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We study the problem of density estimation of a non-degenerate di�usions

using kernel functions. Thanks to Malliavin calculus techniques, we obtain

an expansion of the discretisation error. Then, we introduce a new control

variate method in order to reduce the variance in the density estimation. We

prove a stable law convergence theorem of the type obtained in Jacod-Kurtz-

Protter, for the �rst Malliavin derivative of the error process, which leads us

to get a CLT for the new variance reduction algorithm. This CLT gives us a

precise description of the optimal parameters of the method.

1 Introduction

In this paper we estimate the density p(x) of a non-degenerate d-dimensional di�usion (Xt)0≤t≤T

using an Euler scheme Xn of time step T/n. That is, if the di�usion X satis�es the Hörmander
condition (see Bally and Talay (1996)) then one obtains the following expansion for the density
di�usion

p(x) = pn(x) +
C

n
+ o(1/n),

where pn(x) is a regularized density of the Euler scheme Xn.
In Kohatsu-Higa and Pettersson (2002), a simulation study together with a variance reduction

method were introduced. The procedure used can be described as follows.
Consider an integrable continuous function φ : R → R such that

∫
R φ(x)dx = 1 and de�ne the

kernels functions

φh,x(y) =
1
h
φ
(y − x

h

)
, h > 0 et x ∈ R.

Note that φh,x → δx as h → 0, in a weak sense, according to the assumptions on the function φ.
The idea is then to approximate the density p(x) = Eδx(XT ) by Eφh,x(Xn

T ) where h = n−α, α > 0.
At this level, a �rst problem arises. That is, the problem of evaluating the weak error given by

εn = Eφh,x(Xn
T )− p(x).

Kohatsu-Higa and Pettersson (2002) proved that |εn| ≤ C/n if α ≥ 1.
When using this approach a second problem arises, it concerns the problem of the explosion of

the variance of the r.v. φh,x(Xn
T ) when using a Monte Carlo method. In their paper, Kohatsu-Higa

and Pettersson (2002) propose then instead the use of the integration by parts formula together with
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a localization method in order to reduce the variance of the method. The asymptotically optimal
localization function is found to be of exponential type.

In fact, using the integration by parts formula, Kohatsu-Higa and Pettersson (2002) obtain that

Eφh,x(Xn
T ) = E

(
ψh,x(Xn

T )Hn

)
,

where ψh,x is the primitive function of φh,x and Hn is the weight given by the Malliavin calculus.
Using this idea, Kohatsu-Higa and Pettersson (2002) construct an e�cient control variate which

reduces the variance in the Monte carlo estimation of E
(
ψh,x(Xn

T )Hn

)
. The disadvantage of this

method is that the computation time of their algorithm is higher than that of classical methods
using kernel density functions.

In this work, we propose an alternative approach using the kernel estimation method through the
calculation of Eφh,x(Xn

T ) together with a control method based on the statistical Romberg method
(see Kebaier (2005) for more details on the regular case). The method uses two Euler schemes Xn

T

and Xm
T withm << n as follows. Simulate a large number, Nm, of sample paths with the coarse time

discretization step T/m and few additional sample paths of size Nn with the �ne time discretization
step T/n.

In this case, in contrast with the regular case studied in Kebaier (2005) there is still explosion
of variances. This will be controlled through an appropiate renormalization and a decomposition of
the derivatives of the kernel. We will see as a �nal consequence of Theorem 6.1 that the kernels, as
proposed before, in general do not lead to variance reduction. To obtain this variance reduction, one
has to consider a subclass of kernel functions known as super kernels of order s where s > 2(d+1) (see
De�nition 3.1). If fact, otherwise there is no variance reduction with the control method proposed.

As these kernels do not correspond with the original ideas of Bally and Talay (1996), we start
by �nding the expansion of the weak error εn. That is, we prove that

εn =
C

n
+ o(1/n)

(see theorem 3.1).
As the weak error εn is of order 1/n, we will suppose that all the parameters depends on the time

step number n. Hence, we set h = n−α, 0 < α < 1/2 (the window size of the kernel function φh,x),
m = nβ , 0 < β < 2/3 (the time step number of the auxiliary Euler scheme), Nm = nγ1 , γ1 > 0
and Nn = nγ2 , γ2 > 0, where Nm denotes he sample size for the coarse estimation of Eφh,x(Xn

T )
by 1

Nm

∑Nm

i=1 φh,x(Xnβ

T,i), whereas Nn denotes the sample size needed for the �ne estimation of

E
{
φh,x(Xn

T )− φh,x(Xnβ

T )
}
by 1

Nn

∑Nn

i=1{φh,x(Xn
T,i)− φh,x(Xnβ

T,i)}.
Our aim is to �nd the optimal parameters leading to an optimal complexity of the algorithm.

In order to obtain these optimal parameters we extend a result of Jacod and Protter (1998) for the
asymptotic behavior of the law of the �rst Malliavin derivative of the error in the Euler scheme.
Using this extension we prove a CLT, for our algorithm, giving us a precise description of the choice
of the optimal parameters m, Nm and Nn,m.

The usual version of the integration by parts formula of Malliavin Calculus in dimension d, see
Nualart (1995) (p.103, 2006 edition) is based on using d times the integration by parts formula.
Although it is feasible to prove the stable convergence of the high order weights, we propose instead
to use a new integration by parts formula introduced by Malliavin and Thalmaier (2006) which
signi�cantly simpli�es the proof in the general multi-dimension context.

The optimal parameters given by the CLT lead to an optimal complexity of the algorithm of
order n

5
2+(d+1)α which is less than the optimal complexity of the Monte Carlo method which is of

order n3+αd, where α ∈ (0, 1
2 ) is the parameter tuning the window size h and d is the dimension of

the problem. The gain obtained here is of order n
1
2−α. Consequently, we have an exact mathematical

estimate of when and how much variance reduction can be achieved. Whereas, there is less reduction
than in the regular case due to the explosion of the variance of our estimators (see section 6 for more
details).
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The remainder of the paper is organized as follows. In the following section, we introduce some
basics of the Malliavin Calculus. In section 3, we study the discretization error εn. Section 4 is
devoted to prove the CLT for the classical Monte Carlo method. In section 5 we prove a stable
convergence theorem for the �rst Malliavin derivative of the error in the Euler scheme. In the last
section we prove a CLT for the statistical Romberg algorithm and we give the optimal parameters
leading to an optimal complexity of the method.

In the Appendices we give the proofs of technical lemmas used in the proofs.

2 Malliavin Calculus

2.1 Main de�nitions and properties

We follow the notations, de�nitions and results of Nualart (1995). Let (Wt)0≤t≤T be a q dimensional
standard Brownian motion de�ned on the �ltered probability space (Ω,F , (Ft),P) where (Ft)0≤t≤T

denotes the standard �ltration. D denotes the Malliavin derivative which takes values in H :=
L2([0, T ]; Rq). The k-th order derivative of F for k ∈ {1, ..., q}N is denoted by DkF taking values in
H⊗ |k| and given by

Dk
t1,...,t|k|

F = Dk1
t1 . . . D

k|k|
t|k|

F

where |k| denotes the length of the multi-index k and ki, i = 1, ..., |k| denote its elements.
Note that the operator Dk is closed. For p ≥ 1 and k ∈ N, we denote Dk,p(W ) the closure of the

space of smooth random variables with respect to the norm ‖ · ‖k,p.
We denote D∞(W )=

⋂
p≥1

⋂
k≥1

Dk,p(W ). For F = (F 1, . . . , F d) ∈ (D∞(W ))d, we introduce γF the

Malliavin covariance matrix of F given by

γij
F = 〈DF i, DF j〉H , 1 ≤ i, j ≤ d

2.2 Duality and integration by parts formulas

Let δ denote the adjoint operator of D, which is also called Skorokhod integral. The operator δ is
closed, we denote by Dom(δ) its domain (see for example De�nition 1.3.1 of Nualart (1995)). Note
that if u ∈ L2

(
[0, T ] × Ω; Rq

)
is an adapted process, then (see proposition 1.3.4 Nualart (1995))

u ∈ Dom(δ) and δ(u) coincides with the Itô integral.
If F ∈ D1,2 and u ∈ Dom(δ) then Fu ∈ Dom(δ) and we have

δ(Fu) = Fδ(u)− 〈DF, u〉H .

In such a case we have the following duality formula

E
[
〈u,DF 〉H

]
= E

[
Fδ(u)

]
. (1)

In the following we give the de�nition of a non-degenerate random vector.

De�nition 2.1. A random vector F = (F 1, . . . , F d) ∈ (D∞(W ))d is said to be non-degenerate if
the Malliavin covariance matrix of F is invertible a.s. and

(det γF )−1 ∈
⋂
p≥1

Lp(PW ).

For a nondegenerate random vector, the following integration by parts formula plays a key role.
(For a proof of the following proposition see Nualart (1998)).

Proposition 2.1. Let F ∈
(
D∞(W )

)d
be a non-degenerate random vector. Let f ∈ C∞p (Rn), and

let G ∈ D∞(W ). Fix k ≥ 1. Then for any multi-index m = (m1, . . . ,mk) ∈ {1, . . . , d}k we have

E
[
∂mf(F )G

]
= E

[
f(F )Hm(F,G)

]
,
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where ∂m = ∂m1 . . . ∂mk
and the random variable Hm(F,G) is de�ned inductively as follows

H(i)(F,G) =
∑d

j=1 δ
(
DF jG(γ−1

F )ij
)

Hm(F,G) = H(mk)

(
F,H(m1,...,mk−1)(F,G)

)
.

2.3 An extension of the integration by parts formula

In the following work we will deal with a d-dimensional di�usion X = (X1, . . . , Xd) driven by a q-
dimensional Brownian motionW = (W 1, . . . ,W q). In order to regularize the Euler scheme associated
to the di�usion X, we will employ d additional noises, corresponding to X1, . . . , Xd. In order to
do that, we consider a d-dimensional Brownian motion W̄ = (W q+1, . . . ,W q+d), independent of
W = (W 1, . . . ,W q), and we set

W̃ = (W, W̄ ) = (W 1, . . . ,W q,W q+1, . . . ,W q+d).

Therefore our random vectors are de�ned on the Wiener space of dimension r = q+d, but we should
distinguish between the two Brownian motions W et W̄ which play di�erent roles in our calculation:
W drive the di�usion whereas W̄ is an additional noise used for the regularization. Hence, by using
again the notations of the preceding subsection we obtain

D̃ = (D, D̄) = (D1, . . . , Dq, Dq+1, . . . , Dq+d)

and for ũ = (u, ū) = (u1, . . . , uq, uq+1, . . . , uq+d) we have

δ̃(ũ) = δ(u) + δ̄(ū).

The norms ‖F‖k,p are norms de�ned on Dk,p(W̃ ), thus it involves all the derivatives D̃ = (D, D̄).
Similarly, the Malliavin covariance matrix of the random vector F is given by

γ̃F = 〈D̃F, D̃F 〉.

The auxiliary noise, that we will use, is given by the random vector

Zn,θ :=
W̄T

n
1
2 +θ

, θ ≥ 0.

In the following, we introduce the random vector F = (F1, . . . , Fd) which depends only on W =
(W 1, . . . ,W q) and the random variable G which depends only on W̃ = (W, W̄ ). The proposition
below, proved by Kohatsu-Higa and Pettersson (2002), gives us an explicit writing of H̃i which
appears in the integration by parts formula.

Proposition 2.2. Let F ∈
(
D∞(W )

)d
be a non-degenerate random vector. Let f ∈ C∞p (Rd), and

let G ∈ D1,2(W̃ ). Fix k ≥ 1. Then for any multi-index m = (m1, . . . ,mk) ∈ {1, . . . , d}k we have

E
[
∂mf(F + Zn,θ)G

]
= E

[
f(F + Zn,θ) H̃m(F,G)

]
, (2)

where the random variable H̃m(F,G) is given by

H̃(i)(F,G) =
d∑

j=1

δ̃
(
D̃(F + Zn,θ)jG(γ̃−1

F+Zn,θ
)ij

)

=
d∑

j=1

δ
(
G(γ̃−1

F+Zn,θ
)ijDF j

)
+

1
n

1
2 +θ

d∑
j=1

δ̄
(
G(γ̃−1

F+Zn,θ
)ijD̄W̄ j

T

)
,

H̃m(F,G) = H̃(mk)

(
F, H̃(m1,...,mk−1)(F,G)

)
,

with δ̄ and δ̃ are respectively the adjoint operators of D̄ and D̃.
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3 Weak convergence of the approximate density

Let (Xt)0≤t≤T
be a Rd-valued di�usion process which is the solution of the following stochastic dif-

ferential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x ∈ Rd, (3)

where W = (W 1, . . . ,W q) is a q-dimensional Brownian motion de�ned on the �ltered probability
space B = (Ω,F , (Ft)t≥0, P ), where (Ft)t≥0 denotes a �ltration satisfying the usual conditions.
The functions b : Rd −→ Rd and σ : Rd −→ Rd×q are of class C d+3

b . In what follows we denote for
0 ≤ k ≤ q

f(Xt) =


b1(Xt) σ11(Xt) . . . σ1q(Xt)
b2(Xt) σ21(Xt) . . . σ2q(Xt)

...
...

...
bd(Xt) σd1(Xt) . . . σdq(Xt)

 , dYt :=


dt
dW 1

t
...

dW q
t

 and Y k = Yk+1, fk :=

f1,k+1

...
fd,k+1

 .

Therefore the stochastic di�erential equation (3) becomes:

dXt = f(Xt)dYt.

The Euler scheme, denoted byXn, associated to the di�usionX and with discretization step δ = T/n
is de�ned as:

dXn
t = f(Xn

ηn(t))dYt, ηn(t) = [t/δ]δ.

The next result gives bounds on the error of the Euler scheme in the sense of ‖ ‖k,p-norms. For
a proof of this result see Kusuoka and Stroock (1984) and Hu and Watanabe (1996).

Proposition 3.1. With the previous notation, the following two properties are valid:

P1) ∀t > 0, Xn
t ∈ D∞

P2) ∀p > 1, ∀k ∈ N∗,∃K > 0 such that:

sup
t∈[0,T ]

‖XT ‖k,p + sup
t∈[0,T ]

‖Xn
T ‖k,p ≤ K(1 + ‖x‖) (4)

and

sup
t∈[0,T ]

‖Xn
T −XT ‖k,p ≤

K√
n
. (5)

Notation:

For a function V : Rd −→ Rd, we denote by DV the Jacobian matrix of V and by D2V , its Hessian
matrix. We suppose that the d-dimensional di�usion process (Xt)0≤t≤T

, which is the solution of (3)
has coe�cients σ and b, which satisfy the Hörmander condition (see Section 2.3.2 of Nualart (1995)).

Therefore X admits a smooth density pT (x0, x) (see Kusuoka and Stroock (1985)) and in order
to simplify the notation, we denote

pT (x0, x) := p(x).

We consider the continuous Euler scheme Xn, with discretization step δ = T/n, de�ned by:

dXn
t = b(Xηn(t))dt+ σ(Xηn(t))dWt, ηn(t) = [t/δ]δ.

We note here that the Hörmander condition is not enough to guarantee that the Malliavin
covariance matrix associated to the Euler scheme Xn, is invertible (this would be true under an
ellipticity condition).
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To deal with this problem we will regularize the Euler scheme using Xn + Zn,θ instead of Xn,
Zn,θ denotes a independent random variable de�ned in Section 2.3 through the relation

Zn,θ =
W̃T

n
1
2+θ

where W̃ is a d-dimensional Brownian motion independent of W . Then we have the following result.

Proposition 3.2. For λ ∈ [0, 1] we introduce

Xn,λ
T = XT + λ(Xn

T −XT ).

Then for all p ≥ 1 there exists a constant KT > 0 and parameters p′, p′′ ≥ 1 such that

sup
n

∥∥∥ (
det γ

Xn,λ
T

+Zn,θ

)−1
∥∥∥

p
≤ KT

∥∥∥(det γ
X

T
)−1

∥∥∥p′′

Lp′
<∞.

Proof. We have that E
(
det γ

Xn,λ
T

+Zn,θ

)−p= An +Bn with

An := E
{(

det γ
Xn,λ

T
+Zn,θ

)−p
1∣∣det γ

Xn,λ
T

+Zn,θ

−det γ
X

T

∣∣< 1
2 det γ

X
T

}
and

Bn := E
{(

det γ
Xn,λ

T
+Zn,θ

)−p
1∣∣det γ

Xn,λ
T

+Zn,θ

−det γ
X

T

∣∣≥ 1
2 det γ

X
T

}
As the di�usion X is non-degenerated in the sense of de�nition 2.1, we deduce that

sup
n
An ≤ 2pE

(
det γ

X
T

)−p
< +∞.

On the other hand, we have that

γ
Xn,λ

T
+Zn,θ

= γ
Xn,λ

T

+
T

n1+2θ
Id.

As γ
Xn,λ

T

is a positive de�nite matrix we deduce that

det γ
Xn,λ

T
+Zn,θ

≥
(

T

n1+2θ

)d

.

Therefore, one obtains that

Bn ≤
(

T

n1+2θ

)−dp

P
(∣∣det γ

Xn,λ
T

+Zn,θ

− det γ
X

T

∣∣ ≥ 1
2

det γ
X

T

)
.

Therefore using the Markov inequality, we have that

Bn ≤ 2k

(
T

n1+2θ

)−dp

E
{

(det γ
X

T
)−1

∣∣det γ
Xn,λ

T
+Zn,θ

− det γ
X

T

∣∣}k

≤ 2k

(
T

n1+2θ

)−dp ∥∥∥∣∣det γ
Xn,λ

T
+Zn,θ

− det γ
X

T

∣∣k∥∥∥
L2

∥∥(det γ
X

T
)−k

∥∥
L2

Therefore from the inequalities (4) and (5), we obtain that∥∥∥∣∣det γ
Xn,λ

T
+Zn,θ

− det γ
X

T

∣∣k∥∥∥
L2
≤ Ck

n
k
2

where Ck is a given constant. Finally, if we take k = 2dp(1 + 2θ) we obtain that

sup
n
Bn <∞.
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In what follows we are interested in considering the approximation of the marginal density p(x)
of the di�usion X using kernel density estimation methods.

De�nition 3.1. Let φ ∈ C∞b (R; R), we say that φ is a super-kernel of order s > 2 if∫
R
φ(x) dx = 1,

∫
R
xiφ(x) dx = 0, ∀ i = 1, . . . s− 1, and

∫
R
xsφ(x) dx 6= 0.

In what follows, we suppose that φ satis�es the following properties:

a)

∫
R
|x|s+1|φ(x)| dx <∞, where s denotes the order of the kernel,

b)

∫
R
|φ′(x)|2 dx <∞.

For h > 0, we de�ne

φh,x(y) =
1
h
φ
(y − x

h

)
.

The parameter h is called the window size of the kernel. In the calculations to follows, we will also
use other kernels that stem from φ. So, we de�ne

φ(2),h,x(y) =
1

hφ(2)

[
φ′

(y − x

h

)]2

, φi,h,x(y) =
1
hφi

∣∣∣φ(y − x

h

)∣∣∣i
with

φ(2) =
∫
|φ′(x)|2 dx and φi :=

∫
|φ(x)|i dx, for i = 1, . . . , d.

To construct super kernels on Rd, we consider products of unidimensional super kernels.
That is, let φi : R 7→ R for i = 1, . . . , d be given and de�ne

φ(u1, . . . , ud) = φ1(u1)× · · · × φd(ud)

and

φh,x(y) =
1
hd
φ
(y − x

h

)
=

d∏
i=1

φi,h,x(yi)

We say that φ is a super kernel of order s if the functions φi, i = 1, . . . , d are unidimensional super
kernels of order s.

Remark 1. One can construct super kernels of in�nite order in the following way. We take a
function ψ ∈ S (where S denotes the class of Schwarz tempered distributions) so that ψ(x) = 1 in
a neighborhood of zero. Next, we de�ne φ as the inverse Fourier transform of ψ. That is,

φ(x) :=
1
2π

∫
R
eixξψ(ξ) dξ, x ∈ R.

Then the Fourier transform of φ is ψ given by

ψ(ξ) =
∫

R
e−ixξφ(x) dx, ξ ∈ R.

As ψ(k)(0) = 0, for all k ∈ N we conclude also that
∫

R x
kφ(x) dx = 0 for all k ∈ N and as

ψ(0) = 1 we have that
∫

R φ(x) dx = 1. The inverse Fourier transform sends the functions S into
S . Therefore φ ∈ S and consequently, it veri�es the conditions a) and b) above.

Also, one can easily contruct polynomials on compacts which lead to super kernels of order s
which are not of order s+ 1.

The property that will interest us in the calculations to follow is that the super kernel of order
s approximate the Dirac delta function up to the order s+ 1. More precisely, we have the following
result.
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Lemma 3.1. 1. Let φ : Rd → R be a super kernel of order s, i.e. a d-dimensional super kernel
of the form φ(x) =

∏d
j=1 φj(xj) where for j = 1, . . . , d, φj : R → R denote unidimensional

super kernels of order s. Let f ∈ Cs+1
b (Rd; R). Then

∣∣∣f(x)−
∫

Rd

f(y)φh,x(y) dy − hs

s!

∑
|α|=s

∂αf(x)
∫

Rd

s∏
i=1

uαi
φ(u) du

∣∣∣ ≤ C hs+1,

where ∂αf denotes the partial derivative of f with respect to α, for a given multi-index α =
(α1, . . . , αk), of length |α| = k. Whereas the integral∫

Rd

k∏
i=1

uαi
φ(u) du, 1 ≤ k ≤ s

is a product of integrals of the form∫
R
u

pj

j φj(uj) duj , with j = 1, . . . , d et 1 ≤ pj ≤ k ≤ s,

The constant C is given by

C = cs

(
‖f (s+1)‖∞

) ∫
Rd

‖u‖s+1|φ(u)| du

where cs is a universal constant depending on s and ‖f (s+1)‖∞ is the sup norm of derivatives
of order s+ 1 of f .

2. Let ϕ : Rd → R be a positive integrable and bounded function. Suppose that
∫

Rd ϕ(x)dx = 1.

Let ϕh,x(y) = 1
hdϕ

(
y−x

h

)
, then for every continuous and bounded function f we have

lim
h→0

∫
Rd

f(y)ϕh,x(y) dy = f(x).

Proof. We have that∫
Rd

f(y)φh,x(y) dy − f(x) =
∫

Rd

φh,x(y)(f(y)− f(x)) dy

=
∫

Rd

φ(u)(f(x+ uh)− f(x)) du

Using a Taylor serie expansion of order s we obtain∫
Rd

f(y)φh,x(y) dy − f(x) =
s∑

k=1

hk

k!

∑
|α|=k

∂αf(x)
∫

Rd

k∏
i=1

uαiφ(u) du

+
hs+1

s!

∑
|α|=s+1

∫
Rd

∫ 1

0

(1− λ)s∂αf(x+ λuh)
s+1∏
i=1

uαiφ(u) dλ du.

Since (φj)j=1,...,d are super kernels of order s, we conclude that for 1 ≤ pj ≤ s− 1 we have∫
R
u

pj

j φj(uj) duj = 0.
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Consequently,∫
Rd

f(y)φh,x(y) dy − f(x) =
hs

s!

∑
|α|=s

∂αf(x)
∫

Rd

s∏
i=1

uαiφ(u) du

+
hs+1

s!

∑
|α|=s+1

∫
Rd

∫ 1

0

(1− λ)s∂αf(x+ λuh)
s+1∏
i=1

uαi
φ(u) dλ du.

In the following we evaluate the remainder term.∣∣∣∫
Rd

∫ 1

0

(1− λ)s∂αf(x+ λuh)
s+1∏
i=1

uαiφ(u) dλ du
∣∣∣ ≤ ‖f (s+1)‖∞

∫
Rd

‖u‖s+1|φ(u)| du.

According to property a) of De�nition 3.1, the right side of the inequality is �nite and therefore the
result follows. The proof of the second assertion follows from the Lebesgue theorem.

The main theorem of this section gives us an expansion of order 1 of the weak error in the
approximation of the density of the hypoelliptic di�usion X.

Before this we study the error process in a form that will also be useful when studying the stable
convergence problem.

The error process Un = (Un
t )0≤t≤T , de�ned by

Un
t = Xt −Xn

t ,

satis�es the equation

dUn
t =

q∑
j=0

(ḟn
t,j).(Xt −Xn

ηn(t)) dY
j
t ,

where

ḟn
t,j =

∫ 1

0

∇fj

(
Xn

ηn(t) + λ(Xt −Xn
ηn(t))

)
dλ.

Therefore the equation satis�ed by Un can be written as:

Un
t =

∫ t

0

q∑
j=0

ḟn
s,j dY

j
s .U

n
s +Gn

t , (6)

with

Gn
t =

∫ t

0

q∑
j=0

ḟn
s,j .(X

n
s −Xn

ηn(s)) dY
j
s . (7)

Note that

Xn
s −Xn

ηn(s) =
q∑

j=0

f̄n
s,j(Y

j
s − Y j

ηn(s)), (8)

with f̄n
s,j = fj(Xn

ηn(s)). In the following let (Zn
t )0≤t≤T be the Rd×d valued solution of

Zn
t = Id +

∫ t

0

q∑
j=0

ḟn
s,j dY

j
s .Z

n
s .

From Theorem 56 p.271 in Protter (1990) we obtain that there exists (Zn
s )−1 for all s ≤ T which

satis�es

(Zn
t )−1 = Id −

∫ t

0

(Zn
s )−1

q∑
j=1

(ḟn
s,j)

2ds−
∫ t

0

(Zn
s )−1

q∑
j=0

ḟn
s,jdY

j
s

9



and that

Un
t = Zn

t

{∫ t

0

(Zn
s )−1dGn

s −
∫ t

0

(Zn
s )−1

q∑
j=1

(ḟn
s,j)

2(Xn
s −Xn

ηn(s)) ds
}
.

We de�ne Zt = DxXt and therefore we have that it satis�es

Zt = Id +
∫ t

0

q∑
j=0

ḟs,j dY
j
s .Zs .

with ḟt,j = ∇fj(Xt).
Furthermore Z−1

t exists and satis�es the following explicit linear stochastic di�erential equation

(Zt)−1 = Id −
∫ t

0

(Zs)−1

q∑
j=1

(ḟs,j)2ds−
∫ t

0

(Zs)−1

q∑
j=0

ḟs,jdY
j
s

Then using the same technique as in the proof of existence and uniqueness for stochastic di�erential
equations with Lipschitz coe�cients (i.e. Gronwall inequality), we obtain that

∀p ≥ 1 lim
n→∞

E
[

sup
0≤t≤T

‖Zn
t − Zt‖p

]
= 0,

and

∀p ≥ 1 lim
n→∞

E
[

sup
0≤t≤T

∥∥∥(Zn
t )−1 − (Zt)−1

∥∥∥p]
= 0,

Now we are ready to give the main theorem in this section.

Theorem 3.1. Under the above notations,

1. Let h = n−α, α ≥ 1/s. Then there exists a constant Cs
φ,x > 0 depending on φ, p(x) and s such

that

E
[
φh,x

(
Xn

T + Zn,θ

)]
− p(x) =

Cs
φ,x

n
+ o

(
1
n

)
. (9)

2. let ϕ ∈ C∞b (Rd; R) be a positive bounded and integrable function with bounded derivatives.
Suppose that

∫
Rd ϕ(x)dx = 1. Let

ϕh,x(y) =
1
hd
ϕ
(y − x

h

)
, h = n−α with α > 0,

then we have
lim
n→0

Eϕh,x(Xn
T + Zn,θ) = p(x).

Proof. First we give the proof of the �rst assertion.
•Proof of the �rst assertion

We write the weak approximation error as follows

E
[
φh,x

(
Xn

T + Zn,θ

)]
− p(x) =E

[
φh,x

(
Xn

T + Zn,θ

)]
− E

[
φh,x

(
XT + Zn,θ

)]
+ E

[
φh,x

(
XT + Zn,θ

)]
− E

[
φh,x

(
XT

)]
+ E

[
φh,x

(
XT

)]
− p(x).

•Step 1:

We study the last term given by: E
[
φh,x

(
XT

)]
−p(x). In fact, using the regularity of the density of

10



the di�usion X (under the Hörmander conditions), we obtain using the �rst assertion of the previous
lemma that

E
[
φh,x

(
XT

)]
− p(x) =

hs

s!

∑
|β|=s

∂βp(x)
∫

Rd

s∏
i=1

uβiφ(u) du+ o(hs),

where ∂βp is the partial derivative of p corresponding to the multi-index β. Note that for h =
n−α, α ≥ 1/s we have o(hs) = o(1/n).
•Step 2:

The second term is given by: E
[
φh,x

(
XT + Zn,θ

)]
− E

[
φh,x

(
XT

)]
, we have

E
[
φh,x

(
XT + Zn,θ

)]
− E

[
φh,x

(
XT

)]
=

1
2n1+2θ

d∑
k=1

E
(
∂2

kkφh,x(XT )
)

+
1
3!

E
∫ 1

0

(1− λ)3
(
Zn,θ.∇

)4
φh,x

(
XT + λZn,θ

)
dλ.

Using the integration by parts formula we obtain

E
[
φh,x

(
XT + Zn,θ

)]
− E

[
φh,x

(
XT

)]
=

1
2n1+2θ

d∑
k=1

∂2
kkp(x) +

1
2n1+2θ

d∑
k=1

∫
Rd

φh,x(y)∂2
kk(p(y)− p(x)) dy

+
1
3!

E
∫ 1

0

(1− λ)3
(
Zn,θ.∇

)4
φh,x

(
XT + λZn,θ

)
dλ.

Thanks to the �rst assertion of the previous lemma we obtain∫
Rd

φh,x(y)∂2
kk(p(y)− p(x)) dy = o(hs) = o(1/n).

In addition, since Zn,θ and X are independent we obtain, after applying the integration by parts
formula four times, that

E
[(
Zn,θ.∇

)4
φh,x

(
XT + λZn,θ

)]
= E

∫
Rd

(
Zn,θ.∇

)4
φh,x

(
y + λZn,θ

)
p(y) dy

= E
∫

Rd

φh,x

(
y + λZn,θ

)(
Zn,θ.∇

)4
p(y) dy

Since φh,x is bounded we obtain that∣∣∣E ∫
Rd

φh,x

(
y + λZn,θ

)(
Zn,θ.∇

)4
p(y) dy

∣∣∣ ≤ c

n4(1+θ)d
.

The last inequality is immediate using the de�nition of Zn,θ and that ∇4p is integrable, since p
decreases exponentially fast (see Kusuoka and Stroock (1985)) . The result follows.
•Step 3:

Now we deal with the �rst term given by

An = E
[
φh,x

(
Xn

T + Zn,θ

)]
− E

[
φh,x

(
XT + Zn,θ

)]
.

In fact, we have

An =
∫ 1

0

E
(
∇φh,x

(
ζn
λ + Zn,θ

)
.Un

T

)
dλ, (10)

where ζn
λ = XT +λ(Xn

T −XT ). In what follows we use the ideas contained in Clement et al. (2004).
Recalling equations (6), (7) and (8) we have that

An =
q∑

j,k=0

E
(∫ 1

0

∇φh,x

(
ζn
λ + Zn,θ

)
dλZn

T

∫ T

0

(Zn
s )−1Fn

jk(s)(Y j
s − Y j

η(s))dY
k
s

)

11



where Fn
jk(s) = ḟn

s,j f̄
n
s,k. If we de�ne D

0 = I (the identity operator) then using the duality formula
(1), one obtains

An =
q∑

j,k=0

E
(∫ 1

0

∫ T

0

∫ s

η(s)

Dj
u

{
Dk

s{∇φh,x

(
ζn
λ + Zn,θ

)
Zn

T }(Zn
s )−1Fn

jk(s)
}
dudsdλ

)
.

Next, if we apply the stochastic derivative operators one obtains that the above is a sum of terms
of the type

E
(∫ 1

0

∫ T

0

∫ s

η(s)

∂rφh,x

(
ζn
λ + Zn,θ

)
Gn,r,j,k

u,s dudsdλ
)
, (11)

where j, k = 0, ..., q and r is a multi-index of order 1 up to order 3. The random variables Gn,r,j,k
u,s

are given by (
Dj

u

{
Dk

s{Zn
T }

}
(Zn

s )−1Fn
jk(s) +Dk

s{Zn
T }Dj

u

{
(Zn

s )−1Fn
jk(s)

})a
if r = (a)

(Dk
s{ζn

λ})a
(
Dj

u{Zn
T }(Zn

s )−1Fn
jk(s)

)b
+ (Dk

s{ζn
λ})a

(
Zn

TD
j
u{(Zn

s )−1Fn
jk(s)}

)b
+

(Dj
u{ζn

λ})a
(
Dk

s{Zn
T }(Zn

s )−1Fn
jk(s)

)b
if r = (a, b)

(Dj
u{ζn

λ})a(Dk
s{ζn

λ})b(Zn
T (Zn

s )−1Fn
jk(s))c if r = (a, b, c).

Here a, b, c ∈ {1, ..., d} denote the component of the corresponding vector. Next for each term one
applied the integration by parts formula (2) to obtain that each term of the type (11) can be written
as

Bn(r, j, k) := E
(∫ 1

0

∫ T

0

∫ s

η(s)

ψh,x

(
ζn
λ

)
H̃r+(ζn

λ + Zn,θ, G
n,r,j,k
u,s )dudsdλ

)
,

where r+ = (r, 1, ..., d) and ψh,x(y) :=
∫
(−∞,yi)d φh,x(t) dt

The proof of the �rst assertion follows using the following two lemmas which are proved in the
appendix.

Lemma 3.2. Let g, gn : [0, T ]× [0, T ] → R, n ∈ N. Suppose that

i) g is continuous on the compact [0, T ]× [0, T ].

ii) sup
0≤s,u≤T

|gn(s, u)− g(s, u)| −→
n→∞

0.

Then ∫ T

0

∫ u

ηn(u)

gn(s, u) ds du =
1
2n

∫ T

0

g(u, u) du+ o(1/n).

Lemma 3.3. Under the previous notations we obtain

Bn(r, j, k) =
1
2n

∫ T

0

E
(
1{XT >x}Hr+

(
XT , G

r,j,k
u

))
du+ o

(
1
n

)
, (12)

with Gr,j,k
u is the limit process given by (here Fjk(s) = ḟs,jfk(Xt))(

Dj
u

{
Dk

s{ZT }
}

(Zs)−1Fjk(s) +Dk
s{ZT }Dj

u

{
(Zs)−1Fjk(s)

})a
if r = (a)

(Dk
s{XT })a

(
Dj

u{ZT }(Zs)−1Fjk(s)
)b

+ (Dk
s{XT })a

(
ZTD

j
u{(Zs)−1Fjk(s)}

)b
+

(Dj
u{XT })a

(
Dk

s{ZT }(Zs)−1Fjk(s)
)b

if r = (a, b)

(Dj
u{XT })a(Dk

s{XT })b(ZT (Zs)−1Fjk(s))c if r = (a, b, c).
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The proof of the second assertion follows as the �rst assertion with the exception that the rate
is not 1/n but 1/n2α if α < 1/2. We mention here that in the proof of the third step above we only
need the integrability of φ and that

∫
Rd φ(x)dx = 1. Consequently, the results obtained in this step

remain valid in the context of the second assertion of the theorem.

4 Approximations of non-degenerated di�usions

through the Monte Carlo method

Let X be a hypoelliptic di�usion solution of the stochastic di�erential equation (3). The goal of
this section is to study an approximation of the density p(x) of X(T ) using a Monte Carlo method
together with a kernel density estimate. That is, in order to evaluate p(x):

• One discretizes the di�usion X through an Euler scheme Xn of step T/n regularized as Xn +Zn,θ

where Zn,θ is an independent Gaussian random variable of mean zero and standard deviation
n−1/2−θ.
• one approximates the distribution y 7→ δx(y) by the super-kernel φh,x(y) of order s , where h
denotes the window size.
• then �nally one estimates Eφh,x(Xn

T +Zn,θ) using the Monte Carlo method. This procedure gives
the classical kernel estimator given by

Ŝn,N :=
1
N

N∑
i=1

φh,x(Xn
T,i + Zi

n,θ)

where (Xn
T,i)1≤i≤N and (Zi

n,θ)1≤i≤N are i.i.d. copies of Xn
T and Zn,θ. In what follows, we prove a

central limit theorem analogue to a similar result proved by Du�e and Glynn (1995) which gives a
precise choice for the sample size N for the Monte Carlo method. This choice depends on the step
size parameter n from the Euler scheme and is valid for the regular case. Here we extend this result
to the degenerate case, the problem is somewhat more complex as we have to decide the optimal
values of N and h in function of n.

In what follows we let N = nγ , h = n−α where γ > 0 and α ≥ 1/s

Theorem 4.1. With the previous de�nitions and if we let γ = 2 + αd then

n(Sn,N − p(x)) ⇒ σG+ Cs

φ,x

with σ2 = φ2 p(x), G is a standard Gaussian random variable and Cs
φ,x is the constant in the error

expansion given in Theorem 3.1 and φ2 =
∫

Rd |φ(u)|2 du.

Proof. We have that

n(Sn,N − p(x)) =
1

nγ−1

nγ∑
i=1

{
φh,x(Xn

T,i + Zi
n,θ)− E

[
φh,x(Xn

T + Zn,θ)
]}

+ n
[
E

[
φh,x(Xn

T + Zn,θ)
]
− p(x)

]
.

From Theorem 3.1, we have that

n
[
E

[
φh,x(Xn

T + Zn,θ)
]
− p(x)

]
−→

n→∞
Cs

φ,x

Therefore it remains to prove a central limit theorem for 1
nγ−1

∑nγ

i=1 ζ
n,h

T,i where

ζ
n,h

T,i :=
{
φh,x(Xn

T,i + Zi
n,θ)− E

[
φh,x(Xn

T + Zn,θ)
]}
.
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We start considering the characteristic function of the previous sum

E
[
exp

( iu

nγ−1

nγ∑
k=1

ζ
n,h

T,k

)]
=

[
E exp

( iuζn,h

T

nγ−1

)]nγ

=
[
1 +

1
nγ

( −u2

2nγ−2
E |ζ

n,h

T |2 + ECn,h(ω)
)]nγ

.

Here

|ECn,h(ω)| ≤ u3

6n2γ−3
E |ζ

n,h

T |3.

To study the above terms we de�ne the following kernels

φ2,h,x(y) =
1

hdφ2
φ2

(y − x

h

)
, φ2 =

∫
Rd

φ2(u) du

and

φ3,h,x(y) =
1

hdφ3

∣∣∣φ3
(y − x

h

)∣∣∣, φ3 =
∫

Rd

|φ3(u)| du.

These two positive functions are integrable and integrate to one. Therefore from the second assertion
of Theorem 3.1 we have

E
[
φi,h,x(Xn

T + Zn,θ)
]

= p(x) + εi(x), i = 2, 3.

with limn εi(x) = 0 for i = 2, 3.
Let's start studying the term given by E |ζn,h

T |2. We have that

E |ζ
n,h

T |2 = E
[
φh,x(Xn

T + Zn,θ)2
]
−

{
E

[
φh,x(Xn

T + Zn,θ)
]}2

=
φ2

hd
E

[
φ2,h,x(Xn

T + Zn,θ)
]
−

{
E

[
φh,x(Xn

T + Zn,θ)
]}2

.

Therefore,

E |ζ
n,h

T |2 =
φ2

hd
ε2(x) +

φ2

hd
p(x) +

{Cs
φ,x

n
+ o

( 1
n

)
+ p(x)

}2

where Cs
φ,x is the constant in the error expansion given in Theorem 3.1. Therefore, for h = n−α,

γ = 2 + αd et α ≥ 1/s we have

1
nγ−2

E |ζ
n,h

T |2 −→
n→∞

φ2 p(x).

On the other hand, we have that

E |ζ
n,h

T |3 = E
∣∣∣φh,x(Xn

T + Zn,θ)− E
[
φh,x(Xn

T + Zn,θ)
]∣∣∣3

≤ E
∣∣φh,x(Xn

T + Zn,θ)
∣∣3 + 3E

∣∣φh,x(Xn
T + Zn,θ)

∣∣2∣∣Eφh,x(Xn
T + Zn,θ)

∣∣
+ 4

∣∣Eφh,x(Xn
T + Zn,θ)

∣∣3.
Therefore, as before, we obtain that

E |ζ
n,h

T |3 ≤ h−2dφ3Eφ3,h,x(Xn
T + Zn,θ) + 3h−dφ2Eφ2,h,x(Xn

T + Zn,θ)
∣∣Eφh,x(Xn

T + Zn,θ)
∣∣

+ 4
∣∣Eφh,x(Xn

T + Zn,θ)
∣∣3
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Finally,

E |ζ
n,h

T |3 ≤ h−2dφ3(p(x) + ε3(x)) + 3h−dφ2

∣∣∣p(x) + ε2(x)
∣∣∣∣∣∣Cs

φ,x

n
+ o

( 1
n

)
+ p(x)

∣∣∣
+ 4

∣∣∣Cs
φ,x

n
+ o

( 1
n

)
+ p(x)

∣∣∣3.
for h = n−α, γ = 2 + αd and α ≥ 1/s. This leads to

1
n2γ−3

E |ζ
n,h

T |3 −→
n→∞

0.

which �nishes the proof.

The interpretation of the above result leads to the previously announced result. That is, in order
to approximate the density p(x) through a Monte Carlo method with a tolerance error of order 1/n,
the optimal asymptotic choice of parameters are h = n−α and N = n2+αd with α ≥ 1/s where s
denotes the order of the super kernel used for the estimation. This leads to the following algorithmic
complexity (that is, number of calculations) of

CMC = C × nN = C × n3+αd,

for a given C > 0 (here the unit of calculation is one simulation of a random variable). Therefore
the optimal complexity of this algorithm is given by

C?
MC = C × n3+ d

s .

Therefore we conclude that if the order s of the kernel is bigger then the complexity is smaller.
Nevertheless, one should keep in mind that the constant Cs

φ,p(x) depends on s and the implemen-
tation of this algorithm for high order kernels carries some problems, such as non-positive estimates
and big constants in the error expansions. Therefore the practical choice of super kernel remains an
open problem from the practical point of view.

5 Asymptotic behaviour of the Malliavin derivative of the nor-

malised error

5.1 Malliavin derivative of the error process

In the following we denote W̌n the d× d-dimensional process de�ned by

W̌n,ij
t =

√
2n
T

∫ t

0

(W i
s −W i

ηn(s)) dW
j
s .

According to the theorem 3.2 of Jacod and Protter (1998), the process W̌n converge stably in law
to a bi-dimensional Brownian motion W̌ independent from W and the couple (W̌n,

√
nUn) converge

stably in law to the couple (W̌ , U) where the Rd×d-valued process U is solution to

Ut =
q∑

j=0

∫ t

0

ḟs,j .Us dY
j
s +

√
T

2

q∑
i,j=1

∫ t

0

ḟs,j .fi(Xs) dW̌ ij
s . (13)

In order to obtain the equation satis�ed by the Malliavin derivative of the error process with
respect to W i, i = 1, ..., q, we derive the equation (6):

Di
sU

n
t =

q∑
j=0

∫ t

0

Di
s(ḟ

n
j,v.U

n
v ) dY j

v + ḟn
s,iU

n
s 1{s≤t} +Di

sG
n
t . (14)
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Note that the above derivative exists due to the regularity properties of the coe�cients of the
equation for X. Furthermore, using (7) and (8), we have that

Di
sG

n
t = ḟn

s,i.(X
n
s −Xn

ηn(s))1{s≤t} + +
q∑

j=0

∫ t

0

Di
s

[
ḟn

u,j .(X
n
u −Xn

ηn(u))
]
dY j

u

and

Di
s

[
ḟn

u,j .(X
n
u −Xn

ηn(u))
]

=
q∑

k=0

Di
s(ḟ

n
u,j .f̄

n
u,k)(Y k

u − Y k
ηn(u)) + ḟn

u,j .f̄
n
u,i1{ηn(u)≤s≤u}

As DsZ = 0 for Z, which is Fu-measurable (u < s), the relation (14) becomes for s ≤ t,

Di
sU

n
t = ḟn

s,i(U
n
s +Xn

s −Xn
ηn(s)) +

q∑
j=0

∫ t

s

ḟn
v,jD

i
sU

n
v dW

j
v + G̃n,i

s,t , (15)

with

G̃n,i
s,t =

q∑
j=0

∫ t

s

Di
sḟ

n
v,j U

n
v dY

j
v +

q∑
j,k=0

∫ t

s

Di
s(ḟ

n
u,j f̄

n
u,k)(Y k

u − Y k
ηn(u)) dY

j
u

+
q∑

j=0

∫ t

s

ḟn
u,j f̄

n
u,i1{ηn(u)≤s≤u} dY

j
u . (16)

From Theorem 56 p.271 in Protter (1990), it follows that (15) becomes for t ≥ s,

Di
sU

n
t = Zn

t (Zn
s )−1ḟn

s,i(U
n
s +Xn

s −Xn
ηn(s))

+ Zn
t

{∫ t

s

(Zn
u )−1 dG̃n,i

s,u −
q∑

j=0

∫ t

s

(Zn
u )−1ḟn

u,jd〈G̃n,i
s,. , Y

j〉u
}
. (17)

5.2 A law convergence theorem for the normalised Malliavin derivative

The Malliavin derivative of Un
T is a random vector taking values in the Hilbert space H = L2([0, T ]).

The aim of this section is to establish the convergence in law for the sequence
√
nDUn

T . Note that
the process U , limit of

√
nUn, is an adapted process with respect to the �ltration of W and W̌ .

Using (13), we can compute the derivatives DUt and ĎUt with respect to both Wiener processes W
and W̌ to obtain that DUt satis�es for 0 ≤ s ≤ t ≤ T ,

Di
sUt = ḟs,iUs +

q∑
j=0

∫ t

s

ḟv,jD
i
sUv dY

j
v +

q∑
j=0

∫ t

s

Di
sḟv,iUv dY

j
v

+

√
T

2

q∑
j,k=1

∫ t

s

Di
s(ḟv,jfv,k)dW̌ kj

v , (18)

or using again Theorem 56 p.271 in Protter (1990), we obtain for 0 ≤ s ≤ t ≤ T that,

DsUt = Zt(Zs)−1σ̇s,iUs + Zt

{∫ t

s

(Zu)−1dGi
s,u −

q∑
j=0

∫ t

s

(Zu)−1ḟu,j d〈Gi
s,., Y

j〉u
}
, (19)

with

Gi
s,t =

q∑
j=0

∫ t

s

Di
sḟv,jUv dY

j
v +

√
T

2

q∑
j,k=1

∫ t

s

Di
s(ḟv,jfv,i) dW̌ kj

v . (20)
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Theorem 5.1. Let (Hi
t)0≤t≤T be a continuous sequence of R-valued process (possibly non adapted).

The random vector (
√
nUn

T ,
√
n

∫ T

0
Hi

sD
i
sU

n
T ds) converges stably in law to (UT ,

∫ T

0
Hi

sD
i
sUT ds) where

DiUT is the Malliavin derivative of U with respect to W i and solution of (19).

In order to prove this theorem, we use the two technical lemmas below. The proofs of these
lemmas are given in the appendix. (See Jacod and Protter (1998) for related results).

Lemma 5.1. Let (Hn
t = (H1,n

t , ...,Hd,n
t ))0≤t≤T be a sequence of continuous tight sequence of process

(possibly non adapted) taking values in Rd. The sequence of random vectors (
√
n

∫ T

0
Hi,n

s (Y j
s −

Y j
ηn(s)) ds; i ∈ {1, ..., d}, j ∈ {0, ..., q})n∈N converge in probability to 0.

Lemma 5.2. Let (Ht)0≤t≤T be a continuous R-valued process (possibly non adapted) and let (Kn
u )0≤u≤T

be a sequence of adapted and continuous processes taking values in Rd and such that supn E
∫ T

0
‖Kn

u‖2 du <

∞. Then the sequence (
√
n

∫ T

0
Hs(

∫ T

0
1{ηn(u)≤s≤u}K

n
u dW

j
u)ds)n∈N converge in probability to 0.

In the following we denote
Ūn

t =
√
nUn

t .

Lemma 5.3. Let Hi, Ki, Li be three real processes with continuous processes on [0, T ] and let
(ξij

s,u)0≤s≤u≤T , (ζijk
s,u )0≤s≤u≤T be two processes, taking values in Rd×d, with continuous trajectories

and such that

E
∫ T

0

du

∫ u

0

ds
(
max

j
‖ξij

s,u‖p + max
j,k

‖ζijk
s,u‖p

)
<∞ for p > 2, i = 1, ..., q.

Then

(
Ūn

T ,

∫ T

0

Hi
sŪ

n
s ds,

∫ T

0

Ki
s

( q∑
j=1

∫ T

s

ξij
s,uŪ

n
u dW

j
u

)
ds,

√
n

∫ T

0

Li
s

( q∑
j,k=1

∫ T

s

ζijk
s,u dW̌

n,kj
u

)
ds; i = 1, ..., q

)
stably converge in law to

(
UT ,

∫ T

0

Hi
sUs ds,

∫ T

0

Ki
s

( q∑
j=1

∫ T

s

Uuξ
ij
s,u dW

j
u

)
ds,

∫ T

0

Li
s

( q∑
j,k=1

∫ T

s

ζijk
s,u dW̌

kj
u

)
ds, i = 1, ..., q

)
Proof of Theorem 5.1. Using the relation (17), we have

Di
sU

n
T = Zn

T (Zn
s )−1ḟn

s,i(U
n
s +Xn

s −Xn
ηn(s))

+ Zn
T

{∫ T

s

(Zn
u )−1 dG̃n,i

s,u −
q∑

j=0

∫ T

s

(Zn
u )−1ḟn

u,jd〈G̃n,i
s,. , Y

j〉u
}
. (21)

Consequently,∫ T

0

Hi
sD

i
sU

n
T ds = Zn

T

∫ T

0

Hi
s(Z

n
s )−1ḟn

s,i(U
n
s +Xn

s −Xn
ηn(s)) ds+ Zn

T I
n,i
T , (22)

where

In,i
T =

∫ T

0

Hi
s

(∫ T

s

(Zn
u )−1dG̃n,i

s,u −
q∑

j=0

∫ T

s

(Zn
u )−1ḟn

u,j d〈G̃n,i
s,. , Y

j〉u
)
ds.
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Using (19) ∫ T

0

Hi
sD

i
sUT ds = ZT

∫ T

0

Hi
s(Zs)−1ḟs,iUs ds+ ZT I

i
T (23)

with

Ii
T =

∫ T

0

Hi
s

(∫ T

s

(Zu)−1dGi
s,u −

q∑
j=0

∫ T

s

(Zu)−1ḟu,j d〈Gi
s,., Y

j〉u
)
ds.

Note that ∫ T

0

Hi
s(Z

n
s )−1ḟn

s,i(U
n
s +Xn

s −Xn
ηn(s)) ds =

∫ T

0

Hi
s(Zs)−1ḟs,iU

n
s ds+ ξn,i

T (24)

with P limn→∞
(√
nξn,i

T ) = 0, where we use the notation P lim for probability convergence.
In fact, the tightness of

√
nUn (see theorem 3.2 of Jacod and Protter (1998))and the convergence

in probability of lim sup0≤s≤T |(Zn
s )−1ḟn

s,j − (Zs)−1ḟs,j | to 0 give that

P lim
n→∞

√
n

∫ T

0

Hi
s

[
(Zn

s )−1ḟn
s,i − (Zs)−1ḟs,i

]
Un

s ds = 0.

In the other hand, we can write∫ T

0

Hi
s(Z

n
s )−1ḟn

s,i(X
n
s −Xn

ηn(s)) ds =
q∑

j=0

∫ T

0

Hi
s(Z

n
s )−1ḟn

s,if̄
n
s,j(Y

j
s − Y j

ηn(s)) ds.

We note that

∥∥∥ q∑
j=0

∫ T

0

Hi
s

[
(Zn

s )−1ḟn
s,if̄

n
s,j − (Zs)−1ḟs,ifj(Xs)

]
(Y j

s − Y j
ηn(s)) ds

∥∥∥ ≤
q∑

j=0

sup
0≤s≤T

∥∥∥Hi
s

[
(Zn

s )−1ḟn
s,if̄

n
s,j − (Zs)−1ḟs,ifj(Xs)

]∥∥∥ ∫ T

0

|Y j
s − Y j

ηn(s)| ds

and using that the sequence
√
n

∫ T

0
|Y j

s − Y j
ηn(s)| ds is tight (since bounded in L1), it follows from

lemma 5.1 that

P lim
n→∞

√
n

q∑
j=1

∫ T

0

Hs(Zn
s )−1ḟn

s,if̄
n
s,j(Y

j
s − Y j

ηn(s)) ds = 0.

Let's study now the sequence (In
T ). First, note that using (16) we obtain that

In,i
T =

q∑
j=0

∫ T

0

Hi
s

∫ T

s

(Zn
u )−1

{
An,i,j

s,u Un
u +

q∑
k=0

Bn,i,j,k
s,u (Y k

u −Y k
η(u))+Cn,i,j

u 1{ηn(u)≤s≤u}

}
dY j

u ds (25)

where

An,i,j
s,u = Di

sḟ
n
u,j − 1{j=0}

q∑
l=1

ḟn
u,lD

i
sḟ

n
u,l

Bn,i,j,k
s,u = Di

s(ḟ
n
u,j f̄

n
u,k)− 1{k=0}

q∑
l=1

ḟn
u,lD

i
s(ḟ

n
u,lf̄

n
u,k)

Cn,i,j
u = ḟn

u,j f̄
n
u,i − 1{j=0}

q∑
l=1

ḟn
u,lḟ

n
u,lf̄

n
u,i.
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Now we study each of the three terms in (25). First, the third term in (25) satis�es that

q∑
j=0

√
n

∫ T

0

Hi
s

∫ T

s

(Zn
u )−1Cn,i,j

u 1{ηn(u)≤s≤u}dY
j
u ds

tends to zero due to Lemma 5.2. Now, consider the second term.

q∑
j,k=0;jk=0

√
n

∫ T

0

Hi
s

∫ T

s

(Zn
u )−1Bn,i,j,k

s,u (Y k
u − Y k

η(u))dY
j
u ds

tends to zero. Next, if we de�ne Bi,j,k
s,u = Di

s(ḟu,jfu,k)

q∑
j,k=1

√
n

∫ T

0

Hi
s

∫ T

s

(Zn
u )−1(Bn,i,j,k

s,u −Bi,j,k
s,u )(Y k

u − Y k
η(u))dY

j
u ds

tends to zero in L1(Ω) as W̌n,kj is bounded uniformly in Lp(Ω) and Bn,i,j,k
s,u − Bi,j,k

s,u converges to
zero in Lp(Ω× [0, T ]2), therefore this term also converges to zero. Then for the remaining

q∑
j,k=1

√
T

2

∫ T

0

Hi
s

∫ T

s

(Zn
u )−1Bi,j,k

s,u ďWn,kj
u ds,

we will apply Lemma 5.3 at the end together with the analysis for the �rst term of (25). For that
�rst term, consider as previously

q∑
j=0

√
n

∫ T

0

Hi
s

∫ T

s

(Zn
u )−1(An,i,j

s,u −Ai,j
s,u)Un

u dY
j
u ds,

where Ai,j
s,u = Di

sḟu,j−1{j=0}
∑q

l=1 ḟu,lD
i
sḟu,l. Again this term goes to zero in L1(Ω) as the sequence√

nUn is bounded uniformly in Lp(Ω) and An,i,j
s,u −Ai,j

s,u converges to zero in Lp(Ω× [0, T ]2). For the
remaining term one applies together with the previous term, Lemma 5.3.

6 An optimal control variate method for density estimation

The aim of this section, is to analyze the statistical Romberg method as a control variate introduced
in Kebaier (2005) in the case of density estimation. In order to reduce variance in the density
estimation of a non-degenerate d-dimensional di�usion (Xt)0≤t≤T , we will use another estimation of
the same density using less steps and simulation paths.

That is, we discretize the di�usion by two Euler schemes with time steps T/n and T/m (m << n).
Under the Hörmander condition, the statistical Romberg method approximates the density p(x) of
the di�usion (Xt)0≤t≤T by

1
Nm

Nm∑
i=1

φh,x(X̂m
T,i + Ẑi

m,θ) +
1

Nn,m

Nn,m∑
i=1

{
φh,x(Xn

T,i + Zi
n,θ)− φh,x(Xm

T,i + Zi
m,θ)

}
,

where X̂m
T is a second Euler scheme with step T/m and such that the Brownian paths used for Xn

T

and Xm
T have to be independent of the Brownian paths used in order to simulate X̂m

T . Furthermore

Zn,θ =
W̃T

n
1
2 +θ

, Zm,θ =
ŴT

m
1
2 +θ

, θ ≥ 0,

where Ŵ is a d-dimensional Brownian motion independent of W and W̃ .
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In order to run the statistical Romberg algorithm, we have to optimize the parameters in the
method. In the same manner as in Kebaier (2005), we establish a central limit theorem which will
lead to a precise description of how to choose the parameters Nm, Nn,m, m and h as functions of
n. The essential di�erence with the problem studied in Kebaier (2005) is that the variance of the
estimators explode. This issue will be resolved through an appropiate renormalization procedure
and an appropiate decomposition of the derivatives of the kernel function.

In the following, we suppose that for a given 0 < β < 2/3 we have

m = nβ , Nn = nγ1 , Nn,m = nγ2 , h = n−α,

where γ1, γ2 > 0, and α ≥ 1/s (the parameter s denotes the order of the super-kernel φ). We set

Vn :=
1
nγ1

nγ1∑
i=1

φh,x(X̂nβ

T,i + Ẑi
nβ ,θ) +

1
nγ2

nγ2∑
i=1

{
φh,x(Xn

T,i + Zi
n,θ)− φh,x(Xnβ

T,i + Zi
nβ ,θ)

}
.

Theorem 6.1. Suppose that the �rst derivatives kernel function φ have the following decomposition

∂φ

∂xi
(x) = φ1i(x)− φ2i(x)

with

φji ≥ 0 and

∫
Rd

|φji(x)|2dx < +∞, for i = 1, ..., d, j = 1, 2.

De�ne

Cii′jj′ =
∫

Rd

φji(x)φj′i′(x) dx.

Let

σ̃2 =
2∑

j,j′=1

d∑
i,i′=1

Cii′jj′(−1)j+j′
{

E
[
δx(XT )U i

TU
i′

T

]
+ Tδii′p(x)1{θ=0}

}
,

where δx(.) stands for the Dirac delta function and δii′ is the Kroeneker delta function. Assume that
h = n−α, γ1 = 2 + αd, γ2 = (d+ 2)α+ 2− β and 1/s ≤ α < β/(d+ 2) with 0 < β < 2/3.

Then
n
(
Vn − p(x)

)
⇒ σ̃G+ Cs

φ,x

where G is a standard Gaussian and Cs
φ,x is the discretization constant of Theorem 3.1.

Before proving this lemma we introduce an essential result about the rate of explosion of the
variances of the estimators. In what follows we extend the previous notation to φji,h,x(y) = φji(y−x

h ).

Lemma 6.1. Under the notation and assumptions of the above theorem, we have

1. nβ−α(2+d)E
[
φh,x(Xnβ

T + Znβ ,θ)− φh,x(XT )
]2

−→
n→∞

σ̃2.

2. nβ−α(2+d)E
[
φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
]2

−→
n→∞

σ̃2.

We remark here that the assertion 1 above is satis�ed also for β ≥ 2/3.

Proof. Let's prove the �rst assertion of the lemma.
•Step 1:
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The Taylor formula gives

φh,x(Xnβ

T + Znβ ,θ)− φh,x(XT ) =
d∑

i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)
+

1
2

d∑
i,i′=1

∂2φh,x

∂xi∂xi′
(ξn,ii′

T )
(
Unβ ,i

T + Zi
nβ ,θ

)(
Unβ ,i′

T + Zi′

nβ ,θ

)
where Unβ

T = Xnβ

T −XT and ξn
T ∈

∏d
i=1[X

i
T , X

nβ ,i
T + Zi

nβ ,θ]. Note that∥∥∥ ∂2φh,x

∂xi∂xi′

∥∥∥
∞
≤ h−(d+2)‖φ′′‖∞,

where ‖φ′′‖∞ = maxi,i′ supx∈Rd

∣∣∣ ∂2φ(x)
∂xi∂xi′

∣∣∣. Then there exists a constant CT > 0 such that

n
β−α(2+d)

2

∥∥∥∥ ∂2φh,x

∂xi∂xi′
(ξn,ii′

T )
(
Unβ ,i

T + Zi
nβ ,θ

)(
Unβ ,i′

T + Zi′

nβ ,θ

)∥∥∥∥
L2(Ω)

≤ CTn
−α(2+d)−β

2 h−(d+2)‖φ′′‖∞

= CTn
α(2+d)−β

2 ‖φ′′‖∞−→ 0 as n→∞.

Consequently, in order to obtain the �rst assertion of the lemma it su�ces to prove that

n
β−α(2+d)

2

∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)∥∥∥∥
L2(Ω)

−→ σ̃ as n→∞. (26)

• Step 2: We have∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)∥∥∥∥2

L2(Ω)

=
d∑

i,i′=1

E
{
∂φh,x

∂xi
(XT )

∂φh,x

∂xi′
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)(
Unβ ,i′

T + Zi′

nβ ,θ

)}

=
2∑

j,j′=1

d∑
i,i′=1

E
{

(−1)j+j′

h2+d
φji,h,x(XT )φj′i′,h,x(XT )Y nβ

ii′,θ

}
,

where Y nβ

ii′,θ :=
(
Unβ ,i

T + Zi
nβ ,θ

)(
Unβ ,i′

T + Zi′

nβ ,θ

)
and

∂φh,x

∂xi
(y) =

1
h

[
φ1i,h,x(y)− φ2i,h,x(y)

]
.

Then∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)∥∥∥∥2

L2(Ω)

=
2∑

j,j′=1

d∑
i,i′=1

Cii′jj′
(−1)j+j′

h2+d
E

[
ϕii′jj′

h,x (XT )Y nβ

ii′,θ

]
,

where ϕii′jj′

h,x (y) = (Cii′jj′)−1hdφji,h,x(y)φj′i′,h,x(y). Let (ξii′jj′

h ){i,i′=1...d, jj′=1,2} be i.i.d random
vectors independent of all other random variables and also between themselves so that their density

is given by ϕii′jj′

h,x (.). Without loss of generality, we assume that

ξii′jj′

h → 0 a.s. as h→ 0.

Then

nβ−α(2+d)

∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)∥∥∥∥2

L2(Ω)

= nβ
2∑

j,j′=1

d∑
i,i′=1

Cii′jj′(−1)j+j′E
[
δx

(
XT + ξii′jj′

h

)
Y nβ

ii′,θ

]
,
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Applying the integration by parts formula of Malliavin-Thalmaier (see Theorem 4.23 in Malliavin
and Thalmaier (2006) ), we have

nβ−α(2+d)

∥∥∥∥ d∑
i=1

∂φh,x

∂xi
(XT )

(
Unβ ,i

T + Zi
nβ ,θ

)∥∥∥∥2

L2(Ω)

= nβ
d∑

r=1

2∑
j,j′=1

d∑
i,i′=1

Cii′jj′(−1)j+j′E
[
∂rQd

(
XT + ξii′jj′

h − x
)
H(r)

(
XT , Y

nβ

ii′,θ

)]
,

where Q is the fundamental solution of the Poisson equation in the following sense. If ∆ denotes
the Laplace operator and f is some function, then the solution of the equation ∆u = f is given
by the convolution Qd ∗ f. The explicit expressions for Qd are Q1(x) = x+, Q2(x) = a2 ln |x| and
Qd(x) = ad|x|−(d−2) for d > 2 and suitable constants ad, d ≥ 2. . To deal with the last obtained
quantity, we need the following technical lemma which is proven in the Appendix.

Lemma 6.2. Let (ξii′jj′

h ){i,i′=1...d, jj′=1,2} be i.i.d random vectors independent of all other random
variables and also between themselves so that

ξii′jj′

h → 0 a.s. as h→ 0.

Then for r = 1, ..., d

1. ∂rQd

(
XT + ξii′jj′

h ) → ∂rQd

(
XT ) a.s. as h→ 0.

2. For any 0 < δ < (d− 1)−1, we have suph>0 E
∣∣∣∂rQd

(
XT + ξii′jj′

h − x
)∣∣∣1+δ

<∞.

As the di�usionX and the associated Euler scheme satis�es Proposition 3.1 and using Proposition
7.1 then a

nβ sup
n

∥∥∥H(r)

(
XT , Y

nβ

ii′,θ

)∥∥∥
k,p

<∞. (27)

Therefore, using classical convergence results and according to the Lemma 6.2, we only need to
study the behaviour of

nβE
[
∂rQd

(
XT − x

)
H(r)

(
XT , Y

nβ

ii′,θ

)]
in order to prove the relation (26).

We de�ne the limit of Y nβ

ii′,θ as Yii′,θ = (U i
T + Ŵ i

T 1{θ=0})(U i′

T + Ŵ i′

T 1{θ=0})
• Step 3:

We have that

H(r)

(
XT , Y

nβ

ii′,θ

)
= Y nβ

ii′,θ H(r)(XT , 1)−
d∑

j,k=1

(γ−1
XT

)jr

∫ T

0

Dk
sX

j
TD

k
sY

nβ

ii′,θ ds

Therefore as s 7→ DsXT is continuous for s ∈ [0, T ], we have due to Theorem 5.1 that

nβ H(r)

(
XT , Y

nβ

ii′,θ

)
⇒stably

Yii′,θ H(r)(XT , 1)− 2
d∑

j,k=1

(γ−1
XT

)jr

∫ T

0

Dk
s (U i

TU
i′

T )Dk
sX

j
T ds

= H(r)

(
XT , Yii′,θ

)
.
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Due to (27) the sequence nβ H(r)

(
XT , Y

nβ

ii′,θ

)
is uniformly integrable and therefore

nβ
d∑

r=1

E
{
∂rQd(XT − x)H(r)

(
XT , Y

nβ

ii′,θ

)}
−→

n→∞

d∑
r=1

E

{
Qd(XT − x)H(r)

(
XT , Yii′,θ

)}
= E

{
δx(XT )Yii′,θ

}
.

The last equality follows from an application of the integration by parts formula. As ŴT is inde-
pendent from W , we have that

E
(
δx(XT )U i

T Ŵ
j
T

)
= 0,

E
(
δx(XT )Ŵ i

T Ŵ
j
T

)
= E

(
δx(XT )

)
Tδij = Tp(x)δij .

Therefore
E

{
δx(XT )Yii′,θ

}
= E

{
δx(XT )U i

TU
i′

T

}
+ Tp(x)1{θ=0}δii′

Therefore we �nally obtain that

nβ−α(2+d)
∥∥∥ d∑

i=1

∂φh,x

∂xi
(XT )(Unβ ,i

T + Zi
nβ ,θ)

∥∥∥
L2(Ω)

−→
n→∞

σ̃2,

from which the �rst assertion of the Lemma follows.
The second assertion is a consequence of the �rst. In fact using the tringular inequality, we have

that

n
β−α(2+d)

2

∣∣∣∣∥∥∥φh,x(Xn
T +Zn,θ)−φh,x(Xnβ

T +Znβ ,θ)
∥∥∥

L2(Ω)
−

∥∥∥φh,x(Xnβ

T +Znβ ,θ)−φh,x(XT )
∥∥∥

L2(Ω)

∣∣∣∣ ≤
n

β−α(2+d)
2

∥∥∥φh,x(Xn
T + Zn,θ)− φh,x(XT )

∥∥∥
L2(Ω)

.

As the �rst assertion is also valid for β′ ∈ (β, 1). We apply this �rst assertion noting that α ≤ β
d+2 <

β′

d+2 which gives

lim
n→∞

n
β′−α(2+d)

2 ‖φh,x(Xn
T + Zn,θ)− φh,x(XT )‖L2(Ω) = σ̃.

From here it follows that

n
β−α(2+d)

2

∥∥∥φh,x(Xn
T + Zn,θ)− φh,x(XT )

∥∥∥
L2(Ω)

−→
n→∞

0.

From here the proof of the second assertion follows.

Proof of Theorem 6.1. We have

n
(
Vn − p(x)

)
:=

1
nγ1−1

nγ1∑
i=1

ζ
nβ,h

T,i +
1

nγ2−1

nγ2∑
i=1

ζ̃
n,h

T,i + n
(
Eφh,x(Xn

T + Zn,θ)− p(x)
)

with

ζ
nβ,h

T = φh,x(X̂nβ

T + Ẑnβ ,θ)− Eφh,x(X̂nβ

T + Ẑnβ ,θ)

and

ζ̃
n,h

T = φh,x(Xn
T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)− E
{
φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
}
.
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From Theorem 4.1 and for γ1 = 2 + αd we have that

1
nγ1−1

nγ1∑
i=1

ζ
nβ,h

T,i ⇒ N(0, σ2) with σ2 = φ2p(x)

where φ2 =
∫

Rd φ
2(u) du. Therefore to �nish the proof it is enough to prove a central limit theorem

for 1
nγ2−1

∑nγ2

i=1 ζ̃
n,h

T,i , as the random variables ζ
nβ,h

T are ζ̃
n,h

T independent. As in the proof of Theorem
4.1 we have that

E
[
exp

( iu

nγ2−1

nγ2∑
k=1

ζ̃
n,h

T,k

)]
=

[
1 +

1
nγ2

( −u2

2nγ2−2
E |ζ̃

n,h

T |2 + E C̃n,h(ω)
)]nγ2

,

with

|E C̃n,h(ω)| ≤ u3

6n2γ2−3
E |ζ̃

n,h

T |3.

Now we prove that
1

nγ2−2
E |ζ̃

n,h

T |2 −→
n→∞

σ̃2

and
1

n2γ2−3
E |ζ̃

n,h

T |3 −→
n→∞

0,

which will give as in the proof of Theorem 4.1

1
nγ2−1

nγ2∑
i=1

ζ̃
n,h

T,i → σ̃G

where G is a standard Gaussian random variable.
Let's start with the term E |ζ̃n,h

T |2. We have that

E |ζ̃
n,h

T |2 = E
[
φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
]2 − {Cs

φ,x

n
−
Cs

φ,x

nβ
+ o

( 1
nβ

)}2

,

where Cs
φ,x is the constant given in Theorem 3.1 associated to the kernel φ. Also from Lemma 6.1

and for γ2 = (d+ 2)α+ 2− β we have that

1
nγ2−2

E |ζ̃
n,h

T |2 −→
n→∞

σ̃2.

On the other hand,

E |ζ̃
n,h

T |3 ≤ 4E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣3 +

∣∣∣E [
φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
]∣∣∣3

+ 3E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣2×∣∣∣E [

φh,x(Xn
T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
]∣∣∣.

Also using Theorem 3.1 we obtain

E |ζ̃
n,h

T |3 ≤ 4E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣3 +

∣∣∣Cs
φ,x

n
−
Cs

φ,x

nβ
+ o

( 1
nβ

)∣∣∣3

+ 3E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣2∣∣∣Cs

φ,x

n
−
Cs

φ,x

nβ
+ o

( 1
nβ

)∣∣∣.
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Applying again Lemma 6.1 we have that for γ2 = (d+ 2)α+ 2− β

1
n2γ2−3

E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣2 −→

n→∞
0.

Therefore it remains to prove that

1
n2γ2−3

E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣3 −→

n→∞
0. (28)

As φh,x is a Lipschitz function with Lipschitz constant of c/hd+1 for c > 0, we obtain

1
n2γ2−3

E
∣∣∣φh,x(Xn

T + Zn,θ)− φh,x(Xnβ

T + Znβ ,θ)
∣∣∣3 ≤ c

n2γ2−3h3(d+1)

[
E|Xn

T −Xnβ

|3 + E|Zn,θ − Znβ ,θ|3
]

≤ c

n2γ2−3h3(d+1)
× CT

n
3β
2

=
cCT

n−(d−1)α+1− β
2

→ 0.

The last convergence is true if 0 < α < β/(d + 2) and 0 < β < 2/3. This �nishes the proof of the
Theorem.

Like in the case of the Monte Carlo method one can interpret the previous result as follows: In
order to approach the density p(x) using a control variate method of the Romberg type with a global
tolerance error of order 1/n, the parameters needed to use the algorithm are h = n−α, N1 = n2+αd

N2 = n(d+2)α+2−β with β/(d + 2) > α ≥ 1/s where s denotes the order of the superkernel φ.
Therefore the complexity (number of calculations) needed for this algorithm is

CRS = C ×mN1 + (n+m)N2

' C × nβ+αd+2 + n(d+2)α−β+3, where β/(d+ 2) > α ≥ 1/s.

For β = 1
2 + α we obtain that the complexity of the Romberg method is given by

C?
RS ' C × n

5
2+(d+1)α.

Here note that the optimal complexity for the Monte Carlo method is given by

C?
MC ' C × n3+αd.

Therefore the Romberg control variate method reduces the complexity by a factor of of order n1/2−α.
Therefore taking into account that β/(d + 2) > α ≥ 1/s we see that if one uses super-kernels of
order s > 2(d+ 1) we obtain a theoretical asymptotic optimal parameter choice of the method.

7 Appendix 1

In this appendix we prove some estimates that are useful to estimate the norms of the weights in
the integration by parts formula. In order to simplify the notation we suppose that c is a positive
constant being able to change from a line to another.

Lemma 7.1. Under the above notations, we have that for all k > 1, p > 1 there exists positive
constants k2, p1, p2, γ1 and γ2 and a positive constant c independent of n, θ and F such that

‖(γ̃−1
F+Zn,θ

)ij‖k,p ≤ c ‖(det γ̃F+Zn,θ
)−1‖γ1

p1
‖F + Zn,θ‖γ2

k2,p2
, (29)
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Proof. The proof is done by induction on k. The case k = 0 is a direct consequence of the Cramer
formula for the inverse of a given matrix.

In general, as Dr
{
γ̃F+Zn,θ

γ̃−1
F+Zn,θ

}
= 0 for any multi-index r, we have that

Dr(γ̃−1
F+Zn,θ

)lm =
d∑

i,j=1

∑
k∈A(r)−{r}

(γ̃−1
F+Zn,θ

)liDr−kγ̃ij
F+Zn,θ

Dk(γ̃−1
F+Zn,θ

)jm.

Here A(r) denotes all the subsets of indices of any order taken from elements of r. Then the result
follows from the inductive hypothesis.

Proposition 7.1. Let G ∈ D∞(W̃ ), then

1. Let F ∈ (D∞(W ))d such that F + Zn,θ is a non-degenerate random vector. For p > 1 and for
all multi-index m we have

‖ H̃m(F,G)‖p ≤ c‖G‖r,r′‖(det γ̃F+Zn,θ
)−1‖a′

a

[
‖F‖b′

b,l +
1

n( 1
2+θ)l′

]
where c is a constant depending on p, m and d, whereas r, r′, a, a′, b, b′, l and l′ are param-
eters depending on m, p and d.

2. Let F1, F2 ∈ (D∞(W ))d such that F1 +Zn,θ and F2 +Zn,θ are non-degenerate random vectors.
For a �xed multi-index m, any k ≥ 1 and p > 1, there exists c, a positive constant depending
on p, m and d, whereas ki, si, βi, pi, γi, for i = 1, 2, k0, s0, γ0, k̄0 and s̄0 are parameters
depending on m, p and d such that

‖ H̃m(F1, G)− H̃m(F2, G)‖k,p ≤ c

2∏
i=1

(1 + ‖Fi‖γi

ki,si
)(1 + ‖(det γ̃Fi+Zn,θ

)−1‖βi
pi

)

× ‖F1 − F2‖γ0
k0,s0

‖G‖k̄0,s̄0

3. Let F ∈ (D∞(W ))d be a non-degenerate random vector. For a �xed multi-index m, any k ≥ 1
and p > 1, there exists a constant c and parameters ri, ki, µi, for i = 1, 2, 3 depending on p,
m and d such that

‖ H̃m(F,G)−Hm(F,G)‖k,p ≤
c

n( 1
2 +θ)µ

‖G‖k1,r1(1 + ‖F + Zn,θ‖µ2
k2,r2

)(1 + ‖(det γ̃F+Zn,θ
)−1‖µ3

r3
).

Proof. Again the proof is done by induction on the length of the multi-index m. In fact, using the
de�nition of H̃ and the continuity of the adjoint operator δ, we have

‖ H̃m(F,G)‖k,p ≤
∑
r∈m

d∑
j=1

‖D̃(F + Zn,θ)j H̃m−{r}(F,G)(γ̃−1
F+Zn,θ

)rj‖k+1,p.

Then the proof �nishes by using Hölder's inequality, Lemma 7.1 and the inductive hypothesis.
The proof of the second assertion is as the previous one, done by induction on the order of the

multi-index m
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‖ H̃m(F1, G)− H̃m(F2, G)‖k,p ≤
∑
r∈m

d∑
j=1

‖D̃(F1 − F2)j H̃m−{r}(F1, G)(γ̃−1
F1+Zn,θ

)rj‖k+1,p

+
∑
r∈m

d∑
j=1

‖D̃(F2 + Zn,θ)j(H̃m−{r}(F1, G)− H̃m−{r}(F2, G))(γ̃−1
F1+Zn,θ

)rj‖k+1,p

+
∑
r∈m

d∑
j=1

‖D̃(F2 + Zn,θ)j H̃m−{r}(F2, G)((γ̃−1
F1+Zn,θ

)rj − (γ̃−1
F2+Zn,θ

)rj)‖k+1,p.

For the �rst term one applies the Hölder's inequality, the �rst assertion and Lemma 7.1. For the
second, Hölder's inequality, Lemma 7.1 and the inductive hypothesis. For the third, note that

(γ̃−1
F1+Zn,θ

)rj − (γ̃−1
F2+Zn,θ

)rj =
d∑

k,k′=1

(γ̃−1
F2+Zn,θ

)rk
[
(γ̃F2+Zn,θ

)kk′ − (γ̃F1+Zn,θ
)kk′

]
(γ̃−1

F1+Zn,θ
)k′j (30)

Note that γ̃
F1+Zn,θ

= γ
F1

+ γ̄
Zn,θ

and γ̃
F2+Zn,θ

= γ
F2

+ γ̄
Zn,θ

. Consequently, it follows that

(γ̃F2+Zn,θ
)kk′ − (γ̃F1+Zn,θ

)kk′ = 〈DF k
2 −DF k

1 , DF
k′

2 〉H + 〈DF k
1 , DF

k′

2 −DF k′

1 〉H .

From here the result follows.
In the same way as before, we prove the last relation for an index m. We have

H̃m(F,G)−Hm(F,G) =
m∑

j=1

δ
(
GDF j

[
(γ̃−1

F+Zn,θ
)mj − (γ̃−1

F )mj
])
,

+
1

n
1
2 +θ

d∑
j=1

δ̄
(
G(γ−1

F+Zn,θ
)ijD̄W̄ j

T

)
Therefore the result follows applying (30) and the same arguments as in the previous proofs of

assertions 1 and 2.

8 Appendix 2

Proof of Lemma 3.2. We have that∫ T

0

∫ u

ηn(u)

gn(s, u) ds du =
∫ T

0

∫ u

ηn(u)

g(s, u) ds du+
∫ T

0

∫ u

ηn(u)

(gn(s, u)− g(s, u)) ds du.

In virtue of ii) we obtain that Rn = o(1/n). Hence, we have

In : =
∫ T

0

∫ u

ηn(u)

g(s, u) ds du

=
∫ T

0

g(u, u)(u− ηn(u)) du+
∫ T

0

du

∫ u

ηn(u)

(g(u, u)− g(s, u)) ds.

As g is uniformly continuous we have that for any ε > 0 there exists nε ∈ N such that for all n ≥ nε

we have
sup

0≤u≤T
sup

|s−u|≤1/n

|g(u, u)− g(s, u)| ≤ ε.
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Hence, ∣∣∣∫ T

0

∫ u

ηn(u)

(g(u, u)− g(s, u)) ds du
∣∣∣ ≤ ε

n
.

In addition, we have

I ′n : =
∫ T

0

g(u, u)(u− ηn(u)) du

=
∫ T

0

g(ηn(u), ηn(u))(u− ηn(u)) du−
∫ T

0

[
g(ηn(u), ηn(u))− g(u, u)

]
(u− ηn(u)) du.

For the same reasons as before, for n ≥ nε we have∣∣∣∫ T

0

[
g(ηn(u), ηn(u))− g(u, u)

]
(u− ηn(u)) du

∣∣∣ ≤ ε

n
.

Therefore, we have

I ′′n : =
∫ T

0

g(ηn(u), ηn(u))(u− ηn(u)) du

=
1

2n2

n−1∑
l=0

g(l/n, l/n)

=
1
2n

∫ T

0

g(ηn(u), ηn(u)) du

=
1
2n

∫ T

0

g(u, u) du+
1
2n

∫ T

0

(g(ηn(u), ηn(u))− g(u, u)) du.

Similarly as before, for n ≥ nε we obtain

1
n

∣∣∣∫ T

0

(g(ηn(u), ηn(u))− g(u, u)) du
∣∣∣ ≤ ε

n
.

We deduce that

lim
n
n
∣∣∣In − 1

2n

∫ T

0

g(u, u) du
∣∣∣ ≤ ε.

Since ε > 0 is arbitrary, we conclude that

In =
1
2n

∫ T

0

g(u, u) du+ o(1/n).

Proof of Lemma 3.3. In order to prove the relation (12) is enough to prove that

sup
|u−s|≤δ

|∆n,h(u, s)| := sup
|u−s|≤δ

|∆1
n,h(u, s) + ∆2

n,h(s, u)| → 0

with
∆1

n,h(u, s) := E
[(
ψh,x

(
ζn
λ + Zn,θ

)
− 1{XT >x}

)
Hm+

(
XT , G

r,j,k
u

)]
and

∆2
n,h(s, u) := E

[
ψh,x

(
ζn
λ + Zn,θ

){
H̃m+

(
ζn
λ , G

n,r,j,k
u,s

)
−Hm+

(
XT , G

r,j,k
u

)}]
Since for every p ≥ 1 we have that

ψh,x

(
ζn
λ + Zn,θ

) Lp

−→ 1{XT >x}
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and
sup

u∈[0,T ]

∥∥Hm+

(
XT , G

r,j,k
u

)∥∥
p
<∞

then we deduce that
sup

|u−s|≤δ

|∆1
n,h(u, s)| → 0. (31)

In addition we have

sup
|u−s|≤δ

|∆2
n,h(s, u)| ≤ c sup

|u−s|≤δ

∥∥∥H̃m+

(
ζn
λ , G

n,r,j,k
u,s

)
−Hm+

(
XT , G

r,j,k
u

)∥∥∥
2

sup
|u−s|≤δ∈[0,T ]

|∆2
n,h(s, u)| ≤ c sup

|u−s|≤δ

∥∥∥H̃m+

(
ζn
λ , G

n,r,j,k
u,s

)
− H̃m+

(
ζn
λ , G

r,j,k
u

)∥∥∥
2

+ c sup
u∈[0,T ]

∥∥∥H̃m+

(
ζn
λ , G

r,j,k
u

)
− H̃m+

(
XT , G

r,j,k
u

)∥∥∥
2

+ c sup
u∈[0,T ]

∥∥∥H̃m+

(
XT , G

r,j,k
u

)
−Hm+

(
XT , G

r,j,k
u

)∥∥∥
2
.

Note that ∥∥∥H̃m+

(
ζn
λ , G

n,r,j,k
u,s

)
− H̃m+

(
ζn
λ , G

r,j,k
u

)∥∥∥
2

=
∥∥∥H̃m+

(
ζn
λ , G

n,r,j,k
u,s −Gr,j,k

u

)∥∥∥
2
.

Since ζn
λ + Zn,θ is non-degenerate, we conclude using the second assertion of proposition 7.1 and

properties (4) and (5), speci�c to the di�usion X and its Euler scheme Xn, that

sup
|u−s|≤δ

∥∥∥H̃m+

(
ζn
λ , G

n,r,j,k
u,s −Gr,j,k

u

)∥∥∥
2
→ 0, (n→∞).

In the same way, since ζn
λ +Zn,θ and XT are non-degenerate, we conclude using the second assertion

of proposition 7.1 and relations (4) and (5), that

sup
u∈[0,T ]

∥∥∥H̃m+

(
ζn
λ , G

r,j,k
u

)
− H̃m+

(
XT , G

r,j,k
u

)∥∥∥
2
→ 0, (n→∞).

Finally, according to the third assertion of proposition 7.1 we obtain that

sup
u∈[0,T ]

∥∥∥H̃m+

(
XT , G

r,j,k
u

)
−Hm+

(
XT , G

r,j,k
u

)∥∥∥
2
→ 0, (n→∞).

We conclude that
sup

|u−s|≤δ

|∆2
n,h(u, s)| → 0, (n→∞).

Proof of Lemma 6.2. The case d = 1 is trivial, so we will assume for the rest of the proof that
d ≥ 2. It is clear that the function ∂rQ is continous except at the origin. Since the random vector

ξii′jj′

h → O as h→ 0 a.s., the �rst assertion of the lemma follows. Now we prove the second assertion.
We have that

E
∣∣∂rQd(XT + ξii′jj′

h − x)
∣∣1+δ = E

{∣∣∂rQd(XT + ξii′jj′

h − x)
∣∣1+δ

1
{|XT + ξii′jj′

h − x| ≤ 2|x|}

}
+ E

{∣∣∂rQd(XT + ξii′jj′

h − x)
∣∣1+δ

1
{|XT + ξii′jj′

h − x| > 2|x|}

}
. (32)
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•Step 1: For the �rst right term of the previous equality, we have

E
{∣∣∂rQd(XT + ξii′jj′

h − x)
∣∣1+δ

1
{|XT + ξii′jj′

h − x| ≤ 2|x|}

}
=

∫
Rd

∣∣∂rQd(y − x)
∣∣1+δ

1{|y − x| ≤ 2|x|}p
ii′jj′

h (y)dy (33)

where pii′jj′

h denotes the density of the random vector XT + ξii′jj′

h . If we have that

sup
h

sup
|y−x|≤2|x|

pii′jj′

h (y) ≤ Cx,

then it follows immediately that

E
{∣∣∂rQd(XT + ξii′jj′

h − x)
∣∣1+δ

1
{|XT + ξii′jj′

h − x| ≤ 2|x|}

}
≤ Cx

∫
|y−x|≤2|x|

∣∣∂rQd(y − x)
∣∣1+δ

dy

=
∫
|y|≤2|x|

∣∣∂rQd(y)
∣∣1+δ

dy.

As
∣∣∂rQd(y)

∣∣1+δ ≤ Cd

|y|(d−1)(1+δ) . Therefore we obtain

sup
h
E

{∣∣∂rQd(XT + ξii′jj′

h − x)
∣∣1+δ

1
{|XT + ξii′jj′

h − x| ≤ 2|x|}

}
<∞, (34)

for δ < (d− 1)−1.

•Step 2: Now, we have to prove that

sup
h

sup
|y−x|≤2|x|

pii′jj′

h (y) ≤ Cx.

We have that

pii′jj′

h (y) =
1

Cii′jj′

∫
Rd

ϕii′jj′

h,x (u− y)p(u) du,

where p denotes the density of XT . Then it follows that

pii′jj′

h (y) ≤ sup
u∈Rd

p(u)
1

Cii′jj′

∫
Rd

ϕii′jj′

h,x (u− y) du

= sup
u∈Rd

p(u).

Using the smoothness of p the result follows.

•Step 3: We denote by
I+ = {1 ≤ i ≤ d | yi − xi ≥ 0}

and
I− = {1 ≤ i ≤ d | yi − xi < 0}.

If |y − x| 6= 0, we have that for any γ > 0 that

p(y) = E
[
(−1)|I−|

∏
i∈I+

1{Xi
T − xi > yi − xi ≥ 0} ×

∏
j∈I−

1{Xj
T − xj < yj − xj ≤ 0}H(1,...,d)(XT , 1)

]
≤

[
P
(
|XT − x| > |y − x|

)] 1
2
∥∥∥H(1,...,d)(XT , 1)

∥∥∥
L2(Ω)

≤

[
E

∣∣XT − x
∣∣2γ

] 1
2

|y − x|2γ

∥∥∥H(1,...,d)(XT , 1)
∥∥∥

L2(Ω)

≤ Cx,d

|y − x|γ
.
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•Step 4: Now we are able to deal with the second term of equality (32). We have

E
{∣∣∂rQd(XT + ξii′jj′

h − x)
∣∣1+δ

1
{|XT + ξii′jj′

h − x| > 2|x|}

}
=∫

Rd×Rd

∣∣∂rQd(y + z − x)
∣∣1+δ

1{|y + z − x| > 2|x|}p(y)ϕ
ii′jj′

h,x (z)dz dy.

It follows that

E
{∣∣∂rQd(XT + ξii′jj′

h − x)
∣∣1+δ

1
{|XT + ξii′jj′

h − x| > 2|x|}

}
=

∫
Rd×Rd

∣∣∂rQd(y)
∣∣1+δ

1{|y| > 2|x|}p(y − z + x)ϕii′jj′

h,x (z)dz dy

=
∫

Rd×Rd

∣∣∂rQd(y)
∣∣1+δ

1{|y| > 2|x|}p(y − θh+ 2x)ϕii′jj′(θ)dθ dy

•First case:
If |y − θh+ x| > |y + x|/2 then using the step 3 result's we get

p(y − θh+ 2x) ≤ Cx,d

|y − θh+ x|γ
≤ 2Cx,d

|y + x|γ
.

Therefore∫
Rd×Rd

∣∣∂rQd(y)
∣∣1+δ

1{|y| > 2|x|}1{|y − θh+ x| > |y + x|/2}p(y − θh+ 2x)ϕii′jj′(θ)dθ dy

≤ 2Cx,d

∫
|y|>2|x|

∣∣∂rQd(y)
∣∣1+δ

|y + x|γ
dy

≤ 2Cx,d

∫
|y|>2|x|

1∣∣∣1− |x|
|y|

∣∣∣γ ×
∣∣∂rQd(y)

∣∣1+δ

|y|γ
dy

≤ 2γ+1Cx,d

∫
|y|>2|x|

∣∣∂rQd(y)
∣∣1+δ

|y|γ
dy <∞ since δ >

1− γ

d− 1
.

•Second case:

If |y − θh+ x| ≤ |y + x|/2, then we have∫
Rd×Rd

∣∣∂rQd(y)
∣∣1+δ

1{|y| > 2|x|}1{|y − θh+ x| ≤ |y + x|/2}p(y − θh+ 2x)ϕii′jj′(θ)dθ dy

≤
∫

Rd×Rd

∣∣∂rQd(y)
∣∣1+δ

1{|y| > 2|x|}1{|y + x|/2h ≤ |θ| ≤ 3|y + x|/2h}p(y − θh+ 2x)ϕii′jj′(θ)dθ dy.

Using the assumption ϕii′jj′(θ) ≤ c/|θ|γ , for a given constant c > 0 together with the relation (34),
we obtain∫

Rd×Rd

∣∣∂rQd(y)
∣∣1+δ

1{|y| > 2|x|}1{|y − θh+ x| ≤ |y + x|/2}p(y − θh+ 2x)ϕii′jj′(θ)dθ dy

≤ c× Cd

∫
Rd×Rd

[ 1
|y|

](1+δ)(d−1)

1{|θ| ≥ |x|/2h, |y| < 2|x|}
p(y − θh+ 2x)

|θ|γ
dθ dy.

≤ C ′x,d

∫
Rd×Rd

1{|θ| ≥ |x|/2h}
p(y − θh+ 2x)

|θ|γ
dθ dy

= C ′x,d

∫
|θ|≥|x|/2h

1
|θ|γ

dθ

∫
Rd

p(u) du <∞, where C ′x,d is a positive constant.

Which completes the lemma proof.
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9 Appendix 3

In the following we prove lemmas 5.1, 5.2 and 5.3.

Proof of Lemma 5.1. The proof uses the same ideas of Jacod and Protter (1998). Note that for

0 ≤ t < t′ ≤ T , the sequence
(√

n
∫ t′

t
(W j

s −W j
ηn(s)) ds

)
n∈N

tends to 0 in L2(Ω). In fact, we have

E
(∫ t′

t

(W j
s −W j

ηn(s)) ds
)2

≤ c

n2
, c > 0.

Therefore we have∫ T

0

Hi,n
s (W j

s −W j
ηn(s)) ds =

∫ T

0

(Hi,n
s −Hi,n

m,s)(W
j
s −W j

ηn(s)) ds+
∫ T

0

Hi,n
m,s(W

j
s −W j

ηn(s)) ds

with

Hi,n
m =

m∑
k=1

Hi,n
kt
m

1
]
(k−1)T

m , kT
m ]
.

It follows that∣∣∣∫ T

0

Hi,n
s (W j

s −W j
ηn(s)) ds

∣∣∣ ≤ sup
0<s≤T

|Hi,n
s −Hi,n

m,s|
∫ T

0

|W j
s −W j

ηn(s)|

+
∣∣∣∫ T

0

Hi,n
m,s(W

j
s −W j

ηn(s)) ds
∣∣∣.

Since the sequence
√
n

∫ T

0
|W j

s −W j
ηn(s)| ds is tight, we deduce easily the lemma.

Proof of Lemma 5.2. We denote by

H �Kn =
∫ T

0

Hs

(∫ T

0

1{ηn(u)≤s≤u}K
n
u dW

j
u

)
ds

and suppose in a �rst time that H is deterministic then

H �Kn =
∫ T

0

Kn
u

(∫ T

0

1{ηn(u)≤s≤u}Hs ds
)
dW j

u

=
∫ T

0

Kn
u

(∫ u

ηn(u)

Hs ds
)
dW j

u .

It follows that

‖H �Kn‖2
L2(Ω) = E

∫ T

0

(Kn
u )2

(∫ u

ηn(u)

Hs ds
)2

du

≤ |H|2∞E
∫ T

0

(Kn
u )2(u− ηn(u))2 du

≤ |H|2∞T 2

n2
E

∫ T

0

(Kn
u )2 du,

and consequently (
√
nH �Kn)n∈N tends to 0 in L2(Ω). Now let H to be arbitrary. We have that H ∈

C ([0, T ]), so there exists a sequence H l∈ C ([0, T ]) of piecewise functions such that |H −H l|∞ → 0
and |H l|∞ ≤ l a.s.. We have

|(H −H l) �Kn| ≤ |H −H l|∞
∫ T

0

∣∣∣∫ T

0

1{ηn(u)≤s≤u}K
n
u dW

j
u

∣∣∣ds.
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It is obvious that the sequence

(
√
n

∫ T

0

∣∣∣∫ T

0

1{ηn(u)≤s≤u}K
n
u dW

j
u

∣∣∣ds)
n∈N

is tight, (because it is bounded in L2). Consequently:

P
(√

n|H �Kn| ≥ ε
)
≤ P

(√
n|(H −H l) �Kn| ≥ ε

2

)
+ P

(√
n|H l �Kn| ≥ ε

2

)
≤ P

(
|H −H l|∞ ≥ ε

2δ

)
+ P

(√
n

∫ T

0

∣∣∣∫ T

0

1{ηn(u)≤s≤u}K
n
u dW

j
u

∣∣∣ds ≥ δ
)

+ P
(√

n|H l �Kn| ≥ ε

2

)
.

For a �xed l and for a good choice of δ and n we obtain that for a given η > 0,

lim sup
n→∞

P
(√

n|H �Kn| ≥ ε
)
≤ η + P

(
|H −H l|∞ ≥ ε

2δ

)
.

Since η is arbitrary and |H −H l|∞ → 0 a.s., we conclude that

lim sup
n→∞

P
(√

n|H �Kn| ≥ ε
)

= 0.

Which completes the proof.

Proof of Lemma 5.3. We split the proof of the lemma into two steps
•Step 1: We suppose �rst Hi, Ki and Li are deterministic. Then we have:∫ T

0

Ki
s

( q∑
j=1

∫ T

s

ξij
s,uŪ

n
u dW

j
u

)
ds =

∫ T

0

(∫ u

0

Ki
sξ

ij
s,uds

)
Ūn

u dW
j
u

=
q∑

j=1

∫ T

0

K̄ij
u Ū

n
u dW

j
u

with K̄ij
u =

∫ u

0
Ki

sξ
ij
s,u ds. In the same manner:∫ T

0

Li
s

(∫ T

s

q∑
j,k=1

ζijk
s,u dW̌

n,kj
u

)
ds =

q∑
j,k=1

∫ T

0

L̄ijk
u dW̌n,kj

u ,

with L̄ijk
u =

∫ u

0
Li

sζ
ijk
s,uds. It remains to prove that

(
Ūn

T ,

∫ T

0

Hi
sŪ

n
s ds,

q∑
j=1

∫ T

0

K̄ij
u Ū

n
u dW

j
u ,

q∑
j,k=1

∫ T

0

L̄ijk
u dW̌n,kj

u

)
stably converge in law to(

UT ,

∫ T

0

Hi
sUs ds,

q∑
j=1

∫ T

0

K̄ij
u Uu dW

j
u ,

q∑
j,k=1

∫ T

0

L̄ijk
u dW̌ kj

u

)
Since the process Hi is deterministic and the processes K̄ij and L̄ijk are continuous adapted we

deduce, using an approximation argument, that proving the convergence above can be carried into
proving that

∑m
i=1 ZiV

n
i stably converge in law to

∑m
i=1 ZiVi where Z1, . . . , Zm are random matrices

and (V n
1 , . . . , V

n
m) are random vectors converging stably to (V1, . . . , Vm). This is a classical property of
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the stable convergence. In fact, (Z,Z1, . . . , Zu, V
n
1 , . . . , V

n
m) converge to (Z,Z1, . . . , Zu, V1, . . . , Vm),

it follows that (Z,
∑m

i=1 ZiV
n
i ) stably converge in law to (Z,

∑m
i=1 ZiVi), (see Jacod and Shiryaev

(2003) chapter VIII �5.c and Theorems 2.3 and 3.2 in Jacod and Protter (1998)).

•Step 2: Suppose now Hi, Ki and Li are arbitrary. Since the processes Hi, Ki and Li have
continuous trajectories on [0, T ], we can approach them by three piecewise functions Hi

l , K
i
l , L

i
l. In

the following we introduce the following notations

Hi.Ūn =
∫ T

0

Hi
sŪ

n
s ds Ki ? Un =

∫ T

0

Ki
s

(∫ T

s

q∑
j=1

ξs,uŪ
n
u dW

j
u

)
ds

(Li|W̌n,kj) =
∫ T

0

Li
s

(∫ T

s

n∑
j,k=1

ζijk
s,u dW̌

n,kj
u

)
ds.

We have ‖Hi.Un −Hi
l .U

n‖ ≤ |Hi −Hi
l |∞

∫ T

0
‖Ūn

s ‖ds where | |∞ denotes the uniform norm on the
space C ([0, T ]). Similarly, we have

‖Ki ? Un −Ki
l ? U

n‖ ≤ |Ki −Ki
l |∞

∫ T

0

∥∥∥ q∑
j=1

∫ T

s

ξij
s,uŪ

n
u dW

j
u

∥∥∥ds
and

‖(Li|W̌n,kj)− (Li
l|W̌n,kj)‖ ≤ |Li − Li

l|∞
∫ T

0

∥∥∥∫ T

s

q∑
j,k=1

ζijk
s,u dW̌

n,kj
u

∥∥∥ds.
Consequently, in order to prove the statement of the lemma, we have just to prove the tightness of∫ T

0

‖Ūn
s ‖ ds, P i

n =
∫ T

0

∥∥∥∫ T

s

q∑
j=1

ξij
s,uŪ

n
u dW

j
u

∥∥∥ ds
and Qi

n =
∫ T

0

∥∥∥∫ T

s

q∑
j,k=1

ζijk
s,u dW̌

n,kj
u

∥∥∥ds.
The tightness of the sequence

∫ T

0
‖Ūn

s ‖ ds, follows from the convergence of the law of Ūn. For P i
n

and Qi
n, this is a consequence of the hypothesis on ξ

ij
s,u, ζ

ijk
s,u . In fact :

‖P i
n‖L2(Ω) ≤

∫ T

0

∥∥∥∫ T

s

q∑
j=1

ξij
s,uŪ

n
u dW

j
u

∥∥∥
L2(Ω)

ds

=
∫ T

0

∥∥∥(∫ T

s

‖
q∑

j=1

ξij
s,uŪ

n
u ‖2du

)1/2∥∥∥
L2(Ω)

ds

≤
√
T

(
E

∫ T

0

ds

∫ T

s

du‖
q∑

j=1

ξij
s,uŪ

n
u ‖2

)1/2

≤ q
√
T

(
E

∫ T

0

du
[∫ u

0

dsmax
j

‖ξij
s,u‖2

]
‖Ūn

u ‖2
)1/2

,

Using that supn E
∫ T

0
|Ūn

u |qdu <∞ for q ≥ 1 and that

E
∫ T

0

du

∫ u

0

ds
(
max

j
‖ξij

s,u‖p
)
<∞ for p > 2.

we obtain that
sup

n
‖Pn‖2 <∞.

In the same manner we obtain that supn ‖Qn‖L2(Ω) <∞ which completes the proof of the lemma.
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