ Zys,) (Ur " + Zps ) <Crn™ = "h 16" [loo
8951-8151-/ ’ ’ L2(Q)

a(2+d)—

= Crn ™ ¢ |o— 0 as n — oo.

Consequently, in order to obtain the first assertion of the lemma it suffices to prove that

B—a(2+d)
2

—d as n — oo. (26)
L2(Q)

n

d
a x n” .1 i
S 20k (e (U 4 22

- 6l‘i
=1

e Step 2: We have

a(bh x 2 d a(bh x a(bh x n?i 1 n? i’ i
k) X ZZ — E ) X X ) Z’L E) ZZ
—~ Ox; ( T)(U + ) L2(Q) ZZZ:I Ox; (X7) Oxy (Xr) (U "+ nﬁ’e)(UT * "6’9)
L (1
=> > E{ ord ¢ji,h,m(XT)QSj/i/,h,z(XT)Yw,e},
gl =1ii=1

where Yﬁ,‘?e = (UT . Zl )(U;B,i’ + Z;’g’a) and

In.a 1
;Z;L; (y) = E |:¢1i,h,x(y) — ¢2i,h,z(y):|.

Then

-/

2 )7+7 3
Z Z C” 33’ h2+d |: (XT)Y;z’ 9:|

L2(Q) 3,3'=114,i'=1

8 x n” .1 7
Z P, (Xr) (U +Zy.,)

ox;
i=1 B

where 90” ' (y) = (Ciwrjj) ' hebjinu(Y)Pjrirnz(y). Let (f” 3’ ){i,i'=1...d, jj'=1,2} be iid random
vectors mdependent of all other random variables and also between themselves so that their density

is given by go” 37’ (.). Without loss of generality, we assume that

o
&' 77 —0 as. ash—0.

Then
2
B—a(2+d) Z Obn,a (XT)(U}Z% +2i,)
i ’ B
Z Z Civsy (1) B[8, (Xr + €777 ) V5 |
7,4'=14,i'=1
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Applying the integration by parts formula of Malliavin-Thalmaier (see Theorem 4.23 in Malliavin
and Thalmaier (2006) ), we have

B—a(2+d)

8 1,T K 7
S0 % (g g+ 2,

=1 v

2 d

=030 30 52 Gl (1 B[AQu(r + 6 ) o (i)

r=1j,j'=14,'=1

where @ is the fundamental solution of the Poisson equation in the following sense. If A denotes
the Laplace operator and f is some function, then the solution of the equation Au = f is given
by the convolution Qg * f. The explicit expressions for Qg are Q1(x) = x4, Q2(x) = azln|z| and
Qa(x) = aglz|~4=2 for d > 2 and suitable constants aq, d > 2. . To deal with the last obtained
quantity, we need the following technical lemma which is proven in the Appendix.

Lemma 6.2. Let (&, iW'jj' ){ii'=1...d, jj'=1,2} be i.i.d random vectors independent of all other random
variables and also between themselves so that

fff/jj/ —0 a.s. ash—0.
Then forr=1,....d

1. 3Qd(XT_|_§“JJ)_>8,»Qd(XT) a.s. as h—0.

2. Forany 0 << (d—1)71,

146
‘ < 00.

(X467 —a)

As the diffusion X and the associated Euler scheme satisfies Proposition 3.1 and using Proposition
7.1 then a

Y

)HW < o0. (27)

Therefore, using classical convergence results and according to the Lemma 6.2, we only need to
study the behaviour of

n°E [aer(XT —z)Hy (X7, Yi?fje)}

in order to prove the relation (26)

We define the limit of Y}’ o as Yo = (Up + Wil ig—oy) Uk + Wi 1ip—0y)
e Step 3:
We have that

d
H(T) (XT7}/7'I/ 9) 71/0H(7 XT; Z "YXT / DkX] DSY;7 ods
7,k=1

Therefore as s — DX is continuous for s € [0, T], we have due to Theorem 5.1 that

n” H, (XT7 Y;?Lje) = stably
T . -/ -
Yiino Hiy (X7,1) — 2 Z jr/o D{(UpUp ) D5 X7 ds
J.k=1

=H, (XT7Yii’,«9)-
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Due to (27) the sequence n” Hy,) (XT, Yl?,ﬁg) is uniformly integrable and therefore

n zd:E{aer(XT —x)H, (XT, Yi?f[je)}
r=1

2 zd:E{Qd(XT —x)H, (XT, Yéi/,f)) } = E{éI(XT)YWﬁ},

r=1

The last equality follows from an application of the integration by parts formula. As W is inde-
pendent from W, we have that

E(5.00037) =0
E (8. (Xr)WiW7) = E(8.(X1))Ti; = Tp(x)di;.
Therefore .y
E{0,(X1)Yis0 | = B{8,(Xr)ULUf | + Tp(w)L o=y b

Therefore we finally obtain that

— 52
L2(Q) n—oo

)

d
—a ad) ,T n? i 7
pratd |5 S (Xp) (U + Zia,)
i—1 7

from which the first assertion of the Lemma follows.
The second assertion is a consequence of the first. In fact using the tringular inequality, we have
that

B=a(2+d) n nP n®
2 on0X8 4 Za) = 00X+ Zan ), g = |00 XE + Zas) = X)L, | <
B-a(2+d) n
no 2 Ono(X7 + Zne) — ¢h,x(XT)’ L)’
As the first assertion is also valid for 3’ € (8,1). We apply this first assertion noting that a < d—€2 <
dﬁ—+/2 which gives
. a(2+ ) ~
nhjgc” |Ph,e(XT + Zno) = Ono(X7)lL2(0) =
From here it follows that
g, (X 4 2 b'e 0
(z)h,z( T + n,e) - ¢h,z( T)’ L2() njo}o .
From here the proof of the second assertion follows. O
Proof of Theorem 6.1. We have
n1 n2
(Vo =p(@) = o5 1Z<T 1Z<Tl + (En o (XF + Zn) — ()
with
nB.n Y A B 5
CT = ¢h,z(XT + Znﬁ,e) - E¢h,m(XT + Znﬁ,s)
and

~n,h

n nﬁ n ’I’LB
CT - ¢h,z(XT + Znys) - ¢h,z(XT + Znﬁ,e) —E {Qbh,m(XT + Zn,e) - ¢h,x(XT + Znﬁ,s)}'
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From Theorem 4.1 and for v; = 2 + ad we have that

nl

— ZgT = N(0,0%)  with o? = ¢yp(z)

where (bg fRd q§2 ) du. Therefore to finish the proof it is enough to prove a central limit theorem
n’2

T D i1 CT ; » as the random variables QT " are CT independent. As in the proof of Theorem
4 1 we have that

nY2 5

B e 2] =1+ 1 (B P+ E )]

with 3
|Eén,h(w)| < 6n2v2—3 |CT | .

Now we prove that
1 ~n,h 2

2 ~
nY2—2 E |<T | njo:) 7
and
1
nQ,yQ _3 |CT | n:;o 0,

which will give as in the proof of Theorem 4.1

n’?2

~n,h
ny2— 1 Z

where G is a standard GaussianNrahndom variable.
Let’s start with the term E |, |>. We have that

~n,h " b 2 Cgl Cgl 1 2
CT ‘ =E [¢h,I(XT + ZR,G) - ¢l1,m(XT + Znﬁ,e)] - {% - T:B + O(ﬂﬁ)} )
where C? | is the constant given in Theorem 3.1 associated to the kernel ¢. Also from Lemma 6.1
and for 72 (d+2)a + 2 — B we have that

1 ~n,h 9

El¢,

ny2— 2 n— oo

On the other hand,

~n, 3
EIC" < 4B |90 (X5 + Zna) = 0.0 (XE + Zus)

+ | [0n,0(XP + Zuo) = ona(XE + Zno )]

n nP 2
+ 3E ‘¢h,m(XT + Zn,e) - ¢h,,m(XT + Znﬁ,e)

B
x ‘E [6h.2(XP+ Zno) — Sna(XE + Zyo )] ‘

Also using Theorem 3.1 we obtain

s s

JUHRHEY
—_ T hl 0 R
n np nb

2

~n, 8
EIC" [ < 4B |01 (XF + Zua) = 01 (XE + Zus)

C;z G +O(i)‘.

n 77/3
+ 3B |61 (X2 + Zna) = 000 XE + Zs ) o
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Applying again Lemma 6.1 we have that for yo = (d+2)a+2 -0

]. B 2
B (000 (X7 + Zns) = 00X + Zys )| — 0.
n<"z n—o00
Therefore it remains to prove that
1 n Tbﬁ 3
B |00 (X3 + Z) = 0n0(XE + Zus )| — 0. (28)
n<"z n—oo

As ¢y is a Lipschitz function with Lipschitz constant of ¢/h?*! for ¢ > 0, we obtain

1 " e 3 c " nB
WE Gha(XT + Zno) = Sna( X7 + Zps )| < 231,31 1) {E‘XT - X" P+ E|Zp,, — Znﬁ,e‘g
C CT
= 272—3p3(d+1) x nTTB
___cCr .,

n—(d—Da+1-4

The last convergence is true if 0 < o < 5/(d+2) and 0 < 8 < 2/3. This finishes the proof of the
Theorem. U

Like in the case of the Monte Carlo method one can interpret the previous result as follows: In
order to approach the density p(z) using a control variate method of the Romberg type with a global
tolerance error of order 1/n, the parameters needed to use the algorithm are h = n=®, Ny = n?td
Ny = nld+2)e+2-8 with 3/(d + 2) > a > 1/s where s denotes the order of the superkernel ¢.
Therefore the complexity (number of calculations) needed for this algorithm is

Crs = C x mNy + (n+m)Ny

~ O x pfredt? L pld+2)a=8+3 = where [/(d+2) > a > 1/s.
For g = % + a we obtain that the complexity of the Romberg method is given by
Chg ~C x p3td+ne

Here note that the optimal complexity for the Monte Carlo method is given by

Chro ~C x pitad,

Therefore the Romberg control variate method reduces the complexity by a factor of of order n'/2=¢.
Therefore taking into account that 3/(d +2) > a > 1/s we see that if one uses super-kernels of
order s > 2(d + 1) we obtain a theoretical asymptotic optimal parameter choice of the method.

7 Appendix 1

In this appendix we prove some estimates that are useful to estimate the norms of the weights in
the integration by parts formula. In order to simplify the notation we suppose that c is a positive
constant being able to change from a line to another.

Lemma 7.1. Under the above notations, we have that for all k > 1, p > 1 there exists positive
constants ko, p1, p2, 71 and 2 and a positive constant c independent of n, 0 and F' such that

1tz ) lew < cll(det Fryz, ) THIHIE + Znoll}2 ., (29)
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Proof. The proof is done by induction on k. The case k = 0 is a direct consequence of the Cramer
formula for the inverse of a given matrix.

In general, as D" {&F+ Zn. ﬂgi Z, 9} = 0 for any multi-index r, we have that

~—1 ~—1 13 k~ ~—1 1
D" (7F+Zne Z Z (Vrtz,,) D"~ 7F+Z eD (Vriz,,)"™
i,5=1 k€ A(r)—{r}

Here A(r) denotes all the subsets of indices of any order taken from elements of r. Then the result
follows from the inductive hypothesis. O

Proposition 7.1. Let G € D®(W), then

1. Let F € (D®(W))? such that F + Z,, , is a non-degenerate random vector. For p > 1 and for
all multi-index m we have

1

| Hy (F, Gl < cl|Gllp (et Fosz, )7 | IFIG: + —7
(510

where c is a constant depending on p, m and d, whereas v, ', a, a’, b, ', | and l' are param-
eters depending on m, p and d.

2. Let [y, Fy € (D®(W))? such that I} + Zno and Fy + Z, , are non-degenerate random vectors.
For a fired multi-index m, any k > 1 and p > 1, there exists c, a positive constant depending
on p, m and d, whereas k;, s;, Bi, pi, Vi, for i = 1,2, ko, so, Y0, ko and 5o are parameters
depending on m, p and d such that

[

[ Hp(F1, G) = Ho(F, G| < 18y

pi

? ’/Zz 61)(1 + ”(det :)/Fz'*'zn‘e)i

x|l = 1G5,

|k0 So

3. Let F € (D®(W))? be a non-degenerate random vector. For a fived multi-index m, any k > 1
and p > 1, there exists a constant ¢ and parameters v;, k;, u;, for i = 1,2,3 depending on p,
m and d such that

I Hy(F, G) = Hyn(F, G)|1p < |Gl L+ IF + Zinolis )1+ [I(det ez, )70

n( +0)n |

Proof. Again the proof is done by induction on the length of the multi-index m. In fact, using the
definition of H and the continuity of the adjoint operator ¢, we have

d
IH(E Dy < DD IDE + Zng) Hy ) (F,G)Friz, )7 s,

rem j=1

Then the proof finishes by using Hélder’s inequality, Lemma 7.1 and the inductive hypothesis.
The proof of the second assertion is as the previous one, done by induction on the order of the
multi-index m
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| Hy (F1, G) — Hp(F, G ||k,p<ZZHD Fi = B Hy 0y (F1LG) Gz, )" et
rem j=1

d
+ 3 D ID(Fa + Zno) (Hp ) (F1, G) = Hy (03 (Fo, D) (35 2, ) k1

rem j=1
d ~ .~ . .
+ 3 ST UD(F + Z00)? Ho oy (Fo. O (G, )7 — Gtz ) e 1
rem j=1

For the first term one applies the Holder’s inequality, the first assertion and Lemma 7.1. For the
second, Holder’s inequality, Lemma 7.1 and the inductive hypothesis. For the third, note that

d

Frtz, )7 = Oz ) = D Gz, )™ | Ot 2,0)™ = etz | (R 2, )7 (30)
k,k'=1

Note that 5. ., =7, + Vo and Vrgtzny = Ve T Tz - Consequently, it follows that

’

(Yot 20.0)™ = (AR, 42,,)" = (DFy — DFf,DF} )y + (DF{,DF} — DFf )y

From here the result follows.
In the same way as before, we prove the last relation for an index m. We have

m

H,(F.G) ~H,(F.G) = Y 6(GDF/[(3:], )™ = (5:)™]).

1

+

[N

d
+6 Z g(G(’Y;iZn,e )UDWTJ“>

n i=1

Therefore the result follows applying (30) and the same arguments as in the previous proofs of
assertions 1 and 2. O

8 Appendix 2

Proof of Lemma 3.2. We have that

T u T u
/ / (s,u)dsdu —/ / g(s,u) dsdu+/ / (gn(s,u) — g(s,u)) ds du.
0 Jn,(u) 0 Jnn(u)

In virtue of i) we obtain that R,, = o(1/n). Hence, we have

T pu
= / / g(s,u)dsdu
0 N (u)

-/ " gl )= ) du + / " [ (ot~ gs.w)as

0 0 M (u)

As g is uniformly continuous we have that for any € > 0 there exists n. € N such that for all n > n,
we have

sup sup  |g(u,u) —g(s,u)| <e.
0<u<T |s—u|<1/n
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Hence,

‘/OT/U (g(u,u) — g(s,u)) ds du| < =.

M (u)

3

In addition, we have

I = / (1 10) (. — 70 (1)) dl

= [ om0~ )~ [ ot ma(00) ~ o0, 0] - )

0

For the same reasons as before, for n > n. we have

S|m

| /OT [9010(), 70 () = 9(01,) | (u = 1 () dut| <

Therefore, we have
T
= [ gmw) (@) = () du
0

= LS gmm)
=0

1 T
= % ; g(nn(u)vnn(u)) du
1 T

T
=5 | g(u,u) du + %/0 (g (), 7 (w)) — g(u,u)) du.

Similarly as before, for n > n. we obtain

i’/oT(gmn(u)a Mn(w)) = g(u,u)) du’ =

S|m

We deduce that -
1
I, — %/0 g(u,u) du’ <e.

Since € > 0 is arbitrary, we conclude that

lim n
n

1 T

n=5- ; g(u,u) du+ o(1/n).

Proof of Lemma 8.3. In order to prove the relation (12) is enough to prove that

sup [App(u,s)| = sup A} (u,5) + A2 (s,u)] =0
lu—s|<6 lu—s|<s ’
with _
ATIL,h(u7 5) =E {(d)h,m (C;:L + Zn,s) - l{XT>m}) HmJr (XTa GZ’J’k)}
and

A2 5 (5,10) 1= E [0 (G5 + Zno) {Fls (G, GLt™) = Hoyps (X, G) |

Since for every p > 1 we have that
Lp
wh,w (CKL + Zn,e) — 1{XT>z}
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and
sup HHm+ (XT,G”’J’ )Hp < 00
we0,T
then we deduce that
sup |A7117h(u,s)| — 0. (31)

ju—s| <6

In addition we have

sup |A2 h(S u)l <c sSup HI:I771,+ (C;aGZ:;]k) - HmJr (XT7GZ7j7k)H

lu—s|<6 Jlu—s|<é 2

sup |Ai7h(s,u)| <c sup HI:Im+ (CQ,GZQJ’“) —H,,+ (Cf,GZ’j’k)H

lu—s|<6€[0,T] lu—s|<d 2

s sup [[Bl (6 G%) — By (%7, G5
w€[0,T] 2
+c sup HHm+ (X7, GIIF) — Hm+(XT,GQj”")H .

u€[0,T] 2

Note that

B (G Gu™) = B (68,605 |, = [ (63 G = @) |
Since (Y + Z, , is non-degenerate, we conclude using the second assertion of proposition 7.1 and
properties (4) and (5), specific to the diffusion X and its Euler scheme X", that

sup HI:ImJr (C;Lv G&?Lk - G:lj’k) H - Oa (Tl - OO)
lu—s|<é 2

In the same way, since (Y + Z,, , and X7 are non-degenerate, we conclude using the second assertion
of proposition 7.1 and relations (4) and (5), that

sup HH+ (CR, GTI*Y = Hppe (X, GTIF) H 0, (n— o0).
uw€[0,T 2

Finally, according to the third assertion of proposition 7.1 we obtain that

sup HH+ (Xr, GLi*) — ,,ﬁ(XT,G;Jv’f)H 0, (n— o).
uEOT 2

We conclude that
sup |A2 4 (u,s)| — 0, (n— o).
|lu—s|<8 '

O

Proof of Lemma 6.2. The case d = 1 is trivial, so we will assume for the rest of the proof that
d > 2. Tt is clear that the function 0,.Q is continous except at the origin. Since the random vector
&' 7’7 — O as h — 0 a.s., the first assertion of the lemma follows. Now we prove the second assertion.
We have that
E|0,Qu(Xr + &7 — )" = B{|0,Qu(Xr + 177 — o) }
| ’I‘Qd( T+§h )‘ ‘ Qd T 5 )’ {|X +§Zl]j SC‘ §2|I‘}

+ B{|0,Qa(Xr + 77 — )| (32)

{1Xr + €97 — 2| > 2Iw\}}'
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e Step 1: For the first right term of the previous equality, we have

ii 146
{|8 Qi(Xr + &, i’ )| {1 X7 +£“‘7] x|§2\x|}}

:/|aer<y Dy < oy

where phZ 77" denotes the density of the random vector X7 + f” 77" 1f we have that

sup  sup  pi i (y) < Co,
h |y—a|<2lz|

then it follows immediately that

{|a Qu(Xr + €797 — )|+

:/ |a Qd |1+5 y
ly|<2|=|

5 .
As ’&Qd(y)‘H < \y\“*c% Therefore we obtain

E{]0,Qa(Xp + €797 — )" <
Sup {’ Qd T+£ $)| {IX +£Z¢JJ $|§2\x|}} o0,

for 6 < (d—1)71!

e Step 2: Now, we have to prove that
sup  sup p“ s’ (y) < Cy.
h |y—=z|<2|z|

We have that

% 1 %
phn(y):Ziffl/ o197 (u— y)p(u) du,
'jj’ JRA

where p denotes the density of Xp. Then it follows that

o 1
pp 7 (y) < sup P(U)r/ ‘PZQJ«J (u—y)du
u€Re ii'jj’ JR4

= sup p(u).
u€R?

Using the smoothness of p the result follows.

e Step 3: We denote by ) )
Iy ={1<i<d|y" —2'>0}

and 4 .
I_={1<i<dl|y’"—2" <0}

If |y — x| # 0, we have that for any v > 0 that

— \I\
p(y)—IE{( 1;[1{)(1—30 >yt — 2 >O}X1_I[1{X]—x]<y—a:]<0}
i€l gel—

[2(Xr —al > ly—al)]°

IN

Hg,.. a(Xr, 1)‘

L2 ()

1
[E|Xr — 27
o AN

ly — x|
Cz,d
Ty — x|

L2(Q)

30

1 i S@/ 0rQaly
{| X7 + €777 m|S2MH} IwwK%M‘ ol

(y)dy  (33)

. x)‘1+5 dy

(34)

.d) (XTa 1)



e Step 4: Now we are able to deal with the second term of equality (32). We have

E10,Q4(Xp + €797 _ 1)|"*01 =
{’ Qd( T gh .’L')| {‘XT+£;LL]] —.’E| >2‘Jf|}}

146 i’ 55’
Qaly+z—x)| 1 _ () s (2)dzdy.
/RdeJ | {ly+2z—z| > 2Jz|} h,
It follows that

E{ 6r X + ii/jj/fx 1+51 i }
rQuXr &7 =) Ty L g 5 o)

= 0,Qu(y)| "1 _ W31 (N dz d
/Rdxw’ Qa1 > oy — 2 + @)l (2)dzdy

146 e
= 0rQaly)| 1 p(y — O0h + 2z)p" 77 (6)db dy
L] gy > 20y
e First case:
If |y — Oh + x| > |y + x|/2 then using the step 3 result’s we get

Ca:,d < 209:,(1
ly —0h+a| = |y +az

p(y — 0h + 2z) <
Therefore

1446 iilqq’
/RdeJaer(y” Lyl > 2lef} Hly — 0h + | > |y + o 24Py — 01+ 20) 2 (0)d0 dy

1+06
o,
< QC’m,d/ 7’ Qd(y)‘ d
i>2z 1Y+

146
gzcz,d/ (Y 16,Qa(y)|
[y]>2]z|
’1+5

1— L]’ ly[”
< 2.Y+1Cw d/ |aer(y)
ly[>2]z|

dy

dy < oo since 6> ——

[yl
ly|Y d—1

e Second case:
If |y — 0h + x| < |y + x[/2, then we have

149 i’ i
/RdeJ@TQd(y)’ Yyl > 202} Hly — 00+ 2| < |y + «|/2)PW — Oh+20)p" 7 (0)d0 dy

1446 iilid!
S/H@W'arc?d<y>| iyl > 2lal} L {ly + 2l/2h < 10] < 3|y + 2| /2n}PY — Oh +20)p" 7 (6)d0 dy.

Using the assumption ¢77'(9) < ¢/|0|", for a given constant ¢ > 0 together with the relation (34),
we obtain

1+6 ii! i’
Lo QU L1 5 21y Ly — 01+ < fy -+ 2y~ 00+ 2065 @0y

Lyteoey p(y — Oh + 2z)
< L ply — 6h + 20) |
<exCq /Rdxw {Iyl} Lj0) > al/2n, |yl < 2|} o 0y
— 0h + 2x)
<G ply — Oh + 2x)
< Cm,d/RdXRd L(10] > |z[/2n} Tk o dy

1
=C d/ ——df [ p(u)du < oo, where C., , is a positive constant.
“Jio1>lel2n 07 Jra 7

Which completes the lemma proof. O
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9 Appendix 3

In the following we prove lemmas 5.1, 5.2 and 5.3.

Proof of Lemma 5.1. The proof uses the same ideas of Jacod and Protter (1998). Note that for
0 <t <t <T, the sequence (\/ﬁﬁt (Wi — Wf] () ds) . tends to 0 in L%(Q). In fact, we have
" ne

t ) 2 c
i <=, ¢>0.
E(/t (Wl — 77())Cls‘) <3 c>0

Therefore we have

Mn (5)

T .
/ HE" (Wi - W)
0 s

T T

))ds:/ (H™ = Hyr ) (Wi —w? (S))ds+/ HLM (W] =W )ds
0 0

with

Hi,n ZH 1 ](k—l)T KT+

m m ’m

It follows that

T
7, n J im _ rrin j 7
[ v ] < 0335T|Hs i) [ w2 )
i,m ¥
+‘/ Hi (Wi =W} ) ds|
Since the sequence /n fOT (Wi — WJ ()| ds is tight, we deduce easily the lemma. O

Proof of Lemma 5.2. We denote by

n __ ’ T n 7
Ho K" = HS 1{nn(u)<s<u}Ku qu ds
0 0 o

and suppose in a first time that H is deterministic then
T T _
HOK” — / K:Z’ (/ 1{1771(u)§s§u}HS dS)dVVﬂ
0 0
T u )
- / Kg( H, ds)dwg.
0 1 (u)

It follows that

u

T 2
1 o K200, :E/ o2 ( [ Hods) du
0

nn(u)
T
< |HRE / (K — ()2 du
‘H|2 T2

T
o) n\2
< 72E/0 (K3)* du,

n

and consequently (/nHoK™),cn tends to 0 in L?(Q). Now let H to be arbitrary. We have that H €
%€([0,T)), so there exists a sequence H'€ €([0,T)) of piecewise functions such that |H — H'|, — 0
and |H'| <1 a.s.. We have

T T
(H—H")o K" < |H—-H'| / ‘/ Ly, w<s<uy Kol AW | ds.
0 0
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It is obvious that the sequence

T T |
(\/ﬁ/ ‘/ Lo, (w<s<uy Ko AW
0 0

is tight, (because it is bounded in L?). Consequently:
H ~ H'ls > )

]P’(\/H|H<>K”\ > z—:) < (
<P 3%

HP’(\/H/ ’/ L(n, (wy<s<u Ko AW,
0 0
+P(\/H|Hl<>K"| > g)

ds)
neN

Val(H — HY) o K| > )+]P’<\/E\Hl<>K”|z§)

dszé)

For a fixed | and for a good choice of § and n we obtain that for a given n > 0,

hmsupP<\f|H<>Kn| 2 5) < 77+P(‘H H'joo > 255)

n—oo

Since 7 is arbitrary and |H — H'|o — 0 a.s., we conclude that

1imsup1P(\/ﬁ|H<>K"\ > g) —0.

n—o0

Which completes the proof. O

Proof of Lemma 5.3. We split the proof of the lemma into two steps
e Step 1: We suppose first H’, K’ and L’ are deterministic. Then we have:

T a
/ Ki (Z / ¢i,omn dWJ ds = / / Kicy, ds Urdw?
0 j=1"$
a T _
=> / KAy dwi
j=1"0
with K% = fo K’f” ds. In the same manner:

/ Lz / Z Cz]k Wnkj ds = Z/ L1]k Wn kj

S 4k=1 j,k=1

with Lk = f Lt C”kds It remains to prove that

T o q T o ) q T_” _ )
UT/ H;Us”ds,Z/ Kigm qwi, Z/ ij"’dW,f“’”)
0 j=170 Gk=1"0

stably converge in law to
T a T
(UT7/ H;Usds,Z/ Kiu, dwi, Z/ Lisk W’”
0 j=170 j.k=1

Since the process H' is deterministic and the processes K% and L** are continuous adapted we
deduce, using an approximation argument, that proving the convergence above can be carried into

proving that > | Z;V;™ stably converge in law to >\, Z;V; where Z1, ..., Z,, are random matrices
and (V{*,..., V") are random vectors converging stably to (V1,...,V,,). Thisis a classical property of
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the stable convergence. In fact, (Z, Z1,...,Z,, V*,..., V") converge to (Z,Z1,...,Zu,V1,..., Vi),
it follows that (Z,>"1", Z;V;") stably converge in law to (Z,> !, Z;V;), (see Jacod and Shiryaev
(2003) chapter VIII §5.c and Theorems 2.3 and 3.2 in Jacod and Protter (1998)).

e Step 2: Suppose now H*, K* and L’ are arbitrary. Since the processes H?, K* and L’ have
continuous trajectories on [0,T], we can approach them by three piecewise functions H}, K}, Lj. In
the following we introduce the following notations

T T T 4

mor= [Cmoras weot = [CE( Y eaomaw)as
0 0 s j=1
(L |Wn k‘J / La / Z CUk de k])ds

S 4 k=1

We have ||H'.U™ — H}.U"|| < |H" — H}| fOT |UZ||ds where | |« denotes the uniform norm on the
space €([0,T]). Similarly, we have

¢7, U dwi||ds

T
K % U™ = Ki % U™ < |Ki—K;‘|OO/ |
0

and

|(LH W 4) = (W) < L= Ll

ik girn,kj
ik QU Hds.

Consequently, in order to prove the statement of the lemma, we have just to prove the tightness of

T —
/ |G| ds.
0

T 4 o ]
> &, Urdwy
1

and Q) = Clak aw || ds

The tightness of the sequence fOT |U2| ds, follows from the convergence of the law of U™. For P!

and Q},, this is a consequence of the hypothesis on £, ;J]f In fact :
1Pallszor < Zf;zuUﬁ ET

ds

- [ ||25;JuUs| )
<\f /ds/ duHZg;Jng )
<ovT(s [ ] [ asmax i P iz) ",

Using that suanfoT |U9du < oo for ¢ > 1 and that

T u
E/ du/ ds(maXHfgqu) <oo for p>2.
0 0 J

we obtain that
sup || Ppll2 < oo.
n

In the same manner we obtain that sup,, [|@nl|z2() < oo which completes the proof of the lemma. [
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