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Abstract

The aim of the paper is to investigate 5nite horizon portfolio strategies which maximize a
utility criterion when a constraint is imposed on a terminal date (European guarantee) or on
every intermediate date (American Guarantee). We prove the optimality of the Option Based
Portfolio Insurance method for both European and American cases, when an expected CRRA
utility function is maximized. The American OBPI is fully described in a Black–Scholes environ-
ment as well as in the more general case of complete markets using the Gittins index techniques
developed by El-Karoui and Karatzas (1995). Optimality results are extended to general utility
functions.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Portfolio managers have available a large class of investment strategies. The most
celebrated and the simplest one is the Buy and Hold strategy, where in reference to
an investment horizon, a well-diversi5ed portfolio (for example an Index portfolio) is
maintained without any rebalancing to the maturity date. The portfolio performance can
in general be improved using a dynamic strategy. However in practice the portfolio can
sustain large losses if the market turns sharply down as it did, for example in October
1987 or 1998. In order to avoid large losses the manager may decide to ‘insure’
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a speci5ed-in-advance minimum value for the portfolio, which results in the sacri5ce
of potential gains. There may be constraints which require that the liquidation value
of the portfolio never drops below a certain threshold during the life of the contract.
The problem of portfolio selection is of both theoretical and practical interest.
Leland and Rubinstein (1976) introduced the concept of Option Based Portfolio In-

surance based on dynamic replication using either synthetic options or traded options.
Subsequently, Black and Jones (1987) and Perold and Sharpe (1988) developed auto-
mated strategies including the Constant Proportion Portfolio Insurance method 1 which
has become popular with practitioners. Both these approaches guarantee that the current
portfolio value dominates the discounted value of the pre-speci5ed 5nal Hoor.
More generally, practitioners have well understood the separation principle which

was introduced by Markowitz (1959) and extended by Merton (1971, 1973): the asset
allocation is made optimal through the use of two separate funds, the 5rst one being a
combination of basic securities, the second one being the money market account. Later
papers (see for example Cox and Huang, 1989) have extended this result to the three
fund separation principle, when an extra insurance is required by the investor. A third
fund is added to the basic Markowitz portfolio corresponding to a derivative which is
based on the portfolio of risky securities. The OBPI method is an application of such
a separation principle.
More recently, various authors have proposed dynamic fund strategies in the case of

American protection (see Gerber and Pafumi, 2000; Imai and Boyle, 2001). The main
results of the present paper are 5rst to extend the three fund separation principle to
an American constraint and second to fully describe the optimal dynamic portfolio in
a general framework. Throughout the paper, we follow the methodology developed by
El-Karoui and Jeanblanc (1998) who derive the optimal wealth under a non-negativity
constraint for an investor receiving an income. Their work, as well as ours, is set in a
complete market framework. Other related papers are Grossman and Zhou (1993) and
CvitaniJc and Karatzas (1996) where the lower bound for the investor’s wealth at time
t is a fraction of its maximum value over time [0; t]. CvitaniJc and Karatzas (1999)
also study the European constraint where the 5nal wealth satis5es lower bounds for a
given level of probability.
In our paper, the investor chooses in the 5rst step an unconstrained (or uninsured)

allocation using traded assets and without taking care of the guarantee. In the second
step, he insures his portfolio by specifying a dynamic strategy which we call the insured
allocation. Our unconstrained allocation is related to but not equivalent to the tactical
allocation introduced by Brennan et al. (1997). In Brennan et al., “the tactical asset
allocation is essentially a myopic strategy” and is static. We emphazise that, in our
framework, the unconstrained allocation might be a dynamic strategy, depending on
the form of the utility function to be maximized. We also prove that the choice of our
insured allocation is optimal among all strategies which satisfy the guarantee.
The paper is organized as follows: the second section presents the classical OBPI

method and focuses on the maximization of an expected utility criterion, over all
self-5nancing strategies whose value satis5es a European constraint. The Put Based

1 Also known as the cushion method.
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Strategy (referred to as the insured allocation) written on the optimal portfolio solving
the unconstrained problem is shown to be optimal for CRRA utility functions. In
such a case, the three fund separation principle appears to be strictly valid. The third
section extends the OBPI method for the fund to satisfy an American rather than a
European constraint: the strategy is then based on American put options. In order to
remain self-5nancing, we introduce a path dependent gearing parameter which speci5es
the current nominal amount to be invested in the unconstrained allocation. This path
dependent parameter is shown to optimally increase when the value of the tactical
allocation drops below a given exercise boundary. The analysis is conducted within a
Black–Scholes environment. The fourth section extends the latter result to the more
general case of complete markets using the properties of American options developed
by El-Karoui and Karatzas (1995) using the Gittins index methodology. The optimality
of the strategy is then proven for a CRRA utility function criterion. In the 5fth section,
we extend our optimality results to a general class of utility functions. It is shown that
despite the non-linearity of the unconstrained optimal portfolio with respect to the
initial wealth, the OBPI is still optimal, but the unconstrained allocation to be insured
is changed depending on the initial cost of the protection.
Throughout the paper we assume a framework of complete, arbitrage free, frictionless

markets.

2. Option Based Portfolio Insurance in the European case

The present section describes one of the most popular insurance strategies, known
as the Option Based Portfolio Insurance introduced by Leland and Rubinstein (1976).

2.1. Unconstrained allocation

The 5rst step in the management of investment funds is to de5ne an unconstrained
allocation related to a 5nite horizon. According to the investor’s risk aversion, the
manager decides the proportion of indexes, securities, coupon bonds, to be held in
a well-diversi5ed portfolio with positive value. An example would be the eOcient
portfolio in the Markovitz setting, or the portfolio constructed using the mutual fund
result (see Merton 1971, 1973, or Section 2.4 of this paper).
In what follows we denote by St the time-t value of one unit of the unconstrained

allocation. Without loss of generality, we assume that S0 = 1. Consequently, an initial
amount �¿ 0 invested at date 0 evolves in the future following (�St)t¿0.
At this step, we do not need to specify the dynamics of (St)t¿0. Recall that we have

assumed the market to be complete, arbitrage free and frictionless. The following
assumptions give the restrictions we impose on (St)t¿0:

Assumptions. A1. (St)t¿0 follows a continuous diQusion process, R+-valued.
A2. All dividends and coupons are assumed to be reinvested, in such a way that the

allocation is self-5nancing.
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A3. At any date t¿ 0 all zero-coupon bonds with maturities larger than t are tradable
assets.

Throughout the paper, we use the following general characterization for self-5nancing
strategies:
(SF) (Xt; t¿ 0) is the value process of a self-5nancing strategy if and only if the

process RX is a Q-martingale, where R is the discount factor, i.e., Rt = exp(− ∫ t
0 r(s)

ds); r(s) being the time-s instantaneous rate. Q is the risk-neutral probability measure.
Indeed, the discounted value of a self-5nancing portfolio is a martingale under the

risk-neutral probability measure due to the arbitrage free assumption. Conversely, if
RX is an adapted martingale process, the completion of the market gives the existence
of a real number h and an adapted process � such that RTXT = h+

∫ T
0 �sd(RsSs). The

process � represents the hedging portfolio of X and can be shown to be self-5nancing
(see for example Karatzas and Shreve, 1998, for full details).

2.2. European versus American guarantee

We now focus on the second step for the manager which is to de5ne the insured
allocation, that is to manage dynamically the unconstrained allocation to ful5ll the
guarantee.
We assume that the manager desires protection against declines in the value of the

unconstrained portfolio. The horizon date is T and we denote by (Kt)06t6T the current
Hoor value.
One example is to de5ne a minimal 5nal value for the fund, denoted by KT = K ,

where K is a percentage of the initial fund value. When the guarantee holds only for
the terminal date T , the protection is said to be European. American type funds oQer
the same guarantee for any intermediate date between 0 and T . In such a case the
Hoor value is de5ned as a time dependent function (or process) (Kt)06t6T .

Remark 2.1. In the case where the current Hoor Kt equals the discounted value of the
5nal strike price K :

Kt = KBt;T ;

where Bt;T denotes the time-t value of a zero-coupon bond paying $1 at time T , a
simple arbitrage argument implies that the American guarantee reduces to a European
one.

The present section focuses on the European case.

2.3. European OBPI Strategy

The option based portfolio insurance (OBPI) pioneered by Leland and Rubinstein
(1976), has the following two attributes: 5rst it protects the portfolio value at maturity
and second it takes advantage of rises in the underlying portfolio.
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The put based strategy combines a long position in the underlying unconstrained
allocation (St)t¿0 with a put option.
The initial capital invested in the fund, supposed to be normalized at 1 (and strictly

larger than KB0;T ) is then split into two parts, say � and 1−�, where � lies between 0
and 1. With the 5rst part, the manager buys at date 0 a fraction � of the unconstrained
allocation, and with the remaining part, he insures his position with a put written on
(�St)t¿0. The 5nal payoQ of the put is

�T =max(K − �ST ; 0);

where the strike price K is the 5nal Hoor value for the fund.

Remark 2.2. The put option can also be written as a fraction � of a put option on
(St)t¿0 with strike price K=� following: (K − �ST )+ = �(K=� − ST )+. We note that
the maturity value of the unconstrained portfolio has to exceed K=� for the investor to
receive more than the guaranteed amount.

Remark 2.3. Note that we have to require 1¿KB0;T in order to get the existence of
a portfolio satisfying the terminal constraint (see following Proposition 2.1).

Notation. Let us denote by Pe
S(t; T; K) (resp. Pe

�S(t; T; K)) the time-t value of a Eu-
ropean Put with maturity T and strike K written on one unit (resp. on � units) of
the unconstrained allocation, where the superscript e stands for European. We suppose
that such options are traded in the market for every strike K . Alternatively, since the
market is complete and frictionless such options can be replicated dynamically.
At maturity, the manager obtains a 5nal value for the fund:

VT (�) = �ST + (K − �ST )+ = sup(�ST ; K); (1)

which is superior to K .
In Eq. (1) the parameter � is usually called the gearing or leverage of the fund. The

value of � must be de5ned at the inception date 0. It has to satisfy the initial budget
constraint:

V0(�) = �+ Pe
�S(0; T; K) = 1:

Let us note that � depends critically on the level of volatility, through the initial price
of the put option.

Proposition 2.1. There exists a unique constant �, with 0¡�¡ 1, such that:

�+ Pe
�S(0; T; K) = 1:

Proof. The liquidation value of the fund at maturity T : VT (�) = sup(�ST ; K), is a
non-decreasing function with respect to � valued in [K;+∞) for �∈R+. For any
�′ ¡�:

06VT (�) − VT (�′)6 (� − �′)ST :
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Discounting and taking the expectation we see that the initial value of the fund V0(�) is
a non-decreasing and Lipschitzian function with respect to � with a Lipschitz constant
equal to S0.
From the no-arbitrage assumption, and recalling that S0 is positive V0(�) is valued

in ]KB0;T ;+∞) for �∈R+.
Considering that KB0;T ¡ 1 the existence and uniqueness of � satisfying V0(�) = 1

follows.
Finally, V0(1)¿S0 = 1 gives �¡ 1.

Notation. When the dynamics of (St)t¿0 are assumed to be Markovian, the value
Pe
S(t; T; K) of a European put on S turns out to be a deterministic function of time t

and current value of the underlying St . In such a case (see Section 4) we denote this
value by Pe(t; St ; T; K). The function Pe(·; ·; T; K) then solves the classical valuation
Partial DiQerential Equation.

Remark 2.4. The function Pe
�S(t; T; K) generally diQers from �Pe

S(t; St ; T; K=�) which
represents the price of � put options written on S with strike K=�. The equality holds
when the Put price is homogeneous, in particular in the Black and Scholes framework.
For more general volatility models, in particular when 5tting the volatility function to
smile patterns (see for example Dupire, 1994), the homogeneity property no longer
holds.

2.4. OBPI Optimality for a European Guarantee

In this subsection, we study the optimal portfolio strategy in the case of a European
guarantee for which the constraint holds only at the terminal date T .
We consider an investor who maximizes an expected utility criterion where the

expectation is taken under the subjective probability P. Given a utility function u
(concave, strictly increasing, de5ned on R+) we solve the following maximization
problem:

max E[u(VT )]; under the constraints VT ¿K; and V0 = 1; (2)

over all self-5nancing portfolios.
We prove the optimality of the Put Based Strategy written on an appropriate un-

constrained allocation in the case of a constant relative risk aversion (CRRA) utility
function u de5ned as u(x) = x1−�=(1 − �), for all x∈R+, with �∈ (0; 1). The result is
extended to a general class of utility functions in Section 5.1.

2.4.1. Choice of the unconstrained allocation
We 5rst characterize the solution to the problem without the European constraint:

max E[u(X �
T )]; under the budget constraint X �

0 = �; (3)

where � denotes the initial wealth. It is well known (see for example Karatzas and
Shreve, 1998) that the terminal value X̂ �

T of the optimal strategy with initial wealth �
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satis5es the 5rst order condition: 2

E(u′(X̂ �
T )(X

�
T − X̂ �

T )) = 0; (4)

for any X �
T , terminal value of a self-5nancing portfolio with initial wealth �.

Moreover, in the CRRA case, the optimal terminal value X̂ �
T is linear with respect

with the initial wealth, i.e., X̂ �
T = �ST , where ST = X̂ 1

T is the optimal strategy with
initial wealth 1.

Remark 2.5. The linearity property of the solution with respect to the initial wealth
for a CRRA utility function criterion allows one to describe the optimal solution as a
proportion of one unit of the optimal tactical allocation. This justi5es the fact that the
initial fund value has been previously chosen equal to 1.

Referring to S as the unconstrained allocation, we have: u′(X̂ �
T )=�−�u′(ST ). Hence,

the 5rst order condition (4) can be re-written as

E(u′(ST )(X �
T − X̂ �

T )) = 0: (5)

2.4.2. Choice and optimality of the insured allocation
We now consider the Put Based strategy written on ST = X̂ 1

T .
Let us denote by V̂ t the value at time t6T of the self-5nancing strategy with initial

value 1 and terminal value:

V̂ T =max(�ST ; K)¿K; (6)

where � is de5ned in Proposition 2.1. We refer to V̂ as the insured allocation.

Proposition 2.2. The put based strategy written on the optimal portfolio with no
constraint solves the optimization problem with a European constraint for CRRA
utility functions.

More precisely, if VT is the terminal value of a self-/nancing portfolio with initial
value 1 such that VT ¿K , and V̂ T is the terminal value of the Put Based Strategy
de/ned in (6), then

E[u(V̂ T )]¿E[u(VT )]:

Proof. The concavity of u yields to

u(VT ) − u(V̂ T )6 u′(V̂ T )(VT − V̂ T ):

From equality (6) and the CRRA property of u we get

u′(V̂ T ) = u′(�ST ) ∧ u′(K) = [�−�u′(ST )] ∧ u′(K):

2 If X̂ �
T is optimal, consider the portfolio with terminal value VT (�) = �X̂ �

T + (1 − �)X �
T and write that

� = 1 is the maximum of E[u(VT (�))] : (@=@�E[u(VT (�))])�=1 = 0.
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Since u′(V̂ T )¿ u′(K) is equivalent to V̂ T = K due to the constraint V̂ T ¿K and the
decreasing property of u′, we get

[[�−�u′(ST )] ∧ u′(K)](VT − V̂ T ) = �−�u′(ST )(VT − V̂ T )

−[�−�u′(ST ) − u′(K)]+(VT − K):

On one hand, from the 5rst order condition (5) written for �= 1, we have

E[u′(ST )(VT − V̂ T )] = E[u′(ST )(VT − X̂ T )] + E[u′(ST )(X̂ T − V̂ T )] = 0;

and on the other hand, from the terminal constraint on VT , the following inequality
holds:

−E([�−�u′(ST ) − u′(K)]+(VT − K))6 0:

Hence, E(u(V̂ T ))¿E(u(VT )).

3. American case in the Black and Scholes framework

We now consider the problem of an American guarantee.
We 5rst show how to construct self-/nancing put-based strategies when (St)t¿0

is known to follow Black–Scholes dynamics. Optimality is proven for CRRA utility
function in Section 4.3 and the result is extended to a general class of utility functions
in Section 5.2.
In the present section, we describe a path dependent self-5nancing strategy under

the assumption that the dynamics of the unconstrained allocation (St)t¿0 are given by

dSt = St(r dt + � dWt); S0 = 1; (7)

where (Wt)t¿0 is a Brownian motion under the risk-neutral probability Q. The interest
rate r is assumed to be constant, as well as the volatility �.

3.1. American Put Based strategy

By analogy with the European case, we introduce an American put on (�St)t¿0,
where � is now to be adjusted such that

1 = �+ Pa
�S(0); (8)

where Pa
�S(0) is the price at time 0 of the American put on the underlying (�St ; t¿ 0),

with strike K and maturity T . Note that by de5nition of an American contract
Pa
�S(t)¿ (K − �St)+ for all t6T . Hence, de5ning Xt as the time-t value of a port-

folio composed of positions in both the unconstrained allocation and the American
derivative:

Xt
def=�St + Pa

�S(t)¿K; ∀t6T:

However, the part of the portfolio which consists in the American put is not self-
5nancing. The put delivers a continuous dividend to the writer of the option as soon
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as the stopping region is attained, that is after time �(�) where

�(�) = inf{t : Pa
�S(t) = K − �St}:

3.2. Properties of the American put price

We recall some well known properties of the American put price in the Black–
Scholes framework (we refer to Musiela and Rutkowski, 1998, Chapter 8, for a detailed
presentation of American options and references).
The price Pa

S(t) of an American option on the underlying S is a deterministic function
of time t and current value St of the underlying. We denote by Pa(t; x) such a function.
Hence the price of a put on the underlying (�St ; t¿ 0) is Pa(t; �St). By de5nition:

Pa(t; x) = essup
�∈Tt;T

EQ((K − St;x
� )+e−r(�−t));

where Tt;T is the set of stopping times taking values in the interval [t; T ] and St;x
s

denotes the s-time value of the solution of the Black–Scholes equation (7) which
equals x at time t. Let us denote by C the continuation region de5ned as C =
{(t; x)|Pa(t; x)¿ (K − x)+}. In the Black and Scholes framework, the continuation
region is also described via the increasing exercise boundary (b(t); t¿ 0) where b is
a deterministic function de5ned as

b(t) = sup{x : Pa(t; x) = (K − x)+}:
Therefore

C = {(t; x) : x¿b(t)}:
The function Pa(t; x) is C2 with respect to x in the interior of the continuation region.
It is aOne outside, equal to K − x. It is C1 over R+ and (smooth pasting principle)
@xPa(t; b(t)) = −1. The second derivative admits only one discontinuity at the point
x = b(t).
Introducing the operator L de5ned as

L= @t +
1
2
�2x2@xx + rx@x;

Pa(t; x) satis5es

Pa(t; x) = K − x; ∀(t; x) 
∈ C;

LPa(t; x) − rPa(t; x) = 0; ∀(t; x)∈C;

LPa(t; x) = −1; ∀(t; x) 
∈ C: (9)

Let us now introduce the function A(t; x):

A(t; x)def=x + Pa(t; x):

From the properties of Pa(t; x) we deduce that A(t; x) is C2 with respect to x in the
interior of the continuation region, and constant outside equal to K . A(t; x) is C1 and
@xA(t; b(t)) = 0. The second derivative admits only one discontinuity at point x= b(t).



458 N. El Karoui et al. / Journal of Economic Dynamics & Control 29 (2005) 449–468

Using the operator L we have

A(t; x) = K; ∀(t; x) 
∈ C;

LA(t; x) =LPa(t; x) + rx = rA(t; x); ∀(t; x)∈C;

LA(t; x) = 0; ∀(t; x) 
∈ C: (10)

Let us consider A(t; �St), which is the value of a long position in (�St)t¿0 and an
American Put on the underlying �S with strike K :

A(t; �St) = �St + Pa(t; �St):

The generalized Itô’s formula holds since A is C1 and its second derivative admits
only one discontinuity. Therefore the process A(t; �St) follows:

dA(t; �St) = �@xA(t; �St)(dSt − rSt dt) +LA(t; �St) dt

= �@xA(t; �St)(dSt − rSt dt) + rA(t; �St)5{(t; �St)∈C} dt

= �@xA(t; �St)(dSt − rSt dt) + rA(t; �St)5{�St¿b(t)} dt

= rA(t; �St) dt + �@xA(t; �St)(dSt − rSt dt) − rK5{�St6b(t)} dt: (11)

Therefore, from the (SF) condition, the process (A(t; �St); t¿ 0) is the value of a
self-5nancing portfolio up to the hitting time of the boundary. If the exercise boundary
is reached before maturity, the portfolio generates a continuous dividend rate rK , which
must be re-invested for the portfolio to remain self-5nancing.

3.3. An adapted self-/nancing strategy

Our next task id to 5nd a continuous and adapted non-negative process (�t ; t¿ 0)
such that the portfolio we denote by (Vt)t¿0:

Vt
def=�tSt + Pa(t; �tSt) = A(t; �tSt)

is self-5nancing. We recall that the self-5nancing property holds in the continuation
region C. Therefore, we choose (�t ; t¿ 0) such that � is constant as long as �tSt ∈C
and such that �tSt¿ b(t) in order to remain within the continuation region or at the
boundary. Hence, the choice of an increasing process 3 for � leads to

�t = sup
u6t

(
�0;

b(u)
Su

)
= �0 ∨ sup

u6t

(
b(u)
Su

)
; (12)

where �0 is to be adjusted to satisfy the budget constraint.

Proposition 3.1. Let (St)t¿0 follow the Black–Scholes dynamics (7). The strategy

Vt = �tSt + Pa(t; �tSt);

3 The choice of � as an increasing process is justi5ed while dealing with optimality. Intuitively, � is
increasing because outside the continuation region the dividend rate rK can be reinvested in buying more
stocks.
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where �t is given by (12) and �0 is adjusted by the budget constraint:

V0 = �0 + Pa(0; �0) = 1;

is self-/nancing and satis/es Vt¿K; ∀t6T .

Remark 3.1. Let us emphasize two features of strategy Vt : (i) when the constraint is
active, i.e. Vt =K , the strategy Vt gives a zero investment in the tactical allocation St ;
(ii) the terminal value of the strategy is

VT = �TST + (K − �TST )+ = sup
(
K; sup

u6T

(
�0;

b(u)
Su

)
ST

)
: (13)

The terminal value VT (which can be viewed as a terminal European payoQ) therefore
has a path dependent lookback feature.

Proof. Since (�t)t¿0 is a continuous bounded variation process Itô’s formula implies

dVt = [dA(t; �St)]�=�t + St@xA(t; �tSt) d�t :

Noting that � increases only at the boundary and that the smooth pasting principle
implies @xA(t; b(t)) = 0, we get as in (11)

dVt = rA(t; �tSt) dt + �t@xA(t; �tSt)(dSt − rSt dt) − rK5{�tSt6b(t)} dt

+St@xA(t; �tSt)5{�tSt=b(t)} d�t :

We have noted that @xA(t; �tSt) = 0 on the set {�tSt = b(t)}. Therefore
dVt = rA(t; �tSt) dt + �t@xA(t; �tSt)[dSt − rSt dt] − Kr5{�tSt6b(t)} dt:

The set {(t; !) : �tSt6 b(t)} is equal to the set {(t; !) : St = b(t)=�t} and has a zero
dP ⊗ dt measure, since the process b(t)=�t has bounded variation. Hence, from (SF),
the portfolio (Vt; t¿ 0) is self-5nancing.

The put based strategy described in Proposition 3.1 which we have just shown to be
self-5nancing appears to be a good candidate for optimality. This will be established
in Proposition 4.3.

Remark 3.2. Our strategy is similar to that proposed by Gerber and Pafumi (2000).
In their seminal paper, the authors propose a protected level given by

�Gt = sup
06u6t

(
�G0 ;

K
Su

)
:

They derive a closed formed formula for the price of this guarantee in the Black
and Scholes framework. The main diQerence with our approach is that we use the
American boundary instead of the strike level. We also prove our strategy to maximize
an expected utility criterion as soon as the unconstrained allocation is chosen in an
optimal way.
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4. American case for general complete markets

In the current section we 5rst describe the put based self-5nancing strategies in
the general case of complete markets, and secondly we prove optimality for CRRA
utility functions when the uninsured allocation solves the maximization problem (3).
The result is extended to the case of general utility functions in the last section of this
paper.
In order to construct put based self-5nancing strategies in the general setting of

complete markets, we use the Gittins index methodology, and we follow the ideas of
El-Karoui and Karatzas (1995). The starting point is that when a family of processes
indexed by a parameter are martingales then the processes of the diQerentiated family
with respect to the index parameter are also martingales. The remarkable result is that
we obtain the same representation for the put based strategy as in the Markovian case
(compare Eqs. (13) and (19)).

4.1. Price of an American put

We now suppose that S is an arbitrary continuous, strictly positive process, which
represents the value of a self-5nancing strategy. We assume, without loss of generality,
that S0 = 1. We denote by Q the risk-neutral probability measure.

We introduce Pa
t (�), the American put price on the underlying (�St ; t¿ 0) and

strike K , de5ned as

Pa
t (�) = esssup

�∈Tt;T

EQ(Rt
�(K − �S�)+ |Ft);

where Rt
s = Rs=Rt ; R being the discount factor (see de5nition SF) and Tt;T is the set

of stopping times taking values in (t; T ]. Let us remark that Pa
t (�) is decreasing with

respect to �; Pa
t (0)=K , Pa

T (�)= (K − �ST )+ and that Pa
t (�)¿ (K − �St)+. We denote

by �(�) the associated optimal stopping time

�(�)def=inf{u¿ 0 : Pa
u(�) = (K − �Su)+}:

The map � → �(�) is non-decreasing and right-continuous. From the value of Pa
T (�),

we observe that �(�)6T . We de5ne, for t ¡T , the stochastic critical price bt by
bt
St

def=sup{�; Pa
t (�) = (K − �St)+};

and we note �t
def=bt=St . We de5ne the so-called Gittins index (Gt; t¿ 0) as the right-

continuous inverse of �, for t ¡T :

{Gt ¡�} = {�(�)¿t};
hence

Gt = sup
06u¡t

�u for t ¡T;

and we set

G+
T =

(
sup

06u¡T
�u

)
∨ K

ST
: (14)
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Let us remark that

{G+
T ¡�} ⊆ {{�(�) = T} ∩ {K ¡�ST}} ⊆ {G+

T 6 �}: (15)

Proposition 4.1. The price of the American put is

Pa
0(�) = EQ(RTST (G+

T − �)+): (16)

Proof. From the envelope theorem 4 the supremum and the diQerential can be inter-
changed (see El-Karoui and Karatzas, 1995, for details), hence

@Pa

@�
(�) = −EQ(R�(�)S�(�)5{K¿�S�(�)}):

From the Q-martingale property of RS, we prove that the right-hand side equals

−EQ(RTST ) + EQ(R�(�)S�(�)5{K¡�S�(�)}):

On the set {K ¡�S�(�)} ∩ {T ¿�(�)}, we would get Pa
�(�)(�) = 0, which is absurd,

therefore �(�) is equal to T on {K ¡�S�(�)} and

EQ(R�(�)S�(�)5{K¡�S�(�)}) = EQ(RTST5{K¡�ST}5{�(�)=T}):

From (15), we deduce

EQ(RTST5{G+
T ¿�})6− 9Pa

9� (�)6EQ(RTST5{G+
T¿�}); (17)

and by integrating with respect to � it follows that the price of the American put can
be written as in (16).

Remark 4.1. The value of the American Put at any time t can be obtained using the
same ideas, with the help of

�t(�)
def=inf{u¿ t : Pa

u(�) = (K − �Su)+};
and the Gittins index:

Gt;u = sup
t6%¡u

�%; for u¡T; G+
t;T =

(
sup

t6%¡T
�%

)
∨ K

ST
:

With this notation,

Pa
t (�) = EQ(Rt

T ST (G
+
t;T − �)+ |Ft) = EQ(Rt

T (STG
+
t;T − �ST )+ |Ft): (18)

Remark 4.2. As suggested by a referee, Eq. (16) gives a description of the American
put as the expectation of a 5nal European path-dependent payoQ in a most general
framework. Therefore it may be useful in numerical computation of the American put
price, by Monte Carlo methods for example. It is noticeable though that the boundary
bt needs to be computed before running simulations, and, as it is well known, this is
the most diOcult numerical problem to solve.

4 The envelope theorem states that, if a∗(�) = argmaxf(a; �), then @�f(a∗(�); �) = sup @�f(a; �).
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4.2. Self-/nancing strategy

Proposition 4.2. The strategy

Vt = St�t + Pa
t (�t)

is self-/nancing with terminal value

VT = K ∨ ST�T = ST (G+
T ∨ �0);

and satis/es Vt¿K; ∀t6T when choosing �t such that

�t = Gt ∨ �0 =
(

sup
06u6t

bu
Su

)
∨ �0; (19)

where �0 is to be adjusted by means of the budget constraint �0 + Pa
0(�0) = 1. When

the constraint is active, i.e. Vt = K , we have a zero position in the unconstrained
allocation.

Proof. From the Ft-measurability of �t and equality (18)

Vt = St�t + Pa
t (�t) = EQ(St�t + Rt

T ST (G
+
t;T − �t)+ |Ft):

Using the martingale property of RS,

Vt =EQ(Rt
T ST [�t + (G+

t;T − �t)5G+
t; T¿�t ] |Ft)

= EQ(Rt
T ST [G

+
t;T ∨ �t] |Ft): (20)

From

sup
06u¡t

(�u) ∨ sup
t6u¡T

(�u) = sup
06u¡T

(�u);

we obtain G+
t;T ∨ �t = G+

0;T ∨ �0. Therefore

Vt = EQ(Rt
T ST [G

+
0;T ∨ �0] |Ft);

and the process RV is a Q-martingale; hence Vt is the value of a self-5nancing strategy.
In particular,

VT = ST [G+
0;T ∨ �0] = ST�T ∨ K:

From the de5nition of G+
0;T =supt∈[0;T [ (bt=St)∨K=ST , we recover the lookback feature

noticed in Eq. (13).

At the boundary, i.e. when Pa
t (�t) = (K − �tSt), we obtain Vt = K . Moreover, the

Gittins index is increasing only at the boundary. Therefore, as in the Black and Scholes
framework, the process � is increasing with support included in the set {Vt = K}.

4.3. Optimality for CRRA utility functions

Let u be a CRRA utility function, and S the optimal strategy for the unconstrained
problem (3) with initial wealth 1 as de5ned in Section 3.1.
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In this subsection we prove that the process (Vt; t¿ 0) de5ned in Proposition 4.2
solves the maximization problem with American constraint:

max E[u(VT )]; under the constraints Vt¿K; ∀t ∈ [0; T ] and V0 = 1: (21)

In order to give a precise proof, let us introduce the state price process (Ht; t¿ 0),
such that for all self-5nancing portfolios with value (Xt; t¿ 0), the budget constraint
can be written:

X0 = E[HTXT ]: (22)

We recall that Ht is the product of the discount factor exp(− ∫ t
0 rs ds) and the Radon–

Nikodym density of the equivalent risk-neutral martingale measure Q with respect to
the subjective probability P. We also know that the Market Numeraire Mt = H−1

t is
a portfolio, namely Mt is the optimal portfolio to hold for an unconstrained log-utility
agent, as deduced from Eq. (23) (see for example Long, 1990, or Bajeux-Besnainou
and Portait, 1998, for more details).
From optimization theory (see Karatzas and Shreve, 1998), we know that the solution

for the unconstrained problem (3) with initial wealth �, which we denote by X̂ �
T ,

satis5es the marginal utility condition

u′(X̂ �
T ) = (yMT )−1; (23)

where y is a parameter (the inverse of the Lagrange multiplier) to be adjusted as a
function of the initial wealth � by means of the budget constraint E(HT X̂ �

T ) = �:
In the case of CRRA utility functions, it is well known that X̂ z = zX̂ 1.

Proposition 4.3. Let u be a CRRA utility function and S=X̂ 1 be the optimal strategy
for the unconstrained problem (3) with initial wealth equal to 1 and �t the gearing
parameter described in Proposition 4.2. The self-/nancing strategy:

V̂ t = �tSt + Pa
t (�t)

is the optimal strategy for the problem with American guarantee (21).

Proof. Let (Vt; t¿ 0) be any self-5nancing portfolio such that Vt¿K; ∀t. From the
concavity of u:

u(VT ) − u(V̂ T )6 u′(V̂ T )(VT − V̂ T ):

The same arguments as in the European case lead to

u′(V̂ T )(VT − V̂ T ) = u′(ST�T )(VT − V̂ T ) − [u′(ST�T ) − u′(V̂ T )]+(VT − K):

Then using the property of CRRA functions that: u′(xy)=u′(x)u′(y), and that u′(ST )=
,HT , we obtain

u′(ST�T )(VT − V̂ T ) = ,HTu′(�T )(VT − V̂ T ):

An integration by parts formula, and the fact that the process (u′(�t); t¿ 0) is a
decreasing process provide:

E(HTu′(�T )(VT −V̂ T )) = E
(∫ T

0
u′(�s) d(Hs(Vs−V̂ s))+

∫ T

0
Hs(Vs−V̂ s) du′(�s)

)
:

(24)
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From the martingale property of HV̂ and HV and the upper bound u′(�s)6 u′(�0),
the 5rst term in the right-hand side of (24) is equal to 0. The process (u′(�t); t¿ 0)
is decreasing with support {!; t : V̂ t(!) = K}, therefore

E
(∫ T

0
Hs(K − V̂ s) du′(�s)

)
= 0:

It follows that

E
(∫ T

0
Hs(Vs − V̂ s) du′(�s)

)
= E

(∫ T

0
Hs(Vs − K) du′(�s)

)
:

The process � is increasing, hence E(
∫ T
0 Hs(Vs − K) du′(�s)) is non-positive. Putting

all the inequalities together, we establish that

E(u(V̂ T ))¿E(u(VT )):

5. Optimality results for general utility functions

5.1. European guarantee

For general utility functions, the linear property of the solution to problem (3) fails
to be true: the optimal solution depends on the value of the initial wealth. The concept
of one unit of unconstrained allocation is no longer helpful, nor the concept of one unit
of fund. We therefore introduce a new parameter x¿ 0 being the initial fund value.
Consequently we now consider the maximization problem

max E[u(VT )]; under the constraints VT ¿Kx; and V0 = x; (25)

and the unconstrained problem

max E[u(X �x
T )]; under the budget constraint X �x

0 = �x: (26)

We prove in this section that, even though the tactical allocation cannot be de5ned
independently, a separation principle similar to Proposition 3.1 still applies: the optimal
policy consists in investing an initial amount �x in an optimal unconstrained portfolio,
and protecting the fund by buying a put with strike Kx on that position. Let us remark
that � still represents the fraction of initial capital invested in risky assets at date 0.
Recall that the solution of the unconstrained problem is (see Eq. (23)) u′(X̂ �x

T ) =
(yMT )−1. As we show in our proofs, it is better to parameterize S with y rather than
� and to refer to the unconstrained allocation as

ST (y) = (u′)−1(HT =y): (27)

The modi/ed unconstrained allocation is given by

St(y) = EQ(Rt
T [ST (y)] |Ft) = EQ(Rt

T (u
′)−1[HT =y] |Ft); (28)

where Q is the risk-neutral probability and y is adjusted by means of the budget
constraint:

EQ(RTST (y)) + Pe
0(S(y)) = x;
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which is not linear with respect to y. Here Pe(S(y)) is the price of the European
put with strike Kx written on the underlying (St(y); t¿ 0). Therefore the 5rst order
condition (4) takes the form

E[HT (XT − ST (y))] = 0; (29)

for any XT , terminal value of a self-5nancing portfolio such that X0 = S0(y). Let us
now consider the put based strategy described in Section 2.4 associated ST (y) and
terminal wealth

V̂ x
T =max(ST (y); Kx):

Proposition 5.1. The put based strategy written on the optimal portfolio with no
constraint solves the optimization problem with a European constraint for any utility
function.

Proof. The proof is similar to the CRRA case. Indeed, for any VT terminal value of
an admissible strategy with initial wealth x satisfying the constraint VT ¿Kx, we get
from the concavity of u and the de5nition of ST (y):

u(VT ) − u(V̂ x
T )6 u′(V̂ x

T )(VT − V̂ x
T ) = [y−1HT ∧ u′(Kx)](VT − V̂ x

T ):

The right-hand side of this last equation is equal to

y−1HT (VT − V̂ x
T ) − [u′(ST (y)) − u′(Kx)]+(VT − Kx):

As before, from the 5rst order condition (29):

E[HT (VT − V̂ x
T )] = 0;

and using the terminal constraint on VT , we deduce

E[u(VT ) − u(V̂ x
T )] = −E([u′(ST (y)) − u′(Kx)]+(VT − Kx))6 0:

5.2. American guarantee

We now deal with the maximization problem with an American constraint. Again
we follow closely the method exposed in the CRRA case. The main diQerence resides
in the choice of the parametrization: we now refer to the parametrized unconstrained
allocation (see Eq. (28)) of the form

St(y) = EQ(Rt
T (u

′)−1[HT =y] |Ft):

Let us remark that St(y) is increasing with respect to y.
The process (RtSt(y); t¿ 0) being a martingale, the process (Rt@ySt(y); t¿ 0) is

also a martingale. The price of an American put on (St(y); t¿ 0) with strike k = Kx
is Pa(y)= sup� EQ(R�(k − S�(y))+) and is decreasing with respect to y. As before, we
have also Pa

u(y)¿ (k − Su(y))+ and Pa
u(0) = k.

Let �(y) be the optimal stopping time

�(y) = inf{u; Pa
u(y) = (k − Su(y))+};
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and note that � is increasing with respect to y and that �(y)6T . Then

Pa
0(y) = EQ(R�(y)(k − S�(y)(y))+):

For t ¡T let us note �t = sup{y : Pt(y) = (k − St(y))+} and G the right continuous
inverse of �(y) such that

{�(y)¿t} = {Gt ¡y}:
Note that we obtain as before: Gt = supu¡t �u.

Proposition 5.2. The value of the American put is

Pa(y) = EQ[RT (ST (G+
T ) − ST (y))+];

where G+
T is de/ned in the proof below by (30).

Proof. The derivative with respect to y of the American put price is

9Pa(y)
9y =−EQ

(
R�(y)

9S�(y)(y)
9y 5{k¿S�(y)(y)}

)

=−EQ

(
RT
9ST (y)
9y

)
+ EQ

(
R�(y)

9S�(y)(y)
9y 5{S�(y)¿k}

)
:

We remark that on the set {S�(y) ¿k} the stopping time �(y) equals T , therefore

9Pa(y)
9y = −E

(
RT
9ST (y)
9y

)
+ E

(
RT
9ST (y)
9y 5{k¡ST (y)}5{�(y)=T}

)
:

Setting

G+
T = sup

t¡T
�t ∨ /(k); (30)

where /(k) is de5ned via the increasing property of ST (·) as

/(k) = sup
y

{k¿ ST (y)};

(i.e., y¡/(k) if and only if k¿ ST (y)), we get

−E
(
RT
9ST (y)
9y

)
+ E

(
RT
9ST (y)
9y 5{G+

T ¡y}

)
6
9Pa(y)
9y

6− E
(
RT
9ST (y)
9y

)
+ E

(
RT
9ST (y)
9y 5{G+

T6y}

)
:

Therefore, by integration with respect to y:

Pa(y) = EQ[RT (ST (G+
T ) − ST (y))+]:

Starting at time t, and working with Gt;u = supt6%¡u G% and G+
t;T = supu¡T Gt;u ∨ /(k)

leads to

Pa
t = EQ(Rt

T (ST (G
+
t;T ) − ST (Gt))+ |Ft):
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Let us now de5ne G̃t = Gt ∨ y0, where y0 is to be adjusted by means of the budget
constraint:

x = EQ(ST (y0)) + Pa
0(y0):

Proposition 5.3. (i) The strategy

Vt = St(G̃t) + Pa
t (G̃t)

is self-/nancing, with terminal value VT = ST (G̃T ) ∨ k.
(ii) The latter strategy, based on the optimal strategy for the unconstrained prob-

lem, is optimal for the constrained problem.

Proof. We follow the proof of Proposition 3.1. Using Proposition 5.2, and the fact
that, for any t, the process (Rt

uSu(G̃t); t6 u) is a Q-martingale, we can write, as
in (20):

Vt = EQ(St(G̃t)+Rt
T [ST (G

+
t;T )−ST (G̃t)]+) |Ft) = E(Rt

T [ST (G
+
t;T ) ∨ ST (G̃t)] |Ft):

On the set ST (G+
t;T )¿ST (G̃t), the increasing property of ST (·) implies that G+

t;T ¿ G̃t ,

hence G+
t;T =G+

T ∨y0. On the complementary set ST (G+
t;T )6 ST (G̃t), the equality G+

t;T =
G+

T ∨ y0 still holds. Finally,

Vt = E(Rt
T ST (G

+
T ∨ y0) |Ft);

and result (i) follows.
The proof of optimality is the same as in Proposition 4.3. The only change to make

is to replace u′(ST�T ) by

u′(ST (G̃T )) = HT =G̃T ;

and to work with the decreasing process (G̃t)−1 rather than u′(�t). This process de-
creases only at the boundary, i.e. when Vt = k, and we are done.

6. Conclusion

The present paper solves the problem of optimizing dynamic portfolio management
when a constraint is imposed on the liquidation value. We 5rst considered the simplest
situation where the utility maximization problem is linear with respect to the initial
wealth and the unconstrained allocation is driven by Black–Scholes dynamics. We then
moved from this simple case to more complex settings, 5rst extending our results to the
general framework of complete markets, and then considering general utility functions
to be maximized. Both European and American constraints are studied. In particular,
we developed in the American case a path dependent self 5nancing strategy based on
American puts, which we showed to be optimal under fairly general assumptions.
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