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Abstract

The purpose of this paper is to present in a unified context the reduced form modelling
approach, in which a credit event is modelled as a totally inaccessible stopping time. Once
the general framework is introduced (frequently referred to as “pure intensity” set-up), we
focus on the special case where the full information at the disposal of the traders may be
split in two sub-filtrations, one of them carrying the full information of the occurrence of
the credit event (in general referred to as “hazard process” approach). The general pricing
rule when only one filtration is considered reveals to be non tractable in most of cases,
whereas the second construction leads to much simplest formulas. Examples are given and
evidence advanced that this set-up is more tractable.

Introduction

Given the flow of information of a financial market, containing both defaultable and default
free assets, the methodology for modelling a credit event can be split into two main approaches:
The structural approach (chronologically the first one) and the reduced form approach.

• In the structural framework, the credit event is modelled as the hitting time of a barrier
by a process adapted to the information flow (typically the value of the firm crossing
down a debt ratio). This approach is intuitive (refereing to economic fundamentals, such
as for example the structure of the balance sheet of the company), and the valuation and
hedging theory relies on tools close to the techniques involved in the classical Black and
Scholes default-free set up.
Nonetheless it presents important drawbacks: the value process can not be easily observed,
it is not a tradeable security, a relevant trigger is very complex to identify. Moreover,
a simple continuous firm’s value process implies a predictable credit event, leading to
unnatural features such as null spreads for short maturities. The interested reader may
refer to the ground articles of [4], [33] and [13], to [26] for the introduction of random
barriers or random interest rates, to [30], [29], [17] and [8] for a study of optimal capital
structure, bankruptcy costs and tax benefits, to [31] for the introduction of constant
barrier and random interest rates, and to [36], [17] and [39] for discontinuous firm’s value
process examples (framework that does not imply null spreads at short maturities).
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• The reduced form approach lies on the assumption that the credit event occurs by “sur-
prise”, i.e., at a totally inaccessible time and consists in the modelling of the conditional
law of this random time (see later). The present paper will mainly focus on this frame-
work. An example of transformation of a structural model into a reduced form model will
be studied in the third section in connection with the paper of Guo et al. (see [16]).

In the literature, reduced form framework has been split so far into two different approaches,
depending on wether the information of the default free assets - a sub-filtration of the filtration
containing the whole information of the financial market - was introduced or not (the former
referring to as “hazard process approach” and the later as “intensity approach”).

• In the “Intensity based approach”, a unique flow of information is considered and the
credit event is a stopping time of this filtration. The modelling is based on the existence
of “an intensity rate process”: a non-negative process satisfying a compensation property
(cf. first section below). Classical methods allow to compute this process, and to derive
pricing rule for conditional claims (see [10]).
The main problem in this methodology is that the pricing rule (referred to in the sequel
as “intensity based pricing rule”, IBPR) leads to a non tractable formula, involving
computations complex to handle1.

• The second approach is based on the computation of the “hazard process” and lies on the
introduction of two filtrations: a reference filtration enlarged by the progressive knowledge
of the credit event. This framework allows to derive a pricing rule much more convenient
to use (referred to in the sequel as “hazard based pricing rule”, HBPR). However, it
depends on the assumption of the existence of a decomposition between the credit event
and a filtration (a “default-free market” information is often mentioned). This modelling
assumption is particularly meaningful when the default free market contains information
not depending on the credit event, such as the stochastic interest rates for instance (see [2]).
The filtration enlargement method was first used by Lando (see [28]) in its construction
of Cox processes in a pure intensity approach, before being reintroduced for the definition
of the hazard process modelling.

The main goal of this paper will be the presentation of the reduced form framework, in
theory and practice. It will focus mainly on the filtration enlargement approach, presented as
a particular case of the more general “intensity based approach”, and leading to more efficient
pricing tools.

The paper is organized as follows: in a first section, we present the two approaches, and
the techniques and results relative to each one. Our point is to emphasize that the hazard
process framework is the more tractable in many features, notably for pricing. This simplicity
has nonetheless a cost: this setting, based on filtration enlargements, presents some technical
constraints inherent in this mathematical theory. Indeed, once specified the dynamics of the
default-free assets, a special care must be brought to the changes due to the new information:
hypotheses has to be made on the nature of the random time modelling the credit event so that
to preserve the semi-martingale properties (invariance feature called (H′) hypothesis). The
second section deals with these aspects (and presents applications of the initial times2 in this
context). We also focus within this part on the question of (H) hypothesis, under which the
martingales of the small filtration remain martingales in the full filtration. This property of the

1The formula involves quantities such as the jump at the credit event of some stochastic process
2see Section 2.1, [38] and [19] for definition and properties of these random times
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progressive enlargement of the reference filtration by the random time - also called immersion -
is often a central feature asked to the model3. Under this hypothesis the stopped hazard process
is the compensator of the credit event (the intensity process), and the two pricing rule are very
close in interpretation. The third section is dedicated to examples of meaningful models in
which immersion does not hold. In such cases IBPR may involve a non null jump and reveal to
be non tractable, and the pricing should be based on HBPR. The last section presents pricing
examples, based on defaultable zero coupons and credit default swaps.

The following notation will be used in the sequel: For a given filtration F and probability
P, the set M(F,P) (resp. S(F,P)) denotes the set of (F,P)-martingales (resp. (F,P)-semi-
martingales). When there is no confusion with the choice of probability P, we write M(F) for
M(F,P). We denote by P(F) the set of F-predictable processes. For a filtration enlargement
F ⊂ G, we say that (H) hypothesis holds if M(F) ⊂ M(G) (and write F ↪→(H) G), and that

(H′) hypothesis holds if S(F) ⊂ S(G) (and write F ↪→(H′) G).

1 The two approaches of reduced form modelling

We present here the “intensity framework”, and the “hazard process framework”, the two main
approaches in reduced form modelling, and emphasize that the second, based on an enlargement
of filtration, is a particular case of the first one, and offers easiest formulas for pricing (see the
second section for the links between IBPR and HBPR). Cox process construction, the classical
method for the construction of the credit event and the intensity process, is the simplest example
of filtration enlargement construction (see the following section for examples). For a detailed
presentation of these approaches, see [10], [12], [22], or [3].

1.1 Intensity based models

In intensity based models, the default time τ is a stopping time in a given filtration G, repre-
senting the full information of the market.

The process (Ht = 11τ≤t, t ≥ 0) is a G-adapted increasing càdlàg process, hence a G-
submartingale, and there exists a unique G-predictable increasing process Λ, called the com-
pensator, such that the process

Mt = Ht − Λt

is a G-martingale. As H = 0 after default, its compensator has to be constant since the G -
martingale M can not be decreasing after the G-stopping time τ . It follows that the compensator
satisfies Λt = Λt∧τ . The process Λ is continuous if and only if τ is a G-totally inaccessible
stopping time. In intensity based models, it is generally assumed that Λ is absolutely continuous
with respect to Lebesgue measure, i.e., there exists a non-negative G-adapted process (λG

t , t ≥ 0)
such that

Mt = Ht −
∫ t

0

λG
s ds

is a martingale. This process λG is called the intensity rate and vanishes after time τ .
We refer to [14] for cases where the absolute continuity assumption does not hold.

The classical way to compute the intensity rate is Aven’s lemma [1], or the Laplacian ap-
proximation method, which gives (see for example Meyer [34]) an efficient tool to obtain the

3for example when the reference market is complete without arbitrage opportunities
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predictable bounded variation part A of a G-semimartingale X (under technical conditions, for
a counter example see [9]) as

At = lim
h→0

∫ t

0

1
h
E(Xs+h −Xs|Gs)ds

One gets, in a credit default setting, for Xt = Ht, under some regularity assumption,

λG
t = lim

h→0

1
h
P(t < τ ≤ t + h|Gt),

when the limit exists.

For the pricing matter, we have for X ∈ GT , integrable,

E(X11T<τ |Gt) = 11{t<τ}
(
Vt − E(∆Vτ11{τ≤T}|Gt)

)
(1)

with
Vt = eΛtE(Xe−ΛT |Gt) = eΛt∧τE(Xe−ΛT∧τ |Gt)

We shall refer to this formula in the sequel as the “intensity based rule”, or IBPR. The
detailed proof of this result can be found in (see [10]); the main idea is to apply the integration
by part formula to the product U = V L (remark UT = 11{T<τ}X), with Lt = 1 − Ht :
dUt = ∆VτdLt + (Lt−dmt − Vt−dMt) , (where dmt = eΛtdYt, for Yt = e−ΛtVt), which yields to
Ut = E(∆Vτ11t<τ≤T + UT |Gt). Using the intensity rate, the pricing rule becomes:

E(X11T<τ |Gt) = 11{t<τ}E
(

Xe−
∫ T

t
λG

s ds
∣∣∣Gt

)
− E(∆Vτ11{t<τ≤T}|Gt).

For example, whereas the price of a zero-coupon bond writes (if βt = exp− ∫ t

0
rsds denotes

the savings account):

B (t, T ) = βtE
(

1
βT

∣∣∣∣Gt

)
= E

(
e−

∫ T
t

rsds
∣∣∣Gt

)
,

the price of a defaultable zero-coupon bond is:

D (t, T ) = βtE
(

11T<τ

βT

∣∣∣∣Gt

)
= 11{t<τ}E

(
e−

∫ T
t (rs+λG

s )ds
∣∣∣Gt

)
− E(∆Vτ11{t<τ≤T}|Gt).

The main difficulty in that framework is the computation of the jump of the process V . As
an illustration, let us present as a simple example the computation of the price of a defaultable
zero-coupon bond when the process (Ht−λ (t ∧ τ) , t ≥ 0) is a martingale, where λ is a constant
(i.e., τ is an exponential random variable with parameter λ) and where r = 0. The filtration G
is here the filtration generated by the process H, hence Gt = σ(t ∧ τ). A direct computation,
based on the computation of conditional probability, shows that

E (11T<τ |Gt ) = 11{t<τ}e−λ(T−t).

The G-adapted intensity rate is λt = 11t<τλ and e−Λt∧τ = e−λ(t∧τ). In order to compute
E (11T<τ |Gt ) using (1), we introduce Vt = eλ(t∧τ)E

(
e−λ(T∧τ) |Gt

)
. Then,
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Vt = 11t<τeλt

∫∞
t

e−λ(u∧T )f(u)du∫∞
t

f(u)du
+ 11τ≤te

λτe−λτ

= 11t<τ

(
1− e−2λ(T−t)

2
+ e−λ(T−t)

)
+ 11τ≤t

It follows the jump of V at time τ is non null and is equal to: ∆Vτ = 1− (
1− e−2λ(T−τ)

)
/2−

e−λ(T−t). Then, one find, after some computations, that E (11T<τ |Gt ) = 11{t<τ}e−λ(T−t).

The next section presents the particular case where the full filtration can be split into two
sub-filtrations. This framework allows to derive a second pricing formula (the HBPR), much
more efficient than IBPR (no jump part in the formula, no need to compute the intensity). For
instance, its application to the previous example leads immediately to the conclusion.

1.2 Hazard process models

The hazard process approach is based on the assumption that some reference filtration F is given
(see Kusuoka [27] and Elliott et al. [12]). The default time is a random time, which is not an
F-stopping time. The filtration G is defined as Gt = Ft ∨Ht where H is the filtration generated
by the process (Ht = 11τ≤t, t ≥ 0), in particular τ is a G-stopping time. This “separation” into
two filtrations is often quite natural. The simplest case is the Cox process model class we shall
present in section 2.3. Other examples will follow below.

Let Gt = P(τ > t|Ft). We make the technical assumption that this process does not vanish
(the case without this assumption has been treated in [2], see also the third section in the
sequel). We have, for X ∈ FT , the very simple pricing rule (see [12]) which does not involve
the jump of any auxiliary process, nor the knowledge of the intensity:

E(X11T<τ |Gt) = 11{τ>t}
1
Gt
E(GT X|Ft) = 11{τ>t}eΓtE

(
Xe−ΓT |Ft

)
, (2)

setting Γt = − ln Gt. This process Γ is called the hazard process. We shall refer to this formula
in the sequel as “Hazard based pricing rule” or HBPR.

The process F = 1−G is an F-submartingale (first studied by Azéma) and admits a Doob-
Meyer decomposition as Ft = Zt+At where Z is an F-martingale and A a predictable increasing
process. In what follows, we write F-Doob-Meyer decomposition in order to make precise the
choice of the reference filtration. We introduce the F-adapted increasing process ΛF defined as

ΛFt =
∫ t

0

dAs

Gs−

It is easy to prove (integration by part formula) that the process (Mt = Ht − ΛFt∧τ , t ≥ 0) is is
a G-martingale, hence the uniqueness of the compensator implies that Λt = ΛFt∧τ .

Assume that the process A is absolutely continuous with respect to the Lebesgue measure
(dAs = asds). Then,

λG
t = 11t<τλF

t where λF
t =

at

Gt−

We shall say, with an abuse of language that λF is the F-intensity rate4.
4Under our hypotheses, since if λ is F-adapted and satisfies λG

t = 11t<τ λt, then λt = E(11t<τ λG
t |Ft)/Gt−
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It is important for the intuition of the meaning of the intensity and the “F-intensity” to
remark that: 




λG
t = limh→0

1
hP(t < τ ≤ t + h|Gt)

λF
t = limh→0

1
h
P(t<τ<t+h|Ft)
P(t<τ |Ft)

(3)

a formula which can be obtained via the Laplacian approximation, the increasing process asso-
ciated with (Ht, t ≥ 0) being obtained as the limit when h goes to 0 of

1
h

∫ t

0

E(Hs+h −Hs|Gs)ds =
1
h

∫ t

0

11s<τ
E(Hs+h −Hs|Fs)
P(τ > s|Fs)

ds.

Comparing the two pricing rules (1) and (2), we have for every X ∈ FT the pricing equality:

11{t<τ}
(
Vt − E(∆Vτ11{τ≤T}|Gt)

)
= 11{t<τ}eΓtE(Xe−ΓT |Ft)

with Vt = eΛt∧τE(Xe−ΛT∧τ |Gt). Note that the computation of the left-hand side requires the
Doob-Meyer decomposition of G and the computation of the jump of V , whereas the right-hand
side requires only the knowledge of G.

Next section presents the (H) hypothesis, where both framework are very close (the hazard
process and the intensity process are the same until default under the assumption that the
default time avoids the F-stopping times), and which can be a quite natural hypothesis for
modeling. In the opposite, the two following sections will present situations where the function
F is not increasing, hence (H) does not hold.

2 Hazard process and filtration enlargement

As recalled in the introduction, whereas the pricing rule in the hazard process framework is
much more convenient, this approach introduces some mathematical technicalities, that impose
conditions on the credit event. Once the reference filtration F has been specified, the addition
of the random time enlarges the information into a filtration G. We now interpret the filtration
F as the default-free information, i.e. the filtration generated by default-free assets (as, for
example default free zero-coupon bonds).

It is known that to preclude arbitrages in the default-free market, the (properly discounted)
asset prices are F-semi-martingales. As the full market is assumed to be arbitrage free, these
prices must stay G -semi-martingales, i.e., we must have F ↪→(H′) G. Unfortunately, (H′)-
hypothesis is not satisfied in general in a progressive filtration enlargement, and some technical
conditions have to be imposed to the credit event for this property to hold. Moreover, in some
situations, the stronger condition that the martingales of F must stay G-martingales is wanted
(for example when the reference market is complete, but also for some interesting features),
i.e., F ↪→(H) G. The questions relative to this property can be complex, and add in general new
constraints to the definition of the credit event.

In this section we first present a natural framework for (H′)-hypothesis to hold, i.e., so that
the modelling be arbitrage free, then make a development on the (H)-hypothesis and finish with
examples of constructions for default times based on Cox Processes idea.
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2.1 (H′)-hypothesis

Enlargements of filtrations have been extensively studied so far and we only recall the main
formulas, that are necessary for the sequel. Refer to [24], [25], [37], [32] or [35] for proper
presentations.

The property that F-semi-martingales remain G -semi-martingales is called (H′) hypothesis.
In the case of a progressive enlargement, (H′) hypothesis is always satisfied until the default
time in the following sense : If X ∈M (F,P), the process X stopped at default, i.e. the process
(Xτ

t = Xτ∧t, t ≥ 0) is a G-semi-martingale. Indeed if Gt = P(τ > t|Ft) = Mt − At (F-Doob
Meyer decomposition) and if B is the F-predictable dual projection of the G-adapted process
(εu)u=(∆XτHu)u (this process is equal to zero under the (classical) assumption that τ avoids
the F-stopping times, i.e. P(τ = T ) = 0 for all T F-stopping time - this condition is often called
(A)), Jeulin’s formula states that

Xt∧τ −
∫ t∧τ

0

d 〈X, M〉u + dBu

Gu−
∈M (G,P) (4)

(see [24] for example). The situation after the credit event is more complicated, and conditions
must be imposed to the random time such that (H′) hypothesis holds.

The two more common cases, under which (H′) hypothesis holds, are when τ is a honest
time, or is an initial time. Precisely, let X ∈M (F,P) and denote by GT

t = P(τ > T |Ft) (remark
Gt = Gt

t). We have, with above notations, the following results:

• The credit event τ is said to be a honest time if for any t > 0, the r.v. τ is equal to an
Ft-measurable random variable on {τ ≤ t}. In that case:

Xt −
∫ t∧τ

0

d 〈X,M〉u + dBu

Gu−
+ 11{τ≤t}

∫ t

τ

d 〈X, M〉u + dBu

Fu−
∈M (G,P) .

• The credit event τ is said to be an initial time if there exists a family of positive F-
martingales (αu

t , t ≥ 0) such that GT
t =

∫∞
T

αu
t η(du), where η is a finite non-negative

measure on R+. Refer to [38] or [19] for a study of the properties of these times. In that
case, we can write (see [19]):

Xt −
∫ t∧τ

0

d 〈X, G〉u + dBu

Gu−
−

∫ t

t∧τ

d
〈
X, αθ

〉
u

αθ
u−

∣∣∣∣∣
θ=τ

∈M(G,P).

Initial times are very appropriate for the study of a credit event (or of many credit events),
which is not the case of honest times. Indeed these times necessarily belong to F∞, which is not
the case in general of a credit event (see example at the end of this section). Moreover, after
the credit event the G-adapted process depend in general on the credit event. This feature is
impossible if the time is honest (every G-predictable process is F-measurable after the credit
event by definition).

2.2 (H)-hypothesis

A very particular case of enlargement of filtration correspond to the immersion property: There
is immersion between F and G is any F-local martingale is a G-local martingale (M (F) ⊂
M (G)). Brémaud and Yor [6] gave a simple characterization of immersion proving its equiv-
alence with: ∀t > 0, F∞ is independent with Gt conditionally to Ft. As proved in [19], there
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exist a simple characterization for immersion when the credit event is modelled by an initial
time: if it avoids the F-stopping times (for the sake of simplicity), there is equivalence between
F ↪→(H) G and for any u ≥ 0, the martingale αu is constant after u. We make also the technical
assumption that G does not vanish.

We have seen that within the enlarged filtration framework, the HBPR allows to compute
the price of defaultable claims very easily, at the opposite of IBPR, it does not involve the
computation of the jump of any process. We shall see that if the reference filtration is immersed
into the full filtration, these two formulas are very close.

If the reference filtration is immersed into the full filtration, then G has no martingale
part, i.e., is a non increasing predictable process. Indeed, using the Doob-Meyer decomposition
of G as G = M − A (with M0 = 1), by immersion M ∈ M (F) ⊂ M (G) , and as τ is
a G-stopping time, optional sampling theorem implies that Mτ ∈ M (G) . It follows from
(4), that

∫ t∧τ

0
d 〈M,M〉u /Gu− is a predictable increasing martingale, hence is constant, equal

to 0. It follows d 〈M, M〉τu = 0, hence 〈M,M〉τu is constant and Mτ is constant equal to
M0 = 1. Moreover, T = inf{t > 0,Mt 6= 1} is an F-stopping time and τ ≤ T. It follows
Gt = P(τ > t|Ft) ≤ P(T > t|Ft) = 1{T>t}. If G does not vanishes, T = ∞ and M = 1,
which proves that G is decreasing and predictable for any t ≥ 0 if immersion holds (remark
that the fact that G is decreasing under immersion is straightforward, since under immersion
Gt = P (τ < t|Ft) = P (τ ≤ t|F∞)).

It follows that the hazard process Γ = − ln G is an increasing predictable process and

ΛFt =
∫ t

0

dAs

Gs−
=

∫ t

0

dGs

Gs−
= Γt,

where the last equality holds if G is continuous. It follows Λt = Γt∧τ . If Γ is continuous w.r.t
Lebesgue measure, Γt =

∫ t

0
λFsds, and HBPR becomes:

E(X11T<τ |Gt) = 11{τ>t}eΓtE
(
Xe−ΓT |Ft

)
= 11{τ>t}E

(
Xe−

∫ T
t

λFsds
∣∣∣Ft

)
.

To compare this pricing rule, we need to remark that under (H) hypothesis, for any FT -
measurable integrable random variable X :

E(X|Gt) = E(X|Ft) for every t ≤ T.

Indeed if immersion holds these two G-martingales have the same terminal value X. It follows

E(X11T<τ |Gt) = 11{τ>t}E
(

Xe−
∫ T

t
λFsds

∣∣∣Ft

)
= 11{τ>t}E

(
Xe−

∫ T
t

λFsds
∣∣∣Gt

)

that has to be compared to IBPR:

E(X11T<τ |Gt) = 11{t<τ}E
(

Xe−
∫ T

t
λGs ds

∣∣∣Gt

)
− E(∆Vτ11{t<τ≤T}|Gt).

It appears that HBPR behaves like the IBPR where the intensity would have been replaced
by the F-intensity and where the jump would vanish5. In that sense, we say that IBPR and

5Remark this is just an interpretation, and it is not true to write that the filtration enlargement allows
to construct a version of the intensity under which the jump disappears. Indeed in such a framework, a true
application (the intensity) of IBPR leads to the expression of the jump:

E(∆Vτ11{t<τ≤T}|Gt) = 11{t<τ}eΓt

(
E

(
Xe−ΛT∧τ

∣∣∣Gt

)
− 11{τ>t}E

(
Xe−ΓT

∣∣∣Gt

))

= 11{t<τ}eΓtE
(

11{τ≤T}X
(
e−Γτ − e−ΓT

)∣∣∣Gt

)
.
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HBPR are close in an immersed context. Remark also that in this case, if τ is the default time
of a defaultable asset, the “F-intensity” associated to τ can be interpreted as its spread over
the interest rate. Indeed if D the price process of a defaultable zero-coupon bond (associated
to the credit event τ),

D(t, T ) = 11{t<τ}E
(

e−
∫ T

t (rs+λFs)ds
∣∣∣Ft

)
= 11{t<τ}E

(
e−

∫ T
t (rs+λFs)ds

∣∣∣Gt

)
.

The most commonly used application of this framework is the Cox process construction, pre-
sented in the following section (see [28]).

Another reason why the study of immersion is important, is the following arbitrage condition.
If the reference market is complete, (H) hypothesis holds necessarily, to avoid arbitrages while
using G -adapted strategies, as proved in [5]. Indeed6 if Mt = E(MT |Ft) is a F-martingale,
the market being arbitrage free, it represents an arbitrage price (a price that does not lead to
an arbitrage) of the claim MT . The market being complete, there exists a replicating strategy,
which is F-adapted (and the price is unique, as well as the martingale measure). By hypothesis,
the total Market remains arbitrage free, so there exits at least a Q∗ equivalent martingale
probability, i.e., under which the dynamics of S is a G-martingale. The F-Market being complete
and arbitrage free, Q∗ restricted to F must coincide with Q (it is not true in incomplete setting).
An arbitrage price of the MT claim in the total market is E∗(MT |Gt). As the claim is replicable
(a F-admissible strategy remains a G -admissible strategy), the price is unique and Mt =
E∗(MT |Gt) is a G-martingale.

2.3 Examples of constructions of credit event

Cox construction of the random time - under which an F–adapted process crosses an independent
trigger - allows for a very simple and intuitive method to define the credit event, leading to non
F∞-measurable times. It is known that (H) hypothesis (hence (H′) hypothesis) holds in such
type of progressive enlargement (these times are in fact initial under an additional hypothesis).
A slight modification of the construction leads to a violation of this property. Indeed, recall
that in a progressive expansion of filtration, i.e., for Gt = Ft∨Ht, the assertion: (H)-hypothesis
holds between F and G, is equivalent to the conditionally independence of F∞ and Ht given Ft.
It follows that Ft = P (τ ≤ t|Ft) = P (τ ≤ t|F∞) is increasing. Breaking the increasing property
of F implies letting Ht not be independent with F∞ given Ft anymore. In Cox construction,
the default is triggered as the F clock overtakes an independent barrier Θ. Henceforth F∞ and
Ht are independent given Ft, since Θ does not depend on F∞. A source of noise Θ that does
not belong to F∞ remains necessary for the default time to get out the F information. Letting
this trigger having a F∞ non independent part will violate the (H)-hypothesis, and allow for a
broader class of models.

We propose in this section three examples: the classical Cox construction, where immersion
property holds and two variations where immersion property does not hold but where the
random times are initial times, hence (H′)-hypothesis is satisfied. In the following examples,
a filtration F is given, as well as an F -adapted process X, and one or two non negative r.vs:
V which is F∞ -measurable and integrable, and Θ which is independent of F∞ with unit
exponential law.

• In the Cox process construction, τ is given by

τ = inf{t : Xt ≥ Θ} .

6Assume the filtration is generated by the asset S which is martingale under the probability Q (the risk
neutral probability with no interest rate to ease the notation).
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In that case, if Λt := sups≤t Xs,

Gt = P(Λt < Θ|Ft) = exp(−Λt) = 1−At,

and, if Λ is continuous, the process

Ht −
∫ t∧τ

0

dAs

1− Fs
= Ht − Λt∧τ

is a G-martingale. See for example [28] and [15] for a study when Λ is not absolutely
continuous. It is proved in [19] that these times are initial (with known martingale density,
under the assumption that Λ is absolutely continuous), and that immersion property holds.
It follows that for X ∈ FT , one has the pricing rule:

E(X11T<τ |Gt) = 11{τ>t}eΓtE(e−ΓT X|Ft) = 11{τ>t}eΛtE(e−ΛT X|Ft).

It has been proved by N. El Karoui [11] that when (H) hypothesis holds and G is contin-
uous, the default time can be constructed as in Cox process method (“canonical construc-
tion”), Γτ playing the rôle of the stochastic barrier Θ independent of F∞. The proof is
based on the fact that Γ is increasing and inversible, its continuity assuring the relation
ΓCt

= t if C is its inverse process.

• One can extend this construction as follows: Introduce the random time:

τ = inf{t : Λt ≥ ΘV }

The variable ΘV is not independent from F∞. Let us define

ψs =
λs

V
exp

(
−

∫ s

0

λu

V
du

)

and for any pair (s, t), we set γ(s, t) = E (ψs| Ft), so that γ(s, t) is non-negative and, for
any s, the process (γ(s, t), t ≥ 0) is an F-martingale. The law of the variable τ writes
η([0, t]) =

∫ t

0
γ(s, 0)ds = P(τ ≤ t), and for any T and t :

GT
t = P(τ > T |Ft) =

∫ ∞

T

αs
tη(ds)

with αs
t = γ(s, t)/γ(s, 0). It follows that such times are initial. Moreover, in this situation,

if t ≥ s, αs
t 6= αs

s hence immersion does not hold. If 0 < V < 1, a.s., such a time is almost
surely finite. See [19] for more details.

3 The example of incomplete information

This part presents a natural situation where immersion fails to hold: the reduction of informa-
tion. Starting from a framework where immersion holds, it is easy to prove that a filtration
shrinking (projection on discrete dates for example) breaks this property. A more sophisticated
generalization of this simple (but powerful) remark is the incomplete information set up, il-
lustrated with the Guo et al. [16] construction of the credit event. This set up is extensively
studied in the second part of this section.
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3.1 Remarks about information reduction

A very simple and natural situation under which immersion does not hold can be constructed
by reducing the information (for example through a time discretization). Starting from an
immersed set up (F ↪→(H) G = F ∨H), a shrinking of filtration does not preserve this property
in general, i.e., if F̃ ⊂ F the statement F̃ ↪→(H) G̃=F̃ ∨H does not hold in most situations.

Denote by Gt = Zt − At the F-Doob-Meyer decomposition of the F-submartingale Gt =
P (τ > t|Ft) (assumed to be continuous) and assume the increasing part satisfies dAt = atdt.

The F–intensity rate writes λs = as/Gs. Let Ã be the F̃ -submartingale Ãt = E(At|F̃t),
and denote z̃t + α̃t the Doob-Meyer decomposition of this F̃ -submartingale (with z̃ ∈ M

(
F̃
)

and α̃ ∈ P
(
F̃
)

increasing). Then, setting Z̃t = E
(
Zt|F̃t

)
∈ M

(
F̃
)
, the F-Doob-Meyer

decomposition of G̃ is

G̃t = P
(
τ > t|F̃t

)
= E

(
Gt|F̃t

)
= Z̃t − z̃t − α̃t ≡ X̃t − α̃t,

where X̃t ∈M
(
F̃
)

and α̃t =
∫ t

0
E(as|F̃s)ds is a F-predictable increasing process7:

Starting from a simple framework where immersion holds (with G = 1 − A), it is straight-
forward to build an example where the hazard process is not increasing anymore: the reduction
of information makes appear a martingale part in the decomposition of the hazard process (z̃t,
with above notations).

Proposition 1 (i) If P (τ > t|Ft) = Gt = Zt−
∫ t

0
asds with Z ∈M (F), and if G is continuous,

the F–intensity rate of τ writes λt = at/Gt.

(ii) If F̃ ⊂ F, P
(
τ > t|F̃t

)
= G̃t = X̃t −

∫ t

0
ãsds with X̃ ∈ M

(
F̃
)

and ãs = E(as|F̃s).

Moreover: Ht −
∫ t∧τ

0
ãs/G̃sds is a G̃ martingale, and the F̃-intensity rate of τ writes λ̃t =

ãt/G̃t = E
(
λtGt|F̃t

)
/E

(
Gt|F̃t

)
.

Remark that the intensity in the reduced model is not the optional projection of the intensity
(i.e. λ̃t 6= E(λs|F̃s) = E(as/Gs|F̃s)) but E(as|F̃s)/G̃s : it underlines the fact that computing
the intensity in the reduced model necessitates the knowledge of the Doob-Meyer decomposition
of F̃t. Such a result could not hold even in simple situations. If we consider the example of
a trivial sub-filtration F̃, the F̃-intensity rate writes λ̃s = f(s)/G(s) (with G(s) = P(τ > s) =∫∞

s
f(u)du), and the equality λ̃s = E(λs|F̃s) = E(λs) would imply G(t) = exp− ∫ t

0
E(λs)ds

(solving the ODE). By assumption

P (τ > t |Ft ) = exp−
∫ t

0

λsds,

and it follows by taking the expectation that G(t) = E
(
exp− ∫ t

0
λsds

)
hence:

E
(

exp−
∫ t

0

λsds

)
= exp−

∫ t

0

E(λs)ds for any t ≥ 0.

7This result is very easy to check : if Nt = Ãt −
∫ t
0 E(au|F̃u)du and cs ∈ F̃s,

E (cs (Nt −Ns)) =

∫ t

s
E

(
E(csau|F̃t)− E(csau|F̃u)

)
du =

∫ t

s
E(csau)− E(csau)du = 0.

11



The exponential concave function being non affine, the equality in Jensen’s inequality can only
be achieve if λs = E(λs) is deterministic. The relation λ̃t = E(λs|F̃s) would necessary imply λ
deterministic.

It is worth mentioning that if the random time τ is an F-initial time, it remains an F̃-initial
time. Indeed if GT

t = P(τ > T |Ft) =
∫∞

T
αu

t du, with for any u ≥ 0, αu
. ∈M (F)

G̃T
t = P(τ > T |Ft| F̃ t) =

∫ ∞

T

E
(
αu

t

∣∣∣F̃t

)
du =

∫ ∞

T

α̃u
t du

and for u ≥ 0, α̃u
. ∈ M

(
F̃
)
. If F ↪→(H) G, αu

u∧t = αu
u but α̃u

u∧t may not be equal to α̃u
u in

general and immersion not hold between F̃ and G̃ (see [19]).

3.2 Presentation of the model of delayed information

In Guo et al. [16], the authors suggest to start from a structural model and delay the information
flow. From a structural approach - where the default time is the predictable hitting time by a
diffusion process of a constant trigger (and has therefore no intensity) - they derive a reduced
form modelling by altering the initial information. In this delayed information framework, the
default time has yet an intensity. Guo et al. derive explicit analytic connections between
default intensities and the density functions of the corresponding first passage times for general
continuous time Markov models.

Precisely, let us consider a continuous Markov process X defined on a space (Ω,A, (Px)x∈R , θ)
where for each x, the probability Px satisfies Px (X0 = x) = 1 and θ is a translation on Ω (i.e.,
Xs ◦ θt = Xs+t)8. We denote by F the natural augmentation of the filtration generated by X.
The authors start from a structural model where τb is an F-predictable stopping time defined
by

τb = inf{t > 0, Xt ≤ b},
for a fixed b ∈ R. For the sake of notational simplicity we shall note τ = τb. Introduce, for
t > δ > 0, the σ -algebra F̃t = Ft−δ ⊂ Ft and F̃t is the trivial filtration for 0 < t < δ. We set
G̃t = F̃t ∨Ht.

Remark that since τ is an F-stopping time, it can not be F-initial. It follows it would not be
possible to try and use last section’s result to establish any F̃-initial property of τ . Anyways, it is
clear that this time is not F̃-initial, since for any T ≤ t−δ, G̃T

t = 1{τ>T} hence is not absolutely
continuous w.r.t. a deterministic measure on R+. However, the F̃-semi-martingales will remain
at all time G̃-semi-martingales. Indeed such a construction of the credit event is honest, since
default, i.e., on {τ ≤ t}, the time τ−δ can be expressed in terms of F̃t-measurable elements. On
{τ ≤ t}, 1{η≤t−δ} = 1, with η = inf{t > 0, Zt ≤ b}, hence 1{η≤t−δ}η is F̃t-measurable. Finally
on {τ ≤ t} τ = τt with τt = 1{η≤t−δ}η + δ ∈ F̃t, hence τ is F̃-honest, and (H′)-hypothesis holds
between F̃ and G̃.

Guo et al. study this model via a pure intensity approach. As presented in the first part of
this survey, the classical method to derive the G̃-intensity is based on the application of Aven’s
lemma (or approximated Laplacians method):

λt = lim
h→0

1
h
Px

(
t < τ ≤ t + h

∣∣∣G̃t

)
= 11{t<τ}

f(Xt−δ, b, δ)
PXt−δ

(δ < τ)

8The existence of a translation is a classical technical assumption in the study of Markov processes
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where the second equality comes from the Markov property of X and from the introduction of
the continuous density function of τ, f(x, b, t) = Px(τb ∈]t, t + dt])/dt (see [16]).

The pricing rule IBPR for a terminal claim writes

E(X11T<τ |G̃t) = 11{t<τ}
(
Vt − E(∆Vτ11{τ≤T}|G̃t)

)

and involves the computation of the jump at τ of the process

Vt = exp
∫ t∧τ

0

f(Xs−δ, b, δ)
PXs−δ

(δ < τ)
dsE

(
X exp

∫ T∧τ

0

f(Xs−δ, b, δ)
PXs−δ

(δ < τ)
ds

∣∣∣∣∣ G̃t

)
.

This jump has no reason to be equal to zero, and the IBPR is not tractable. It is therefore
more convenient to compute the F̃-hazard process and to use the HBPR.

3.3 Pricing defaultable claims

Let us start with a short remark about the translation. Recall that if X is a continuous F-
martingale, the process Z defined as Zt = Xt−δ11t>δ + X011t<δ is a continuous F̃-martingale9.
The bracket of this martingale writes 〈Z〉t = 〈X〉t−δ 11t>δ (from a direct computation of the
Riemann sum for instance).

Computation of the F̃-conditional survival process (or equivalently the F̃-hazard process).
As τb = inf{t > 0, Xt ≤ b}, for t > δ,

G̃t = Px(τb > t|F̃t) = Px

(
inf
s≤t

Xs > b

∣∣∣∣ F̃t

)
= 11infs≤t−δ Xs>bPx

(
inf

t−δ<s≤t
Xs > b

∣∣∣∣ F̃t

)

= 11infs≤t−δ Xs>bPXt−δ

(
inf
s≤δ

Xs > b

)
= 11infs≤t−δ Xs>bΦ(Xt−δ, δ, b) = DtΦ(Zt, δ, b)

where Dt = 11infs≤t−δ Xs>b, Zt = Xt−δ and Φ(x, u, y) = Px(infs≤u Xs > y). The process G̃
is not decreasing (and does not have finite variation if X has non finite variation), hence (H)
hypothesis does not hold in this framework (the knowledge of the intensity is not enough to
compute the value of defaultable claims, except if one is able to compute the needed jump). If
t ≤ δ, G̃t = Px(τb > t) = Φ(x, t, b).

Dynamics of G̃. For t > δ, integration by parts formula leads to

dG̃t = DtdΦ(Zt, δ, b) + Φ(Zt, δ, b)dDt

since the process Φ(Z, δ, b) is continuous and D has finite variation. Applying Itô’s formula to
Φ(Zt, δ, b), we can write

dG̃t = Dt∂1Φ(Zt, δ, b)dZt +
1
2
Dt∂1,1Φ(Zt, δ, b)d 〈Z〉t + Φ(Zt, δ, b)dDt.

9indeed (i) if t ≤ δ, F̃t is trivial: if T ≤ δ, ZT = Zt = X0 hence, E(ZT |F̃t) = X0 = Zt and if δ < T,

E(ZT |F̃t) = E(ZT ) = E(ZT−δ) = X0,

(ii) if t > δ, E(ZT |F̃t) = E(XT−δ|Ft−δ) = Wt−δ = Zt.
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Because D only jumps at times t such that Zt = b and since Φ(b, δ, b) = 0, the last term of the
right- hand side of last equality is identically null. Therefore

dG̃t = Dt∂1Φ(Zt, δ, b)dZt +
1
2
Dt∂1,1Φ(Zt, δ, b)d 〈Z〉t .

It follows (from the decomposition of Z) the decomposition of the (special) F̃-semi-martingale
G̃, since 〈Z〉 is F̃-predictable. We check that the martingale part M of the survival process is
not constant.

Pricing contingent claim. The pricing through HBPR is now easy and standard. The price
of a defaultable contingent claim with payoff f(XT )11T<τ is

E(f(XT )11T<τ |G̃t) = (1−Ht)
11{G̃t>0}

G̃t

E
(
G̃T f(XT )|F̃t

)
.

Indeed, this formula is the classical one when the survival process does not reach zero10, and
when the G̃t = 0, it is classical that τ ≤ t (see for example theorem 13 in [35]) and the
two members are equal to zero (remark E(f(XT )11T<τ |G̃t) = 11t<τE(f(XT )11T<τ |G̃t)). The
conditional expectation can be computed using the Markov property of Z :

E
(
G̃T f(XT )|F̃t

)
= V (t, T, Zt)

where V , assumed to be smooth, satisfies a PDE.

Recovering the F̃-intensity. As seen previously, it can be recovered from the hazard process.
If the Markov process X follows the homogeneous diffusion Xt = x+

∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dWs,

we can write with βs = Ws −Wδ, µ̃(s, x) = 11s>δµ(x) and σ̃(s, x) = 11s>δσ(x) :

Zt = x + 11t>δ

∫ t

δ

µ(Zs)ds + 11t>δ

∫ t

δ

σ(Zs)dβs = x +
∫ t

0

µ̃(s, Zs)ds +
∫ t

δ

σ̃(s, Zs)dβs

From previous calculations we have for s ≥ δ,

dÃs = −Ds

(
∂1Φ(Zs, δ, b)µ(Zs) +

1
2
∂11Φ(Zs, δ, b)σ2 (Zs)

)
ds,

and the F-intensity (since G̃s− = DsΦ(Zs, δ, b)) is, for s > δ:

λ̃s = −Ds
∂1Φ(Zs, δ, b)µ(Zs) + ∂11Φ(Zs, δ, b)σ2 (Zs) /2

Φ(Zs, δ, b)
.

We could also use a direct computation, by the approximated Laplacians:

dÃs = lim
h→0

1
h
E

(
F̃s+h − F̃s

∣∣∣ F̃s

)
ds = − lim

h→0

1
h
Px

(
s < τ ≤ s + h

∣∣∣F̃s

)
ds

= − lim
h→0

1
h

DsPZs (δ < τ ≤ δ + h) ds = −Dsf(Zs, δ, b)ds.

It follows λ̃s = −Dsf(Zs, δ, b)/Φ(Zs, δ, b), and we retrieve λs = 11{t<τ}λ̃s the intensity computed
by Guo et al.

10The proof of 11{G̃t>0}E(f(XT )11T<τ |G̃t) = 11{G̃t>0}(1 −Ht)E
(
G̃T f(XT )|F̃t

)
/G̃t is the same as without

the indicator.
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3.4 Examples and remarks about completeness

This last subsection is dedicated to examples and remarks about the previous model of in-
complete information. The first point mentioned is the difficulty to compute the function Φ
(or function f) in that model, hence the hazard process (and the intensity). These functions
depend on the properties of process X (basically on the laws of the hitting times). Recall

f(x, u, y) = −∂2Φ(x, u, y).

Examples. Let us present simple examples, where computations are simple:

• In the case where Xt = x + Bt is a Brownian Motion, Φ(x, δ, b) writes Φ(0, δ, b− x) and

Φ(0, u, y) = P0

(
inf
s≤u

Bs ≥ y

)
= P0

(
sup
s≤u

Bs ≤ −y

)
= P0(|Bu| ≤ −y).

Hence

Φ(0, u, y) = N
(
− y√

u

)
−N

(
y√
u

)
.

Moreover,

f(x, b, δ) = −∂2Φ(0, δ, b− x) =
x− b

δ
√

2πδ
exp− (x− b)2

2δ
.

• In the case where Xt = x + σBt + µt, Φ(x, δ, b) writes Φ(0, δ, b− x)

Φ(0, u, y) = P0

(
inf
s≤u

σBs + µs ≥ y

)
= P0

(
inf
s≤u

Bs +
µ

σ
s ≥ y

σ

)

Hence

Φ(0, u, y) = N
(

uµ− y

σ
√

u

)
− exp

2µy

σ2
N

(
uµ + y

σ
√

u

)

• In the case where Xt = x exp{σBt + µt} is a Geometric Brownian Motion

Φ(x, u, b) = Px( inf
s≤u

Xs ≥ b) = P0( inf
s≤u

σBs + µs ≥ ln(b/x))

Hence

Φ(x, u, b) = N
(

uµ− ln b/x

σ
√

u

)
− exp

2µ ln(b/x)
σ2

N
(

uµ + ln b/x

σ
√

u

)
.

Moreover

f(x, b, δ) = −∂2Φ(x, δ, b) = − ln b/x

δσ2
√

2πδ
exp− (µδ − ln b/x)2

2δσ2

In the general case, it is difficult to obtain the form of the function Φ.

Non completeness of the market. The second point worth to mention in this presentation
of the models based on delayed information, is the incompleteness of the market. Intuitively,
if the initial market (with savings account and stock with price process with dynamics X)
is complete, it is possible in that structural approach to hedge default free and defaultable
contingent claim. While working in the reduced filtration, it is still possible to hedge contingent
claim with strategies F̃ adapted for payoffs like K̃11T−δ<τ where K̃ ∈ FT−δ, but neither for
K ∈ FT , nor K11T<τ . Even adding a defaultable zero coupon does not complete the market.
As shown below, the best hedge in a mean variance sense in this situation is a translated (or

15



projected) delta hedging, which justifies that the previous computations of expectations for
pricing are relevant. Note that every F̃-adapted process k is constant on [0, δ], and there exists
an F-adapted process K such that kt = Kt−δ for t ≥ δ and kt = K0 before δ.

The full market is arbitrage free and we denote by Q the martingale measure associated to
the numéraire savings account (equal to 1, since there is no interest rate). Assume that the
dynamics of the discounted price (equal to the price since there is no interest rate) under this
probability (the neutral risk probability) are dX/X = σdW . The portfolio of the investor is
composed by χ0 units of savings account and χ units of shares X, the strategy (χ0, χ) being
F̃-adapted. The portfolio is assumed to be self-financed: the value V of the portfolio, defined as
Vt = χ0

t +χtXt satisfies dVt = χtdXt. Assume the strategy of the investor consists in minimizing
the terminal variance of its portfolio, i.e. denoting by AT

F̃ the set of admissible strategies on
[0, T ] :

J = min
χ∈A(F̃,[0,T ])

E (VT − Y )2 .

Since Y is FT -measurable, the predictable representation theorem for a Brownian filtration
leads to Y = E(Y ) +

∫ T

0
ysdXs = E(Y ) +

∫ T

0
ysσsXsdWs and

J = min
χ∈AT

F̃

E

(
V0 +

∫ T

0

χsdXs − E(Y )−
∫ T

0

ysσsXsdWs

)2

= min
χ∈AT

F̃

E

(
V0 − E(Y ) +

∫ T

δ

χsdXs− −
∫ T−δ

0

ysσsXsdWs −
∫ T

T−δ

ysσsXsdWs

)2

= min
ϕ∈AT

F
E

(
V0 − E(Y ) +

∫ T−δ

0

ϕsσsXsdWs −
∫ T−δ

0

ysσsXsdWs −
∫ T

T−δ

ysσsXsdWs

)2

= min
K∈AT

F
E (V0 − E(Y ))2 + E

(∫ T−δ

0

(ϕs − ys)σsXsdWs

)2

+ E

(∫ T

T−δ

ysσsXsdWs

)2

and the solution is V0 = E(Y ), χt = ϕt−δ = yt−δ on [δ, T ], and no constraint on χt during [0, δ],
hence 0 since the variation on the asset is equal to zero (premium is invested on saving account).
The replication error of this strategy is given by the last term of the right hand member, i.e.,

E

(∫ T

T−δ

ysσsXsdWs

)2

which is as expected the expectation of the non-hedgeable part.

4 Pricing defaultable claims

We present in this section the pricing of two very simple products to illustrate the previous
discussions: the defaultable zero coupon (with no recovery to make the example clearer), and
the credit default swap. For each product, we present the computations in two different cases,
both in the filtration’s enlargement set-up: when (H) hypothesis holds (under the example
of a Cox-type construction, when the intensity follows a positive diffusion) and when it does
not (under the example of the delayed information). In both sections, we do not address the
question of the definition of the neutral risk probability, considered as given (see [3] for example,
or [21]). For the sake of simplicity, we take null interest rates.
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4.1 Defaultable zero coupon

In an arbitrage free model where the full information of the traders is denoted by G, the price
of the defaultable zero coupon, i.e., a product paying 1 at T if default did not occur is given by:

D(t, T ) = E(11T<τ |Gt) = 11{t<τ}eΓtE(e−ΓT |Ft).

under a neutral risk probability P, where Γ denotes the hazard process.

Example with immersion. In this case, if Γt =
∫ t

0
λsds (λ denotes the F-intensity and λ1{τ>.}

the intensity), the pricing writes:

D(t, T ) = 11{τ>t}E(eΓt−ΓT |Ft) = 11{τ>t}E
(

e−
∫ T

t
λsds

∣∣∣Ft

)

As seen previously, the prototype of construction satisfying (H) hypothesis is Cox processes
framework. In such a situation, the intensity can be interpreted as the spread of the obligation
(replace λs by λs + rs if the interest rate is non null). Therefore, every class of dynamics on the
short rate that leads to closed formulas for the zero coupon - B(t, T ) = E

(
exp− ∫ T

t
rsds

∣∣∣Ft

)

- can be chosen for the dynamics of the intensity, and lead to the closed formulas for the
defaultable zero coupon. For example, if the F-intensity follow a CIR (here B is an F-Brownian
motion):

dλt = κ(θ − λt)dt + σ
√

λtdBt, with 2κθ > σ2, (5)

then it is classical that (taking the formula of the zero coupon, and replacing the short rate by
the intensity):

D(t, T ) = 11{t<τ}E

(
exp−

∫ T

t

λsds

∣∣∣∣∣Ft

)
= 11{t<τ}ϕ(t, T, λt)

with ϕ(t, T, x) = Φ(t, T )e−Ψ(t,T ).x, and,

Φ(t, T ) =
(

2η exp(η + κ)(T − t)/2
2η + (η + κ)(exp η(T − t)− 1)

)µ

and Ψ(t, T ) =
2(exp η(T − t)− 1)

2η + (η + κ)(exp η(T − t)− 1)

where η =
√

κ2 + 2σ2, and µ = 2λθ/σ2 :

Example without immersion. The analogy with interest rates does not hold anymore in a set
up where immersion does not hold, since the Hazard process is not increasing anymore (there
exists a martingale part). It follows the F-intensity can not be directly interpreted as a spread.
The value of the Defaultable Zero Coupon writes (the indicator stands for the case G could
reach zero, as in Guo et al. example):

D(t, T ) = 11{τ>t}11{Gt>0}E(eΓt−ΓT |Ft).

To provide an example, we consider the model of Guo et al. presented in the previous
section, in which immersion does not hold. With the notations in force in that section (recall
that Ft is replaced by F̃t, Gt by G̃t and Dt = 11{infs≤t−δ Xs>b}) the hazard process writes (beware
that this process may be equal to +∞):

Γt = − ln (DtΦ(Zt, δ, b)) .
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It follows (from 11{τ>t}11{G̃t>0} = 11{τ>t}):

D(t, T ) = 11{τ>t}11{G̃t>0}E
(
eΓt−ΓT

∣∣∣F̃t

)
= 11{τ>t}

E
(
DT Φ(ZT )

∣∣∣F̃t

)

Φ(Zt)

with to ease the notation Φ(Zt) = Φ(Zt, δ, b). As seen in the previous examples, the function Φ
is known for suitable choices of the diffusion process X, and,

E
(
DT Φ(ZT )

∣∣∣F̃t

)
= DtE

(
11{inft−δ<s≤T−δ Xs>b}Φ(XT−δ)

∣∣Ft−δ

)
= DtEXt−δ

(DT−tΦ(XT−t))

where the second equality comes from Markov property. It follows that the price of the default-
able zero coupon writes:

D(t, T ) = Dt+δ

EXt−δ
(DT−tΦ(XT−t))
Φ(Xt−δ)

.

For example, if X is a Brownian motion x+W, then Φ(u, x) = N (−x/
√

u)−N (x/
√

u), and
EXt−δ

(DT−tΦ(XT−t)) = Ψ(T − t, Xt−δ), where:

Ψ(u, x) = Ex(11infs≤u Xs>bΦ(Xu, δ, b)) = E0(11infs≤u Ws>b−xΦ(Wu + x, δ, b))

=
∫ x−b

0

∫ y

−∞

2(2y − v)Φ(v + x, δ, b)√
2πu3

exp− (2y − v)2

2u
dvdy.

4.2 Credit default swap

A credit default swap is a contract in which the holder buys a protection against the default
of an asset. Precisely, if a maturity T , a fee rate function κ(t) and a recovery function δ(t) are
given, the CDS of characteristics (T, κ, δ) is the contract in which the buyer of protection pays
a fee at a rate κ up to default time (or to maturity if default did not happen) and receives at
default time, the amount δ(τ) from the protection seller. The price of the CDS at time t is
given by the difference of the value of the two legs:

CDS(t, T ) = Pr ott − Pr emt ≡ E(δ(τ)11t<τ<T |Gt)− E
(

11t<τ

∫ τ∧T

t

κsds

∣∣∣∣∣Gt

)
.

Every leg write (the values are null after default):

Pr ott = 11t<τE

(∫ T

t

δ(s)dHs

∣∣∣∣∣Gt

)
= 11t<τeΓtE

(∫ T

t

δ(s)dAs

∣∣∣∣∣Ft

)
and,

Pr emt = 11t<τE

(∫ T

t

(1−Hs)κsds

∣∣∣∣∣Gt

)
= 11t<τeΓtE

(∫ T

t

κse
−Γsds

∣∣∣∣∣Ft

)
,

if G = M −A and recall dH − (1−H) dA/G ∈M (G,P). Finally the price of the CDS writes :

CDS(t, T ) = 11t<τeΓtE

(∫ T

t

(
δ(s)dAs − κse

−Γsds
)
∣∣∣∣∣Ft

)
.

Example with immersion. If the hazard process writes Γt =
∫ t

0
λsds, (where λ is the F-

intensity), the formula becomes:
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CDS(t, T ) = 11t<τE

(∫ T

t

ds (δ(s)λs − κs) exp−
∫ s

t

λudu

∣∣∣∣∣Ft

)
,

and for δ and κ constants (using the fact that Γ is increasing):

CDS(t, T ) = 11t<τδE
(

1− e−
∫ T

t
λudu

∣∣∣Ft

)
− 11t<τ

∫ T

t

E
(

e−
∫ s

t
λudu

∣∣∣Ft

)
ds

= 11t<τδ (1−D(t, T ))− 11t<τκ

∫ T

t

D(t, s)ds,

and the spread that makes the contract fair at each date t writes κ (t, T ) = δ (1−D(t, T )) /
∫ T

t
D(t, s)ds.

In the example of the CIR introduced in the last section, we have

CDS(t, T ) = 11t<τ

(
δ − δϕ(t, T, λt)− κ

∫ T

t

ϕ(t, s, λs)ds

)

(cf. last esection). For an interesting survey on the application of the CIR model to CDS
pricing, the reader may refer to [7].

Example without immersion. As usual, if (H) hypothesis does not hold, computations are
more difficult and there is no simple general formulation as in the previous case, the pricing
depending strongly on the form of the filtration. With the notations of the third section, in the
Guo et al. context, we compute if G̃ = M̃ − Ã

CDS(t, T ) = 11t<τ

11{G̃t>0}
G̃t

δE

(∫ T

t

dÃs

∣∣∣∣∣ F̃t

)
− 11t<τ

11{G̃t>0}
G̃t

κE

(∫ T

t

G̃sds

∣∣∣∣∣ F̃t

)
.

From G̃t = DtΦ(Zt, δ, b)11, with the shortcut Φs = Φ(Zs, δ, b) :

CDS(t, T ) =
Dt+δ

Φ(Zt, δ, b)
E

(∫ T

t

δDs∂1Φsµ (Zs) ds +
δDs

2
∂1,1Φsd 〈Z〉s − κDsΦsds

∣∣∣∣∣ F̃t

)
.

For example, if X is a Brownian Motion x + W , we can write:

CDS(t, T ) =
11t<τ

Φ(Zt, δ, b)
E

(∫ T

t

Ds

(
δ

2
∂1,1Φsds− κΦs

)
ds

∣∣∣∣∣ F̃t

)

=
11t<τ

Φ(Zt, δ, b)
E

(∫ T

t

11inft<u≤s Zu−Zt>b−Zt

(
δ

2
∂1,1Φs − κΦs

)
ds

∣∣∣∣∣ F̃t

)

and finally the price writes :

CDS(t, T ) =
11t<τ

Φ(Zt, δ, b)
(δa(Zt)− κb(Zt))

with Φ(x, u, b) = N ((x− b) /
√

u)−N ((b− x) /
√

u) and (denoting Φx
s = Φ(Ws−t + x, δ, b))

a(x) =
1
2
E

(∫ T

t

11inft<u≤s Wu−t>b−x∂1,1Φx
sds

)
and b(x) = E

(∫ T

t

11inft<u≤s Wu−t>b−xΦx
sds

)
.

11See the third part for the decomposition of this semi-martingale.
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