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Stéphane Crépey†
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2 Defaultable Options in a Markovian Intensity Model

1 Introduction

In Bielecki et al. [4], we studied the valuation and hedging of defaultable game options in a very
general reduced-form model of credit risk. Given a filtered probability space (Ω, G, P) used to
model the primary market, it was assumed in [4] that G = H ∨ F where the filtration H carries
the information about the default and where F is some reference filtration. The main technique
employed in [4] was the effective reduction of the information flow from the full filtration G to the
reference filtration F. Under suitable conditions on the (F, Q)-optional projection of the default
indicator process Ht = 1{τd≤t}, we derived convenient pricing formulae with respect to the reference
filtration F. Also, we proved that, under suitable integrability and regularity conditions embedded
in the standing assumption that a related doubly reflected BSDE denoted by (E) admits a solution
under some risk-neutral measure Q, the default indicator process multiplied by the state-process
of the solution is the minimal (super)hedging price with (G, Q)-sigma martingale1 residual cost.
In the case of complete markets, the residual cost of hedging strategies vanishes, so that they are
self-financing in the usual sense.

In order to apply these results to practical models for pricing and hedging financial derivatives
(in particular, convertible bonds, see e.g. [5]), we propose here a generic Markovian pre-default
intensity model of credit risk. It encompasses, in particular, the industry standard jump-diffusion
model that is studied in detail in [5].

As a prerequisite, we first derive in Theorem 2.1 a variant of the main result in [4] under the
slightly stronger assumption that the so-called discounted form of the doubly reflected backward
stochastic differential equation associated with a defaultable game option has a solution. Let us
note that various sets of sufficient conditions for this are given in the literature.

In our previous work [4], we took a primary market arbitrage price process X as given, satisfying
all our assumptions. In Section 3.1 (Proposition 3.1) we shall show a generic way to construct such
a primary market arbitrage price process X. In particular, we give in Lemma 3.2 a general arbitrage
drift consistency condition that determines the pre-default model drift coefficients. Now, in order
to have a practical use, a (dynamic) pricing model needs to be constructive, or Markovian in some
sense, relative to a given option. This will be achieved by assuming that the related BSDE (E) is
in fact a Markovian Forward Backward SDE (Section 3.2). Under a rather generic specification for
the infinitesimal generator of the underlying Markov process, we shall derive in Section 3.3 a related
variational inequality approach to pricing and hedging the option.

Finally, in Section 4, we illustrate our study on the case of convertible bonds.

1.1 General Set-Up

For a finite horizon date T > 0, we assume that the primary market is composed of the savings
account and d risky assets with price processes defined on a filtered probability space (Ω, G, P) where
P denotes the statistical probability measure. We postulate that (cf. [3]):
• the discount factor process β, that is, the inverse of the savings account, is a G-adapted, finite
variation, continuous, positive and bounded process;
• the prices of risky assets are G-semimartingales with càdlàg sample paths.

The primary risky assets, with Rd-valued price process X, are assumed to pay dividends, whose
cumulative value process, denoted by D, is modeled as a G-adapted, càdlàg and Rd-valued process
of finite variation. Given the price process X, we define the cumulative price X̂ of the asset as

X̂t = Xt + β−1
t

∫
[0,t]

βu dDu. (1)

We assume that the primary market model is free of arbitrage opportunities (though presumably
incomplete), in the sense that there exists a risk-neutral measure Q ∈M, where M denotes the set

1For the definition and properties of a sigma martingale, see, for instance, [8, 19, 25].
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of probability measures Q equivalent to P for which βX̂ is a (G, Q)-sigma martingale. It is worth
stressing that in this paper, similarly as in [3, 4], we work with the notion of vector (as opposed to
componentwise) stochastic integral (see [4] or Cherny and Shiryaev [8]). By convention, we denote
by

∫ t

0
the integral over (0, t]; otherwise, we explicitly specify the domain of integration as a subscript

of
∫

.

Note that in what follows we in fact deal with right-continuous and completed versions of all
relevant filtrations, so that all the filtrations under consideration satisfy the so-called ‘usual condi-
tions.’

2 Valuation and Hedging of Defaultable Options in the Haz-
ard Process Set-Up: A User’s Guide

In [4], we derived general hedging results for a game option under fairly general assumptions in the
so-called hazard process set-up. In the same framework, and under slightly stronger assumptions (see
Remark 2.3), we shall now derive variants of these results that are required in practical applications
of the general theory.

2.1 Hazard Process Set-Up

Given a [0,+∞]-valued G-stopping time τd representing the default time of a reference entity, we
assume as in [4] that G = H∨ F, where the filtration H is generated by the default indicator process
Ht = 1{τd≤t} and F is some reference filtration. Moreover, we assume that the process G given
by Gt = Q(τd > t | Ft) for t ∈ R+ is (strictly) positive, continuous and non-increasing. Hence the
(F, Q)-hazard process Γt = − ln(Gt), t ∈ R+, is well defined, continuous and non-decreasing. Finally,
we assume that the default time τd avoids F-stopping times. Hence any (F, Q)-martingale M cannot
jump at τd, that is, ∆Mτd

:= Mτd
−Mτd− = 0, Q-a.s.

We shall sometimes assume, in addition, that the discount factor β and the hazard process Γ are
absolutely continuous with respect to the Lebesgue measure, namely,
• βt = exp(−

∫ t

0
ru du) for an F-adapted bounded from below short-term interest rate process r,

• Γt =
∫ t

0
γu du with non-negative (F, Q)-intensity process γ.

A set-up satisfying these assumptions is referred to as a default intensity set-up.

Let αt = βt exp(−Γt) stand for the credit-risk adjusted discount factor (note that the process
α is bounded, like β). Also, let us denote Bt = − lnαt. In the default intensity set-up we obtain
Bt =

∫ t

0
µu du with µ = r + γ.

For any t ∈ [0, T ], let F t
T (resp. Gt

T ) denote the set of [t, T ]-valued F (resp. G)-stopping times.

Lemma 2.1 (Bielecki et al. [4]) (i) Any (F, Q)-local martingale stopped at τd is a (G, Q)-local
martingale.
(ii) For any G-adapted process Y over [0, T ] there exists a unique F-adapted process Ỹ over [0, T ]
such that 1{t<τd}Yt = 1{t<τd}Ỹt for t ∈ [0, T ].
(iii) If τ ∈ G0

T then there exists a unique τ̃ ∈ F0
T such that τ ∧ τd = τ̃ ∧ τd.

The quantities τ̃ and Ỹ are called the pre-default values of τ and Y , respectively. For any τ̄ ∈ F0
T ,

let Ḡt
T stand for {τ ∈ Gt

T ; τ ∧ τd ≥ τ̄ ∧ τd}.
The next result is an immediate consequence of Lemma 2.5 in Bielecki et al. [4]. This is the

cornerstone for the reduction of the information flow from the full filtration G to the reference
filtration F.
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Lemma 2.2 Let τ ∈ F t
T for some t ∈ [0, T ]. For any Fτ -measurable random variable χ, F-

predictable process Z and finite variation F-predictable process A such that the conditional expectation
of each of the three terms of the sums on the l.h.s. or on the r.h.s. of (2) is well defined in R, we
have:

EQ

( ∫ τ∧τd

t∧τd

dAu + 1{t<τd≤τ}Zτd
+ 1{τ<τd}χ

∣∣∣Gt

)
(2)

= 1{t<τd}e
Γt EQ

( ∫ τ

t

e−ΓudAu +
∫ τ

t

e−ΓuZu dΓu + e−Γτ χ
∣∣∣Ft

)
.

We now recall the concept of a (dividend paying) defaultable game option (see [21, 20, 3, 4]) with
inception date 0 and maturity date T .

Definition 2.1 (Bielecki et al. [3, 4]) A defaultable game option is a game option with the ex-
dividend cumulative discounted cash flows βtπ(t; τp, τc), where the Gτ∧τd

-measurable random variable
π(t; τp, τc) is given by the formula, for any t ∈ [0, T ] and (τp, τc) ∈ Gt

T × Ḡt
T ,

βtπ(t; τp, τc) =
∫ τ

t

βu dDu + 1{τd>τ}βτ

(
1{τ=τp<T}Lτp + 1{τ<τp}Uτc + 1{τ=T}ξ

)
,

where τ = τp ∧ τc and
• the dividend process D = (Dt)t∈[0,T ] equals

Dt =
∫

[0,t]

(1−Hu) dCu + Ru dHu

for some coupon process C = (Ct)t∈[0,T ], which is a G-adapted càdlàg process with bounded variation,
and some real-valued, G-predictable recovery process R = (Rt)t∈[0,T ],
• the put payment L = (Lt)t∈[0,T ] the call payment U = (Ut)t∈[0,T ] are G-adapted, real-valued,
càdlàg processes,
• the inequality Lt ≤ Ut holds for every t ∈ [τd ∧ τ̄ , τd ∧ T ), for some lifting time of a call protection
τ̄ ∈ F0

T , and
• the payment at maturity ξ is a GT -measurable real random variable.

We further assume that R,L and ξ are bounded from below, so that the cumulative discounted
payoff is bounded from below. Specifically, there exists a constant c such that

βtL̂t :=
∫

[0,t]

βu dDu + 1{τd>t}βt

(
1{t<T}Lt + 1{t=T}ξ

)
≥ −c, t ∈ [0, T ].

In order to get the upper bound for this payoff, we will sometimes assume that R,U and ξ are
bounded (from below and from above), or simply that there exists a constant c such that

βtÛt :=
∫

[0,t]

βu dDu + 1{τd>t}βt

(
1{t<T}Ut + 1{t=T}ξ

)
≤ c, t ∈ [0, T ]. (3)

The class of defaultable game options covers as special cases defaultable American options (case
τ̄ = T ). It can be shown that the latter class includes defaultable European options as a special case
(sub-case βL̂ maximum at T , see [3]). Defaultable European options can equivalently be redefined
as contracts with cash flows φ(t) given by, for t ∈ [0, T ],

βtφ(t) =
∫ T

t

βu dDu + 1{τd>T}βT ξ.

We are in the position to introduce the concept of hedging of a game option (cf. [4]). Recall that X

(resp. X̂) is the price process (resp. cumulative price process) of primary traded assets defined in
(1).
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Definition 2.2 By a primary strategy we mean a triplet (V0, ζ,Q) such that:
• V0 is an G0-measurable real-valued random variable representing the initial wealth,
• ζ is a R1⊗d-valued, βX̂-integrable process representing holdings in primary risky assets,
• Q is a real-valued, G-semimartingale, with Q0 = 0, representing the (generalized) cost process.
The wealth process V of a primary strategy (V0, ζ,Q) is given by

d(βtVt) = ζt d(βtX̂t) + βt dQt, t ∈ [0, T ],

with the initial condition V0.

Note that a primary strategy introduced in Definition 2.2 is not self-financing in the standard
sense, unless Q = 0. Given the wealth process V of a primary strategy (V0, ζ,Q), we uniquely specify
a G-predictable process ζ0 by setting

Vt = ζ0
t β−1

t + ζtXt, t ∈ [0, T ].

The process ζ0 represents the number of units held in the savings account at time t, starting from
the initial wealth V0 and using the strategy ζ in the primary risky assets and the cost process Q (see
[4] for more comments on Definitions 2.2 and 2.3).

Definition 2.3 An issuer hedge with residual cost ρ for the game option is represented by a quadru-
plet (V0, ζ, ρ, τc) such that:
(i) τc belongs to Ḡ0

T ,
(ii) (V0, ζ, ρ−D) is a primary strategy with related wealth process V such that, for t ∈ [0, T ],

Vt∧τc − 1{t∧τc<τd}

(
1{t∧τc=t<T}Lt + 1{τc<t}Uτc + 1{t=τc=T}ξ

)
≥ 0.

A holder hedge with residual cost ρ for the game option is a quadruplet (V0, ζ, ρ, τp) such that:
(i) τp belongs to G0

T ,
(ii) (V0, ζ, ρ + D) is a primary strategy with related wealth process V such that, for t ∈ [τ̄ , T ],

Vt∧τp
+ 1{t∧τp<τd}

(
1{τp∧t=τp<T}Lτp

+ 1{t<τp}Ut + 1{τp=t=T}ξ
)
≥ 0.

Issuer or holder hedges with no residual cost (that is, with ρ = 0) are also called issuer or holder
superhedges.

Let us now consider the special case of a defaultable European option.

Definition 2.4 (i) An issuer hedge with residual cost ρ for an European option is a primary strategy
(V0, ζ, ρ−D) with wealth process V such that VT − 1{τd>T} ξ ≥ 0. If the inequality is replaced by
equality then we deal with an issuer replicating strategy with residual cost ρ.
(ii) A holder hedge with residual cost ρ for a European option is a primary strategy (V0, ζ, ρ + D)
with wealth process V such that VT + 1{τd>T} ξ ≥ 0. If the inequality is replaced by equality then
we deal with a holder replicating strategy with residual cost ρ.

Remarks 2.1 Note that in [4] we defined more general notions of ε-hedges, that were pertaining
in the case where there may be jumps in the process k to be defined below. Since in practice k is
always found to be a continuous process (see Remark 2.2), we only consider hedges in this paper,
not ε-hedges. Note however that the following developments can be extended to possible jumps in
k, using the generalized notion of ε-hedge defined in [4].
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2.2 Valuation and Hedging Results

Given a risk-neutral measure Q ∈ M, we shall now study valuation and hedging of a game option
under suitable integrability and regularity conditions. These assumptions are implicitly embedded
in the standing assumption that a related doubly reflected BSDE admits a solution. We introduce
below a doubly reflected BSDE (E) with respect to (Ω, F, Q), with data defined from the pre-default
value processes of the data of a game option. Assuming that (E) has a solution (for which various
sets of sufficient regularity and integrability conditions are known in the literature), we will deduce
explicit hedging strategies with minimal initial wealth and (G, Q)-sigma martingale residual cost for
the game option.

Let us define the F-adapted processes D̄ and F 0 of finite variation by setting, for t ∈ [0, T ],

D̄t =
∫

[0,t]

dCu + Ru dΓu, F 0
t := α−1

t

∫
[0,t]

αu dD̄u. (4)

Given the driver F , an F-adapted finite variation process with F 0 − F bounded from below, we
consider the following doubly reflected BSDE (E) with data F, χ,L,U , τ̄ :

Θt = χ + (FT − Ft)−
∫ T

t
(Fu + Θu) dBu + kT − kt − (mT −mt), t ∈ [0, T ],
Lt ≤ Θt ≤ Ūt, t ∈ [0, T ],∫ T

0
(Θu− − Lu−) dk+

u =
∫ T

0
(Ūu− −Θu−) dk−u = 0,

 (E)

where we denote

χ = ξ + F 0
T − FT , L = L + F 0 − F, Ū = 1{t<τ̄}∞+ 1{t≥τ̄}U with U = U + F 0 − F .

We shall see below that (E) is the so-called discounted form of equation (E) in [4].

Definition 2.5 By a Q-solution to (E), we mean a triplet (Θ,m,k) such that:
• the state process Θ is a real valued, F-adapted, càdlàg process,
• m is a real-valued (F, Q)-martingale vanishing at time 0,
• k = (k+, k−) is a pair of F-adapted, non-decreasing, continuous processes (null at time 0),
• all conditions in (E) are satisfied with k = k+ − k− in the first line and with the convention that
0×±∞ = 0 in the third line.

For various specifications of the present set-up and sets of technical assumptions ensuring ex-
istence and uniqueness of a Q-solution to (E) (at least in the default intensity set-up, so that
dBt = µt dt with µ = r + γ in BSDE (E)), we refer the reader to [10, 18, 17, 9, 5].

Remarks 2.2 Since in all existing works on doubly reflected BSDEs, the process k is actually
found to be continuous (see the above references), for simplicity of presentation we have imposed
the continuity of k in Definition 2.5. Note, however, that the results presented in this paper can be
extended to possible jumps in k, using a generalized notion of ε-hedge (see Remark 2.1 and [4]).

Note that equation (E) and the developments that follow are implicitly parameterized by the
choice of a driver F in (E). Equations (E) corresponding to various choices of a driver F are
essentially equivalent, in the sense that (Θ,m,k) solves (E) for some driver F if and only if (Θ̂,m,k)
solves (E) for F = 0, where Θ̂ = Θ+F . However, as we shall see below, this freedom to use the most
convenient driver is essential in financial applications. So a particular form of F may be selected in
order to deal with the most tractable BSDE, namely, the BSDE with the simplest form of reflecting
barriers, which are the most difficult point to tackle with, from the point of view of solving the BSDE
(see Section 4 and [9, 5]). In the case of Markov models (see later sections and [5]), this freedom
will allow us to deal with the related variational inequalities of the most tractable structure.
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In [4], we introduced the following equation (E)

αtΘt = αT χ + αT FT − αtFt + KT −Kt − (MT −Mt), t ∈ [0, T ],
Lt ≤ Θt ≤ Ūt, t ∈ [0, T ],∫ T

0
(Θu− − Lu−) dk+

u =
∫ T

0
(Ūu− −Θu−) dk−u = 0 .

The definition of a Q-solution of (E) is the obvious analogue of Definition 2.5 (see [4]). We shall
now see that the doubly reflected BSDE in the intrinsic form (E) and in the discounted form (E)
are essentially equivalent. To this end, we define the one-to-one correspondence between processes
m and M (resp. k and K) by setting dMt = αt dmt and dKt = αt dkt with M0 = 0 and K0 = 0.
Let H2 denote the set of (F, Q)-martingales with integrable quadratic variation over [0, T ].

Lemma 2.3 If (Θ,m,k) is a Q-solution to (E) with m ∈ H2 then (Θ,M,K) is a Q-solution to (E)
with M ∈ H2. The converse is true in the case of positively bounded α.

Proof. The proof of the lemma relies on standard computations. Let us only mention that α is
bounded, and thus if m is an (F, Q)-martingale in H2 then so is M . The converse implication is
valid in the case of positively bounded α. 2

Remarks 2.3 Equation (E) is the best form of the related BSDE from the point of view of getting
the most general results under minimal assumptions (see [4]). However, as already mentioned, the
discounted form (E) is more convenient for practical purposes. For this reason, in the present paper,
the postulate that equation (E) has a solution in [4], will be replaced by the slightly stronger assump-
tion that equation (E) has a solution (Θ,m,k) with m ∈ H2. Except for this mild strengthening,
assumptions in this section are identical as in [4].

For any G-adapted process Y , let Y τd stand for the process Y stopped at τd. Let I denote
the set of vector stochastic integrals, including constants, with respect to (βX̂)τd . Given q ∈ N,
let also H2,q (resp. Iq) stand for the set of Rq-valued G-semimartingales with components in H2

(resp. I). Let Nd = H − Γ·∧τd
stand for the Q-compensated jump-to-default process. Under our

standing assumption that the (F, Q)-hazard process Γ of τd is continuous the process Nd is known
to be (G, Q)-martingale.

Given a solution (Θ,m,k) to (E), we define, for t ∈ [0, T ],

Π̃t = Θt + Ft − F 0
t , Πt = 1{t<τd}Π̃t, Π̄t = Π̃t + α−1

t

∫
[0,t]

αu dku (5)

τ∗p = inf
{

u ∈ [t, T ] ; Π̃u ≤ Lu

}
∧ T, τ∗c = inf

{
u ∈ [τ̄ ∨ t, T ] ; Π̃u ≥ Uu

}
∧ T . (6)

The notion of an arbitrage price of a game option referred to in the next result is a suitable
extension to game options of the No Free Lunch with Vanishing Risk (NFVLR) condition of Delbaen
and Schachermayer [11] (see also [8, 20, 3]).

Theorem 2.1 Assume that the BSDE (E) has a solution (Θ,m,k) with m ∈ H2. Then Π defined
in (5) is an arbitrage price process for the game option. Moreover:
(i) Π0 is the minimal initial wealth of an issuer hedge with (G, Q)-sigma martingale residual cost
and, under condition (3), −Π0 is the minimal initial wealth of a holder hedge with a (G, Q)-sigma
martingale residual cost.
(ii) Let Λ be some Rq⊗d-valued, (row by row) βX̂-integrable process Λ such that the process N given
by

Nt =
∫ t

0

β−1
u Λu d(βuX̂u), t ∈ [0, T ],

belongs to H2,q, let z be some R1⊗q-valued, F-predictable process such that
q∑

j=1

EQ

( ∫ T

0

(zj
t )

2 d[N j , N j ]t
∣∣∣F0

)
< ∞ a.s.,
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and let Λd be some R1⊗d-valued process such that (R − Π̄−)Λd is βX̂-integrable. We define the
following real-valued processes:

nt = mt −
∫ t

0

zu dNu,

nd
t =

∫ t∧τd

0

(Ru − Π̄u−)
(
dNd

u − β−1
u Λd

u d(βuX̂u)
)
, (7)

ρ∗t = (n + nd)τd
t .

Then:
• (Π0, ζ

∗, ρ∗, τ∗c ) with
ζ∗t = 1{t≤τd}

[
zt , Rt − Π̄t−

]
Λ∗t , t ∈ [0, T ],

where Π̄ and τ∗c are defined by (5)–(6) and Λ∗ =
[

Λ
Λd

]
, is an issuer hedge with initial wealth Π0

and (G, Q)-sigma martingale residual cost ρ∗.
• (−Π0,−ζ∗, ρ∗, τ∗p ), where τ∗p is defined by (6), is a holder hedge with initial wealth −Π0 and
(G, Q)-sigma martingale residual cost ρ∗.

Proof. Note that nd and ρ∗ are well defined G-adapted processes (see [4]). In view of Lemma 2.3,
the theorem follows by application of Corollary 3.2 in [4]. 2

In the case of an European option, we consider the BSDE (E) with L replaced by L̄ such that
αL̄ = −(c + 1), where −c is a lower bound on αT χ. Note that under mild technical assumptions
this equation has a solution (Θ,m,k = 0) (see [4, 9])), so that (E) effectively reduces to a standard
BSDE with no process k involved.

Theorem 2.2 In the case of an European option, assume that the BSDE (E) with L replaced by L̄
and with τ̄ = T has a Q-solution (Θ,m,k = 0) with m ∈ H2. Then Φ = (1−H)Φ̃ with Φ̃ = Θ+F−F 0

is an arbitrage price process for the option. Moreover:
(i) Φ0 is the minimal initial wealth of an issuer hedge with (G, Q)-sigma martingale residual cost
and, for bounded R and ξ, −Φ0 is the minimal initial wealth of an holder hedge with (G, Q)-sigma
martingale residual cost.
(ii) For any z,N, Λ,Λd,Λ∗, n, nd and ρ∗ as in Theorem 2.1(ii), define

ζ∗t = 1{t≤τd}

[
zt , Rt − Φ̃t−

]
Λ∗t , t ∈ [0, T ].

Then (Φ0, ζ
∗, ρ∗) is an issuer hedge with (G, Q)-sigma martingale residual cost ρ∗ and (−Φ0,−ζ∗, ρ∗)

is a holder hedge with (G, Q)-sigma martingale residual cost ρ∗.

Remarks 2.4 (i) The special case n = nd = 0 corresponds to a particular form of a model com-
pleteness (attainability of defaultable European options, cf. Theorem 2.2; see also [5]) in which the
issuer (or the holder) of the option is able (and wishes) to hedge all risks embedded in the option.
The case where either n 6= 0 or nd 6= 0 corresponds to either model incompleteness or the situation
of a complete model in which the issuer (or the holder) is able to hedge, but he prefers not to hedge
all the risks embedded in the option, for instance, he may be willing to take some bets in specific
risk directions.
(ii) In cases where n and nd may be taken equal to 0 in Theorem 2.1 or 2.2, the minimality state-
ments in parts (i) of these theorems may be used to prove uniqueness of the related arbitrage prices
(see [4]).
(iii) When nd = 0 the second equation in (7) reduces to

dNd
t = β−1

t Λd
t d(βtX̂t), t ∈ [0, T ∧ τd],

which effectively means that some defaultable asset is traded (at least synthetically) in the primary
market.
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3 Market Model Factory

3.1 Construction of a Primary Market Model

In the previous sections we took a primary market model satisfying all assumptions as exogenously
given. The goal of this section is to present a generic construction of an arbitrage-free primary
market model in a default intensity set-up.

We assume that we are given a stochastic basis (Ω, F, Q) endowed with the following processes:
• an F-adapted, bounded from below and locally time-integrable process r, intended to represent
short-term interest rate,
• an F-adapted, non-negative and locally time-integrable process γ, intended to represent the default
intensity,
• an Rd-valued càdlàg (F, Q)-semimartingale Y , which is aimed to model the pre-default prices of
primary assets, as well as the associated coupon process C and recovery process R, such that:
— C is an Rd-valued, F-adapted process of integrable variation, with the density c with respect to
the Lebesgue measure,2

— R is an Rd-valued, F-predictable and bounded from below process.

Relevant ways to construct such primary data (Ω, F, Q), r, γ, Y, C, R will be given later in the
paper (see Remark 3.1(i)).

Given these primary data, the construction of the primary market model goes as follows. First,
we define the discount factor βt = e−

R t
0 rudu. Next, the so-called canonical construction (see, e.g.,

[7]) yields a convenient method of defining a random time τd on an enlarged probability spaces
(Ω,G, Q), so that:
• τd is a G-stopping time with respect to G = H ∨ F, where H is the filtration generated by the
default indicator process Ht = 1{τd≤t},
• the process γ is the (F, Q)-intensity process of τd,
• τd avoids all F-stopping times.
Finally, since Y is intended to model the pre-default prices of primary assets, we set X = 1{t<τd}Y ,
so that clearly X̃ = Y . Let us observe that Y τd is a (G, Q)-semimartingale (by Lemma 2.1(i)) and
thus X is an Rd-valued, (G, Q)-semimartingale on [0, T ], which is null on [τd∧T, T ]. The last feature
reflects the fact that any residual value at τd is embedded in the recovery part of the dividend process
D for X, given as

Dt = Ct∧τd
+ 1{τd≤t}Rτd

. (8)

We further define, for t ∈ [0, T ],

D̄t =
∫ t

0

dCu +Ru dΓu =
∫ t

0

(cu + γuRu) du (9)

and the pre-default cumulative price X̄

X̄t = X̃t + α−1
t

∫ t

0

αu dD̄u. (10)

Finally, we define the cumulative price X̂ by setting, for t ∈ [0, T ],

βtX̂t = 1{t<τd}βtX̃t +
∫

[0,t∧τd]

βu dDu = 1{t<τd}βt

(
X̄t − α−1

t

∫ t

0

αu dD̄u

)
+

∫
[0,t∧τd]

βu dDu. (11)

The proof of the following auxiliary result is deferred to the appendix.

2As opposed to the case of a game option, we do not assume the variation of C to be bounded, in order to cover
typical examples, see e.g. [5].
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Lemma 3.1 The process αX̄ is an (F, Q)-local martingale if and only if the process βX̂ is a (G, Q)-
local martingale.

We assume in the sequel that Y (recall that Y = X̃) is a special F-semimartingale (see, e.g.,
Protter [25]) with Lebesgue absolutely continuous predictable finite variation component and related
density b, so that the canonical decomposition of Y reads Yt = Y0 +

∫ t

0
bu du + MY

t for some local
martingale MY .

Lemma 3.2 Assume that Y satisfies the following arbitrage Q-consistency condition:

bt = µtYt − ct − γtRt, t ∈ [0, T ]. (12)

Then βX̂ is a (G, Q)-local martingale.

Proof. By (10), we have

d(αtX̄t) = d(αtX̃t) + αt dD̄t = αt(dX̃t − µtX̃t dt) + αt dD̄t,

where by (12) the drift coefficient of X̃ = Y is b = µX̃ − c− γR. Given (9), this implies that αX̄ is
an (F, Q)-local martingale, hence β X̂ is a (G, Q)-local martingale, by Lemma 3.1. 2

The following proposition is to be read as a constructive procedure for building primary market
model arbitrage price processes.

Proposition 3.1 Let us be given a stochastic basis (Ω, F, Q), an F-adapted bounded from below
and locally time-integrable process r, and a F-adapted non-negative locally time-integrable process
γ. Let τd, H and G be accordingly defined by canonical construction. In addition, let us be given
an Rd-valued càdlàg (F, Q)-special semimartingale Y and an Rd-valued primary dividend process
D as in (8), such that the arbitrage Q-consistency condition (12) is satisfied. Then the discount
factorβt = e−

R t
0 rudu and the primary market risky price process Xt = 1{t<τd}Yt define a primary

market with arbitrage price process X, with pre-default process X̃ = Y, for any statistical probability
P ∼ Q.

Proof. Most of the proposition follows by construction of the model. The only point that remains
to be justified is that X is an arbitrage price process for the underlying market. But this results
from Lemma 3.2, which tells us that X is a (G, Q)-local martingale, hence a (G, Q)-sigma martingale
(recall that any local martingale is a sigma martingale [8]). Therefore Q belongs to the class M of
probability measures Q̃ ∼ P for which βX̂ is a (G, Q̃)-sigma martingale, thus M is non-void, hence
(see Section 1) X is an arbitrage price process for the underlying market. 2

A primary market arbitrage price process X constructed in this way shall be called a canonical
(Ω, F, Q)-intensity market model.

3.2 Markovian FBSDE

The market model introduced above is fairly generic and thus it is not yet suitable for practical
purposes. In particular, for computational purposes, it is important to impose some Markovian
structure on a market model. This will be achieved, relative to a given option, by assuming that
the related BSDE (E) is in fact a Markovian Forward Backward SDE (see, e.g., Section 4 of [13]).

Let us thus be given a (game) option with data C,R,L, U, ξ, τ̄ , in a canonical (Ω, F, Q)-intensity
market model. Let us also be given a driver F of the form

Ft = α−1
t

∫ t

0

αufu du, (13)
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for some F-adapted time-integrable process f over [0, T ] (which will sometimes also be called driver
in the sequel), such that process F 0 − F (cf. (4) is bounded from below. Let χ, L, U and τ̄ denote
the data of the related BSDE (E). Note that since d(αtFt) = αt(dFt − FtdBt), we have

FT − Ft −
∫ T

t

Fu dBu =
∫ T

t

α−1
u d(αuFu) =

∫ T

t

fudu,

and the first line of (E) can be rewritten as

Θt = χ +
∫ T

t

(fu − µuΘu)du + kT − kt − (mT −mt), t ∈ [0, T ].

Definition 3.1 We say that the BSDE (E) is a decoupled Markovian Forward-BSDE (Markovian
FBSDE, for short), if:
• the input data µ = r+γ, f, χ, L and U of (E) are given by Borel functions of some (Ω, F, Q)-Markov
process Z with values in a suitable (finite-dimensional) state space, so

rt = r(Zt) , γt = γ(Zt)
ft = f(Zt) , χ = χ(ZT ) , Lt = L(Zt) , Ut = U(Zt)

for some Borel functions denoted as the related processes;
• τ̄ is the entry time of a given domain by Z.

In particular, the system made of the specification of a forward dynamics for Z, together with the
BSDE (E), constitutes a decoupled Markovian forward-backward system of equations in (Z,Θ,m,k).
The system is decoupled in the sense that the forward component of the system serves as an input
for the backward component(Z is an input to (E), cf. (14)), but not the other way round.

Of course, the possibility to find such a process Z and the nature of Z obviously depend on the
driver f in (E), so the following developments are, again, parameterized by the choice of the process
f in (13).

From the point of view of interpretation, the components of Z are observable factors. The
first component of Z will typically be given as time t. As for the other components of Z, they
are intimately, though non-trivially, connected with the canonical market primary pre-default price
process X̃ = Y as follows:
• Most components of Y will typically be given by some components of Z. Note that, typically,
there will be some extra primary risky assets in X that are not represented in X . The reason for
this is that if d is the number of assets used for hedging the game option in the real world (filtration
G), including, if this is wished, hedging default risk, then the dimension of the pre-default problem
in the fictitious default-free F-market will typically be d− 1. Thus, d− 1 primary pre-default price
processes will be enough in the pre-default model (see Proposition 4.2 or [5] for a concrete example);
• The components of Z that are not included in Y (if any) are to be understood as simple factors
that may be required to ‘Markovianize’ the payoffs of a game option (e.g., factors accounting for
path dependence in the option’s payoff and/or non-traded factors such as stochastic volatility in the
dynamics of the assets underlying the option);
• There exists a well defined and constructive mapping from a collection of meaningful and ‘directly
observable’ economic variables to Z.

Regarding the last point, note that due to the nature of the model, observability of the factor
process Z in the mathematical sense of F-adaptedness is not sufficient in practice. In order for the
model to be usable in practice, a constructive mapping from a collection of meaningful and directly
observable economic variables to Z is really needed. Otherwise, the model is useless.

Since the model is defined under a risk-neutral probability Q ∈M, this mapping will typically be
achieved in practice by calibration of Z to a set of observed prices of traded derivatives. Of course
this ‘calibration’ is obvious for the time component (if any) of Z or the components of Z which are
represented in X̃: simply fix these components equal to the current time or to the current market
values of the related assets.
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3.3 Variational Inequality Approach in a Jump–Diffusion Setting with
Regimes

Under a rather generic specification for the Markov factor process Z, we shall now derive the asso-
ciated decoupled forward-backward system of stochastic differential equations (FBSDE), as well as
the related partial integro-differential variational inequality (PIDVI).

To this end, given an integer p and a finite set E of size l, we define the following operator A
acting on regular functions Θ = Θ(t, x, y), (t, x, y) ∈ [0, T ]× Rp × E :

AtΘ(t, x, y) = 1
2

p∑
i,j=1

aij(t, x, y)∂2
xixj

Θ(t, x, y) (14)

+
p∑

i=1

(
bi(t, x, y)− g(t, x, y)

∫
Rp

ui(t, x, y, x′)h(t, x, y, dx′)
)
∂xi

Θ(t, x, y)

+ g(t, x, y)
∫

Rp

(
Θ(t, x + u(t, x, y, x′)−Θ(t, x, y)

)
h(t, x, y, dx′)

+
∑
y′∈E

λ(t, x, y, y′)(Θ(t, x, y′)−Θ(t, x, y)),

where:
• the a(t, x, y) are symmetric non-negative matrices,
• the b(t, x, y) are drift vector coefficients,
• the jump intensity function g(t, x, y) is non-negative, the h(t, x, y, ·) are probability measures on
Rp, and u(t, x, y, x′) is the jump size function,
• the intensity matrix function [λ(t, x, y, y′)]y,y′∈E is such that λ(t, x, y, y′) ≥ 0 whenever y 6= y′,
and λ(t, x, y, y) = −

∑
y′∈E\{y} λ(t, x, y, y′), by convention.

Under appropriate technical conditions on the coefficients of A, the existence and uniqueness (in
law) of a Markov process Z with the generator A follows from the respective results regarding mar-
tingale problems, see e.g. Theorems 4.1 and 5.4 in Chapter 4 of Ethier and Kurtz [15]. Equivalently,
under these conditions, there exists a stochastic basis (Ω, F, Q) and an (Ω, F, Q)-Markov process
Z = (t,X ,Y), such that:
• The Rp-valued process X satisfies the SDE, for t ∈ R+,

dXt = b(t,Xt,Yt) dt + σ(t,Xt,Yt) dWt +
∫

Rp

u(t,Xt−,Yt−, x) P (dt,Xt−,Yt−, dx), (15)

where the dispersion matrix function σ(t, x, y) satisfies the equality σ(t, x, y)σ(t, x, y)T = a(t, x, y);
and

P (dt,Xt−,Yt−, dx) = J(dt,Xt−,Yt−, dx)− g(t,Xt,Yt)h(t,Xt,Yt, dx) dt,

is the Q-compensated martingale measure associated with a Poisson random measure J with Q-
intensity measure (or Q-compensator measure) g(t,Xt,Yt)h(t,Xt,Yt, dx) dt.
• the E-valued Markov chain Y satisfies

dYt =
∑
y∈E

(y − Yt−) dIt(y)

where I is the jump-compensated counting measure corresponding to the Markov chain Y, so

dIt(y) = dνt(y)− 1{Yt 6=y}λ(t,Xt,Yt, y) dt, y ∈ E, (16)

with νt(y) = number of transitions to state y since time 0.
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We then have the following Itô formula, in which ∂x denotes the row-gradient of Θ(t, x, y) with
respect to x,

dΘ(Zt) = (∂t +At)Θ(t,Xt,Yt) dt + ∂xΘ(t,Xt,Yt)σ(t,Xt,Yt) dWt

+
∫

Rp

(
Θ(t,Xt− + u(t,Xt−,Yt−, x),Yt−)−Θ(t,Xt−,Yt−)

)
P (dt,Xt−,Yt−, dx)

+
∑
y∈E

(Θ(t,Xt−y)−Θ(t,Xt−,Yt−))dIt(y),

for regular enough functions Θ. So A is indeed the infinitesimal generator of Z.

Note that X in (15) is a special semimartingale with predictable finite variation component∫ ·
0
b(t,Xt,Yt) dt. So for those X i that will be represented in X̃, assuming that the related dividend

coefficients are Markovian, that is,

ci
t = ci(Zt) , Ri

t = Ri(Zt−) , (17)

the arbitrage Q-consistency condition (12) is satisfied if the drift coefficient b in (14)–(15) equals

bi(t, x, y) = µ(t, x, y)xi − ci(t, x, y)− γ(t, x, y)Ri(t, x, y), (t, x, y) ∈ [0, T ]× Rp × E, (18)

for such i.

Remarks 3.1 (i) Given such a factor process Z and suitable Borel functions r and γ, the related
stochastic basis (Ω, F, Q) and processes rt = r(Zt), γt = γ(Zt) can be used as starting points in the
construction of a canonical intensity model with respect to (Ω, F, Q), cf. Proposition 3.1. Process Y
and related primary dividends in Proposition 3.1 may then be defined in terms of Z (with Markov-
ian dividend coefficients as in (17)), without forgetting to take care about the availability of a
well-defined and constructive mapping between Z and Y (cf. section 3.2).
(ii) Note that if we suppose that the intensity matrix of Y does not depend on t, x, then Y is an
homogenous Markov chain with finite state space E. Alternatively, if we take g(t, x, y, x′) = x′, and
we suppose that the coefficients σ, b, u, g and h do not depend on t, x, y, then X is a Poisson-Lévy
process. For simplicity we do not consider the “infinite activity” case, that is, the case when the
Lévy jump measure gh is not a finite measure. We thus defined a rather generic class (except for the
exclusion of ‘small jumps’ in X ) of Markov processes Z = (t,X ,Y), to be used as factor processes
in intensity pre-default (Ω, F, Q)-models for an option, in the form of a Y-modulated Lévy-like com-
ponent X and an X -modulated Markov chain component Y.
(iii) From the point of view of interpretation, process Y represents regimes that modulate the dy-
namics of the risk-neutral pricing process. For the sake of calibrability of the model, this means in
particular that the various model regimes y ∈ E will have to be associated with non-overlapping
intervals for the other model parameters.

Given such an intensity pre-default (Ω, F, Q)-model with related Markovian FBSDE (E) for a
given option (so the inputs of (E) are functions of Z), let us further define N ∈ H2,q by NT =
(WT, IT), with q = p + l; in case when l = 1, that is in case when the regime indicator process is
constant, the one-dimensional process I in (16) is trivially null and plays no role whatsoever (see
Section 4.3 for a concrete example), and so, we may take q = p. Denote by P the F-predictable
σ-algebra on Ω× [0, T ] and by P(E) the σ-algebra of all subsets of E. A solution (Θ,m,k) to (E) is
then typically sought for with m in the form

mt =
∫ t

0

zu dNu + nt =
∫ t

0

zu dNu +
∫ t

0

∫
Rp

vu(x) P (du,Xu−,Yu−, dx), (19)

for an F-predictable process z and a P ⊗ P(E) measurable map v : Ω × [0, T ] × E 7→ R such that,
denoting E = {y1, . . . , yl},∑q

j=1 EQ

( ∫ T

0
(zj

t )2dt
∣∣∣F0

)
+

∑l
j=1 EQ

( ∫ T

0
(zm+j

t )2λ(t,Xt,Yt, y
j)dt

∣∣∣F0

)
< ∞, a.s.

EQ

( ∫ T

0

∫
E

v2
t (x)f(t,Xt,Yt)g(t,Xt,Yt, dx)dt

∣∣∣F0

)
< ∞, a.s.
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Assuming further that Nτd ∈ Iq, and given an additional βX̂-integrable process (R− Π̄−)Λd, then
all assumptions are then satisfied in Theorem 2.1. We are thus led to look for solutions (Θ,m,k)
to (E) with m in the form (19), where z and v are part of the solution. We thus get a decoupled
forward-backward system of stochastic differential equations in the unknowns (Z,Θ, z, v,k) (see,
e.g., Ma and Yong [24]).

The issues of solving (E) under rather general assumptions covering in particular the cases cor-
responding to typical financial applications (e.g. convertible bonds, see [3, 4]), and the related
variational inequality approach in the Markovian FBSDE case, are addressed in [9] (see also [5]). In
particular, we prove in [9] that, under mild regularity conditions, (E) has a unique solution (Θ,m,k)
with m in the form (19) in some L2-spaces (and with mutually singular dk±, see [17, Remark 4.1]).
In the Markovian FBSDE case, we establish the relation between this solution and the unique solu-
tion in some sense (viscosity solution with growth conditions or weak solution in weighted Sobolev
spaces), Θ(t, x, y), to an associated PIDVI problem.

In the simplest case where τ̄ = 0 (no call protection), the PIDVI problem is as follows (it is
actually a system of l coupled PIDVIs, in space-dimension m):

max (min (−∂tΘ(t, x, y)−AtΘ(t, x, y)− f(t, x, y) + µ(t, x, y)Θ(t, x, y),
Θ(t, x, y)− L(t, x, y)) ,Θ(t, x, y)− U(t, x, y)) = 0, t < T, (x, y) ∈ Rp × E, (20)

with terminal condition Θ(T, x, y) = χ(x, y). Then the above-mentioned relationship writes: Θt =
Θ(Zt) for t ∈ [0, T ], plus extra relations between the z-component of the solution of (E) and ∂xΘ(Zt),
in regular cases. The related hedging strategies with residual cost ρ∗ in Theorem 2.1, can then be
expressed in terms of the solution to the PIDE problem (20).

4 Illustration on Defaultable Convertible Bonds

We conclude this paper by applying results of the previous sections to the case of a defaultable
convertible bond with underlying S, one of the primary risky assets.

4.1 Specification of the Payoffs

To describe the covenants of a typical convertible bond (CB), we need to introduce some additional
notation:

N̄ : the par (nominal) value,

S: the price process of the asset underlying the CB,

S̃: the pre-default value process of S,

ccb: the continuous coupon rate process; a bounded, F-progressively measurable process,

Ti, ci, i = 0, 1, . . . ,K (T0 = c0 = 0): coupon dates and amounts; the coupon dates T0, . . . , TK

are deterministic fixed times with TK−1 < T ≤ TK ; the coupon amounts ci are bounded,
FTi−1-measurable random variables, for i = 1, 2, . . . ,K,

At: the accrued interest at time t, specifically,

At =
t− Tit−1

Tit
− Tit−1

cit ,

where it is the integer satisfying Tit−1 ≤ t < Tit
; in view of our assumptions, the process A is

an F-adapted, càdlàg process with finite variation.

R̄: the recovery process on the CB upon default of the issuer; an F-predictable, bounded process,

κ : the bond’s conversion factor,
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P̄ ≤ C̄: the put and call nominal payments, respectively; by assumption P̄ ≤ N̄ ≤ C̄.

For a more detailed description of covenants of convertible bonds, see [3]. Real-life convertible
bonds typically include a positive call notice period so that they may continue to live some time
beyond the call time τc. This feature makes such bonds difficult to price directly, since they are
not covered by the definition of a game option. To overcome this obstacle, we developed in [3] a
recursive approach to valuation of a CB with positive call notice period. In the first step of this
procedure, a CB is valued upon call. Subsequently, we use this price as the payoff at call time of a
CB with no call notice period. In this way, a CB with positive call notice period can be priced as a
reduced convertible bond (see [3]).

Definition 4.1 A reduced convertible bond is a game option with coupon process C, recovery process
Rcb and payoffs Lcb, U cb, ξcb such that

Ct =
∫ t

0
ccb
u du +

∑
0≤Ti≤t ci, Rcb

t = (1− η)κS̃t− ∨ R̄t,

Lcb
t = P̄ ∨ κS̃t + At, ξcb = N̄ ∨ κS̃T + AT ,

and where (U cb
t )t∈[0,T ] is some càdlàg process satisfying the following inequality

U cb
t ≥ C̄ ∨ κS̃t + At, t ∈ [0, T ]. (21)

Reduced convertible bonds are special cases of more general convertible securities considered in
[3]. In the financial interpretation, U cb

t represents the pre-default value of the reduced convertible
bond upon a call at time t. In particular, a convertible bond without call notice period is a reduced
convertible bond with U cb

t = C̄ ∨ κS̃t + At for t ∈ [0, T ].

Under our assumption that P̄ ≤ N̄ ≤ C̄, we obtain, by (21),

Lcb
T = P̄ ∨ κS̃T + AT ≤ N̄ ∨ κS̃T + AT = ξcb ≤ C̄ ∨ κS̃T + AT ≤ U cb

T .

4.2 Clean Price

Definition 4.2 For a pre-default Q-price Π̃ of a convertible bond, by the clean price of this bond
we mean the difference Π̃−A.

The notion of the clean price is consistent with the market convention for bonds, which hinges
on subtracting the accrued interest from the trading (dirty) price. Market quotations for bonds are
usually given in terms of clean prices (or bond yields), in order to avoid coupon-related discontinuities
in quotations.

Let us set at = cit

Tit−Tit−1
for t ∈ [0, T ]. Then

At =
∫ t

0

au du−
∑

0≤Ti≤t

ci

and the integration by part formula yields

αtAt =
∫ t

0

αu

(
au du−Au dBu

)
−

∑
0≤Ti≤t

αTi
ci. (22)

Let us fix some risk-neutral measure Q.

Proposition 4.1 (i) Considering a reduced convertible bond, let us choose the driver

F = F cb := F 0 + A, (23)



16 Defaultable Options in a Markovian Intensity Model

where F 0 was defined in (4). Then the F -price of a convertible bond for F = F cb is equal to the
clean price of this bond, and the data of the doubly reflected BSDE (E) take the following form:

F cb, χ = ξcb −AT = N̄ ∨ κS̃T ,

L = Lcb −A = P̄ ∨ κS̃, U = (U cb −A), τ̄ .

(ii) In the default intensity set-up, we have

F cb
t −

∫ t

0

F cb
u dBu =

∫ t

0

fcb
u du (24)

with

fcb = γRcb + ccb + a− µA. (25)

Hence in (E) we obtain

FT − Ft −
∫ T

t

Fu dBu =
∫ T

t

fcb
u du.

(iii) Assume that the pre-default value process S̃ is continuous. Then the lower barrier process L is
continuous. Moreover, the upper barrier process Ū is continuous after τ̄ , in the case of a convertible
bond with no call notice period.

Proof. (i) We have, by (5),
Θ = Π̃ + F 0 − F cb = Π̃−A,

in view of the definition of F cb. Also,

L = L̂cb − F cb = Lcb + F − (F + A) = Lcb −A.

The other identities can be shown similarly.
(ii) Using the definition fcb and (22) with dBu = µu du, we obtain in an intensity default model∫ t

0

αufcb
u du =

∫ t

0

αuγuRcb
u du +

∫ t

0

αuccb
u du +

∫ t

0

αu

(
au − µuAu

)
du

= αtAt +
∫ t

0

αu dCu +
∫ t

0

αuγuRcb
u du = αt(At + Ft) = αtFt.

Thus

Ft −
∫ t

0

Fu dBu =
∫ t

0

α−1
u d(αF )u =

∫ t

0

fcb
u du.

(iii) It suffices to note that for a convertible bond with no call notice period we have, after τ̄ ,
Ūt = Ut = U cb

t −At = C̄ ∨ κS̃t. 2

Let us summarize our findings at this point of this section. First, we have shown that by solving
the doubly reflected BSDE (E) with the driver F = F cb given by (25), we obtain the clean price of
a reduced convertible bond as its F -price, that is, as the state process Θ of a solution to (E).

Second, the related driver terms in (E) are then given as integrals with respect to the Lebesgue
measure, which is the standard form in the BSDE literature.

Third, under mild assumptions, the lower and upper barriers for this choice of the driver F are
given as continuous processes, and thus the state process process Θ of a solution to the doubly
reflected BSDE (E) is continuous, provided the martingale M is continuous (e.g., in the special case
where N is a multi-dimensional Wiener process and n = 0).
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4.3 A Simple Model

The previous observations prove useful in the practical implementation of a jump-to-default intensity
model with a Markovian structure in Bielecki et al. [5] (see also Ayache et al. [2] or Andersen and
Buffum [1]). In [5], the filtration F is generated by a standard Brownian motion W under Q, and
we consider a primary market model composed of the savings account and d = 2 risky assets:
• the first primary risky asset is the stock of a reference firm with price process S and default time
represented by τd,
• the second primary risky asset is the credit default swap (CDS) written on the reference entity.

The pre-default stock price S̃ is the unique strong solution to the following SDE

dS̃t = S̃t

((
r(t)− q(t) + ηγ(t, S̃t)

)
dt + σ(t, S̃t) dWt

)
(26)

with S̃0 given as a real-valued, F0-measurable random variable, where:
• the riskless short interest rate r(t), the equity dividend yield q(t), and the local default intensity
γ(t, S) ≥ 0 are bounded Borel functions,
• the fractional recovery on S upon default, η, is a non-negative constant,
• the local volatility σ(t, S) is a positively bounded Borel function,
• the functions γ(t, S)S and σ(t, S)S are Lipschitz in S.

It is further postulated that:
• the coupon process

Ct = C(t) :=
∫

[0,t]

ccb
u du +

∑
0≤Ti≤t

ci

for a bounded Borel continuous coupon rate ccb and deterministic discrete coupon dates and amounts,
with T0 = 0 and TK−1 < T ≤ TK ;
• the recovery process R̄t is of the form R̄(t, St−) for a Borel function R̄.

We say that we deal with the hard call protection if the lifting time of call protection τ̄ = T̄
for some T̄ ≤ T . The standard soft call protection corresponds to the lifting time of call protection
given as τ̄ = inf{t > 0 ; S̃t ≥ S̄} ∧ T for some S̄ ∈ R?

+.

Proposition 4.2 Let us assume either a hard call protection or a standard soft call protection.
Then, choosing the driver f = fcb as in (25), the related BSDE (E) is a Markovian FBSDE with
respect to the state vector Z = (t, S̃) (so X = S̃ and no regimes; l = 1 and p = q = 1 < 2 = d).
Moreover, S̃ satisfies the related arbitrage Q-consistency condition (18).

Proof. Except for the last point, the statements follows by construction of the model. Moreover,
condition (18) obviously holds for S̃ since (we omit indices, since X is reduced to X 1):

b(t, x) = (r(t)− q(t) + ηγ(t, x))x, µ(t, x) = r(t) + γ(t, x), c(t, x) = q(t)x, R(t, x) = (1− η)x.

2

A Appendix: Proof of Lemma 3.1

Let us first observe that by combining (11) with Lemma 2.2, we obtain, for any 0 ≤ t ≤ u ≤ T and
any F-stopping time τ ∈ F t

T ,

EQ
(
βu∧τ X̂u∧τ − βtX̂t

∣∣Gt

)
= 1{t<τd}e

Γt EQ
(
αu∧τ X̄u∧τ − αtX̄t

∣∣Ft

)
. (27)

Note also that for a càdlàg adapted process to be a local martingale, it suffices that there exists
a localizing sequence of stopping time for which the stopped processes are martingales (the usual
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uniform integrability condition in the definition of a local martingale is not necessary for càdlàg
adapted processes, see [25, I,6,Theorem 50]).

(⇒) Let (τn)n∈N be a localizing sequence of F-stopping times for the (F, Q)-local martingale αX̄.
Let us take arbitrary 0 ≤ t ≤ u ≤ T . We claim that

EQ
(
(βuX̂u)τn − (βtX̂t)τn

∣∣Gt

)
= 0. (28)

To establish (28), it suffices to apply (27) to τ = τn ∨ t ∈ F t
T and use the fact that the stopped

process (αX̄)τn is an (F, Q)-martingale. We thus see that (βX̂)τn is a (G, Q)-martingale and τn is
a localizing sequence of G-stopping times (recall that F ⊂ G) for βX̂. We conclude that βX̂ is a
(G, Q)-local martingale.

(⇐) To prove the converse implication, let us assume that (τn)n∈N is a localizing sequence of G-
stopping times for the (G, Q)-local martingale βX̂ and let us denote by (τ̃n)n∈N the related sequence
of pre-default values, as defined in Lemma 2.1(iii), so that τn ∧ τd = τ̃n ∧ τd. We claim that (τ̃n)n∈N
is a localizing sequence of G-stopping times for the (F, Q)-local martingale βX̄.

To check this claim, let us fix n ∈ N and let us consider arbitrary 0 ≤ t ≤ u ≤ T . We need to
show that for any n ∈ N

EQ
(
(αuX̄u)eτn − (αtX̄t)eτn

∣∣Ft

)
= 0. (29)

By applying (27) to τ = τ̃n ∨ t ∈ F t
T , we obtain

1{t<τd}e
Γt EQ

(
(αuX̄u)eτn − (αtX̄t)eτn

∣∣Ft

)
= 1{t<τd}e

Γt EQ
(
(αX̄)u∧τ − (αX̄)t

∣∣Ft

)
= 1{t<τd} EQ

(
(βX̂)u∧τ − (βX̂)t

∣∣Gt

)
.

Furthermore, since the process βX̂ is stopped at τd and τn ∧ τd = τ̃n ∧ τd, we obtain

1{t<τd} EQ
(
(βX̂)u∧eτn∨t − (βX̂)t

∣∣Gt

)
= 1{t<τd} EQ

(
(βX̂)u∧eτn∧τd∨t − (βX̂)t

∣∣Gt

)
= 1{t<τd} EQ

(
(βX̂)u∧τn∧τd∨t − (βX̂)t

∣∣Gt

)
= 1{t<τd} EQ

(
(βuX̂u)τn − (βtX̂t)τn

∣∣Gt

)
= 0.

By the uniqueness of pre-default values (see Lemma 2.1), this implies that (29) holds. 2
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