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Pricing and Hedging of Credit Risk: Replication
and Mean-Variance Approaches

Tomasz R. Bielecki, Monique Jeanblanc, and Marek Rutkowski

Abstract. The paper presents some methods and results related to the valu-
ation and hedging of defaultable claims (credit-risk sensitive derivative instru-
ments). Both the exact replication of attainable defaultable claims and the
mean-variance hedging of non-attainable defaultable claims are examined. For
the sake of simplicity, the general methods are then applied to simple cases of
defaultable equity derivatives, rather than to the more complicated examples
of real-life credit derivatives.

Introduction

The goal of this paper is to present some methods and results related to the
valuation and hedging of credit derivatives (defaultable claims). For the most part
in this paper we adhere to the so-called reduced-form approach to modelling of
credit risk. Therefore, in the next section we briefly describe one of the main
relevant concepts – the hazard process of a random time (for more details, we refer
to Elliott et al. (2000) or Jeanblanc and Rutkowski (2002)).

In Section 2, we formulate the basic set-up of the paper. In particular, we
provide a model for the primary (default-free) market underlying our valuation and
hedging results.

Section 3 deals with valuation and hedging issues in the situation when there
are liquid instruments available for trading that are sensitive to the same risks as
the claims that we want to price and hedge. In other words, this section deals
with the situation when the perfect hedging (i.e., the exact replication) is possi-
ble. In contrast to some other related works, in which this issue was addressed by
invoking a suitable version of the martingale representation theorem (see, for in-
stance, Bélanger et al. (2001) or Blanchet-Scalliet and Jeanblanc (2000)), we shall
directly analyse the possibility of replication of a given defaultable contingent claim
by means of a trading strategy based on default-free and defaultable securities. We
believe that such an approach, motivated by the working paper by Vaillant (2001),
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is much more intuitive and it leads directly to explicit expressions for replicating
strategies. Moreover, the issue of the judicious choice of tradeable (i.e., liquid)
securities is emphasized in a natural way.

Finally, in Section 4 we present an approach to pricing default risk that can
not be perfectly hedged. Our approach here is rooted in the classical Markowitz
mean-variance portfolio optimization methodology.

1. Hazard process of a default time

Let τ be a non-negative random variable on a probability space (Ω,G,Q∗),
referred to as the default time. We introduce the jump process Ht = 11{τ≤t} and
we denote by H the filtration generated by this process. We now assume that some
reference filtration F is given. We set G := F ∨ H so that Gt = Ft ∨ Ht for t ∈ R+.
G is referred to as to the full filtration: it includes the observations of default
event. Of course, τ is an H-stopping time, as well as a G-stopping time (but not
necessarily an F-stopping time). The concept of the hazard process of a random
time τ is closely related to the conditional distribution function Ft of τ , defined as

Ft = Q∗(τ ≤ t | Ft), ∀ t ∈ R+.

We also set Gt = 1−Ft = Q∗(τ > t | Ft), and we postulate that G0 = 1 and Gt > 0
for t ∈ R+. Hence, we exclude the case where τ is an F-stopping time. The process
Γ : R+ → R+ given by the formula

Γt = − ln(1 − Ft) = − lnGt

is called the hazard process of a random time τ with respect to the reference filtration
F, or briefly, the F-hazard process.

Explicit construction of a default time. We shall now briefly describe
the most commonly used construction of a default time associated with a given
hazard process Γ. It should be stressed that the random time obtained through
this particular method – which will be called the canonical construction in what
follows – has certain specific features that are not necessarily shared by all random
times with a given F-hazard process Γ. We start by assuming that we are given an
F-adapted, right-continuous, increasing process Γ defined on a filtered probability
space (Ω̃,F,P∗). As usual, we postulate that Γ0 = 0 and Γ∞ = +∞. In many
instances, the process Γ is given by the equality

Γt =
∫ t

0

γu du,

for some non-negative, F-progressively measurable intensity process γ.
To construct a random time τ such that Γ is the F-hazard process of τ, we

need to enlarge the underlying probability space Ω̃. This also means that Γ is not
the F-hazard process of τ under P∗, but rather the F-hazard process of τ under a
suitable extension Q∗ of the probability measure P∗. Let ξ be a random variable
defined on some probability space (Ω̂, F̂ , Q̂), uniformly distributed on the interval
[0, 1] under Q̂. We consider the product space Ω = Ω̃ × Ω̂, endowed with the
product σ-field G = F∞ ⊗ F̂ and the product probability measure Q∗ = P∗ ⊗ Q̂.
The latter equality means that for arbitrary events A ∈ F∞ and B ∈ F̂ we have
Q∗(A × B) = P∗(A)Q̂(B). For the sake of simplicity, we denote by F the natural
extension of the original filtration F to the product space.
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We define the random time τ : Ω → R+ by setting

τ = inf { t ∈ R+ : e−Γt ≤ ξ } = inf { t ∈ R+ : Γt ≥ η }

where the random variable η = − ln ξ has a unit exponential law under Q∗ and is
independent of F. It is not difficult to find Ft = Q∗(τ ≤ t | Ft). Indeed, since clearly
{τ > t} = {ξ < e−Γt} and the random variable Γt is F∞-measurable, we obtain

Q∗(τ > t | F∞) = Q∗(ξ < e−Γt | F∞) = Q̂(ξ < e−x)x=Γt = e−Γt .

Consequently, we have

1 − Ft = Q∗(τ > t | Ft) = EQ∗
(
Q∗{τ > t | F∞} | Ft

)
= e−Γt ,

and so F is an F-adapted, right-continuous, increasing process. It is also clear that
the process Γ represents the F-hazard process of τ under Q∗. We shall assume from
now on that the default time τ is constructed through the canonical construction.

2. The underlying primary market model

In this section we set the stage for further developments. For the sake of sim-
plicity, we focus in the present paper on simple cases defaultable equity derivatives,
rather than on more sophisticated credit derivatives encountered in the market
practice (cf. Lando (1998), Schönbucher (1998), Greenfield (2000), Jamshidian
(2002), or Jeanblanc and Rutkowski (2003a)).

We shall examine the possibility of replication of defaultable claims within var-
ious models of defaultable markets. We argue that the choice of a particular setting
(in particular, of default-free and defaultable tradeable assets) is an essential step in
model building. Let us stress that from the practical perspective the valuation and
hedging of credit derivatives should always be done with respect to liquid credit-
risk-sensitive financial instruments of a similar nature (that is, of a similar exposure
with respect to relevant risk factors) if possible. This kind of situation is studied
in Section 3.

However, the rationale formulated in the previous paragraph may not be im-
plementable, if, for example, there are no liquid instruments available for trading
that would be sensitive to the same credit/default risk factors as the claim that
we want to price and hedge. In such cases, the perfect replication will typically be
impossible, and one needs to decide on some other pricing and hedging criteria. We
present a possible approach in Section 4.

Default-free market. Consider an economy in continuous time, with the time
parameter t ∈ R+. We are given a filtered probability space (Ω,F,P∗) endowed
with a one-dimensional standard Brownian motion W ∗. It is convenient to assume
that F is the P∗-augmented and right-continuous version of the natural filtration
generated by W ∗. As we shall see in what follows, the filtration F will also play the
role of the reference filtration for the default intensity. It is important to notice that
all martingales with respect to a Brownian filtration F are necessarily continuous
processes; this well-known property will be of frequent use in what follows.

In the first step, we shall introduce an arbitrage-free market model for default-
free securities. Notice that all price processes introduced in this subsection are F-
adapted and continuous. In the default-free market we have the following primary
tradeable assets:
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• a money market account B satisfying

dBt = rtBt dt, B0 = 1,

where r is an F-adapted stochastic process, or, equivalently,

Bt = exp
(∫ t

0

ru du

)
,

• a default-free discount bond (also known at the Treasury zero-coupon bond)
with the price process

B(t, T ) = Bt EP∗(B−1
T | Ft), ∀ t ∈ [0, T ],

where T is the bond’s maturity date,
• a risky asset whose price dynamics under P∗ are

(2.1) dSt = St

(
rt dt+ σt dW

∗
t

)
, S0 > 0,

for some F-progressively measurable volatility process σ.
For the sake of expositional simplicity, we shall make an assumption that our

model of default-free market is complete. The probability P∗ is thus the unique
martingale measure for the default-free market model. Let us finally notice that
we may equally well assume that the Wiener process W ∗ is d-dimensional and
S = (S1, . . . , Sd) is the vector of cash prices of d risky assets. It is well known
that the completeness of such a market model is essentially equivalent to the non-
degeneracy of the volatility matrix σt.

3. Replication of defaultable claims

In this section, we analyze the valuation and replication of defaultable claims
within the reduced-form set-up. We present here only the basic results under several
simplifying assumptions. For more general results, the interested reader is referred
to Jeanblanc and Rutkowski (2003b).

A generic defaultable claim (Y, Z, τ) consists of:
• the promised contingent claim Y, representing the payoff received by the

owner of the claim at time T, if there was no default prior to or at time
T ,

• the recovery process Z, representing the recovery payoff at time of default,
if default occurs prior to or at time T ,

• the default time τ specifying, in particular, the default event {τ ≤ T}.
It is convenient to introduce the dividend process D representing all cash flows

associated with a defaultable claim (Y, Z, τ). The process D is given by the formula

Dt = Y 11{τ>T}11[T,∞[(t) +
∫

]0,t]

Zu dHu

where both integrals are (stochastic) Stieltjes integrals.

Definition 3.1. The ex-dividend price process U of a defaultable claim of the
form (Y, Z, τ) which settles at time T is given as

Ut = Bt EQ∗

(∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)

where Q∗ is the spot martingale measure and the process B represents the savings
account.
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Observe that Ut = Ut(Y ) + Ut(Z) where the meaning of Ut(Y ) and Ut(Z) is
clear. Recall also that the filtration G models the full information, that is, the
default-free market and the default event.

Let us assume that we are given the F-adapted, right-continuous, increasing
process Γ on (Ω,F,P∗). The default time τ and the probability measure Q∗ are
assumed to be constructed as in Section 1. The probability Q∗ will play the role of
the martingale probability for the defaultable market. It is essential to observe that

• the Wiener process W ∗ is also a Wiener process with respect to G under
the probability measure Q∗ (recall that the default time τ is constructed
through the canonical construction),

• we have Q∗
|Ft

= P∗
|Ft

for every t ∈ [0, T ].

3.1. Risk-neutral valuation of defaultable claims. We shall now present
the basic valuation formulae for defaultable claims within the reduced-form ap-
proach.

3.1.1. Terminal payoff. The valuation of the terminal payoff is based on the fol-
lowing well-known result (see, for instance, Corollary 5.1.1 in Bielecki and Rutkowski
(2002)).

Lemma 3.2. For any FT -measurable, Q∗-integrable, random variable Y and
any t ≤ T we have

EQ∗(11{τ>T}Y | Gt) = 11{τ>t} EQ∗(eΓt−ΓT Y | Ft).

Let Y be an FT -measurable random variable representing the promised payoff
at maturity date T. We consider a defaultable claim of the form X = 11{τ>T}Y
with zero recovery in case of default (i.e., we set Z = 0). Using the definition of the
ex-dividend price of a defaultable claim, we get the following risk-neutral valuation
formula

Ut(Y ) = Bt EQ∗(B−1
T X | Gt)

which holds for any t < T. The next result is an immediate consequence of Lemma
3.2.

Proposition 3.1. The ex-dividend price of the promised payoff Y satisfies for
every t < T

(3.1) Ut(Y ) = Bt EQ∗(B−1
T Y 11{τ>T} | Gt) = 11{τ>t}Ũt(Y )

where
Ũt(Y ) = Bt EQ∗(B−1

T eΓt−ΓT Y | Ft) = B̂t EQ∗(B̂−1
T Y | Ft)

and the credit-risk-adjusted savings account B̂ satisfies B̂t = Bte
Γt for every t ∈ R+.

The process Ũ(Y ) represents the pre-default value of Y at time t. Notice that
the process Ũt(Y )/B̂t is a continuous F-martingale (thus Ũ(Y ) is a continuous
F-semimartingale).

Remark 3.3. The valuation formula (3.1), as well as the concept of the pre-
default value, should be supported by replication arguments. To this end, we need
first to construct a suitable model of a defaultable market with prespecified liquid
instruments. In fact, if we wish to use formula (3.1) for explicit calculations, we
need to know the joint law of all random variables involved, and this appears to be
a non-trivial issue, in general.
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3.1.2. Recovery payoff. The following result appears to be useful in the valua-
tion of the recovery payoff Zτ which occurs at time τ. The process Ũ(Z) introduced
below represents the pre-default value of the recovery payoff.

Proposition 3.2. Let Γ be a continuous process and let Z be an F-predictable,
bounded process. Then for any t ≤ T we have

Ut(Z) = Bt EQ∗(B−1
τ Zτ11 {t<τ≤T} | Gt)

= 11{τ>t}Bt EQ∗

(∫ T

t

ZuB
−1
u eΓt−Γu dΓu

∣∣∣Ft

)

= 11{τ>t}B̂t EQ∗

(∫ T

t

ZuB̂
−1
u dΓu

∣∣∣Ft

)
= 11{τ>t}Ũt(Z).

Proof. For the proof of Proposition 3.2 we refer, for instance, to Bielecki and
Rutkowski (2002) (see Propositions 5.1.1 and 8.2.1 therein). �

3.2. Defaultable term structure. For a defaultable discount bond with zero
recovery1 it is natural to adopt the following definition of the price process

D0(t, T ) = Bt EQ∗(B−1
T 11{τ>T} | Gt) = 11{τ>t}D̃

0(t, T )

where the auxiliary process D̃0(t, T ) represents the pre-default value of the bond.
By virtue of Proposition 3.1, it is given by the following equality

(3.2) D̃0(t, T ) = B̂t EQ∗(B̂−1
T | Ft)

where, as before, B̂t = Bte
Γt . Since the process D̃0(t, T )/B̂t is a continuous,

strictly positive, F-martingale, it is clear that the pre-default value D̃0(t, T ) of a
defaultable discount bond is a continuous, strictly positive, F-semimartingale. In
the very special case when r and γ are constants, we get the following simple
representation:

D̃0(t, T ) = e−(r+γ)(T−t) = e−γ(T−t)B(t, T ).

Remark 3.4. The probability measure Q∗ introduced above is an essential
input in the specification of defaultable term structure. It is essential to stress
that we deal here with the modelling of bond prices D0(t, T ), rather than with the
arbitrage valuation of contingent claims. In this sense, the probability measure Q∗

is “given by the liquid market of corporate bonds”, rather than derived using some
formal mathematical arguments.

3.3. Self-financing trading strategies: default-free case. Our goal in
this section is to present some auxiliary results related to the concept of a self-
financing trading strategy for a market model involving default-free and defaultable
securities.

For the sake of the reader’s convenience, we shall first discuss briefly the classic
concepts of self-financing cash and futures strategies in the context of default-
free market model. It will soon appear that in case of defaultable securities only
minor adjustments of definitions and results are needed (see, Blanchet-Scalliet and
Jeanblanc (2000) or Vaillant (2001)).

1A defaultable (corporate) discount bond is also known as a corporate zero-coupon bond.
Note that the superscript 0 refers to the postulated zero recovery scheme.
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3.3.1. Cash strategies. Let Z1
t and Z2

t be the cash prices at time t ∈ [0, T ] of
two default-free tradeable assets, where Z1 and Z2 are continuous semimartingales.
We assume, in addition, that the process Z1 is strictly positive. We denote by Vt

the wealth of the cash strategy (φ1, φ2) at time t ∈ [0, T ], so that

Vt = φ1
tZ

1
t + φ2

tZ
2
t .

We say that the cash strategy (φ1, φ2) is self-financing if

dVt = φ1
t dZ

1
t + φ2

t dZ
2
t .

This yields
dVt = (Vt − φ2

tZ
2
t )(Z1

t )−1 dZ1
t + φ2

t dZ
2
t .

Let us introduce the relative values: Ṽt = Vt/Z
1
t and Z̃2

t = Z2
t /Z

1
t . Using Itô’s

lemma, we get

Ṽt = Ṽ0 +
∫ t

0

φ2
u dZ̃

2
u.

A similar result holds for any finite number of assets. Let Z1
t , Z

2
t , . . . , Z

k
t be cash

prices at time t of k assets. We postulate that Z1, Z2, . . . , Zk are continuous
semimartingales, and the process Z1 is strictly positive. Then the wealth process
equals

Vt = φ1
tZ

1
t + φ2

tZ
2
t + · · · + φk

tZ
k
t

and the strategy (φ1, φ2, . . . , φk) is said to be self-financing if

dVt = φ1
t dZ

1
t + φ2

t dZ
2
t + · · · + φk

t dZ
k
t .

By combining the last two formulae, we obtain

dVt =
(
Vt −

k∑

i=2

φi
tZ

i
t

)
(Z1

t )−1 dZ1
t +

k∑

i=2

φi
t dZ

i
t .

Choosing Z1 as a numeraire and denoting Ṽt = Vt/Z
1
t , Z̃

i
t = Zi

t/Z
1
t , we get the

standard result.

Lemma 3.5. We have for any t ∈ [0, T ]

Ṽt = Ṽ0 +
k∑

i=2

∫ t

0

φi
u dZ̃

i
u.

3.3.2. Futures strategies. Now let Z1
t and Z2

t represent the cash and futures
prices at time t ∈ [0, T ] of some default-free assets, respectively. As before, we
assume that Z1 and Z2 are continuous semimartingales. Moreover, Z1 is assumed
to be a strictly positive process. In view of specific features of futures contracts, it
is natural to postulate that the wealth V satisfies2

Vt = φ1
tZ

1
t + φ2

t 0 = φ1
tZ

1
t .

The futures strategy (φ1, φ2) is self-financing if

(3.3) dVt = φ1
t dZ

1
t + φ2

t dZ
2
t .

We thus have
dVt = Vt(Z1

t )−1 dZ1
t + φ2

t dZ
2
t .

2Let us recall that the futures price Z2
t (that is, the quotation at time t of a futures contract)

has different practical features than the cash price of an asset. We make here the standard
assumption that it is possible to enter a futures contract at no initial cost.
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Lemma 3.6. The process Ṽt = Vt/Z
1
t satisfies for t ∈ [0, T ]

Ṽt = Ṽ0 +
∫ t

0

φ̂2
u dẐ

2
u

where φ̂2
t = φ2

t e
αt/Z1

t , Ẑ
2
t = Z2

t e
−αt and

αt = 〈lnZ1, lnZ2〉t =
∫ t

0

(Z1
u)−1(Z2

u)−1 d〈Z1, Z2〉u.

Proof. The Itô formula, combined with (3.3), yield

dṼt = (Z1
t )−1dVt + Vt d(Z1

t )−1 + d〈(Z1)−1, V 〉t
= φ1

t (Z
1
t )−1 dZ1

t + φ2
t (Z

1
t )−1 dZ2

t + φ1
tZ

1
t d(Z

1
t )−1

−φ1
t (Z

1
t )−2 d〈Z1, Z1〉t − φ2

t (Z
1
t )−2 d〈Z1, Z2〉t

= φ2
t (Z

1
t )−1dZ2

t − φ2
t (Z

1
t )−2 d〈Z1, Z2〉t

= φ2
t e

αt(Z1
t )−1

(
e−αtdZ2

t − Z2
t e

−αtdαt

)

and the result follows. �

3.3.3. Special cash strategies. Assume now that three default-free assets are
traded on the market and let (φ1, φ2, φ3) be a self-financing trading strategy. The
processes Z1, Z2 and Z3 are assumed to be continuous semimartingales and we pos-
tulate that Z1 and Z3 are positive processes. We shall first consider two particular
cases.

Zero net investment in Z2 and Z3. Assume first that at any time there is zero
net investment in Z2 and Z3 so that

φ2
tZ

2
t + φ3

tZ
3
t = 0

or, equivalently, φ3
t = −φ2

tZ
2
t /Z

3
t . Then, from Vt = φ1

tZ
1
t and

dVt = φ1
t dZ

1
t + φ2

t dZ
2
t + φ3

t dZ
3
t

we get

(3.4) dVt = Vt(Z1
t )−1 dZ1

t + φ2
t

(
dZ2

t − Z2
t (Z3

t )−1 dZ3
t

)
.

Let us denote Z̄1
t = Z1

t /Z
3
t , Z̄

2
t = Z2

t /Z
3
t . The following result extends Lemma 3.6.

Proposition 3.3. Assume that (φ1, φ2, φ3) is a self-financing strategy such
that φ2

tZ
2
t + φ3

tZ
3
t = 0 for every t ∈ [0, T ]. The process Ṽt = Vt/Z

1
t satisfies for

t ∈ [0, T ]

Ṽt = Ṽ0 +
∫ t

0

φ̂2
u dẐ

2
u

where
φ̂2

t = φ2
t e

ᾱt/Z̄1
t , Ẑ

2
t = Z̄2

t e
−ᾱt , ᾱt = 〈ln Z̄1, ln Z̄2〉t.

Proof. It suffices to consider the relative values of all considered processes,
with the price Z3 being chosen as a numeraire. Then equation (3.4) becomes

dV̄t = V̄t(Z̄1
t )−1 dZ̄1

t + φ2
tdZ̄

2
t

where V̄t = Vt/Z
3
t . To conclude, it suffices to apply Lemma 3.6, and to note that

Ṽt = Vt/Z
1
t = V̄t/Z̄

1
t . �
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Remark 3.7. Suppose that σ̄1 and σ̄2 are the volatilities of Z̄1 and Z̄2 respec-
tively, so that

dZ̄i
t = Z̄i

t

(
µ̄i

t dt+ σ̄i
t dW

∗
t

)

for i = 1, 2. Then clearly

ᾱt =
∫ t

0

σ̄1
u · σ̄2

u du

where · denotes the inner product. In a typical application, the volatilities σ̄1 and
σ̄2 (and thus also ᾱt) will be deterministic functions of the time parameter.

Non-zero net investment in Z2 and Z3. Assume now that

φ2
tZ

2
t + φ3

tZ
3
t = Zt

for a given continuous, F-adapted process Z. Proceeding as in the proof of Lemma
3.6, it is easy to establish the following result.

Proposition 3.4. Assume that (φ1, φ2, φ3) is a self-financing strategy such that
φ2

tZ
2
t +φ3

tZ
3
t = Zt for every t ∈ [0, T ]. Then the relative wealth process Ṽt = Vt/Z

1
t

satisfies for t ∈ [0, T ]

Ṽt = Ṽ0 +
∫ t

0

φ̂2
u dẐ

2
u +

∫ t

0

Z̄u d(Z̄1
u)−1

where Z̄t = Zt/Z
3
t and

φ̂2
t = φ2

t e
ᾱt/Z̄1

t , Ẑ
2
t = Z̄2

t e
−ᾱt , ᾱt = 〈ln Z̄1, ln Z̄2〉t.

3.4. Self-financing trading strategies with defaultable assets. We shall
first examine basic properties of general financial models involving default-free and
defaultable securities. At this stage, our goal is to derive fundamental relationships.
Subsequently, we shall be more specific about the nature of these securities, and
we shall furnish closed-form solutions for specific defaultable claims.

3.4.1. Case A. Single defaultable tradeable asset and two default-free assets.
For the sake of simplicity, we assume the zero recovery scheme for the defaultable
tradeable (i.e., liquid) asset with the price process Z1.

Zero recovery. First, we assume zero recovery for the defaultable contingent
claim (i.e., we set Z = 0). Thus, at time τ the wealth process of any strategy that
replicates X should necessarily jump to zero. The process Z1 vanishes at time of
default (and thus also after this date). Nevertheless, it can be used as a numeraire
prior to τ . Indeed, we have

Z1
t = 11{τ>t}Z̃

1
t

for some F-adapted process Z̃1.We assume that Z̃1 is a strictly positive, continuous,
F-semimartingale (clearly Z̃1 = Ũ for some defaultable claim which settles at T ).
On the other hand, it is obvious that the price process Z1 jumps from Z̃1

τ− to 0 at
default time τ .

Remark 3.8. Continuous F-semimartingales Z2 and Z3 are assumed to model
cash prices of liquid default-free securities. We postulate that Z3 is a strictly
positive process. It is convenient to assume, in addition, that the processes Z2

and Z3 are stopped at τ. Since we are going to deal with defaultable claims that
are subject to the zero recovery scheme, it will be sufficient to examine replicating
strategies on the random interval [[0, τ ∧ T ]]. For this reason, we shall postulate
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throughout that the processes φ1, φ2 and φ3 are F-predictable, rather than G-
predictable. In fact, it can be formally shown that for any G-predictable process
φ there exists a unique F-predictable process ψ such that 11{τ≥t}φt = 11{τ≥t}ψt for
every t ∈ R+.

We consider a self-financing cash strategy (φ1, φ2, φ3) such that at any time
t ∈ [0, T ] there is zero net investment in default-free assets Z2 and Z3, namely,

(3.5) φ2
tZ

2
t + φ3

tZ
3
t = 0.

We thus have φ3
t = −φ2

tZ
2
t /Z

3
t . Moreover Vt = φ1

tZ
1
t and (cf. (3.4))

dVt = Vt−(Z̃1
t )−1 dZ1

t + φ2
t

(
dZ2

t − Z2
t (Z3

t )−1 dZ3
t

)
.

Let us denote Z̄1
t = Z̃1

t /Z
3
t , Z̄

2
t = Z2

t /Z
3
t . The next result is a direct counterpart of

Proposition 3.3.

Proposition 3.5. Assume that φ2
tZ

2
t + φ3

tZ
3
t = 0 for every t ∈ [0, T ]. Then

the wealth process satisfies for t ∈ [0, T ]

Vt = Z1
t

(
Ṽ0 +

∫ t

0

φ̂2
u dẐ

2
u

)

where Ṽ0 = V0/Z̃
1
0 = V0/Z

1
0 and

φ̂2
t = φ2

t e
ᾱt/Z̄1

t , Ẑ
2
t = Z̄2

t e
−ᾱt , ᾱt = 〈ln Z̄1, ln Z̄2〉t.

Non-zero recovery. Assume now that for every t ∈ [0, T ]

φ2
tZ

2
t + φ3

tZ
3
t = Zt

for a given continuous, F-adapted process Z. Thus prior to default time we have
Vt = φ1

t Z̃
1
t + Zt and

dVt = φ1
tdZ̃

1
t + φ2

t dZ
2
t + φ3

tdZ
3
t .

Notice that at default time τ we have Vτ = Zτ on the set {τ ≤ T}.Using Proposition
3.4 we immediately obtain the following result.

Proposition 3.6. Assume that φ2
tZ

2
t + φ3

tZ
3
t = Zt for every t ∈ [0, T ]. Then

the process V satisfies on {τ > t}

Vt = Z̃1
t

(
Ṽ0 +

∫ t

0

φ̂2
u dẐ

2
u +

∫ t

0

Z̄u d(Z̄1
u)−1

)

where Z̄t = Zt/Z
3
t and, as before,

φ̂2
t = φ2

t e
ᾱt/Z̄1

t , Ẑ
2
t = Z̄2

t e
−ᾱt , ᾱt = 〈ln Z̄1, ln Z̄2〉t.

3.4.2. Case B. Two defaultable tradeable assets. Assume that Z1 and Z2 are
defaultable tradeable assets with zero recovery, and a common default time τ . Then
Z1

t = 11{τ>t}Z̃
1
t , Z

2
t = 11{τ>t}Z̃

2
t for some processes Z̃1, Z̃2, that are assumed to

be strictly positive, continuous, F-semimartingales. In this case, we postulate zero
recovery for a defaultable claim so that we shall consider trading strategies (φ1, φ2)
for which

Vt = φ1
tZ

1
t + φ2

tZ
2
t = 0

on the set {τ ≤ t}, that is, after default. We say that a strategy (φ1, φ2) is self-
financing provided that

dVt = φ1
t− dZ

1
t + φ2

t− dZ
2
t .
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Simple considerations show that the wealth process V satisfies

dVt = (Vt− − φ2
t−Z

2
t−)(Z1

t−)−1 dZ1
t + φ1

t− dZ
2
t

or, equivalently,

dVt = (Vt− − φ2
t−Z̃

2
t )(Z̃1

t )−1 dZ1
t + φ2

t− dZ
2
t .

Proposition 3.7. The wealth process V satisfies for t ∈ [0, T ]

Vt = Z1
t

(
Ṽ0 +

∫ t

0

φ2
u dZ

2∗
u

)

where Ṽ0 = V0/Z̃
1
0 = V0/Z

1
0 and Z2∗

t = Z̃2
t /Z̃

1
t .

Proof. It suffices to note that, setting Ṽt = φ1
t Z̃

1
t + φ2

t Z̃
2
t , we have dṼt =

φ1
t dZ̃

1
t + φ2

t dZ̃
2
t . �

3.4.3. Case C. Single defaultable tradeable asset and a single default-free asset.
Let us finally consider the case of two tradeable assets, with prices Z1

t = 11{τ>t}Z̃
1
t

and Z2
t , where Z̃1, Z2 are strictly positive, continuous, F-semimartingales. We now

have
Vt = φ1

tZ
1
t + φ2

tZ
2
t = φ1

t 11{τ>t}Z̃
1
t + φ2

tZ
2
t

and
dVt = (Vt− − φ2

tZ
2
t )(Z̃1

t )−1dZ1
t + φ2

t dZ
2
t .

It is clear that equality Vt = 0 on {τ ≤ t} implies that φ2
t = 0 for every t ∈ [0, T ].

Therefore, dVt = Vt−(Z̃1
t )−1dZ1

t and the possibility of replication of a defaultable
claim with zero-recovery is unlikely within this setup (except for some trivial cases).

3.5. Replicating strategies for defaultable claims. Our goal is to exam-
ine the possibility of the exact replication of a generic defaultable claim. By a
replicating strategy we mean here a self-financing trading strategy with the wealth
process which coincides with the pre-default value of the claim at any time prior to
default (and prior to the maturity date), and with the claims payoff at the time of
default or at the claim’s maturity, whichever comes first. Suppose that V stands
for the wealth process of this strategy. We require that V = Ũ on the stochastic
interval [[0, τ ∧ T [[ and: Vτ = Zτ on {τ ≤ T}, VT = Y on {τ > T}.

3.5.1. Case A. Single defaultable tradeable asset and two default-free assets.
Replication of the promised payoff. We shall first examine the possibility of an

exact replication of a defaultable contingent claim with zero recovery. To this end,
we shall make use of Proposition 3.5 (notice that we replace Z1 with Z̃1, however).

Corollary 3.1. Suppose that there exists a process φ̂2 such that

Z̃1
T

(
Ũ0(Y ) +

∫ T

0

φ̂2
t dẐ

2
t

)
= Y

where Ẑ2 is defined in Proposition 3.5. Then the trading strategy (φ1, φ2, φ3) given
by

φ1
t = Ũt(Y )/Z̃1

t , φ2
t = φ̂2

t Z̄
1
t e

−ᾱt , φ3
t = −φ2

tZ
2
t /Z

3
t ,

replicates the defaultable claim (Y, 0, τ).
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Proof. We shall make use of Proposition 3.5. Suppose that the process φ̂2

exists. Then we define

Vt = Z̃1
t

(
Ũ0(Y ) +

∫ t

0

φ̂2
u dẐ

2
u

)

and we set
φ1

t = Vt/Z̃
1
t , φ2

t = φ̂2
t Z̄

1
t e

−ᾱt , φ3
t = −φ2

tZ
2
t /Z

3
t .

In view of Proposition 3.5 the strategy (φ1, φ2, φ3) is self-financing on [[0, τ ∧T [[. At
the default time τ the wealth necessarily jumps to zero (recall that Z1 is subject to
zero recovery), and at the maturity of the claim it equals Y on the set {τ > T}. �

As usual, we say that a defaultable claim is attainable if it admits at least one
replicating strategy.

Corollary 3.2. Suppose that a defaultable claim represented by the random
variable X is attainable. Let Q̂ be a probability measure such that Ẑ2 is an F-
martingale under Q̂. Then the value at time 0 of the promised payoff (i.e., of the
claim (Y, 0, τ)) equals

U0(Y ) = Z1
0 EQ̂(Y/Z̃1

T ).

It is useful to notice that within the present setup the replication of all default-
able claims with zero recovery is possible, provided that the underlying default-free
market is complete (this assumption was done in Section 2).

Replication of the recovery payoff. Let us now focus on the recovery payoff Z
at time of default. Let Ũt(Z) be the pre-default value of this payoff. In order to
examine the replicating strategy, we shall make use of Proposition 3.6 (in particular,
we assume now that φ2

tZ
2
t + φ3

tZ
3
t = Zt for every t ∈ [0, T ]).

Corollary 3.3. Suppose that there exists a process φ̂2 such that

Z1
T

(
Ṽ0 +

∫ T

0

φ̂2
u dẐ

2
u +

∫ T

0

Z̄u d(Z̄1
u)−1

)
= 0.

Then the replicating strategy for the recovery payoff Z (i.e., for the defaultable claim
(0, Z, τ)) equals

φ1
t =

Ũt(Z) − Zt

Z̃1
t

, φ2
t = e−ᾱt Z̄1

t φ̂
2
t , φ3

t =
Zt − φ2

tZ
2
t

Z3
t

,

where the pre-default value at time t of the recovery payoff equals

Ũt(Z) = Vt = Z̃1
t

(
Ṽ0 +

∫ t

0

φ̂2
u dẐ

2
u +

∫ t

0

Z̄u d(Z̄1
u)−1

)
.

Proof. It suffices to observe that the terminal value of the recovery process
is null, and to apply Proposition 3.6. �

Corollary 3.4. Suppose there exists a probability measure Q̂ such that Ẑ2 is
an F-martingale under Q̂. Then

Vt = Z̃1
t EQ̂

( ∫ T

t

Z̄u d(Z̄1
u)−1

∣∣∣Ft

)
.

Remark 3.9. The case of a defaultable asset Z1 with non-zero recovery can
be dealt with in a similar way. Let us notice that the existence of a closed-form
expression for the process φ̂2 depends on additional assumptions.
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3.5.2. Case B. Two defaultable tradeable assets. We shall now make use of
Proposition 3.7 and we shall focus on the replication of the promised payoff. Let
us consider two defaultable tradeable assets Z1 and Z2 with zero recovery, and
an associated trading strategy (φ1, φ2). Clearly, it replicates a defaultable claim
X = 11{τ>T}Y whenever the following equality holds

Z̃1
T

(
Ṽ0 +

∫ T

0

φ2
t dZ

2∗
t

)
= Y.

Corollary 3.5. Suppose that a defaultable claim represented by X is attain-
able. Let Q̃ be a probability measure such that Z2∗ is an F-martingale under Q̃.
Then the value at time 0 of the claim (Y, 0, τ) equals

U0(Y ) = Z1
0 EQ̃(Y/Z̃1

T ).

From the viewpoint of market completeness, the situation in different than in
the previous case. Indeed, a defaultable claim X is attainable if and only if the
associated promised payoff Y can be replicated with the use of pre-default value
processes Z̃1 and Z̃2. In addition, even if a default-free asset is introduced, a
replicating strategy for an arbitrary defaultable claim will always involve a null
position in this asset. Therefore, the introduction of a tradeable default-free asset
is not relevant if we restrict our attention to defaultable claims.

3.6. Equity derivatives. We postulate that the dynamics of the stock price
S are given by (2.1). As the first example, we shall examine how to value and hedge
a vulnerable European call option with the terminal payoff

ĈT = 11{τ>T}(ST −K)+.

Notice that ĈT = C̃T , where we denote

C̃T = 11{τ>T}(ST 11{τ>T} −K)+ = (ST 11{τ>T} −K)+.

Hence, the considered contract can also be seen as either a vulnerable or a non-
vulnerable option on a defaultable stock. We argue that the financial interpretation
of a particular real-life derivative contract is of great importance here. To support
this point, we shall consider several possible models, with different choices of trade-
able assets that are used for hedging purposes, and we shall show that both the
claim’s price and its hedging strategy depends on the model’s choice.

3.6.1. Case A. Single defaultable tradeable asset and two default-free assets. We
first consider the case of a vulnerable option written on a non-defaultable stock.
Specifically, the stock price process is assumed to be tradeable and default-free.
In addition, we postulate that the default-free and defaultable discount bonds,
maturing at time T , are also tradeable.

Valuation. To value a vulnerable call option, it suffices to apply Corollary 3.2.
Let us denote by FS

t = St/B(t, T ) the forward price of the stock, and let us define
Γ(t, T ) = D̃0(t, T )/B(t, T ). The next result gives the basic properties of the process
Γ(t, T ) (for a fixed T ).

Lemma 3.10. For a fixed T > 0, the process Γ(t, T ), t ∈ [0, T ], is a continuous
F-submartingale. It is a process of finite variation (in fact, an increasing function)
if and only if the hazard process Γ is deterministic. Indeed, in this case we have
Γ(t, T ) = eΓt−ΓT .
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Proof. Recall that B̂t = Bte
Γt and notice that

Γ(t, T ) =
D̃0(t, T )
B(t, T )

=
B̂t EQ∗(B̂−1

T | Ft)
Bt EQ∗(B−1

T | Ft)
= EQT (eΓt−ΓT | Ft) = eΓtMt

where Mt = EQT (e−ΓT | Ft) and QT stands for the so-called forward martingale
measure, given on (Ω,GT ) (as well as on (Ω,FT )) through the formula

dQT

dQ∗ =
1

BTB(0, T )
, Q∗ − a.s.

We conclude that Γ(t, T ) is the product of a strictly positive, increasing, right-
continuous, F-adapted process eΓt and a strictly positive, continuous3 F-martingale
M . It is well known that a continuous martingale is never of finite variation, unless
it is a constant process. �

Remark 3.11. It is easy to check that

QT (t < τ ≤ T | Gt) = 11{τ>t}EQT (eΓt−ΓT | Ft)

so that Γ is also the hazard process of τ with respect to F under QT . Notice that
Lemma 3.10 is valid no matter whether interest rates are random or deterministic.

Corollary 3.2 yields

Ĉ0 = D0(0, T )EQ̂Y = Γ(0, T )B(0, T )EQ̂Y

where Q̂ is the martingale measure for the process Ŝ given by Ŝt = FS
t e

−ᾱt , where
ᾱt = 〈ln Γ(t, T ), lnFS〉t. If Γ(t, T ) is increasing, we have Ŝt = FS

t so that Ŝ is
simply the forward price of the stock. If the interest rate r is deterministic then we
have (cf. (2.1))

dŜt = Ŝtσ dW
∗
t , Ŝ0 = S0/B(0, T ).

The price Ĉ0 thus equals Γ(0, T )C0, where C0 denotes the Black-Scholes price of a
(non-vulnerable) European call. This result can be easily generalized to the case of
random interest rates (e.g., within the Gaussian HJM framework).

Hedging. Let us now examine hedging of a vulnerable option. In general, the
replicating strategy for X satisfies on the set {τ > t}

φ1
t D̃

0(t, T ) + φ2
tSt + φ3

tB(t, T ) = Ũt(Y )

and
φ1

t dD̃
0(t, T ) + φ2

t dSt + φ3
t dB(t, T ) = dŨt(Y ).

To hedge perfectly the jump risk we need to take

φ1
t = Ũt(Y )/D̃0(t, T ).

Consequently, we necessarily have φ2
tSt + φ3

tB(t, T ) = 0.

Remark 3.12. The remaining risk, referred to as the spread risk (or, the volatil-
ity risk) is hedged by matching the diffusion terms (recall that we postulated the
completeness of the default-free market model). It is thus clear that the compo-
nent φ1 is chosen to perfectly hedge the jump risk, and the components φ2, φ3 are
tailored to hedge the spread risk. Notice also that the trading strategy introduced

3Recall that the filtration F is generated by a process W ∗, which is a Wiener process with
respect to P∗, Q∗ as well as with respect to the forward martingale measure QT . All martingales
with respect to a Brownian filtration are known to be continuous processes.
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above replicates the defaultable claim not only prior to the default time, but also
after τ.

Formally, we shall consider a self-financing cash strategy (φ1, φ2, φ3) such that
at any date there is zero net investment in stock and default-free bond, so that

φ2
tSt + φ3

tB(t, T ) = 0, ∀ t ∈ [0, T ].

The following result is a straightforward consequence of Proposition 3.5. In the
remaining part of Section 3.6.1, it is assumed that the default intensity is deter-
ministic.

Corollary 3.6. Assume that the default intensity γ is deterministic. Then
the wealth process V satisfies for t ∈ [0, T ]

Vt = D0(t, T )
( V0

D0(0, T )
+

∫ t

0

φ̂2
u dŜu

)

where φ̂2
t = φ2

t /Γ(t, T ) and Ŝt = FS
t .

Proof. Since Γ(t, T ) is of finite variation, we have ᾱt = 0, φ̂2
t = φ2

t/Γ(t, T )
and Ŝt = FS

t . �

Consider the defaultable claim ĈT = 11{τ>T}(ST −K)+. In view of Corollary
3.6, we need to find a constant c and a process φ̂2 such that

c+
∫ T

0

φ̂2
t dŜt = c+

∫ T

0

φ̂2
t dF

S
t = (ST −K)+.

It is clear that φ̂2 coincides with the Black-Scholes replicating strategy and
V0/D

0(0, T ) = C0/B(0, T ), where C0 is the Black-Scholes price of a European call
option. Thus the price at time 0 of ĈT equals Γ(0, T )C0.

Corollary 3.7. We have φ̂2 = ψ, where ψ is the Black-Scholes hedge ratio for
the call option. The pre-default value at time t of ĈT satisfies Vt(X) = Γ(t, T )Ct.

The component φ1 of the replicating strategy for the vulnerable call option
satisfies on the set {τ > t}

φ1
t = Vt(X)/D̃(t, T ) = Ct/B(t, T ).

Moreover φ2
t = ψtΓ(t, T ) and φ3

t = −ψtΓ(t, T )FS
t .

Example 3.13. Assume that r and γ are constant. Then

φ1
t = Cte

r(T−t), φ2
t = ψte

−γ(T−t), φ3
t = −ψte

(r−γ)(T−t)St

where ψt = N(d1(St, T − t)) is the classic Black-Scholes hedge ratio of a European
call option.

3.6.2. Case B. Two defaultable tradeable assets. We shall now consider the
payoff

C̃T = 11{τ>T}(S̃T 11{τ>T} −K)+ = (S̃T 11{τ>T} −K)+

representing a (vulnerable or non-vulnerable) option written on a defaultable stock.
To replicate this claim, we postulate that the stock price process is a tradeable, but
defaultable, asset. Thus the price process S of the stock admits the following
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generic representation St = 11{τ>t}S̃t, where, by assumption, the pre-default value
is governed by

dS̃t = S̃t

(
µt dt+ σ dW ∗

t

)
.

In addition, we postulate that the defaultable discount bond with maturity T is
tradeable, with the price D0(t, T ) and the pre-default value D̃0(t, T ) given by (3.2).

Valuation. The valuation procedure is based on Corollary 3.5. In the case of
deterministic default intensity γ(t) and deterministic short-term interest rate r(t),
the martingale property of the process S∗

t = S̃t/D̃
0(t, T ) under Q̃ is equivalent to

dS̃t = S̃t

(
r̂(t) dt+ σ dW ∗

t

)

where r̂(t) = r(t) + γ(t) is the credit-risk-adjusted interest rate. The price at time
0 of the contract equals

C̃0 = D0(0, T )EQ̃Y = Γ(0, T )B(0, T )EQ̃(S̃T −K)+

where Q̃ is the martingale measure for the process S∗.

Example 3.14. In the case of constant r and γ, the result is exactly the same
as the Black-Scholes price of a (default-free) European call under the assumption
that the risk-free interest rate equals r̂ = r + γ.

Hedging. Using Proposition 3.7, we arrive at the following equality for the
wealth process V of a self-financing strategy:

Vt = D0(t, T )
(
Ṽ0 +

∫ t

0

φ2
u dS

∗
u

)

where Ṽ0 = V0/S̃0 = V0/S0. Replication of the claim C̃T is thus equivalent to the
following equality

c+
∫ T

0

φ2
t dS

∗
t = (S̃T −K)+.

Example 3.15. It is rather clear that in the special case of constant r and
γ, the hedging strategy will be exactly the same as in the (default-free) Black-
Scholes model, but with the default-free interest rate substituted with the credit-
risk-adjusted interest rate r̂ = r + γ.

4. Defaultable claims: pricing and hedging à la Markowitz

For the case study presented below we simplify the model of the primary
default-free market as follows: we fix T > 0 and we assume that the spot rate
process r is zero, which means that Bt = 1 for every t ∈ [0, T ]. Furthermore, we
postulate that under the actuarial probability, say P, the stock price process S
evolves according to

dSt = St

(
ν dt+ σ dWt

)
, S0 > 0,

where ν and σ 6= 0 are constants, and W is a Wiener process on a probability space
(Ω,G,P). We denote by F the filtration generated by the Wiener process W (it is
also generated by the stock price S). Observe that in this case we have that

• the unique martingale measure for S on (Ω,FT ) is given by

dP∗

dP

∣∣∣Ft = Λ(t), ∀ t ∈ [0, T ],
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where we denote by Λ the deflator, i.e., the process satisfying

dΛ(t) = −Λ(t)θ dWt, Λ(0) = 1,

where θ = ν/σ, or, explicitly

Λ(t) = exp
(
− θWt −

1
2
θ2t

)
,

• W ∗
t = Wt + θt, t ∈ [0, T ], is a Wiener process under P∗,

• the natural filtrations generated by W and W ∗ coincide.
We assume that the two assets, the savings account B and the stock S, are

liquid and available for investment by some economic agent. Now, imagine that a
new investment opportunity becomes available for the agent. Namely, the agent
may purchase at time t = 0 a contingent claim X, whose corresponding cash flow of
X units occurs at time T. The random variableX is supposed to be F̃T -measurable,
where F̃ is some filtration in G, which is not a subfiltration of F. Thus, we are now
dealing with a full market consisting of the primary market and of the claim X.

We assume that B and S are the only assets available for trading, and that
the full market is incomplete; in particular, we assume that X / ∈ FT . But, this
requirement alone may not suffice for the non-attainability of X in the full market.
In the present context, the incompleteness of the full market means that the claim
X is non-attainable, that is, it can not be represented as4 x+

∫ T

0
φ1

t dSt, where the
integrand φ1 is an F ∨ F̃-adapted process and x is a constant. To summarize, we
only allow for the primary assets B and S to be used in the agent’s portfolio, but we
allow a trading strategy to be based on the full information, formally represented
by the joint filtration G = F ∨ F̃.

The question that we want to study is: how much would the agent be willing to
pay at time t = 0 for the claim X , and how the agent should hedge her investment?
[A symmetric study can be conducted for an agent creating such an investment
opportunity by selling the claim.]

The question under consideration is a non-trivial one in our set-up. Of course,
in practice the claim X may be available for purchase at some ask price, but this
may not be the price that the agent would be willing to pay for it. Since we
consider the case when the claimX can not be replicated by a self-financing portfolio
consisting of only the two underlying instruments (i.e., a portfolio involving the
savings account B and the risky asset S), the standard arbitrage argument for the
determination of a (unique) price for the claim X can not be applied here. In this
section, we propose the mean-variance paradigm in order to determine both the
price and the hedging strategy for the non-attainable claim X.

Special case. For the sake of concreteness, in Section 4.2 we shall further
specify our model of the full market. Namely, we shall assume in this section
that the claim X represents a cash flow of a defaultable (corporate) discount bond,
maturing at time T , which is subject to the so-called fractional recovery of Treasury
value scheme. Specifically, we shall assume that the bond’s cash flow X at time T
is given as

(4.1) X = L
(
11{τ>T} + δ11{τ≤T}

)
= δL+ L(1− δ)11{τ>T}

4Recall that Bt = 1 for all t, so that dBt = 0.
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for some constants L and δ. That is, if the bond defaults prior or at the maturity
(that is, if τ ≤ T ) then the fraction δ of the notional amount is paid at maturity;
otherwise, the bond pays at maturity the full promised notional amount L. Observe
that in this set-up we may, and we do take F̃ = H where, as before, H is the natural
filtration generated by the process Ht = 11{τ≤t}. Consequently, the full filtration G
satisfies G = F ∨ H.

4.1. Mean-variance paradigm for pricing and hedging of non-attainable
claims. We consider a class of admissible trading strategies φ = (φ0, φ1), defined
as follows:

• φ0
t is the amount of money held in the savings account, and φ1

t is the
number of shares of the risky asset S held in the agent’s portfolio at time
t,

• φ0 and φ1 are predictable processes with respect to the full filtration G,
• φ is self-financing: φ0

tBt+φ1
tSt = φ0

0+φ
1
0S0+

∫ t

0
φ1

u dSu for every t ∈ [0, T ],
• EP

( ∫ T

0
‖φt‖2 dt

)
<∞.

Suppose now that the agent has initially (that is, at time t = 0) the amount
v > 0 available for investment. Thus, in the absence of outside endowments and
in the absence of consumption, the wealth process of the agent, which is defined as
follows

V φ,v
t = φ0

t + φ1
tSt, ∀ t ∈ [0, T ],

satisfies
dV φ,v

t = φ1
t dSt, V φ,v

0 = v.

For the sake of notational simplicity, we shall usually write V instead of V φ,v.
We postulate that the agent’s objective for investment is the classical mean-

variance portfolio selection objective. That is, for any given initial wealth v the
agent is interested in solving the following problem over the horizon [0, T ]5:

Problem MV(d, v): Minimize VP(VT ) over the set of all admissible trading strate-
gies, subject to

EPVT ≥ d, V0 = v.

Remark 4.1. Observe that the above problem is non-trivial only if d > v, as
otherwise investing in the savings account B alone generates the wealth process
Vt = v, that obviously satisfies the terminal condition EPVT ≥ d, and for which
the variance of VT is zero. Thus, we shall assume from now on that d > v.

Remark 4.2. It is not difficult to show (cf. Bielecki et al. (2003) or Bielecki
and Jeanblanc (2003)) that the above problem MV(d, v) admits a solution, so that
there exists an optimal trading strategy, say φd,v,∗ and the optimal wealth process,
say V d,v,∗

t . Let us denote by σ2,v,d,∗ the value of VP(V d,v,∗
T ).

When the claim X is available for purchase at time t = 0 for price p, the agent
will decide whether to purchase it or not on the basis of the following reasoning:
First, the agent solves the associated mean-variance problem MV(d, v, p).

Problem MV(d, v, p): Minimize VP(VT +X) over the set of all admissible trading
strategies, subject to

EPVT ≥ d−m, V0 = v − p ≥ 0,

5By VP we denote the variance operator.
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where we denote m = EPX.

Next, the agent will be ready to pay for the claim X the amount that is no
more then

pMV ;d,v(X) := sup {p ∈ [0, v] : the problem MV(d, v, p) admits a solution,

and σ2,d,v,p,X,∗ ≤ σ2,v,d,∗},
where, as usually, we set sup ∅ = −∞.

Remark 4.3. We shall state below that if the parameters d, v and p as well as
the random variable X satisfy certain additional sufficient conditions, then there
exists an optimal strategy, say φd,v,p,X,∗, for the problem MV(d, v, p). We denote
by V d,v,p,X,∗

T the value of the terminal wealth corresponding to an optimal strategy
φd,v,p,X,∗, and we set σ2,d,v,p,X,∗ = VP(V d,v,p,X,∗

T +X).

Definition 4.4. The value pMV ;d,v(X) is called the buyer’s mean-variance
price of the claim X . The corresponding optimal strategy is called the buyer’s
mean-variance hedging strategy.

Remark 4.5. Observe that we require that p ≤ v in the formulation of problem
MV(d, v, p).

Remark 4.6. Observe that, unlike as in the case of the problem MV(d, v), the
problem MV(d, v, p) may be non-trivial even if d −m ≤ v − p ; although investing
in the savings account alone will produce in this case a wealth process for which
the condition EPVT ≥ d−m is satisfied, the variance VP(VT +X) = VP(X) may
not be minimal.

Remark 4.7. For simplicity of presentation of our mean-variance hedging idea
we did not postulate above that agent’s wealth is non-negative for all times. Prob-
lem MV(d, v) with such a postulate added has been recently studied in Bielecki et
al. (2003). Observe that non-negativity of the wealth process V is not implicit in
our formulation of the problem, as we are using investment strategies representing
numbers of shares of the underlying primary assets. If we were using so called pro-
portion strategies, then the wealth process would be a positive semi-martingale by
definition. We refer to Bielecki et al. (2003) for discussion regarding the relation-
ship between the two classes of strategies. We shall study in a separate work the
more general problem of mean-variance pricing and hedging under the assumption
of non-negativity of the wealth process. In particular, we shall compare optimal so-
lution to our problem under the non-negativity constraint, to the optimal solution
of a problem MV(d, v) where only proportion strategies are allowed.

Comments on the pricing rule. Let us denote by N (X) the no-arbitrage price
interval for the claim X , that is, N (X) = [MBP (X),MAP (X)] where MBP (X)
(MAP (X), resp.) stands for the maximal bid price (minimal ask price, resp.) It
may be so that our mean-variance price pMV ;d,v(X) of this claim does not fall into
the no-arbitrage interval. Since this possibility may appear as an unwanted feature
of our approach to pricing and hedging, we comment below on this aspect of our
pricing method.

When we consider the valuation issue from the perspective of the entire market,
then it is natural to apply the no-arbitrage paradigm. According to this paradigm,
the market as a whole will “preserve” only those prices of a financial asset, which fall
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into the no-arbitrage interval. Prices from outside this interval can’t be sustained
in a longer term due to market forces, which will tend to eliminate any persistent
arbitrage opportunity.

Now, suppose that an individual investor is interested in putting some of her
initial capital v > 0 into an investment opportunity provided by some assetX. Thus,
the investor needs to decide whether to acquire the investment opportunity, and if so
then how much to pay for it, based on her overall attitude towards risk and reward.
Let us denote this attitude by RR.6 Suppose that the investment opportunity is
not spanned by the underlying primary securities (the primary market) that are
available for liquid trading. Let us denote the primary market by PM. Finally,
let us suppose that an investor makes investment (valuation) decisions regarding
assets such as X using some pricing rule, say Π. That is, the investor decides about
the price, say p, that she is willing to pay for the asset X , by evaluating her pricing
rule, that is

p = Π(v,X,RR,PM).

The number p is the price that investor is willing to pay for the investment op-
portunity given her initial capital v, given her attitude towards risk and reward,
and given the primary market model. The investor then “submits” her price to
the market. Now, suppose that the market recognized no-arbitrage interval for
the asset X is N (X). If it happens that p ∈ N (X) then the investor’s bid price
for X can be accepted by the market.7 But, there is no fundamental reason why
the investor’s pricing rule should produce a price p from the no-arbitrage interval.
Neither our mean-variance price, nor the indifference price based on some utility
function, necessarily fall into the no-arbitrage interval. In the case when p /∈ N (X),
the investor’s bid price may not be accepted by the market, and the investor may
not enter into the investment opportunity.8

In view of the above remarks, we are now willing to suggest the following
principle for determining the investor’s price of the investment opportunity X , say
pI(X),

pI(X) = Π(v,X,RR,PM) if Π(v,X,RR,PM) ∈ N (X)

and pI(X) = −∞ otherwise. This principle simply “marks to market” the investor’s
pricing rule Π. In our case the investor’s pricing rule is given by Definition 4.4, and
this rule needs to be marked-to-market in the way described above.

Case of an attainable claim. We recall again, that if the claim X were measur-
able with respect to FT then we would be dealing with a complete full market, and
a unique arbitrage price would be computed using for example the risk-neutral val-
uation approach. In this case, we shall verify that our mean-variance price coincides
with this unique arbitrage price. In fact, we have the following result.

6In our case this attitude is rooted in the mean-variance paradigm. But, it could be mean-
VaR paradigm, or any other paradigm that connects risk (measured in some way) with reward
(measured in some way). Of course, use of utility functionals is included here as a possibility.

7Most likely some bargaining process will be involved starting from the investor’s bid price
and some seller’s ask price. This bargaining process will ultimately decide the price at which the
claim X will change hands.

8Of course, in such case, the investor may want revise her attitude towards risk and reward,
so that such revision may lead to a new price p′ that will belong to the no-arbitrage interval.
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Proposition 4.1. Assume that the claim X is attainable in the primary mar-
ket model, and assume that its (no-)arbitrage price, say x, satisfies x ≤ v. Then
pMV ;d,v(X) = x.

Proof. Since X is attainable in the primary market model, we have that

X = x+ φ0
T + φ1

TST = x+
∫ T

0

φ1
t dSt

for some admissible trading strategy φ. Note that for the claim X it holds that
V v,d,p,∗

T = V v−p+x,d,∗
T and that σ2,v,d,p,∗ = σ2,v−p+x,d,∗. It can be shown (see

Bielecki et al. (2004) or Bielecki and Jeanblanc (2003)) that for v ≤ d the function
v 7→ σ2,v,d,∗ is strictly decreasing. Consequently, the function p 7→ σ2,v,d,p,∗ is
strictly decreasing for p such that v − p + x ≤ d, that is p ≥ v − d + x. In view of
our underlying assumption that v ≤ d we have that v − d + x ≤ x. Finally, note
that for p = x we have that σ2,v,d,x,∗ = σ2,v,d,∗. This completes the proof. �

4.2. Solution to problem MV(d, v, p): the mean-variance price and
hedging strategy. For the future reference, we denote by Pv and P0 the set of
all random variables V v

T = v +
∫ T

0
φ1

t dSt and V 0
T =

∫ T

0
φ1

t dSt, respectively, where
φ1 is the second component of any admissible strategy φ. Thus, Pv is simply a
translation of P0 by a deterministic constant v. In addition, we denote by ΠP

the orthogonal projection operator (in the norm of the space L2(Ω,G,P)) from
L2(Ω,G,P) on (the closed, linear subspace) P0.

We shall now focus on the defaultable claim X given by (4.1). Notice that
X = δL + Y (T, δ) where we denote Y (T, δ) = L(1 − δ)11{τ>T}. The first step in
solving the problem MV(d, v, p) for X given by (4.1) is to examine the following
problem:

Problem MV(d, v, p; δ): Minimize VP[VT + Y (T, δ)] over the set of all admissible
trading strategies,9 subject to

EPVT ≥ d(δ, T ) := d−EPX, V0 = v − p ≥ 0.

We first solve the auxiliary problem:

Problem MVA(d, v, p; δ): Minimize VP[VT +Y (T, δ)] over the set of all admissible
trading strategies, subject to

EPVT = d(δ, T ), V0 = v − p ≥ 0.

The latter problem is in turn equivalent to the following one:

Problem MVB(d, v, p; δ): Minimize EP[VT +Y (T, δ)]2 over the set of all admissible
trading strategies, subject to

EPVT = d(δ, T ), V0 = v − p ≥ 0.

We split the solution to the above problem into two phases. In phase one, we
solve:

(4.2) min
V̂ ∈Pv−p

EP[V̂ + Y (T, δ)]2,

9Recall that admissible trading strategies are adapted to the full filtration G.
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subject to

(4.3) EPV̂ = d(δ, T ), EP(Λ(T )V̂ ) = v − p ≥ 0.

We rewrite the above problem as

(4.4) min
Ṽ ∈P0

EP[Ṽ + v − p+ Y (T, δ)]2,

subject to

(4.5) EPṼ = d(δ, T, v, p) := d(δ, T ) − (v − p), EP(Λ(T )Ṽ ) = 0.

It is clear that if a random variable Ṽ ∗ is an optimal solution for the problem
(4.4)-(4.5), then V̂ ∗ = Ṽ ∗+(v−p) is an optimal solution of the problem (4.2)-(4.3).
The Lagrangian corresponding to the problem (4.4)-(4.5) is

EP

(
[v − p+ Ṽ + Y (T, δ)]2 − λ1Ṽ − λ2Λ(T )Ṽ

)
− (d(δ, T, v, p))2 + λ1d(δ, T, v, p).

Let Y (T, δ) = I1 + I2 be the orthogonal decomposition of Y (T, δ), with I1 =
ΠP (Y (T, δ)) . Thus, the optimal solution for problem (4.4)-(4.5) is given by

2Ṽ ∗ = λ1 + λ2Λ(T ) − 2I1 − 2(v − p),

and, consequently, the optimal solution for problem (4.2)-(4.3) is given by

2V̂ ∗ = λ1 + λ2Λ(T )− 2I1

where the Lagrange multipliers λ1, λ2 satisfy

λ1 + λ2 − 2α1 = 2d(δ, T ), λ1 + λ2 exp(θ2T ) − 2β1 = 2(v − p),

and where α1 = EPI1, β1 = EP(Λ(T )I1) = EP∗I1 = 0. Hence, setting v̂ := v − p,
we get

V̂ ∗ =
1

eθ2T − 1

((
d(δ, T ) + α1

)
eθ2T − v̂ −

(
α1 − v̂ + d(δ, T )

)
Λ(T )

)
− I1

=: V̄ ∗ − I1.

The quantities I1 and α1 can be computed using Proposition 6.3, Lemma 6.1 and
Lemma 6.2 in Bielecki and Jeanblanc (2003). The corresponding optimal variance
is

VP

[
V̂ ∗ + Y (T, δ)] =

(
α̂− β̂ − v̂ + d(δ, T )

)2 −
(
β̂ −EPI2

)2

eθ2T − 1
+ VP(I2)

where α̂ = α(L, δ, T ) = EP[Y (T, δ)] and β̂ = β(L, δ, T ) = EP∗I2.

It is apparent that the optimal random variable V̂ ∗ for the problem (4.2)-(4.3)
also determines an optimal terminal wealth, say V ∗

T , for the auxiliary problem
MVA(d, v, p; δ). Furthermore, the following proposition was established in Bielecki
and Jeanblanc (2003).

Proposition 4.2. Suppose that α̂ − β̂ > −v + p + d − m > 0. Then, the
optimal terminal wealth V ∗

T for the auxiliary problem MVA(d, v, p; δ) is also the
optimal terminal wealth for the problem MV(d, v, p; δ).

In the following section, we shall complete solving problem MV(d, v, p; δ) by
determining an optimal strategy. This optimal strategy is nothing else but the
mean-variance hedging strategy corresponding to a particular value p.
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The mean-variance hedging strategy for a given p. We now turn to phase two
of solving the auxiliary problem MVA(d, v, p; δ). In view of Proposition 4.2, it is
also phase two of solving our original problem MV(d, v, p; δ). Here, we derive the
mean-variance hedging strategy for a given value of p. In the next step, we shall
find the mean-variance hedging strategy.

Similarly as in Bielecki and Jeanblanc (2003), we can use an appropriate BSDE
in order to construct an F-adapted process, say φ̂1;p so that

V̄ ∗ = EP∗V̄ ∗ +
∫ T

0

φ̂1;p
t dSt.

Using Proposition 6.3, Lemma 6.1 and Lemma 6.2 in Bielecki and Jeanblanc
(2003), we can determine a process ψ̃Y (δ,T ),P,p so that

I1 = ΠP(Y (δ, T )) =
∫ T

0

ψ̃
Y (δ,T ),P,p
t dSt.

It appears then that the optimal wealth for the problem MV(d, v, p; δ) can be rep-
resented as

V ∗
T = V̂ ∗

1 − I1 = EP∗V ∗
1 +

∫ T

0

(
φ̂1;p

t − ψ̃
Y (T,δ),P,p
t

)
dSt

= v − p+
∫ T

0

φ1,v,δ,p;∗
t dSt

where
φ1,v,δ,p;∗

t =
dV ∗

t

dSt
= φ̂1;p

t − ψ̃
Y (T,δ),P,p
t .

Observe that the delta hedging strategy φ1,v,δ,p;∗ is composed of two components:
the part φ̂1;p

t that hedges against the risk of the primary market, and the part
−ψ̃Y (T,δ),P,p

t that hedges against the default risk of the claim X.
The buyer’s mean-variance price and hedging strategy. We are now in the posi-

tion to determine the mean-variance price and the mean-variance hedging strategy
for the claim X. In view of our definition of the buyer’s mean-variance price (cf.
Definition 4.4) we are looking for a maximum p in the interval [0, v] so that

(
α̂− β̂ − v + p+ d(δ, T )

)2 −
(
β̂ −EPI2

)2

eθ2T − 1
+ VP(I2) ≤

(d− v)2

eθ2T − 1
.

Let us denote γ1 = α̂− β̂ − v + d(δ, T ), γ2 = (d− v)2 and

γ3 =
(
eθ2T − 1

)
VP(I2) −

(
β̂ −EPI2

)2
.

Then we have the following result,

Proposition 4.3. If γ3 ≤ γ2 then the buyer’s mean-variance price is

pMV ;d,v(X) = min {−γ1 +
√
γ2 − γ3, v} ∨ 0.

Otherwise, pMV ;d,v(X) = −∞. In the former case, the mean-variance hedging
strategy is φ1,v,δ,pMV ;d,v(X);∗.

Example 4.8. We shall illustrate the above results by considering a particular
case of defaultable bond X given by (4.1). We shall assume here that the default
time τ is provided with some simple structure. Specifically, we assume that it is
the first jump of a Poisson process N , defined on (Ω,G,P), with constant intensity
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λ > 0. Thus, τ is independent of the filtration F, and it is exponentially distributed
with parameter λ. Consequently, we have that

m := EPX = L
(
e−λT (1 − δ) + δ

)

and
σ2 := VP(X) = L2

(
e−λT (1 − e−λT )(1 − δ)2

)
.

We additionally restrict ourselves to stratgies adapted only to filtration F. Then,
it follows from our previous results that in this setting the buyer’s mean-variance
price of the claim X is

pMV ;d,v(X) =
(

min
{
m− (d− v) +

√
(d− v)2 − σ2(eθ2T − 1), v

})
∨ 0,

if (d − v)2 − σ2(eθ2T − 1) ≥ 0, and −∞ otherwise. Moreover, in the former case,
the mean-variance hedging strategy is given as

φ1,v,δ,pMV ;d,v(X);∗ =
d−m− v + pMV ;d,v(X)

eθ2T − 1
ν

σ2

Λ(t)
St

eθ2(T−t).

Similarly as in Collin-Dufresne and Hugonnier (1999), it is possible to show
that MBP (X) = δL and MAP (X) = L. Consequently, the no-arbitrage interval
for the claim X is [δL, L]. It is clear then that our mean variance price pMV ;δ,v(X)
is no more than L. However, it is not true in general that pMV ;δ,v(X) is greater
than δL. Thus, the price pMV ;δ,v(X) may not belong into the no-arbitrage interval.
We refer to our comments on the pricing rule with regard to the latter possibility.
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