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Abstract In Crépey (2015, Part II), a basic reduced-form counterparty risk modeling approach was
introduced under a rather standard immersion hypothesis between a reference filtration and the fil-
tration progressively enlarged by the default times of the two parties, also involving the continuity of
some of the data at default time. This basic approach is too restrictive for application to credit deriva-
tives, which are characterized by strong wrong-way risk, i.e. adverse dependence between the exposure
and the credit riskiness of the counterparties, and gap risk, i.e. slippage between the portfolio and its
collateral during the so-called cure period that separates default from liquidation. This paper shows
how a suitable extension of the basic approach can be devised so that it can be applied in dynamic
copula models of counterparty risk on credit derivatives. More generally, this extended approach is
applicable in any marked default times intensity setup satisfying a suitable integrability condition.
The integrability condition expresses that no mass is lost in a related measure change.
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1 Introduction

Counterparty risk is the risk of default of a party in an OTC derivative transaction, a topical issue
since the global financial crisis. As a significant part of the market is moving to central counterparties
(also-called clearing houses), nowadays the problem must be analysed in two different setups, bilateral
versus centrally cleared. In this paper, we focus on the bilateral case. See Brigo, Morini, and Pallavicini
(2013) and Crépey and an Introductory Dialogue by D. Brigo) (2014), respectively in a more financial
and mathematical perspective, for recent bilateral counterparty risk references in book form, and see
Armenti and Crépey (2015) for the case of centrally cleared trading. The case of centrally cleared
trading is also considered in Brigo and Pallavicini (2014), but from the point of view of a client, as
opposed to a member, of a clearing house. Then the analysis of the present paper applies as well, as
explained in the remark 52. With respect to Brigo and Pallavicini (2014), the present paper is more
mathematical and yields a special focus on credit derivatives.

To mitigate counterparty risk, a margining procedure is set up according to what is called in
the context of bilateral trading a master agreement between the two parties, also referred to as a
CSA, for credit support annex. However, accounting for various frictions and delays, notably the so-
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called cure period that separates default and liquidation, there is gap risk, i.e. risk of slippage between
the portfolio and its collateral. This is why another layer of collateralization, called initial margins as
opposed to the variation margin that only accounts for market risk, is now maintained in both centrally
cleared transactions and bilateral transactions under a sCSA (standard CSA). Gap risk is magnified
in the presence of wrong-way risk, i.e. adverse dependence between the underlying exposure and the
credit risk of the counterparties. This is a special case of concern regarding counterparty risk on credit
derivatives, given the default contagion and frailty effects between the two parties and the underlying
credit names. In fact, to properly deal with counterparty risk embedded in credit derivatives, one needs
a credit portfolio model with the following features. First, the model should be calibratable to relevant
data sets: CDS data if the targeted application consists of counterparty risk computations on CDS
contracts and, additionally, tranches data for computations involving CDO contracts. In particular,
one needs a bottom-up model of portfolio credit risk, with efficient pricing schemes for vanillas (CDS
contracts and/or CDO tranches) as well as a copula separation property between the individual and
the dependence model parameters. Second, as counterparty risk and funding valuation adjustments
price options on future values of the underlyings, a dynamic model is required.

One possibility is to use dynamic copula models resulting from the introduction of a suitable
filtration on top of a static copula model for the default times of the two parties and of underlying
credit names. The dynamic Gaussian copula (DGC) model of Crépey, Jeanblanc, and Wu (2013) can
suffice to deal with counterparty risk on CDS contracts. If there are also CDO tranches in the portfolio,
then a Gaussian copula dependence structure is not rich enough for calibration purposes. Instead, one
can use the dynamic Marshall-Olkin (DMO) common-shock model of Bielecki, Cousin, Crépey, and
Herbertsson (2014b,2014a).

However, this dynamic copula methodology, reviewed in Crépey and an Introductory Dialogue by
D. Brigo) (2014, Part IV), does not immediately extend to the case of bilateral counterparty risk
combined with the related funding issue. As is well known since the seminal papers by Korn (1995),
Cvitanic and Karatzas (1993) or El Karoui, Peng, and Quenez (1997), in presence of different borrowing
and lending rates, pricing rules become nonlinear. This question has known a revival of interest in recent
years in connection with the post-crisis multi-curve issue (see Piterbarg (2010), Mercurio (2014) and
Bielecki and Rutkowski (2015)). Accordingly, the pricing equations for the corresponding valuation
adjustment, dubbed TVA for total valuation adjustment (inclusive of counterparty risk and funding
costs), become nonlinear (see Crépey (2015, Part I), Brigo and Pallavicini (2014) or Bichuch, Capponi,
and Sturm (2015)). Moreover, they are posed over random time intervals and may involve nonstandard,
implicit terminal conditions at the first default time of a party. To deal with such equations, a first
reduced-form counterparty risk modeling approach was introduced in Crépey (2015, Part II), in a
rather basic immersion setup between the reference filtration of the underlying market exposure and
the full model filtration progressively enlarged by the default times of the two parties. But this basic
immersion setup, with a related continuity assumption on some of the data at the first default time of
the two parties, is too restrictive for wrong-way and gap risk applications such as counterparty risk on
credit derivatives, in which case one also faces specific dependence and dimensionality challenges.

1.1 Contributions and Outline

To tackle this issue, this paper shows how an extended reduced-form approach can be applied, be-
yond the first approach of Crépey (2015, Part II) dubbed “basic approach” henceforth, in the above-
mentioned dynamic copula models of portfolio credit risk. In the first part of the paper (Sect. 2
through 6), we generalize, resorting to the notion of invariance time in Crépey and Song (2015a), the
basic reduced-form approach of Crépey (2015, Part II). With respect to our previous works, we also
introduce a positive cure period (also considered in Brigo and Pallavicini (2014)). The TVA is modeled
in terms of solutions to backward stochastic differential equations (BSDEs): the exact BSDE (3.5), the
full BSDE (3.6) and the reduced BSDE (1). The exact BSDE (3.5) is derived from risk-neutral valuation
and hedging principles. It is then approximated by the full BSDE (3.6), which can also be viewed as
the exact BSDE for slightly simplified data. The reduced BSDE is an auxiliary, simpler equation that,
if solved, yields a solution to the full BSDE. In this sense, solving the reduced BSDE is sufficient in
practice. This is Theorem 1, which can also be digged out from the results of Crépey and Song (2014a),
but in a more abstract setup there, mainly motivated by the converse to this theorem, i.e. any solution
to the full BSDE is based on a solution to the reduced BSDE. Beyond self-containedness, the main
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reason why we include a direct proof of Theorem 1 in this paper is to show how easily it flows once the
right framework has been set up, namely the condition (C) in this paper. In the easiness of the result
lies its power here. However, this raises the issues of the strength and practicality of the condition
(C). To demonstrate the viability of the approach, the second part of this paper (Sect. 7 through 9)
implements it through marked default times in dynamic extensions of two well known copula models:
the Gaussian copula and the exponential (or Marshall Olkin) copula.

The detailed outline of the paper is as follows. In Sect. 2 we present the bilateral counterparty
risk and funding setup. In Sect. 3 we derive the exact and full TVA BSDEs with respect to the full
model filtration G. Sect. 4 develops an extended reduced-form approach for the full BSDE, which
results in the reduced BSDE, applicable whenever the first default time of the two parties satisfies
the condition (C) in this paper (i.e., essentially, is an invariance time satisfying the condition (A) in
Crépey and Song (2015a), where the condition (A) means (C) but also (B) in the present paper). In
Sect. 5 we establish the well-posedness of the reduced BSDE under a standard CSA specification of the
data. In the marked default times framework of Sect. 6, we derive a CVA/DVA (credit/debit valuation
adjustment) and LVA (funding liquidity valuation adjustment) decomposition of an all-inclusive TVA.
Sect. 7 and Sect. 8 apply the proposed approach in the DGC and DMO models of counterparty risk
on credit derivatives. In Sect. 9 numerical results are presented to illustrate the respective wrong-way
and gap risk flavor of these models.

1.2 Standing Notation and Terminology

We write
∫ b
a

=
∫
(a,b]

with, in particular,
∫ b
a

= 0 whenever a ≥ b; x+ = max(x, 0), x− = max(−x, 0) =

(−x)+. Any function involving discrete arguments is viewed as continuous with respect to these, in
reference to the discrete topology. We denote by λ the Lebesgue measure on R+, by B(S) the Borel
σ field on a topological space S, by P(F), O(F) and R(F) the predictable, optional and progressive σ
fields with respect to a filtration F. When a process ft can be represented in terms of a function of
some factor process X, we typically write f(t,Xt), i.e. the function is denoted by the same letter as
the process. Order relationships between random variables (resp. processes) are meant almost surely
(resp. in the indistinguishable sense).

Throughout the paper we consider an OTC derivative (or a netted portfolio of OTC derivatives)
traded between two defaultable counterparties, generically referred to as the “contract between the
bank and its counterparty”.

Part I

Wrong Way and Gap Risks Modeling: A Marked Default Times Perspective

Here is a non-exhaustive list of notations introduced in the course of the first part of the paper.

CSA, CVA, DVA, LVA, TVA Credit support annex, Credit valuation adjustment, debit valuation ad-
justment, liquidity funding valuation adjustment, total valuation adjustment.

G,F Full model filtration (including the information related to the default of the two counterparties),
market reference filtration.

E, Ẽ Expectations under the probability measures Q and P.
V, Ic ≥ 0, Ib ≤ 0, Cc = V + Ic, Cb = V + Ib, C = V + Ic + Ib Variation margin (counted positively when

posted by the counterparty and negatively when posted by the bank), initial margin posted by the
counterparty, negative of the initial margin posted by the bank, total collateral guarantee for the
bank, negative of the total collateral guarantee for the counterparty, negative of the collateral
funded by the bank.

Rc, Rb, Λ ∈ [0, 1] Recovery rate of the counterparty to the bank, of the bank to the counterparty, one
minus the recovery rate of the bank to its funder.

T, δ Time horizon of the CSA, length of the cure (or liquidation) period.
τc, τb, τ, τ̄ , τ

δ, τ̄δ Default time of the counterparty, default time of the bank, first default time of the
two parties, τ ∧ T, τ + δ, time horizon τ̄δ = 1τ<T τ

δ + 1{τ≥T}T of the TVA pricing problem.
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γc, γb, γ Intensities of τc, τb and τ , hence max(γb, γc) ≤ γ ≤ γb + γc, with indistinguishable equality in
the right hand side if τb 6= τc a.s..

J, S 1[0,τ), Azéma supermartingale of τ
U ′ F predictable reduction of a G predictable process U
r, r + c, r + λ, r + λ̄, λ̃ = λ̄− γbΛ OIS (risk-free) rate, rate of remuneration of the posted collateral, in-

vesting rate of the bank, unsecured funding rate of the bank, liquidity funding spread of the bank.
P,∆ =

∫
[τ,·] e

∫ ·
s rudu, Q,Π,Θ = Q−Π Reference or “clean” price process of the contract from the bank’s

perspective (mark-to-market ignoring counterparty risk and assuming a risk-free funding rate),
cumulative contractual dividends capitalized at the risk-free rate that fail to be paid from time
τ onwards, P + ∆, all-inclusive price process of the contract (inclusive of counterparty risk and
funding costs, as opposed to the clean price P ), TVA process.

εc = (Qτδ − C
c
τ )+, εb = (Qτδ − C

b
τ )− Liquidation debts of the counterparty to the bank, of the bank

to the counterparty
χ, ξ = Qτδ − χ = 1{τc≤τδb }

(1−Rc)εc − 1{τb≤τδc }(1−Rb)εb Close-out cashflow of the bank, counterparty

risk exposure of the bank.
W, (−Wτb− − Cτb−)+ Value process of the hedging, collateralization and funding portfolio of the bank,

debt of the bank to its funder right before τb.
gt(ϑ), ft(ϑ) = gt(Qt − ϑ)− rtϑ, f̃t(ϑ) Funding coefficient such that (−rtWt+ gt(−Wt))dt represents the

bank’s funding cost over (t, t+ dt) (hence g = 0 corresponds to linear funding at the OIS risk-free
rate r), coefficient of the exact and full BSDEs, coefficient of the reduced BSDE.

τe, γ
e;E;Eb, Ec Stopping time with mark e and intensity γe; finite set of marks such that τ = mine∈E τe;

subsets of E such that τb = mine∈Eb τe, τc = mine∈Ec τe.

2 Counterparty Risk and Funding Setup

In this section we present all the cashflows involved in the bilateral counterparty risk and funding
problem, adopting the perspective of the bank. In particular, a cashflow of ±1 means ±1 to the
bank. We assume that the bank, having obtained (“bought”) the contract from its counterparty at
time 0 in exchange of some premium Π0, sets-up a collateralization, hedging and funding portfolio.
Collateral consists of cash or various possible eligible securities posted through margin calls as default
guarantee by the two parties. The margin requirements are specified by the CSA. Regarding hedging,
for simplicity, we restrict ourselves to a securely funded hedge, entirely implemented by means of
swaps, short sales or repurchase agreements, at no upfront payment. As explained in Crépey and
an Introductory Dialogue by D. Brigo) (2014, Section 4.2.1 page 87)1, this assumption encompasses
the vast majority of hedges that are used in practice. In particular, it includes (counterparty-risk-free)
CDS contracts that can be used for hedging the counterparty jump-to-default exposure. We call funder
of the bank a third party insuring funding of the bank’s strategy. Assumed default-free for simplicity,
it plays the role of lender/borrower after exhaustion of the implicit sources of funding provided to the
bank through its hedge and its collateral. Typically, the funder is the treasury of the bank. Alternatively,
the bank can get some funding directly in the market, in various ways (in practice, the funder can
be composed of several entities or devices). See Pallavicini, Perini, and Brigo (2012, Sect. 4.2) for a
detailed description of different funding policies.

Let (Ω,G,Q), with G = (Gt)t∈R+
satisfying the usual conditions and Q expectation denoted by

E, represent a risk-neutral pricing stochastic basis, such that all our processes are G adapted and all
the random times of interest are G stopping times. The meaning of a risk-neutral pricing measure in
our setup, with different funding rates in particular, is specified by a martingale condition that will be
introduced in the form of the all-inclusive price BSDE (3.1) for the contract. But, in the first place, a
pricing measure in our sense must be such that the gain processes related to the trading of the hedging
assets, processes denoted in vector form by M, are local martingales. As explained in the comments
following Assumption 4.4.1 in Crépey and an Introductory Dialogue by D. Brigo) (2014, page 96)2,
this rules out arbitrage opportunities in the market of hedging instruments (provided one restricts
attention to hedging strategies resulting in a wealth process bounded from below; see Bielecki and
Rutkowski (2015, Corollary 3.1) for a formal statement).

1 Or Crépey (2015, Part I, Section 2.1) in the journal version.
2 Or Crépey (2015, Part I, Assumption 4.1) in the journal version.
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For reasons pertaining to division and specialisation of tasks in banks, the all-inclusive price Π
of the contract is obtained as the difference between a reference or “clean” price P and a counterparty
risk and funding adjustment (TVA) Θ (essentially; this will be formalized in detail in Definition 32).
The clean price P is the mark-to-market ignoring counterparty risk and assuming a risk-free funding
rate. Specifically, we denote by rt a progressively measurable and Lebesgue integrable OIS rate process

and by βt = e−
∫ t
0
rsds the corresponding discount factor. The OIS rate, where OIS stands for overnight

indexed swap, is together the best market proxy of a risk-free rate and the typical reference rate for
the remuneration of the collateral. Let a finite variation process D represent the cumulative promised
dividend process of the contract (contractual cashflows ignoring counterparty risk). The formula for P
reads

βtPt = E

(∫ T

t

βsdDs

∣∣∣Gt) , t ∈ [0, T ]. (2.1)

Here T is a relevant time horizon, typically the one of the CSA. If there is some residual value in the
contract at that time, it is treated as a dividend (DT −DT−) at time T .

But the two parties are defaultable. Let τb and τc stand for the default times of the bank and of
the counterparty, modeled as G stopping times with (G,Q) (predictable) intensities γb and γc. As a
consequence, the first default time of the two parties, τ = τb ∧ τc, is a stopping time with intensity γ

such that max(γb, γc) ≤ γ ≤ γb + γc, with indistinguishable equality in the right hand side if τb 6= τc
a.s.. Note that in such an intensity setup, any event {τb = t} or {τc = t}, for any fixed time t, has
zero probability and can be ignored in the analysis. An additional feature is a time lag δ ≥ 0, called
the cure period, typically taken as ten (resp. five) days in the case of bilateral (resp. centrally cleared)
transactions, between the first default time τ of the two parties and the liquidation of the contract.
For any time t, we write

t̄ = t ∧ T , tδ = t+ δ, t̄δ = 1t<T t
δ + 1{t≥T}T .

If τ < T , the contractual dividends dDt cease to be paid from time τ onwards and a close-out cashflow
χ paid to the bank at time τδ closes out its position. Hence, the liquidation procedure results in an
effective time horizon τ̄δ of the pricing problem.

Until τ̄ , the bank needs to fund its position, i.e. the contract and its collateral (the cost of funding
the hedge is already accounted for in the hedging assets gain martingale M). We denote by g = gt(π)
an R(G)⊗ B(R) measurable funding coefficient such that(

− rtWt + gt(−Wt)
)
dt (2.2)

represents the bank’s funding cost over (t, t + dt), where W is the value process of the hedging, col-
lateralization and funding portfolio of the bank. In addition, the bank may receive a funding windfall
benefit at its own default, modeled as a cashflow

(−Wτb− − Cτb−)+Λ at τb if τb < τ̄δ. (2.3)

Here the process (−C) represents the amount of collateral funded by the bank, so that (−Wτb−−Cτb−)+

represents the debt of the bank to its funder right before τb, and Λ ∈ [0, 1] corresponds to the fractional
loss of the funder in case of default of the bank (one minus the recovery rate of the bank to its funder).
In Sect. 5 we will provide a typical specification of all the data, in particular χ, g and C.

2.1 Dynamics of the Wealth Process of the Bank

After having bought the contract from the counterparty at time 0 in exchange of some premium Π0,

the bank sets up a hedge (−ζ), which is a left-continuous row-vector process of the same dimension as
M. The “short” negative sign notation in (−ζ) is used for consistency with the idea, just to fix the
mindset, that the contract is “bought” by the bank at time 0. Let

J = 1[0,τ), τ
? = τb ∧ τδc , τ̄? = 1τ<T τ

? + 1{τ≥T}T, J
? = 1[0,τ?). (2.4)

The collateralization, hedging and funding portfolio of the bank, with wealth process W (depending
on Π0 and ζ), is supposed to be held by the bank itself before τ̄? and, if τb ≤ τδc (i.e. τ? = τb) and
τ < T, taken over by a risk-free liquidator on [τ̄?, τ̄δ].
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Lemma 21 Ignoring the close-out cashflow χ at τ̄δ if τ < T , which will be added separately later (see

Lemma 31), we have W0 = −Π0 and, for 0 < t ≤ τ̄δ,

dWt = rtWtdt+ JtdDt − J?t gt(−Wt)dt− (−Wτb− − Cτb−)+Λ1{τ?=τb<T}dJ
?
t − ζtdMt. (2.5)

Proof. Collecting all terms in the above-described collateralization, hedging and funding scheme, we
obtain W0 = −Π0 and, for 0 < t ≤ τ̄δ:

dWt = JtdDt︸ ︷︷ ︸
bank gets dividends

− J?t−ζtdMt︸ ︷︷ ︸
bank pays on its hedge

+ J?t (rtWt − gt(−Wt))dt︸ ︷︷ ︸
funding benefits / costs to bank

− (−Wτb− − Cτb−)+Λ1{τ?=τb<T}dJ
?
t︸ ︷︷ ︸

windfall funding benefit of the bank at its own default time τb (if τb ≤ τδc )

− (1− J?t−)ζtdMt︸ ︷︷ ︸
liquidator pays on the hedge of the bank during the cure period

+ (1− J?t )rtWtdt,︸ ︷︷ ︸
risk-free funding benefits/costs of the liquidator during the cure period

which yields (2.5).

Remark 21 Our assumption of a securely funded hedge is reflected by the fact that the hedge ζ

doesn’t enter the g and (−Wτb− − Cτb−)+ terms in (2.5). This can be compared with Crépey and
an Introductory Dialogue by D. Brigo) (2014, Example 4.4.3 page 97)3, where a more general funding
policy for the hedge is considered.

3 Derivation of the Exact and Full TVA BSDEs

In this section we derive the exact and full TVA BSDEs with respect to the full model filtration G.
Our starting point is the notion of all-inclusive price Π, which is the value of the contract inclusive
of counterparty risk and funding costs (as opposed to the clean price P ). The justification for the
following definition is provided by Lemma 31.

Definition 31 An all-inclusive price of the contract for the bank is a (G,Q) semimartingale Π that
satisfies the following price BSDE on [0, τ̄δ]:

Πτ̄δ = 1{τ<T}χ,

dνt := dΠt − rtΠtdt+ (Πτb− − Cτb−)+Λ1{τ?=τb<T}dJ
?
t + JtdDt − J?t gt(Πt)dt

defines a (G,Q) local martingale on [0, τ̄δ].

(3.1)

Lemma 31 If an all-inclusive price Π can be found with dνt = ζtdMt for some hedge ζ, assuming gt(π)
Lipschitz in π with a Lipschitz constant that is Lebesgue integrable on [0, T ] (ω-wise), then (Π0, ζ) yields an

exact replication price and hedge for the bank, i.e. the resulting wealth process of the bank satisfies W = −Π
on [0, τ̄δ]. In particular, we have

Wτ̄δ = −Πτ̄δ = −1{τ<T}χ,

so that after the close-out cashflow 1{τ<T}χ has been paid to the bank (or its liquidator if τ < T and τb ≤ τδc )

at time τ̄δ, the bank’s position is closed break-even.

3 Or the equation (3.4) in the journal version Crépey (2015, Part I).
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Proof. Under the assumptions of the lemma, the process Z = βΠ + βW satisfies Z0 = 0 and dZt =
αtZtdt on [0, τ̄), where αt := 1{Πt 6=Wt}

gt(Πt)−gt(−Wt)
Πt−(−Wt)

is Lebesgue integrable over [0, T ]. Hence,

d
(
e−

∫ t
0
αsdsZt

)
= e−

∫ t
0
αsds

(
dZt − αtZtdt

)
= 0,

i.e. e−
∫ t
0
αsdsZt is constant on [0, τ̄), equal to 0 in view of the initial condition for Z, i.e. W = −Π holds

on [0, τ̄). This is followed by a jump of the two processes W and (−Π) by the same amount

(−Wτb− − Cτb−)+Λ = (Πτb− − Cτb−)+Λ

at τb = τ? = τ̄? if τ < T and τb ≤ τδc , after which W and (−Π) coincide again on [τ̄?, τ̄δ] by the same
argument as above. Hence, W = −Π holds on [0, τ̄δ].

More broadly, if an all-inclusive price can be found with dνt = ζtdMt + dεt for some hedge ζ and a
“small” cost martingale ε, then the hedging error ρ = W +Π, which starts from 0 at time 0, remains
“small” all the way through. In particular,

Wτ̄δ ≈ −Πτ̄δ = −1{τ<T}χ,

so that after the close-out cashflow 1{τ<T}χ at τ̄δ, the bank’s position is closed with a “small” hedging
error.

Let

Qt = Pt +∆t, where βt∆t =

∫
[τ,t]

βsdDs (3.2)

(in particular, ∆t = 0 and Qt = Pt for t < τ). In words, ∆t represents the cumulative contractual
dividends capitalized at the risk-free rate that fail to be paid by the counterparty to the bank from
time τ onwards, so that ∆t belongs to Qt, the debt (if positive and before consideration of the collateral)
of the counterparty to the bank at time t ≥ τ.

Definition 32 Given an all-inclusive price Π, the corresponding TVA is the process defined on [0, τ̄δ] as

Θ = Q−Π.

3.1 Exact TVA BSDE

Let

ft(ϑ) = gt(Qt − ϑ)− rtϑ (ϑ ∈ R)

and

ξ = Qτδ − χ, ξ̄t = E(β−1
t βτδξ | Gt) (t ≤ τ̄δ), (3.3)

assuming integrability of the so-called counterparty risk exposure ξ.

Lemma 32 Let there be given G semimartingales Π and Θ such that Θ = Q−Π on [0, τ̄δ]. The process Π

is an all-inclusive price of the contract for the bank if and only if the process Θ satisfies the following (G,Q)
TVA BSDE on [0, τ̄δ]:

Θτ̄δ = 1{τ<T}ξ,

dµt = dΘt − rtΘtdt+ J?t gt(Qt −Θt)dt+ (Qτb− −Θτb− − Cτb−)+Λ1{τ?=τb<T}dJ
?
t

defines a (G,Q) local martingale on [0, τ̄δ].

(3.4)
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Proof. Assuming Θ defined in terms of an all-inclusive price Π as (Q − Π) on [0, τ̄δ], the terminal
condition for Θ in (3.4) follows, by definition of the exposure ξ in the left hand side of (3.3), from the
terminal condition for Π in (3.1). Moreover, for t ∈ [0, τ̄δ], we have

− βtΘt = −βtQt + βtΠt = −(βtPt +

∫ t

0

βsdDs) + (βtΠt +

∫ t

0

βsJsdDs).

Hence,

− βtΘt −
∫ t

0

βsJ
?
s gs(Qs −Θs)ds+

∫ t

0

βτb(Qτb− −Θτb− − Cτb−)+Λ1{τ?=τb<T}dJ
?
s

= −
(
βtPt +

∫ t

0

βsdDs

)
+β0Π0+∫ t

0

(
d(βsΠs) + βτb(Πτb− − Cτb−)+Λ1{τ?=τb<T}dJ

?
s + βsJsdDs − βsJ?s gs(Πs)ds

)
= −

(
βtPt +

∫ t

0

βsdDs

)
+β0Π0 +

∫ t

0

βsdνs

(cf. (3.1)). Since (βP +
∫ ·
0
βsdDs) (cf. (2.1)) and ν are (G,Q) local martingales, this establishes the

martingale condition in (3.4). Hence, (3.1) implies (3.4). The converse implication is proven similarly.

As reflected in (3.4), the TVA pricing problem, as the all-inclusive pricing problem (3.1), is originally
posed over the domain [0, τ̄δ], which corresponds to the union of the three subdomains in Figure 1,
with respective dividend and funding data abbreviated as (D, g), (0, g) and (0, 0). But since data (0, 0)
simply means, in terms of pricing, taking conditional expectation of the terminal condition discounted
at the risk-free rate, the proposition that follows shows that the BSDE (3.4) can be reformulated as
the BSDE (3.5) on the smaller time interval [0, τ̄?] ⊆ [0, τ̄δ], modulo a modified terminal condition ξ̄

at τ̄? instead of ξ at τ̄δ.

τ δc

τc

τb

τ δb

(0, g)

(D, g)

(0, 0)Λ

Fig. 1 Representation of the data of the TVA pricing problem in a (t, ω) state space representation, focusing on the
default and liquidation times and ignoring T to alleviate the picture, i.e. “for T =∞”. The data in parentheses refer
to the effective dividends and funding costs of the bank depending on the time t and scenario ω.

Proposition 31 Let there be given G semimartingales Π and Θ such that Θ = Q − Π on [0, τ̄δ]. The

process Π is an all-inclusive price of the contract for the bank if and only if Θ = 1{τ<T}ξ̄ on (τ̄?, τ̄δ] and

Θ satisfies the following (G,Q) “exact TVA BSDE” on [0, τ̄?]:

Θτ̄? = 1{τ<T}
(
ξ̄τ? − (Qτb− − Cτb− −Θτb−)+

1{τ?=τb}Λ
)

and

dµt := dΘt + ft(Θt)dt is a (G,Q) local martingale on [0, τ̄?].
(3.5)

Proof. As explained before the proposition, (3.4) is equivalent to Θ = 1{τ<T}ξ̄ on [τ̄ , τ̄δ] and (3.5) on
[0, τ̄ ].
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Remark 31 This equivalence holds up to the value of Θ at τ? if τ? = τb < T, with a windfall funding
benefit at default (Qτb− − Cτb− − Θτb−)+Λ1{τ=τb<T} considered as a dividend at the intermediate
time τb in (3.4) and as part of the valuation adjustment at the terminal time τb = τ? in (3.5). But this
difference is immaterial in practice for the bank, which only risk manages Θ before τb.

3.2 Full TVA BSDE

The risk-neutral pricing approach that underlies the TVA BSDE (3.5) (or (3.6) for slightly modified
data below) implies that the bank actively risk manages its position. Otherwise, these equations are
not enough conservative. In view of the incompleteness of the TVA market, our approach is only
a first step. However, any incomplete market approach, adding in some way or another one layer of
optimization to the analysis (e.g. utility maximisation), would most likely be hardly feasible in practice,
especially on real-life portfolios with tens to hundreds of thousands of contracts. The TVA problem
entails some nonlinearities but banks can’t really deal with nonlinear pricing rules, because these are
too complicated to manage at the portfolio level. Hence, one should aim in the end for “the best linear
TVA approximation”.

Toward this aim, it is useful to derive an equivalent but simpler reduced BSDE, which will be the
topic of Sect. 4. But the reduction of the exact TVA BSDE (3.5) would lead to nested BSDEs, where
the coefficient of the corresponding reduced BSDE on [0, T ] would be defined in terms of solutions
to auxiliary reduced BSDEs “conditional on Gτ̄” (see Crépey and Song (2014b, Section 4) for such
a treatment in a preprint version of this paper). The nested feature arises because, in the scenarios
where τc ≤ τb ∧ T, the nonlinear funding coefficient g of the bank is still in force, hence the funding
data of the problem remain nonlinear, on the time interval [τ̄ , τ̄?] = [τc, τ̄

?] (upper right subdomain in
Figure 1). However, because the cure period δ is only a few days, the quantitative impact on the TVA
Θ of the coefficient g on the time interval [τ̄ , τ̄?] can only be very limited. Hence, in order to avoid the
numerical burden of nested BSDEs, we work henceforth with the following full TVA BSDE:

Θτ̄ = 1{τ<T}
(
ξ̄τ − (Pτb− − Cτb− −Θτb−)+

1{τ=τb}Λ
)
,

dµt := dΘt + ft(Θt)dt is a (G,Q) local martingale on [0, τ̄ ].
(3.6)

This equation is obtained by replacing g and Λ by 0 on the time interval [τ̄ , τ̄?] in the exact TVA
BSDE (3.5), which means replacing (0, g) by (0, 0) and Λ by 0 in the upper right subdomain in Figure
1. Indeed, proceeding in this way, the argument already used for deriving Proposition 31 shows that
the time interval on which the TVA needs be computed can be reduced further, from [0, τ̄δ] initially to
[0, τ̄?] as done in Proposition 31 regarding the exact TVA BSDE, to even [0, τ̄ ] now for the appropriately
modified terminal condition regarding the full TVA BSDE (3.6), with all data set to zero outside [0, τ̄ ].
Reformulating the problem on the smaller domain [0, τ̄ ] makes it simpler in view of the reduced-form
analysis of Sect. 4, because τ , as opposed to τ?, has an intensity. Note that (3.6) is also, essentially,
the so-called master equation in Brigo and Pallavicini (2014).

Of course, a TVA BSDE modeling approach based on (3.6) supposes the existence (at the very
least) of a solution to (3.6), which is still a quite nonstandard BSDE. Even if a bit simpler than (3.5),
(3.6) does not fall in the classical scope of BSDEs with random but explicit terminal conditions (see
e.g. Kruse and Popier (2015, Sect. 5)). But the results of the next section allow reducing the (G,Q)
BSDE (3.6) to the simpler BSDE (4.5) with a null terminal condition at the fixed time horizon T ,
stated with respect to a smaller filtration F and a possibly changed probability measure P. Hence,
the well-posedness of the full BSDE (3.6) will follow from the well-posedness of the reduced BSDE
(4.5), which will be established under a typical specification of the data in Theorem 2. Even in the
case where Λ = 0 and the terminal condition of (3.6) is explicit (does not depend on Θτb−), the null
terminal condition of (4.5) is a key feature for the numerical scheme used in Sect. 9.

4 Reduced Form Approach

In this section we develop an extended reduced-form approach for the full TVA BSDE (3.6), beyond
the basic immersion setup of Crépey (2015, Part II), in view of the wrong-way and gap risk applications
of the second part of the paper.
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By Corollary 3.23 2) in He, Wang, and Yan (1992), for any Gτ measurable random variable ζ,
there exists a G predictable process ζ̂ such that

1{τ<∞}E[ζ|Gτ−] = 1{τ<∞}ζ̂τ . (4.1)

If ζ is integrable, then the time integral γtζ̂tdt exists (and is independent of the choice of a version of
ζ̂) and

ζtdJt + γtζ̂tdt (4.2)

is a (G,Q) local martingale on R+(cf. Corollary 5.31 1) in He et al. (1992)). In particular let ξ̂ be a G
predictable process such that, on {τ <∞},

ξ̂τ = E(ξ̄τ | Gτ−) = E(β−1
τ βτ+δξ | Gτ−) (4.3)

For t ∈ [0, τ̄ ] and ϑ ∈ R, we write

f̂t(ϑ) = ft(ϑ) + γtξ̂t − (Pt − Ct − ϑ)+γbtΛ− γtϑ

= γtξ̂t + gt(Pt − ϑ)− (Pt − Ct − ϑ)+γbtΛ− (rt + γt)ϑ.
(4.4)

Let Y τ− = JY + (1 − J)Y− represent the process Y stopped at (τ−) (i.e. right before τ), for any
left-limited process Y. Let S denote the Azéma supermartingale of τ, i.e. the process such that
St = Q(τ > t | Ft), t ≥ 0. Conditions of the following kind are studied at the theoretical level in
Crépey and Song (2014a,2015a).

Condition (B). F is a subfiltration of G satisfying the usual conditions such that any G predictable
process U admits an F predictable reduction, i.e. an F predictable process, denoted by U ′, that coincides
with U on (0, τ ].

Remark 41 If ST > 0 (almost surely), then any inequality between two G predictable processes on
(0, τ ] implies the same inequality between their F predictable reductions on (0, T ] (see (Song 2014,
Lemma 6.1)); in particular (see also Crépey and Song (2015a, Lemma A.1), the process U ′ is uniquely
determined on (0, T ].

Condition (C). There exist:

(C.1) a subfiltration F of G satisfying the usual conditions such that F semimartingales stopped at τ
are G semimartingales,

(C.2) a probability measure P equivalent to Q on FT such that (F,P) local martingales stopped at
(τ−) are (G,Q) local martingales on [0, T ],

(C.3) an F progressive reduction f̃t(ϑ) of f̂t(ϑ), i.e. an R(F)⊗B(R) function f̃t(ϑ) such that
∫ ·
0
f̂t(ϑ)dt =∫ ·

0
f̃t(ϑ)dt on [0, τ̄ ].

The condition (C.1) is related to the so-called (H′) hypothesis between F and G, i.e. F semimartingales
are G semimartingales (see Bielecki, Jeanblanc, and Rutkowski (2009)). Both conditions (C.1) and
(C.3) hold under the condition (B) (see Crépey and Song (2015a)). The condition (C) with (C.1) and
(C.3) reinforced as (B) yields the condition (A) in Crépey and Song (2015a). Hence, assuming (C),
the random time τ is essentially an invariance time in the sense of the condition (A) in Crépey and
Song (2015a). If (F,P) local martingales don’t jump at τ , then the condition (C.2) says that (F,P)
local martingales stopped at τ are (G,Q) local martingales. In the case where P = Q, this property is
related to the notions of immersion of F into G, i.e. (F,Q) local martingales are (G,Q) local martingales
(see Bielecki et al. (2009)), and of an F pseudo-stopping time τ , i.e. (F,Q) local martingales stopped
at τ are (G,Q) local martingales (see Nikeghbali and Yor (2005)). However, even in this “immersion”
case where P = Q, the condition (C) offers a richer framework than a standard reduced-form intensity
model of credit risk, where the full model filtration G is given as the reference filtration F progressively
enlarged by τ , i.e. “G = F∨H” in the standard notation of Bielecki et al. (2009). In fact, under (C.1-2-
3), the full filtration G can be bigger than F∨H. In particular, even for P = Q, the conditions (C.1-2-3)
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do not exclude a jump of an F adapted càdlàg process at time τ , which happens for instance with a
nonvanishing dividend ∆τ = Dτ −Dτ− at time τ in the DMO model of Sect. 8. By contrast, a jump
of an F adapted càdlàg process at time τ cannot happen in a basic reduced-form credit risk setup (see
Crépey and an Introductory Dialogue by D. Brigo) (2014, Lemma 13.7.3(ii) page 331)4). In addition,
the flexibility of the condition (C) comes from the possibility to choose (F,P) ensuring (C.1-2-3). See
Sect. 7 and Sect. 8 for concrete examples, with P 6= Q and ∆τ = 0 in the first case and P = Q but
∆τ 6= 0 in the second case, which we view as respective wrong-way risk and gap risk stylized examples
(as our concluding figure 7 will illustrate).

The result that follows can also be retrieved from Crépey and Song (2014a), but in a much more
abstract setup there, mainly motivated by the converse to this result. Hence, we provide a self-contained
proof, valid under the “minimal condition” (C).

Theorem 1 Under the condition (C), assume that an (F,P) semimartingale Θ̃ satisfies the following reduced

TVA BSDE on [0, T ]:

Θ̃T = 0 and dµ̃t := dΘ̃t + f̃t(Θ̃t)dt is an (F,P) local martingale on [0, T ]. (4.5)

Let Θ = Θ̃ on [0, τ̄) and Θτ̄ = 1{τ<T}

(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+1{τ=τb}Λ

)
. Then Θ is a (G,Q) semi-

martingale satisfying the full TVA equation (3.6) on [0, τ̄ ] and we have, for t ∈ [0, τ̄ ],

dµt = dµ̃τ−t −
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ− Θ̃τ−
)
dJt

−
(
(ξ̂t − Θ̃t)γt − (Pt − Ct − Θ̃t)+γbtΛ

)
dt.

(4.6)

Proof. By definition of Θ here, a (G,Q) semimartingale by (C.1), we have, for t ∈ [0, τ̄ ]:

dΘt = d(JtΘ̃t)−
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ
)
dJt

= dΘ̃τ−t + Θ̃τ− dJt −
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ
)
dJt.

(4.7)

Then by (4.5), for t ∈ [0, τ̄ ]:

−dΘt = f̃t(Θ̃t)dt− dµ̃τ−t +
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ− Θ̃τ−
)
dJt

= ft(Θt)dt− dµ̃τ−t +
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ− Θ̃τ−
)
dJt

+
(

(ξ̂t − Θ̃t)γt − (Pt − Ct −Θt)+γbtΛ
)
dt,

by (C.3). By (C.2), µ̃τ−t is a (G,Q) local martingale, as is also on [0, τ̄ ](
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ− Θ̃τ−
)
dJt +

(
(ξ̂t − Θ̃t)γt − (Pt − Ct −Θt)+γbtΛ

)
dt

(cf. (4.2)). This yields the decomposition (4.6) of dµt := dΘt + ft(Θt)dt, which implies the martingale
condition in (3.6), where the terminal condition holds by definition of Θτ̄ in the theorem.

Summarizing so far, assuming the condition (C) on the default time τ , based on Theorem 1, we
can design a TVA process in terms of a solution to the reduced BSDE (4.5). Moreover, this approach is
not arbitrary. In fact, under the additional condition (B) that is latent in (C.1) and (C.3), the results
of Crépey and Song (2014a) show that the full and reduced BSDEs are equivalent (assuming a positive
Azéma supermartingale S of τ , as typically verified in applications). In particular, as will be seen in the
final statements of Theorems 5 and 8, the condition (B) holds and S is positive in the concrete models
of Sect. 7 and 8, so that this equivalence applies to each of the reduced TVA BSDEs considered in
Corollaries 71, 81 and 82. Moreover, in Theorem 2, the reduced BSDE (4.5) will be seen to well-posed
under a typical specification of the data. Hence, as a consequence of the equivalence between (4.5) and
(3.6), the full BSDE (3.6) is well-posed too.

4 Or Lemma 2.1(ii) in the journal version Crépey (2015, Part II).
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5 Well-Posedness of the Reduced BSDE under a Typical Specification of the Data

In view of applications, we need to specify the close-out cashflow χ, hence the counterparty risk exposure
ξ = Qτδ − χ, and the funding coefficient gt(π), conformly with usual CSA specifications. Let V denote
the variation margin process, where V ≥ 0 (resp. ≤ 0) means collateral posted by the counterparty
and received by the bank (resp. posted by the bank and received by the counterparty). Let a process
Ic ≥ 0 (resp. Ib ≤ 0) represent the initial margin posted by the counterparty (resp. the negative of the
initial margin posted by the bank). Let

Cc = V + Ic and Cb = V + Ib, (5.1)

respectively the total collateral guarantee for the bank and the negative of the total collateral guarantee
for the counterparty.

Remark 51 In practice, the variation and initial margin calls are executed according to a discrete
schedule (tl). Specifically, the variation margin V tracks the mark-to-market P at grid times tl < τ .
The initial margins Ic and Ib are also updated at some of the times tl < τ, based on risk measures
of the profit-and-loss of the variation-margined position at the horizon δ of the cure period (see Brigo
and Pallavicini (2014) and Armenti and Crépey (2015) for detailed specifications). Hence, the margin
processes are stopped at the greatest tl < τ (or = τ, but the corresponding event has zero probability
in a default intensity setup).

In particular, we assume all the margin processes are stopped at τ. The bank’s close-out cashflow χ is
derived from the liquidation debts of the counterparty to the bank and vice versa, respectively modeled
at time τδ as

εc = (Qτδ − C
c
τ )+, εb = (Qτδ − C

b
τ )−. (5.2)

Note that εc × εb ≡ 0, by nonnegativity of Ic and (−Ib). The close-out cashflow is modeled as

χ =


Ccτ +Rcεc if εc > 0 and τc ≤ τδb ,

Cbτ −Rbεb if εb > 0 and τb ≤ τδc ,
Qτδ otherwise.

(5.3)

Here Rc and Rb stand for constant recovery rates of the counterparty to the bank and vice versa. The
ensuing counterparty risk exposure of the bank results from the left hand side in (3.3) as

ξ = Qτδ − χ = 1{τc≤τδb }
(1−Rc)εc − 1{τb≤τδc }(1−Rb)εb. (5.4)

Remark 52 The expression (5.4) for the counterparty risk exposure ξ is consistent with the one in
Brigo and Pallavicini (2014), where it is also explained that, if the bank is a client of a counterparty
acting as member of a clearing house, the above formalism can still be used just by setting Rc = 1 and
Ic = 0. In fact, as members of a clearing house are backed-up by other members if they default, their
actual recovery rate is immaterial and everything happens for their clients as if Rc would be one. In
addition, as clearing members don’t post initial margins to their clients but to the clearing house, the
initial margin posted by the counterparty has no impact on the funding costs of the bank in this case,
so that everything happens for the bank as if Ic would be zero. The situation where the bank itself is
a member (as opposed to a client) of a clearing house is dealt with in Armenti and Crépey (2015).

We assume that the posted collateral is remunerated at a rate (rt + ct) and that the bank can invest
(resp. get some unsecured funding) at a rate (rt+λt) (resp. (rt+ λ̄t)), for G predictable processes c, λ, λ̄
(and also r, noting that predictability is not a true restriction with respect to progressive measurability
for all these processes that are time integrated). The collateral funded by the bank is (−C), where
C = Cb + Ic = V + Ic + Ib (assuming all the margins re-hypothecable, i.e. reusable by the receiving
party). This results in the following dt-funding cost of the bank, for t < τ̄?:

Jt(rt + ct)Ct︸ ︷︷ ︸
remuneration of the collateral

+ (rt + λ̄t) (−Wt − Ct)+ − (rt + λt) (−Wt − Ct)−︸ ︷︷ ︸
funding costs / benefits

,
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which is of the form (2.2) with in particular, for t < τ,

gt(π) = ctCt + λ̄t (π − Ct)+ − λt (π − Ct)− . (5.5)

Remark 53 This expression for g corresponds to the case of re-hypothecable margins, as is typical for
the variation margin, whereas the initial margins are sometimes segregated. In the case of segregated
initial margins, the expression for g changes slightly, but the overall structure (2.2) of the funding costs
is still valid.

Assuming henceforth (5.5), f̂t(ϑ) in (4.4) is such that, on [0, τ̄ ],

f̂t(ϑ) + (rt + γt)ϑ = γtξ̂t + ctCt + λ̄t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− − (Pt − Ct − ϑ)+γbtΛ

= γtξ̂t︸︷︷︸
cdvat

+ ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)−︸ ︷︷ ︸
lvat(ϑ)

, (5.6)

where λ̃t = λ̄t − γbtΛ can be interpreted as a liquidity borrowing spread of the bank, net of its credit
spread to its funder. From the perspective of the bank, the term γtξ̂t represents the counterparty risk
component of f̂t(ϑ), whereas the remaining terms can be interpreted as a funding liquidity component.
The positive (resp. negative) components of f̂t(ϑ) can be considered as deal adverse (resp. deal friendly)
as they increase (resp. decrease) the TVA Θ of the bank. Depending on the sign of Π = Q−Θ, a “less
positive” Π is interpreted as a lower buyer price by the bank and a “more negative” Π as a higher
seller price by the bank.

Remark 54 The materiality of a debit benefit at own default, represented by a DVA cashflow 1{τb≤τδc }(1−
Rb)εb in (3.3), or of a funding benefit at own default (2.3), corresponding in the FVA debate to Hull
and White (2012a,2012b,2014)’s DVA2 cashflow, are clearly subject to caution, unless corresponding
hedges allow the bank to monetize these benefits before it defaults. The most conservative practice
for the bank is to set Rb = 1 and Λ = 0 in order to disregard these cashflows. This avoids reckoning
“fake benefits” or benefits to bondholders only, whereas a sound management should only consider
the interest of the shareholders (see Albanese, Brigo, and Oertel (2013) and Albanese and Iabichino
(2013)).

The assumptions in the following reduced BSDE well-posedness result, even though not minimal,
are sufficient for our later purposes in this paper. In particular, the boundedness assumption on P,

from which the one on the collateral C follows naturally, will be satisfied in the case of vanilla credit
derivatives such as CDS contracts and CDO tranches (cf. (6.12)). Note that, on [0, τ̄ ], we have

f̂t(ϑ) = γtξ̂t + ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− − (rt + γt)ϑ

= γtξ̂t + ctCt + λ̄t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− − γt (Pt − Ct)

+ (γt − γbtΛ) (Pt − Ct − ϑ)+ − γt (Pt − Ct − ϑ)− − rtϑ.

(5.7)

Assuming the condition (B) and ST > 0, we may and do henceforth choose for f̃t(ϑ) the process
obtained from f̂t(ϑ) by replacing each process U involved in (5.7) by its F predictable reduction U ′ or,

in the case of U = P or C, by (P−)′ and (C−)′. We write ‖U‖p
H̃p

= Ẽ[
∫ T
0
Upt dt] (p > 0), where Ẽ means

P expectation.

Theorem 2 Under the condition (B), assuming ST >, λ′, λ̄′ and r′ bounded from below on [0, T ], (P−)′

and (C−)′ bounded on [0, T ] and c′, λ′, λ̄′, r′, γ′ in H̃2, the reduced BSDE (4.5) (with f̃ as specified above)

is well-posed in H̃2, where well-posedness includes existence, uniqueness, comparison and the standard BSDE

a priori bound and error estimates. The H̃2 solution Θ̃ to (4.5) satisfies

Θ̃t = Ẽ

[∫ T

t

f̃s(Θ̃s)ds
∣∣∣Ft] = Ẽ

[∫ T

t

e−
∫ s
t γ
′
rdr f̄s(Θ̃s)ds

∣∣∣Ft] , t ∈ [0, T ], (5.8)

where we set f̄t(ϑ) = f̃t(ϑ) + γ′tϑ.
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Proof. Assuming λ′, λ̄′ and r′ bounded from below, it follows from (5.7), where γt ≥ γbtΛ ≥ 0, that
f̃t(ϑ) satisfies the classical BSDE monotonicity assumption(

f̃t(ϑ)− f̃t(ϑ′)
)
(ϑ− ϑ′) ≤ C(ϑ− ϑ′)2 (5.9)

on (0, T ], (cf. the remark 41), for some constant C. Hence, by application of the results of Kruse and
Popier (2015, Sect. 4), the reduced BSDE (4.5) with coefficient f̃t(ϑ) is well-posed in H̃2 (which includes
existence, uniqueness, comparison and the standard BSDE bound and error estimates) as soon as the
following auxiliary integrability conditions hold:

sup
|ϑ|≤ϑ̄

|f̃·(ϑ)− f̃·(0)| ∈ H̃1 (ϑ̄ > 0), f̃·(0) ∈ H̃2. (5.10)

Since

|f̃(ϑ)− f̃(0)| ≤
(
|λ̄′|+ |λ′|+ |r′|+ γ′

)
|ϑ|,

(5.10) holds in particular for (P−)′, (C−)′ bounded and c′, λ′, λ̄′, r′, γ′ in H̃2. The left hand side
identity in (5.8) is the usual integral representation for an H̃2 solution Θ̃ to the reduced BSDE (4.5).
It implies the right hand side identity in (5.8) by treating the (−γ′ϑ) term in f̃ as a discount factor at
the rate γ′.

6 Marked Default Times Framework

A residual issue left open by Theorem 2 is the specification of a concrete but general enough framework
where cdva = γξ̂ in (5.6) can be computed in practice. Toward this aim, this section implements the
extended reduced-form approach of the previous sections based on a default time τ obtained as a G
stopping time with a mark. The role of the mark is to convey some additional information about
the default, e.g. to encode wrong-way and gap risk features that would be out-of-reach in the basic
immersion setup of Crépey (2015, Part II).

We assume in the sequel that τ is endowed with a mark e in a finite set E, i.e.

τ = min
e∈E

τe, (6.1)

where the τe are G stopping times avoiding each other, with respective (G,Q) intensities γet and such
that

Gτ = Gτ− ∨ σ(ι), (6.2)

in which ι = argmine∈Eτe is the “identity” of the mark of τ . We denote by E the powerset of E.

Lemma 61 Assuming a marked stopping time τ in the above sense, for any Gτ measurable random variable

ζ, there exists a P(G)⊗ E measurable function ζ̃ = ζ̃et such that

1{τ=τe}ζ = 1{τ=τe}ζ̃
e
τ , e ∈ E. (6.3)

For any such function ζ̃, a Q× λ a.e. version of γζ̂ is given by J−
∑
E γ

eζ̃e. In particular, the intensity of

τ satisfies γ = J−
∑
e∈E γ

e, Q× λ a.e., and we have

cdvat = J−
∑
e∈E

γeξ̃e, Q× λ a.e., (6.4)

for any P(G)⊗ E measurable function ξ̃ = ξ̃et , which exists, such that, for each e ∈ E,

ξ̄τ = ξ̃eτ on the event {τ = τe}. (6.5)
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Proof. The existence of the processes ζ̃e(π) follows from (6.2). By G predictability of these processes,
the ζ̃eτ are Gτ− locally integrable. Hence, by localization, one can assume the ζ̃eτ integrable. Then, on
{τ <∞},

E[ζ|Gτ−] = E[
∑
e∈E 1{τ=τe}ζ̃

e
τ |Gτ−] =

∑
e∈E ζ̃

e
τE[1{τ=τe}|Gτ−].

Let qet denote a P(G)⊗E measurable function, which exists by Corollary 3.23 2) in He et al. (1992), such
that qeτ1{τ<∞} = E[1{τ=τe}|Gτ−]1{τ<∞} (e ∈ E). For bounded Z ∈ P(G), we compute E[Zτ1{τ=τe<∞}]
in two ways:

E[Zτ1{τ=τe<∞}] = E[Zτ q
e
τ1{τ<∞}] = E[

∫ ∞
0

Zsq
e
sγsds],

and

E[Zτ1{τ=τe<∞}] = E[Zτe1{τ=τe<∞}] = E[Zτe1{τe≤τ<∞}] = E[

∫ ∞
0

Zs1{s≤τ}γ
e
sds].

Hence, Q almost surely: qet γt = 1{t≤τ}γ
e
t , dt almost everywhere, so that

Q[qeτγτ 6= γeτ , τ <∞] = E[1{qeτγτ 6=γeτ , τ<∞}] = E[

∫ ∞
0

1{qet γt 6=γet }γtdt] = 0.

Therefore, on {τ <∞},
γτ ζ̂τ = γτE[ζ|Gτ−] =

∑
e∈E

ζ̃eτγτ q
e
τ =

∑
e∈E

ζ̃eτγ
e
τ .

This implies that

γζ̂ = J−
∑
E

γeζ̃e, Q× λ-a.e.

In particular, (6.4) follows by definition (5.6) of cdva.

The assumption of a finite set E in (6.1) ensures tractability of the setup, while offering a
sufficiently large playground for applications, as the second part of the paper demonstrates. However,
as developed in Crépey and Song (2015b), from a theoretical point of view, this assumption can be
essentially eliminated and the approach remains in essence valid, modulo an integral instead of a sum
over E in (6.4) and similar expressions later in the paper.

We now give a concrete specification ensuring (6.2), in the case where G is the progressive
enlargement of a reference filtration F by n random times η1, . . . , ηn avoiding each other. Let the η(i)

be the increasing ordering of the ηi, with also η(0) = 0 and η(n+1) =∞. The optional splitting formula
of Song (2013b) means, for any G optional process Y , the existence of O(F) ⊗ B([0,∞]n)-measurable
functions Y (0), Y (1), . . . , Y (n) such that

Y =
n∑
i=0

Y (i)(η1 - η(i), . . . , ηn - η(i))1[η(i),η(i+1)), (6.6)

where a - b denotes a if a ≤ b and∞ if a > b, for a, b ∈ [0,∞]. This holds, in particular, in any recursively
immersed or multivariate density model of default times. By recursively immersed model of default
times, we mean a model where a reference filtration is successively progressively enlarged by random
times, such that each successive enlargement has the immersion property. By multivariate density
model, we mean a model with a conditional density of the default times given some reference market
filtration, in the sense of the condition (DH) in page 1800 of Pham (2010). This is the multivariate
extension of the notion of a density time, first introduced in an initial enlargement setup in Jacod
(1987) and revisited in a progressive enlargement setup, under the name of initial time, in Jeanblanc
and Le Cam (2009) and El Karoui, Jeanblanc, and Jiao (2010).

Lemma 62 Assuming the optional splitting formula in force, e.g. in any recursively immersed or multi-

variate density model of default times, let η = η1 ∧ η2. If the ηi avoid each other and F stopping times,

then

Gη = Gη− ∨ σ({η = η1}, {η = η2}).
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Proof. Let N = {1,2, 3, . . . , n}. By the optional splitting formula (6.6), for any G optional process Y
and i ∈ N , we have

Yη1{η=η(i)} = Y
(i)
η (η1 - η, . . . , ηn - η)1{η=η(i)}

=
∑
I⊆N ;|I|=i−1 Y

(i)
η (η1 - η, η2 - η, . . . , ηn - η)1{∀j∈I,ηj<η}1{∀j∈N\I,η≤ηj}

=
∑2
k=1 1{η=ηk}

∑
I⊆N ;|I|=i−1 Y

(i,I,k)
η (η; ηj , j ∈ I)1{∀j∈I,ηj<η}1{∀j∈N\I,η≤ηj},

where Y
(i,I,k)
t (ω, y; yj , j ∈ I) is O(F)⊗B([0,∞])⊗B([0,∞]i−1) measurable. Moreover, as η avoids F stop-

ping times, He et al. (1992, Theorem 3.20) and the monotone class theorem imply that Y
(i,I,k)
η (η; ηj , j ∈

I) is Gη− measurable. So, on each event {η = ηk}, Yη1{η=η(i)} is Gη− measurable. As Gη is generated
by the Yη for the G optional processes Y , this proves the result.

6.1 No Cure Period

If δ = 0, then ξ̄ = ξ, for which the expression in (5.4) reduces to

ξ = 1{τ=τc}(1−Rc)
(
Pτ +∆τ − Ccτ

)+ − 1{τ=τb}(1−Rb)
(
Pτ +∆τ − Cbτ

)−
, (6.7)

where ∆τ = Dτ −Dτ−. Moreover, for every process U = P, (D−D−), Cc and Cb, there exists by (6.2)
a P(G)⊗E measurable function Ũ = Ũet such that Uτ = Ũeτ holds on the event {τ = τe}, for each e ∈ E.
In the present case where δ = 0, the process (D − D−) plays the role of the process ∆ when δ 6= 0.
Accordingly, in the case of U = (D−D−), we write Ũet = ∆̃et . To alleviate the notation, we also rewrite

(C̃c)e as C̃c,e and (C̃b)e as C̃b,e.

Remark 61 As will be illustrated in the DGC and DMO models (see Sect. 9, Figure 7 in particular,
and the explanations following (7.11) and (8.6)), the dependence of P̃ e and ∆̃e on e can be used to
embed respective wrong way and gap risk effects. The dependence of C̃c,e and C̃b,e on e could also be
used to render further gap risk features such as a jump of the collateral at the default of a counterparty,
e.g. in the case of a collateral posted in a currency strongly dependent on this counterparty (cf. Ehlers
and Schönbucher (2006)).

Consistent with (6.1), let’s assume τb = mine∈Eb τe and τc = mine∈Ec τe, where E = Eb ∪ Ec (not
necessarily a disjoint union, as will be exploited in Sect. 8). We may then take in (6.5) (where ξ̄ = ξ

when δ = 0)

ξ̃et = 1e∈Ec(1−Rc)(P̃
e
t + ∆̃et − C̃c,et )+ − 1{e∈Eb}(1−Rb)(P̃

e
t + ∆̃et − C̃b,et )−, (6.8)

so that by (6.4), we have on [0, τ̄ ]:

cdvat =(1−Rc)
∑
e∈Ec

γet

(
P̃ et + ∆̃et − C̃c,et

)+

− (1−Rb)
∑
e∈Eb

γet

(
P̃ et + ∆̃et − C̃b,et

)−
, (6.9)

where the two terms have clear respective CVA and DVA interpretation. Hence, in the no cure period
δ = 0 case, (5.6) is rewritten, on [0, τ̄ ], as

f̂t(ϑ) + (rt + γt)ϑ = (1−Rc)
∑
e∈Ec

γet

(
P̃ et + ∆̃et − C̃c,et

)+

︸ ︷︷ ︸
cvat

− (1−Rb)
∑
e∈Eb

γet

(
P̃ et + ∆̃et − C̃b,et

)−
︸ ︷︷ ︸

dvat

+ ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)−︸ ︷︷ ︸
lvat(ϑ)

,

(6.10)

where we set λ̃t = λ̄t − Λ
∑
e∈Eb γ

e
t . We can then choose the coefficient f̃ of the reduced TVA BSDE

(4.5) based on (6.10) in the way described before Theorem 2. Once stated in a Markov setup where

f̃t(ϑ) = f̃(t, X̃t, ϑ), t ∈ [0, T ], (6.11)

for some (F,P) jump diffusion X̃, all the ingredients in the coefficient f̃ can be computed and the
reduced BSDE (4.5) can be solved numerically, which will be our approach in the second part of the
paper. This is only for δ = 0 here but we’ll study in Sect. 8.3 a case where δ > 0.
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Part II

Application to Credit Derivatives

We write N = {−1, 0, 1, . . . , n} and N? = {1, . . . , n}, for some nonnegative integer n. In the second
part of the paper, we apply the above approach to counterparty risk on credit derivatives traded
between the bank and the counterparty respectively labeled as −1 and 0, i.e. for τb = τ−1 and τc = τ0,

and referencing the names in N (typically N?, for one does not trade credit protection on oneself in
practice, but this makes no difference mathematically). The examples in this part are important, not
only to provide some insights regarding the condition (C) and the marked default time framework
introduced abstractly in the first part of the paper, but also as concrete models addressing challenges
posed by counterparty risk and funding costs on credit derivatives. This will be accomplished in two
different setups, the dynamic Gaussian copula (DGC) model of Crépey et al. (2013) and the dynamic
Marshall-Olkin (DMO) copula or common-shock model of Bielecki et al. (2014b,2014a). These two
models are dynamic extensions of the perhaps best known copula models, namely the Gaussian copula
and the exponential (or Marshall-Olkin) copula. We chose them as prototypes of multivariate density
and recursively immersed models of portfolio credit risk, respectively (see the explanations preceding
Lemma 62). Other respectively related models include the one-period Merton model of Fermanian and
Vigneron (2013, Section 6) and the multivariate Poisson model of Brigo, Pallavicini, and Torresetti
(2007).

Regarding financial products, we will consider stylized CDS contracts and protection legs of CDO
tranches corresponding to cumulative dividend processes of the respective form, for 0 ≤ t ≤ T :

Dit =
(
(1−Ri)1{t≥τi} − (t ∧ τi)Si

)
Nomi

Dt =
((

(1−R)
∑
j∈N

1{t≥τj} − (n+ 2)a
)+ ∧ (n+ 2)(b− a)

)
Nom,

(6.12)

where all the recoveries Ri and R (resp. nominals Nomi and Nom) will be set in the numerics of
Sect. 9 to 40% (resp. to 100). The contractual spreads Si of the CDS contracts will be set so that the
corresponding prices are equal to 0 at time 0. Protection legs of CDO tranches, where the attachment
and detachment points a and b are such that 0 ≤ a ≤ b ≤ 100%, can also be seen as CDO tranches
with upfront payment. Note that credit derivatives traded as swaps or with upfront payment coexist
since the crisis.

Until Sect. 8.3, it is assumed that δ = 0.

7 Dynamic Gaussian Copula TVA Model

Here is an non-exhaustive list of notations introduced in the course of the study of the DGC model.

Bi; ς, hi;α Brownian motions with correlation % used for constructing the DGC default times; other
DGC model primitives such that τi = h−1

i

( ∫+∞
0

ς(u)dBiu
)
; α2(t) =

∫+∞
t

ς2(v)dv.

J, z = (zj)j∈J , Φρ,σ(z), ψjρ,σ
(
z
)

Subset of N representing a set of alive obligors in the financial inter-
pretation, |J |-variate real vector, |J |-variate normal survival function with homogeneous marginal

variances σ2 and pairwise correlations ρ valued at z, logarithmic density −
∂zjΦρ,σ
Φρ,σ

(
z
)
.

W i, W̃ i, W̄ i (G,Q), (F,P) and (F,Q) Brownian motions.
βi, β̃i, β̄i (G,Q), (F,P) and (F,Q) drift coefficients of the Bi.
γi, γ̃i, γ̄i (G,Q), (F,P) and (F,Q) default intensities of name i.

mi
t =

∫ t
0
ς(s)dBis, k

i
t = (1{τi≤t}, τi1{τi≤t}) DGC Markov primitives.

Xt = (mt,kt) where mt = (mi
t)i∈N , kt = (kit)i∈N Full DGC model Markov factor process.

X̃t = (mt, k̃t) where mt = (mi
t)i∈N , k̃t = (1i∈N?k

i
t)i∈N Reduced DGC model Markov factor process.
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7.1 Model of Default Times

We consider a multivariate Brownian motion B = (Bi)i∈N , with pairwise correlation % ∈ [0, 1), in its
own completed filtration B = (B)t≥0. Specifically, for i ∈ N, we assume

Bit =
√
%Zt +

√
1− %Zit , (7.1)

where Z and the Zi are independent Brownian motions. For any i ∈ N, let hi be a continuously
differentiable increasing function from R∗+ to R, with derivative denoted by ḣi, such that lim0 hi(s) =
−∞ and lim+∞ hi(s) = +∞, and let

τi = h−1
i

( ∫ +∞

0

ς(u)dBiu
)
, (7.2)

where ς is a square integrable function with unit L2 norm. As a consequence, the (τi)i∈N follow the
standard one-factor Gaussian copula model with correlation parameter % and with marginal survival
function Φ ◦ hi of τi, where Φ is the standard normal survival function. In particular, as % < 1, the τi
avoid each other. In order to make the model dynamic as required by counterparty risk applications,
we introduce the model filtration G = (Gt)t≥0 given as the Brownian filtration B progressively enlarged
by the τi, augmented so as to satisfy the usual conditions. Note that the τi are B∞ measurable, totally
inaccessible G stopping times. Let

mi
t =

∫ t

0

ς(u)dBiu, k
i
t = (1{τi≤t}, τi1{τi≤t}), mt = (mi

t)i∈N , kt = (kit)i∈N .

The reason why we consider τi1{τi≤t} on top of 1{τi≤t} in kit is because of a dependence of prices
on past default times in the DGC model. Augmenting the factor process in this way allows to take
care of this path-dependence. Conversely, only having τi1{τi≤t} in kit would lead to time discontinuous
functions in the representations (7.8), which would be nonstandard from the point of view of PDE
(continuous) viscosity solutions in Corollaries 71, 81 and 82. Note that τi1{τi≤t} ≤ t, hence the process
k is bounded on [0, T ].

Additional notation is required for stating a number of explicit formulas that hold in the DGC
model. Let α2(t) =

∫+∞
t

ς2(v)dv, assumed positive for all t for simplicity. Denoting by I and J generic
subsets of N, meant to represent sets of defaulted and alive obligors in the financial interpretation, and
for j ∈ N, we write:

Zj,It (u) =
hj(u)−mj

t

α(t)
− %

(|I| − 1)%+ 1

∑
i∈I

hi(τi)−mi
t

α(t)
,

ρI =
%

|I|%+ 1
, (σI)2 =

(|I| − 1)%+ 1− %2|I|
(|I| − 1)%+ 1

.

In addition, we define

Zjt = Zj,It (t), ρt, σt = ρI , σI on {I = It},

where It represents the set of obligors in N that are in default at time t. Let also

Jt = N \ It, Zt =
(
Zjt , j ∈ Jt

)
.

For any σ > 0 and ρ ∈ [0, 1], we write:

Φρ,σ(z) = Q(Zj > zj , j ∈ J), ψjρ,σ
(
z
)

= −
∂zjΦρ,σ

Φρ,σ

(
z
)
, (7.3)

where z = (zj)j∈J is a real vector and Z = (Zj)j∈J is a |J |-dimensional centered Gaussian vector under
Q, with homogeneous marginal variances σ2 and pairwise correlations ρ. The standard normal survival
and density functions are respectively denoted by Φ and φ.



Counterparty Risk and Funding: Immersion and Beyond 19

Theorem 3 The dynamic Gaussian copula model is a multivariate density model of default times, with

conditional Lebesgue density pt(ti, i ∈ N) = ∂t−1 . . . ∂tnQ(τi < ti, i ∈ N | Bt) of the τi, i ∈ N , given, for any

nonnegative ti, i ∈ N , and t ∈ R+, by

pt(ti, i ∈ N) =

∫
R
φ(y)

∏
i∈N

φ

(
hi(ti)−mi

t + α(t)
√
%y

α(t)
√

1− %

)
ḣi(ti)

α(t)
√

1− %
dy. (7.4)

For any j ∈ N, τj admits a (G,Q) intensity given, for t ∈ R+, by:

1{τj≥t}
( ḣj
α

)
(t)ψjρt,σt

(
Zt
)

= γj(t,mt,kt), (7.5)

with predictable version

γjt = γj(t,mt,kt−). (7.6)

Proof. The expression for the conditional density p of the τi given Bt is obtained by differentiation of
their conditional survival function, given in Crépey and an Introductory Dialogue by D. Brigo) (2014,
page 172)5. The existence of the (G,Q) intensity of τj and its expression

− 1{τj≥t}
∂uΦρt,σt

(
Zj,It (u);Zlt, l ∈ Jt \ {j}

)
|u=t,I=It

Φρt,σt

(
Zjt ;Zlt, l ∈ Jt \ {j}

) ,

which yields (7.5), can be established based on the definition of the intensity as derivative of the dual
predictable projection (or by application of the Laplace formula).

Theorem 4 For every t ≥ 0, we have

Gt = Bt ∨
∨
i∈N

(
σ(τi ∧ t) ∨ σ({τi > t})

)
. (7.7)

There exist processes βit and γit of the form

βit , γ
i
t= βi, γi (t,mt,kt−), (7.8)

for continuous functions βi and γi with linear growth in m, such that the dW i
t = dBit − βitdt are (G,Q)

Brownian motions and the (G,Q) compensated default indicator processes are written as dM i
t = d1τi≤t −

γitdt, i ∈ N. The W i and the M i, i ∈ N, have the (G,Q) martingale representation property. The process

X = (m,k) is a (G,Q) jump diffusion.

Proof. The functions and processes γi and γi are the ones in (7.5) and (7.6). The continuity of the
function γi is apparent on the formula (7.5), which, in view of Lemma A2, also shows the linear growth
of γi in m. The βi can be computed by making use of the probability measure QT , classical in the

study of density models, such that dQT
dQ ∝ pT (τj , j ∈ N), for every T > 0. More precisely, the τi are QT

independent between them and from BT (cf. Theorem 4.7 in Song (2013a)), so that the Bi are (G,QT )
Brownian motions on [0, T ], for every T > 0. Hence, their (G,Q) drifts βi can be obtained by application
of a Girsanov formula from (G,QT ) to (G,Q), T > 0, which reveals the functional dependence in (7.8)
with the claimed properties for the βi. The martingale representation property and (7.7) are proved
by induction over the cardinality of N as follows. We write G = GN . If N is reduced to a singleton,
then the density property of τ given Bt implies the results, by the optional splitting formula (6.6) for
(7.7) and by Jeanblanc and Song (2013, Theorem 6.4) for the martingale representation property. If
N ′ is obtained by adding a new name, say (n + 1), to N, then the density properties of τn+1 and of
(τi)i∈N given Bt imply the density property of τn+1 given Bt ∨

∨
i∈N

(
σ(τi ∧ t) ∨ σ({τi > t})

)
. Hence,

the results for GN
′

follow likewise from those, if assumed, for GN . Finally, the Itô formula that applies
to the semimartingale X = (m,k) shows that X is a (G,Q) jump diffusion (for the details see Crépey
and an Introductory Dialogue by D. Brigo) (2014, Corollary 7.2.7 page 177)6 and see also Heath and
Schweizer (2000), Becherer and Schweizer (2005)).

5 Or Crépey et al. (2013, page 3) in the journal version.
6 Or Crépey et al. (2013, Corollary 2.2) in the journal version.
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7.2 DGC TVA Model

A DGC setup can be used as a TVA model for credit derivatives, with mark i = −1, 0 and Eb =
{−1}, Ec = {0}. Since there are no joint defaults in this model, it is harmless to assume that the
contract promises no cashflow at τ, i.e. ∆τ = 0, so that (cf. (5.2) with currently δ = 0)

εc = (Pτ − Ccτ )+, εb = (Pτ − Cbτ )−.

The results of Crépey and an Introductory Dialogue by D. Brigo) (2014, Corollaries 7.3.1 page 178
and 7.3.3 page 181)7 show that in the case of a portfolio of vanilla credit derivatives on names in N ,
e.g. CDS contracts and CDO tranches as of (6.12), we have a semi-explicit formula for P of the form

Pt = P (t,mt,kt), (7.9)

for a continuous function P.

Remark 71 In the function P (t,m,k), the domain of definition of the variables ti corresponding to
the second components of the ki ∈ {0, 1}×R+, i ∈ N, is given as the union of all the strict order sets of
ti for i ∈ I, i.e. the sets of the form {(ti)i∈I ; tπ(1) < · · · < tπ(|I|)}, for all the subsets I ⊆ N and all the
bijections π of {1, · · · , |I|} to I. Indeed, the τi, which correspond to the second components of the ki
in the probabilistic interpretation, only take their values in this union. Here and below any continuity
statement with respect to the ti is meant in the sense of the corresponding domain and topology.

We assume that for every process U = P, Cc and Cb, there exists a continuous function Ũ = Ũi(t,m,k)
such that

Uτ = Ũi(τ,mτ ,kτ−), (7.10)

or Ũ iτ in a shorthand notation8, holds on the event {τ = τi}, i = −1, 0. For vanilla credit derivatives on
names in N satisfying (7.9), e.g. CDS contracts and CDO tranches as of (6.12), the above condition
always holds regarding U = P for vanilla credit derivatives on names in N , since we have

Pτ = P (τ,mτ ,kτ ) = P (τ,mτ ,k
i,τ
τ−) on {τ = τi}, (7.11)

where ki,t denotes the vector obtained from k by replacing the component with index i by (1, t). Note
that, since the ith component of ki,ττ− equals (1, τ) and not (0, 0), the DGC functions P̃ i incorporate a
wrong-way risk effect through the spike of intensities of surviving names at other names’ defaults (this
will be illustrated numerically by the left graph in Figure 7). The conditions (7.10) regarding U = Cc

and Cb may be satisfied or not depending on the CSA. In view of (6.8) and (6.10), we have

ξ̃it = 1i=0(1−Rc)(P̃ it − C̃c,it )+ − 1i=−1(1−Rb)(P̃ it − C̃
b,i
t )−, i = −1, 0, (7.12)

f̂t(ϑ) + (rt + γt)ϑ = (1−Rc)γ0
t

(
P̃ 0
t − C̃c,0t

)+ − (1−Rb)γ−1
t

(
P̃−1
t − C̃b,−1

t

)−
+ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− , t ∈ [0, τ̄ ],

where γt = γ0
t + γ−1

t and λ̃t = λ̄t − Λγ−1
t . We assume that the processes r, c, λ, λ̄, P and C are given

before τ as continuous functions of (t, X̃t), where X̃t = (mt, k̃t) with k̃t = (1i∈N?k
i
t)i∈N . Regarding

P , (7.9) shows that this property always holds in the case of vanilla credit derivatives on names in N .
Note that, in view of (7.8), this property is also satisfied by the process γ(t,mt,kt), where we define
the function γ as γ0 + γ−1.

Remark 72 In the DGC or in the DMO model without cure period, the only modification required to
deal with path-dependent margins tracking the mark-to-market P at discrete grid times as described in
the remark 51 would be to augment the pre-default factor process X̃t by additional margin components,
as already done for reasons pertaining to the cure period in the DMO setup of Sect. 8.3.

7 Or Crépey et al. (2013, Corollaries 3.1 and 3.2) in the journal version.
8 And to alleviate the notation we rewrite (C̃c)i as C̃c,i, (C̃c)i as C̃ci , etc..
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In addition to the notation introduced before Theorem 3, we write, for j ∈ N :

dζj,It , the (F,Q) martingale component of

(
− 1

α(t)
dmj

t +
%

(|I| − 1)%+ 1

∑
i∈I

1

α(t)
dmi

t

)
,

Z?,jt = Zj,It (t), dζjt = dζj,It on {I = I?t },

where I?t represents the set of obligors in N? that are in default at time t. Let also

J ?t = N? \ I?t , Z?t =
(
Z?,jt , j ∈ J ?t

)
, Z̃t =

(
Z?,−1
t , Z?,0t ;Z?,jt , j ∈ J ?t

)
.

Note that P 6= Q in (DGC.2) below, hence the DGC model is a case of “no immersion” in the sense of
the comments following the statement of the condition (C).

Theorem 5 The condition (C) holds, for:

(DGC.1) a reference filtration F = (Ft)t≥0 in (C.1) given as B progressively enlarged by the default times

for i ∈ N?, which satisfies

Ft = Bt ∨
∨
i∈N?

(
σ(τi ∧ t) ∨ σ({τi > t})

)
, t ≥ 0, (7.13)

(DGC.2) a probability measure P equivalent to Q on FT such that a family of (F,P) martingales with the

(F,P) martingale representation property is given by the

dW̃ i
t = dBit − β̃itdt, i ∈ N and dM̃ i

t = d1τi≤t − γ̃
i
tdt, i ∈ N?, (7.14)

where

β̃it := βi(t,mt, k̃t−) = βi(t, X̃t−), γ̃it := γi(t,mt, k̃t−) = γi(t, X̃t−), (7.15)

(DGC.3) a Markov specification

f̃t(ϑ) = f̃(t, X̃t, ϑ) (7.16)

in (C.3), for the (F,P) jump diffusion X̃t = (mt, k̃t) and for the function f̃ = f̃(t, x̃, ϑ) given, writing

x̃ = (m, k̃) for every m = (mi)i∈N ∈ RN and k̃ = (ki)i∈N ∈ {(0, 0)} × {(0, 0)} × ({(0, 0)} ∪ ({1} ×
R+))N

?

, by:

f̃(t, x̃, ϑ)+(r(t, x̃) + γ(t, x̃))ϑ = (1−Rc)γ0

(
P̃0 − C̃c0

)+

(t, x̃)− (1−Rb)γ−1

(
P̃−1 − C̃b−1

)−
(t, x̃)

+
(
cC + λ̃ (P − C − ϑ)+ − λ (P − C − ϑ)−

)
(t, x̃),

(7.17)

where γ(t, x̃) = γ0(t, x̃) + γ−1(t, x̃) and λ̃(t, x̃) = λ̄(t, x̃)− γ−1(t, x̃)Λ.

In addition, (F,P) local martingales don’t jump at τ , τ avoids F stopping times, the condition (B) is satisfied

and the Azéma supermartingale S of τ is given, for t ∈ R+, by

St =
Φρ?t ,σ?t

(
Z̃t
)

Φρ?t ,σ?t
(
Z?t
) > 0. (7.18)

In particular, the DGC model is a marked default times setup where the full and reduced BSDEs are equiva-

lent.

Proof. Whatever needs be proven in (DGC.1) and (DGC.3), namely, the formula (7.13) in (DGC.1)
and the Markov property of X̃ in (DGC.3), can be addressed as the analogous statements in Theorem
4, whereas the existence of a probability measure satisfying (DGC.2) will be proven separately in
Sect. 7.3.

The expression (7.18) for the Azéma supermartingale S of τ results from the following “multiname
key lemma formula” (cf. Crépey and an Introductory Dialogue by D. Brigo) (2014, Lemma 13.7.6 page
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333)9), which can be established in any density model of default times thanks to the optional splitting
formula (6.6):

St =
Q
(
τ > t; τj > t, j ∈ J ?t | Bt ∨

∨
i∈I?t

σ(τi)
)

Q
(
τj > t, j ∈ J ?t | Bt ∨

∨
i∈I?t

σ(τi)
) .

(DGC.1-2-3) obviously imply (C.1) and (C.3). In view of (7.15), each (F,P) martingale in (7.14),
stopped at (τ−) or, equivalently by avoidance between the DGC times τi, stopped at τ , is a (G,Q)
local martingale. Hence, (DGC.2) implies (C.2) via the (F,P) martingale representation property that
is included in (DGC.2). This also shows that (F,P) local martingales don’t jump at τ . By He et al.
(1992, Theorem 5.27 1)) applied to the indicator process 1{τ=ν}, where ν is an arbitrary F predictable
stopping time, we have Q(τ = ν) = 0 as soon as the (F,Q) drift of S is continuous, as it is in the DGC
model in view of the formula (7.18) for S. Besides, by the (F,Q) martingale representation property in
this model (see the end of the proof of Theorem 6), the (F,Q) compensated martingale of the default
indicator process of an F totally inaccessible stopping time ν only jumps at the τi, i ∈ N?. But, by the
same argument as for (F,P) above, (F,Q) local martingales don’t jump at τ . Hence, Q(τ = ν) = 0. We
conclude that τ avoids all F stopping times. To check the condition (B), by the monotone class theorem,
we only need consider the elementary G predictable processes of the form U = νf(τc ∧ s, τb ∧ s)1(s,t],

for an Fs measurable random variable ν and a Borel function f . Since U1(0,τ ] = νf(s, s)1(s,t]1(0,τ ],

we may take U ′ = νf(s, s)1(s,t] in the condition (B). The statements in the last line of the theorem
follow from the other results by Lemma 62 and in view of the explanations given in the last paragraph
of Sect. 4.

Remark 73 For merely establishing the condition (C) in the DGC model, a shortcut would be to use
the sufficiency condition of Crépey and Song (2015a, Theorem 5.1), namely, proving the exponential
integrability of

∫ τ
0
γsds. However, ultimately, just like the proof of the existence of a probability mea-

sure satisfying (DGC.2) in Sect. 7.3, this alternative proof would rely on the Gaussian estimates of
Sect. A. Moreover, Theorem 5 yields additional results of independent interest, such as the complete
description of the (F,P) local martingales in (DGC.2) (which is useful for BSDE applications) and the
final statements in the theorem.

Corollary 71 In the DGC model we have γ′ = γ(·, X̃·−) ∈ H̃2. Assuming all the other conditions in

Theorem 2 and no cure period, so for δ = 0 and f̃ = f̃(t, X̃, ϑ) = f̃(t,m, k̃, ϑ) as of (7.17), then the

corresponding reduced TVA BSDE (4.5) admits a unique square integrable solution Θ̃t = Θ̃(t, X̃t), where

the function Θ̃(t, x̃) is a continuous viscosity solution to the corresponding semilinear PIDE10. A solution

Θ to the full TVA BSDE (3.6) is obtained by setting Θ = Θ̃ on [0, τ̄) and

Θτ̄ = 1{τ<T}

(
ξ̃ıτ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τ−1}Λ
)
,

where ı = 0 or −1 denotes the identity of the defaulting counterparty (cf. (7.12)). The (G,Q) local martingale

component µ of Θ satisfies, for t ∈ [0, τ̄ ]:

dµt = dµ̃t −
(
ξ̃ıτ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τ−1}Λ− Θ̃τ−
)
dJt

−
( ∑
i=−1,0

(ξ̃it − Θ̃t)γit − (Pt − Ct − Θ̃t)+γ−1
t Λ

)
dt.

(7.19)

Proof. We use the notation � for stochastic integration. By (DGC.2) in Theorem 5, W̃ i = Bi − β̃i � λ
is an (F,P) Brownian motion, for i ∈ N?. Set m̃i = ς � W̃ i, hence mi = m̃i + ςβ̃i �λ. For fixed t ≤ T , for
any p ≥ 1, there exist constants, all denoted by the same symbol C, such that

Ẽ[
∑
i sups≤t |m

i
s|p] ≤ CẼ

[ ∑
i sups≤t |m̃

i
s|p +

∑
i(|ςβ̃

i| � λt)p
]

≤ CẼ
[ ∑

i sups≤t |m̃
i
s|p
]

+ CẼ
[

(1 +
∑
j sups≤· |m

j
s|p) � λt

]
= CẼ

[ ∑
i sups≤t |m̃

i
s|p
]

+ C + CẼ
[∑

j sups≤· |m
j
s|p
]
� λt,

9 Or Crépey et al. (2013, Lemma 2.5) in the journal version.
10 Not written as not directly used in the paper.
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where the definition of the process β̃i in (7.15) was used in conjunction with the linear growth of the
function βi in (7.8) to pass to the second line. Hence, by virtue of the Gronwall inequality,

Ẽ[
∑
i

sup
s≤t
|mi

s|p] ≤

(
1 + Ẽ

[ ∑
i

sup
s≤t
|m̃i

s|p
])

CeCt <∞,

from which γ′ = γ(·, X̃·−) = γ0(·, X̃·−) + γ−1(·, X̃·−) ∈ H̃2 follows by linear growth in m of the func-
tions γi in (7.8). As a consequence, well-posedness in H̃2 of the corresponding reduced TVA BSDE
(4.5) follows from Theorem 2 (assuming all the other conditions there). Since well-posedness in the
sense of Theorem 2 includes comparison and the usual a priori bound and error BSDE estimates,
the representation of the solution Θ̃· to the BSDE in terms of a continuous viscosity solution to the
corresponding semilinear PIDE (with continuous coefficients) follows from standard arguments (see
e.g. Delong (2013) or Crépey (2013, Chapter 13)). By Theorem 5, the reduced stochastic basis (F,P)
satisfies the condition (C), so that the remaining statements in the corollary follow from Theorem 1.

Presumably, reinforcing if need be the assumptions on f̃ , one could show that the function Θ̃(t, x̃) in
Corollary 71 is a classical (not only viscosity) solution to the corresponding PIDE (see e.g. Becherer
and Schweizer (2005)). In this case, an application of the Itô formula related to the (F,P) jump diffusion
X̃t = (mt, k̃t) yields the following functional representation of µ̃ in (7.19):

dµ̃t = ς(t)
∑
i∈N

∂miΘ̃(t,mt, k̃t)dW̃
i
t +

∑
i∈N?

δiΘ̃(t,mt, k̃t−)dM̃ i
t , (7.20)

where ∂miΘ̃ denotes the partial derivative of the function Θ̃ with respect to mi and where

δiΘ̃(t,m, k̃) = Θ̃(t,m, k̃i,t)− Θ̃(t,m, k̃). (7.21)

This formula shows the nature of the TVA Greeks in the DGC model, namely the integrands ∂miΘ̃(t,mt, k̃t)
and δiΘ̃(t,mt, k̃t−) in (7.20). For length care, we do not conduct the above-mentioned regularity anal-
ysis. Similar comments apply and will not be repeated regarding Corollaries 81 and 82.

7.3 Proof of the Existence of a Probability Measure P Satisfying (DGC.2)

In this section we use the notation � for stochastic integration. Let Qc denote the continuous martingale
component of the (F,Q) Azéma supermartingale S of τ .

Lemma 71 The process νc = 1
S �Qc satisfies, for t ∈ [0, T ] :

dνct =
∑
j∈J̃t−

ψjρ?t ,σ?t

(
Z̃t
)
dζjt −

∑
j∈J ?t−

ψjρ?t ,σ?t

(
Z?t
)
dζjt . (7.22)

For any j ∈ N?, τj admits an (F,Q) intensity given, for t ∈ R+, by

1{τj≥t}
( ḣj
α

)
(t)ψjρ?t ,σ?t

(
Z?t
)

= γ̄j(t,mt, k̃t), (7.23)

with predictable version

γ̄jt = γ̄j(t,mt, k̃t−). (7.24)

Proof. The formula (7.22) is obtained by Itô calculus applied to the expression (7.18) of S. The
statements about the (F,Q) intensity of τj are proven similarly to the analogous (G,Q) statements in
Theorem 3.

Corollary 72 There exists a constant C > 0 such that, for 0 ≤ r ≤ t and j ∈ N?,

〈νc〉t ≤ C(
∑
i∈N

sup
0<s≤t

|mi
s|2 + 1)t, (7.25)

γ̃jr ∨ γ̄jr ≤ C(
∑
i∈N

sup
0<s≤t

|mi
s|+ 1), γ̃jr ln(γ̃jr ∨ γ̄jr) ≤ C

∑
i∈N

sup
0<s≤t

(|mi
s|+ 1) ln(|mi

s|+ 1). (7.26)
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Proof. Applying Lemma A2 to the formula (7.22) and noting that the function α, continuous and
assumed positive, is bounded away from 0 on [0, T ], we obtain, for positive constants C that may
change from place to place:

〈νc〉t ≤ C
∫ t

0

(
∑
I⊆N

∑
j∈N\I

|Zj,Is (s)|+ 1)2ds ≤ C(
∑
I⊆N

∑
j∈N\I

sup
0<s≤t

|Zj,Is (s)|+ 1)2t,

which yields (7.25). Applying Lemma A2 to the formulas (7.23)–(7.24) and (7.5)–(7.6) (recalling also
γ̃jt = γj(t,mt, k̃t−)), we obtain the left hand side inequality in (7.26)), whence the right hand side
inequality follows from

γ̃jr ln(γ̃jr ∨ γ̄jr) ≤ C(max
i∈N

sup
0<s≤t

|mi
s|+ 1) ln

(
C(max

i∈N
sup

0<s≤t
|mi

s|+ 1)
)

= max
i∈N

sup
0<s≤t

C(|mi
s|+ 1) ln(C|mi

s|+ 1).

Our strategy for constructing a probability measure P satisfying (DGC.2) is as follows: a tentative
Q density of a probability measure P will be defined in the form of the stochastic exponential E(ν) in
(7.27) so that, on the one hand, the drift in the (F,Q) to (F,P) Girsanov measure change compensates
the drift in the (F,Q) to (G,Q) Jeulin progressive enlargement of filtration formula for the (F,Q)
Brownian motions (W̄ i in the proof of Theorem 6) and, on the other hand, the default intensities, given
by γ̄i as of (7.24) under (F,Q), become γ̃i under (F,P) (where, by definition in (7.15), γ̃i coincides with
the (G,Q) intensity γi before τ). The proof that this strategy works is essentially a matter of checking
that the tentative measure change density is a valid one, i.e. a positive (F,Q) martingale, for which
the estimates of Corollary 72 will be useful.

Let M̄ i = 1[τi,+∞) − γ̄i � λ. We consider the (F,Q) local martingale given as the Doléans-Dade

exponential E(ν), where ν = 1(0,T ]
1
S �Qc +

∑
i∈N? 1(0,T ](

γ̃i

γ̄i
− 1) � M̄ i, i.e.

E(ν) = E
(
1(0,T ]ν

c) ∏
i∈N?

(
1 + (

γ̃iτi
γ̄iτi
− 1)1{τi≤T}1[τi,+∞)

)
exp

∫ ·∧τi∧T
0

(
γ̄is − γ̃is

)
ds (7.27)

(recall νc = 1
S �Qc).

Lemma 72 There exists ε > 0 such that, for any s ∈ [0, T ]:

E
[
E
(
1(s,t]ν

) ∣∣Fs] = 1, t ∈ [s, s+ ε]. (7.28)

Proof. For notational simplicity, we only prove it for s = 0, i.e. we prove that, for t small enough, E (ν)
is an (F,Q) martingale on [0, t].

By Corollary 72, multivariate Hölder inequality and Lemma A3,

exp
(
〈νc〉t +

∑
i∈N?

∫ t

0

(γ̃is ln(γ̃is)− γ̃is ln(γ̄is)− γ̃i + γ̄is)ds
)

is Q integrable for sufficiently small t. Hence the result follows by an application of Lepingle and Mémin
(1978, Theorem IV.3).

Theorem 6 E(ν) is a positive (F,Q) martingale and the probability measure P with Q density process E(ν)
satisfies the condition (DGC.2).

Proof. Note that γ̃i, defined through γi by (7.14), is positive in view of (7.5), for any i ∈ N?. Hence,
E(ν) > 0. If T ≤ ε in (7.28), then the (F,Q) martingale property of E(ν) directly follows from Lemma
72. Otherwise, we write

E[E(ν)] = E
[
E
(
1(0,T−ε]ν

)
E
[
E
(
1(T−ε,T ]ν

) ∣∣FT−ε]] = E
[
E
(
1(0,T−ε]ν

)]
,

by (7.28) applied with s = T − ε and t = T, so that (F,Q) martingale property of E(ν) follows by
induction. Since E(ν) is a positive (F,Q) martingale, we can define a probability measure P equivalent
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to Q on FT by the Q density process E(ν). By the Girsanov theorem, the (F,P) intensity of τi is γ̃i,
i ∈ N?, and, denoting by W̄ i = Bi− β̄i �λ the (F,Q) Brownian motion obtained as the (F,Q) martingale
component of Bi, the process

Ŵ i = W̄ i − 〈νc, Bi〉 = Bi − (β̄i � λ + 〈νc, Bi〉)

is an (F,P) Brownian motion, for each i ∈ N . Moreover, by the Jeulin formula (see e.g. Dellacherie,

Maisonneuve, and Meyer (1992, no 77 Remarques b))), Ŵ i is a (G,Q) Brownian motion until time

τ, as is also W̃ i = Bi − β̃i � λ in (7.14), because β̃i·∧τ = βi·∧τ . Hence, W̃ i
·∧τ = W i

·∧τ . Therefore, the F
predictable processes β̄i �λ+〈νc, Bi〉 and β̃i �λ coincide until τ , hence on [0, T ] by positivity of ST given

by (7.18) (cf. the remark 41). In conclusion, W̃ i = Ŵ i, an (F,P) Brownian motion, for any i ∈ N?.

The (F,P) martingale representation property of the W̃ i, i ∈ N and M̃ i, i ∈ N? follows by equivalent
change of measure from the (F,Q) martingale representation property of the W̄ i, i ∈ N and M̄ i, i ∈ N?,

which can be proven as the (G,Q) martingale representation property of the W i, i ∈ N and M i, i ∈ N
in Theorem 4. Thus, all the conditions hold in (DGC.2).

Remark 74 W̄ i yields an (F,Q) local martingale that, stopped at τ, or equivalently (τ−) by continuity
of W̄ i, fails to be a (G,Q) local martingale. In fact, by the above computations, we have

W̄ i
·∧τ = W̃ i

·∧τ + J−(β̃i − β̄i) � λ,

where (β̃i− β̄i) �λ = 〈νc, Bi〉 is not null on [0, τ ], in view of the expression of νc in (7.22). This justifies
the “no immersion” statement before Theorem 5.

8 Dynamic Marshall-Olkin Copula TVA Model

The above dynamic Gaussian copula model can suffice to deal with TVA on CDS contracts. But a
Gaussian copula dependence structure is not rich enough for a joint calibration to CDS and tranches
data. If CDO tranches are also present in a portfolio, a possible alternative is the dynamic Marshall-
Olkin (DMO) copula model.

Here is an non-exhaustive list of notations introduced in the course of the study of the DMO
model.

Y Family of “shocks”, i.e. subsets Y ⊆ N of names likely to default together in the financial interpre-
tation.

ηY , γ
Y , BY Shock time ηY with intensity γY driven by an independent Brownian driven BY (or with
γY deterministic in an elementary DMO model specification).

Yb = {Y ∈ Y; −1 ∈ Y },Yc = {Y ∈ Y; 0 ∈ Y },Y• = Yb ∪ Yc,Y◦ = Y \ Y• Collection of the shocks trig-
gering the default of the bank, of the counterparty, of at least one of them, of none of them.

τi = min{Y ∈Y;i∈Y } ηY , τb = τ−1 = minY ∈Yb ηY , τc = τ0 = minY ∈Yc ηY Default time of name i in the
DMO model, of the bank (i.e. name -1), of the counterparty (i.e. name 0).

γYt , H
Y
t = 1{ηY ≤t},K

Y
t = (1{ηY ≤t}, ηY 1{ηY ≤t}) DMO Markov primitives.

Xt = (Γt,Ht) where Γ = (γY )Y ∈Y , H = (HY )Y ∈Y Full DMO model Markov factor process (case where
δ = 0).

X̃t = (Γt, H̃t) where Γ = (γY )Y ∈Y , H̃ = (1Y ∈Y◦H
Y )Y ∈Y . Reduced DMO model Markov factor pro-

cess (case where δ = 0).
Xt = (t,Γt,Kt) where Γ = (γY )Y ∈Y , K = (KY )Y ∈Y Full DMO model Markov factor process in the

cure period case where δ > 0.

8.1 Model of Default Times

We define a family Y of “shocks”, i.e. subsets Y ⊆ N of obligors, usually consisting of the singletons
{−1}, {0}, {1}, . . . , {n}, and of a few “common shocks” representing simultaneous defaults. The shock
intensities are given in the form of extended CIR processes as, for every Y ∈ Y,

dγYt = a(bY (t)− γYt )dt+ c

√
γYt dB

Y
t , (8.1)



26 S. Crépey and S. Song

for nonnegative constants a and c, continuous functions bY (t) and independent Brownian motions BY

in their own completed filtration B = (Bt)t≥0, under the risk-neutral measure Q. In fact, one could

use any independent Markov processes γY with semi-analytic formulas for Ee−
∫ t
0
γYs ds, for calibration

purposes, and square integrable, for the sake of (5.10). The case of deterministic intensities γYt = bY (t)
is treated in a similar fashion. We emphasize that, even if we don’t engage into any calibration exercise
in this paper, the empirical study in Bielecki et al. (2014a, Part II) shows that this model is efficiently
calibratable to CDS and CDO market data, including at the peak of the 2007–2008 credit crisis. Shock
random times (avoiding each other) and their indicator processes are defined by

ηY = inf{t > 0;

∫ t

0

γYs ds > εY } and HY
t = 1{ηY ≤t}, Y ∈ Y, (8.2)

where the εY are i.i.d. standard exponential random variables. The full model filtration G is given as
B progressively enlarged by the random times ηY , Y ∈ Y. Let MY denote the compensated martingale
dMY

t = dHY −(1−HY
t )γYt dt, t ≥ 0. We define Γ = (γY )Y ∈Y ,H = (HY )Y ∈Y and τi = min{Y ∈Y;i∈Y } ηY ,

i ∈ N.

Theorem 7 The dynamic Marshall-Olkin (or common-shock) model is a recursively immersed model of

default times. For t ≥ 0,we have

Gt = Bt ∨
∨
Y ∈Y

(
σ(ηY ∧ t) ∨ σ({ηY > t})). (8.3)

The BY and the MY , Y ∈ Y, have the (G,Q) martingale representation property.

Proof. We prove the martingale representation property and (8.3) by induction as follows. We write
G = GY . If Y is a singleton (case of a Cox time in view of (8.2)), then the immersion of B into GY
implies the results, by the optional splitting formula (6.6) for (8.3) and by Jeanblanc and Song (2013,
Theorem 6.4) for the martingale representation property. Moreover, if Z is obtained by addition of a
new Z ⊆ N to Y, then the independence of the εY implies that ηZ is a Cox time with intensity in GY ,
hence immersion of GY into GZ follows (this is the recursively immersed feature stated in the lemma)
and the results for GZ are implied likewise from those, if assumed, for GY .

8.2 DMO TVA Model

A DMO setup can be used as a TVA model for credit derivatives, with

Eb = Yb := {Y ∈ Y; −1 ∈ Y }, Ec = Yc := {Y ∈ Y; 0 ∈ Y }, E = Y• := Yb ∪ Yc.

In particular,

τb = τ−1 = min
Y ∈Yb

ηY , τc = τ0 = min
Y ∈Yc

ηY , hence τ = min
Y ∈Y•

ηY , γ = J−
∑
Y ∈Y•

γY . (8.4)

The results of Crépey and an Introductory Dialogue by D. Brigo) (2014, Corollary 8.3.1 page 205)11

show that in the case of a portfolio of vanilla credit derivatives on names in N , e.g. CDS contracts and
CDO tranches as of (6.12), we have a semi-explicit formula for P of the form

Pt = P (t,Γt,Ht), (8.5)

for a continuous function P. We assume that for every process U = P, (D − D−), Cc and Cb, there
exists a continuous function Ũ = ŨY (t,γ,k), rewritten for brevity ∆̃ in the case of (D −D−) (noting
that, in the present case where δ = 0, the process (D−D−) plays the role of the process ∆ when δ 6= 0),
such that

Uτ = ŨY (τ,Γτ ,Hτ−), (8.6)

11 Or Bielecki et al. (2014a, Part II, Corollary 3.1) in the journal version.
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or ŨYτ in a shorthand notation12, holds on every event of the form {τ = ηY }, Y ∈ Y•. For vanilla credit
derivatives on names in N , e.g. CDS contracts and CDO tranches as of (6.12), the above condition
always holds regarding U = P , by (8.5) and the DMO analog of the DGC identity (7.11), and in view
of (6.12) it also holds for U = D − D−. As will be illustrated by the right graph in our concluding
figure 7, the ∆̃Y convey the gap risk effect in the DMO model. The conditions (8.6) on U = Cc and
Cb may be satisfied or not depending on the CSA (see the remark 72). In view of (6.8), the coefficient
ξ̃ (in the present no cure period case where δ = 0) is given as

ξ̃Yt = 1Y ∈Yc(1−Rc)
(
P̃Yt + ∆̃Yt − C̃c,Yt

)+ − 1Y ∈Yb(1−Rb)(P̃Yt + ∆̃Yt − C̃b,Yt
)−
, Y ∈ Y•. (8.7)

The coefficient f̂t(ϑ) in (6.10) is given, on [0, τ̄ ], by

f̂t(ϑ) + (rt + γt)ϑ = (1−Rc)
∑
Y ∈Yc

γYt
(
P̃Yt + ∆̃Yt − C̃c,Yt

)+ − (1−Rb)
∑
Y ∈Yb

γYt
(
P̃Yt + ∆̃Yt − C̃b,Yt

)−
+ ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− ,

(8.8)

where λ̃t = λ̄t − Λ
∑
Y ∈Yb γ

Y
t . Let Y◦ = Y \ Y• and let X̃t = (Γt, H̃t), where H̃ = (1Y ∈Y◦H

Y )Y ∈Y .

We assume that the processes r, c, λ, λ̄, P and C are given before τ as continuous functions of (t, X̃t).
Regarding P , (8.5) shows that this property always holds in the case of vanilla credit derivatives on
names in N . Note that, in view of the last identity in (8.4), this property is also verified by the process
γ. The next result, stated without proof, is the DMO analog of the DGC Theorem 5. There the main
difficulty, related to (DGC.2), came from the fact that we had to use P 6= Q, as opposed to P = Q simply
here. This is an easier case of immersion in the sense of the comments following the statement of the
condition (C) (note that the Azéma supermartingale given by (8.10) is continuous and nonincreasing,
consistent with this immersion property of the setup). Hence we state the result without proof.

Theorem 8 The condition (C) holds, for:

(DMO.1) a reference filtration F = (Ft) in (C.1) given as B progressively enlarged by the ηY , Y ∈ Y◦,
which satisfies

Ft = Bt ∨
∨

Y ∈Y◦

(
σ(ηY ∧ t) ∨ σ({ηY > t})

)
, t ≥ 0,

(DMO.2) P = Q in (C.2), where the BY , Y ∈ Y, and the MY , Y ∈ Y◦, have the (F,P = Q) martingale

representation property,

(DMO.3) a Markov specification f̃t(ϑ) = f̃(t, X̃t, ϑ) of (C.3), for the (F,P = Q) jump diffusion X̃t =
(Γt, H̃t) and the function f̃ = f̃(t, x̃, ϑ) given, writing x̃ = (t,γ, k̃) for γ = (γY )Y ∈Y ∈ RY+ and

k̃ = (kY )Y ∈Y ∈ {0, 1}Y with kY = 0 if Y ∈ Y•, by:

f̃(t, x̃, ϑ) + (r(t, x̃) + γ(t, x̃))ϑ =

(1−Rc)
∑
Y ∈Yc

γY
(
P̃Y + ∆̃Y − C̃cY

)+
(t, x̃)− (1−Rb)

∑
Y ∈Yb

γY
(
P̃Y + ∆̃Y − C̃bY

)−
(t, x̃)

+
(
cC + λ̃

(
P − ϑ− C

)+ − λ(P − ϑ− C)−)(t, x̃),

(8.9)

where γ(t, x̃) =
∑
Y ∈Y•γY , λ̃ = λ̄− Λ

∑
Y ∈Yb γY .

In addition, (F,P = Q) local martingales don’t jump at τ , τ avoids F stopping times, the condition (B) is

satisfied and the Azéma supermartingale S of τ is given, for t ∈ [0, T ], by

St = e−
∑
Y∈Y•

∫ t
0
γYs ds > 0. (8.10)

In particular, the DMO model is a marked default times setup, where the full and reduced BSDEs are equiv-

alent.

Since the condition (C) is satisfied, we can derive the following DMO analog, stated without proof, of
the DGC corollary 71.

12 And to alleviate the notation we rewrite (C̃c)Y as C̃c,Y , (C̃c)Y as C̃cY , etc..
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Corollary 81 In the DMO model, we have γ′ = γ(·, X̃·) =
∑
Y ∈Y•γ

Y ∈ H̃2. Assuming all the other

conditions in Theorem 2 and without cure period, so for δ = 0 and f̃ = f̃(t,γ, k̃, ϑ) as of (8.9), the

corresponding reduced TVA BSDE (4.5) admits a unique square integrable solution Θ̃t = Θ̃(t, X̃t), where

the function Θ̃(t, x̃) is a continuous viscosity solution to the corresponding semilinear PIDE. A solution Θ

to the full TVA BSDE (3.6) is obtained by setting Θ = Θ̃ on [0, τ̄) and

Θτ̄ = 1{τ<T}

(
ξ̃ıτ − (Pτ− − Cτ− − Θ̃τ−)+

1{−1∈ı}Λ
)
,

where ı ∈ Y• is the identity of the shock triggering the first default of a party. The (G,Q) local martingale

component µ of Θ satisfies, for t ∈ [0, τ̄ ]:

dµt = dµ̃t −
(
ξ̃ıτ − Θ̃τ− − (Pτ− − Cτ− − Θ̃τ−)+

1{−1∈ı}Λ
)
dJt

−
( ∑
Y ∈Y•

(ξ̃Yt − Θ̃t)γYt − (Pt − Ct − Θ̃t)+Λ
∑
Y ∈Yb

γYt

)
dt.

(8.11)

8.3 Cure Period

In our DGC and DMO examples so far, we postulated no cure period, i.e. δ = 0. Let’s now assume, in
a DMO setup, a positive cure period δ, with a P(G) measurable C = (V, Ic, Ib) and with deterministic
interest rates rt for simplicity. Similar considerations would apply in a DGC setup. In the case of
vanilla credit derivatives (CDS contracts and CDO tranches with promised dividends given by (6.12)),

in a deterministic interest rate environment, the process ∆t =
∫
[τ,t]

e
∫ t
s rududDs is a function of the

default times in [τ, t]. Writing KY
t = (1{ηY ≤t}, ηY 1{ηY ≤t}) = (HY

t , ηYH
Y
t ), K = (KY )Y ∈Y , ∆?t =∫

[0,t]
e−

∫ s
t rududDs (so that βt∆t = βt∆

?
t − βτ∆?τ−), we consider a cure period (G,Q) factor process

Xt = (t,Γt,Kt). By application of the results of Bielecki, Jakubowski, and Niewȩglowski (2012) (or by
a direct proof based on Heath and Schweizer (2000, Theorem 1) and Becherer and Schweizer (2005,
Corollary 2.3)), X is a (G,Q) homogeneous strong Markov process. Recall from (5.4) and (5.2) that

ξ = 1{τc≤τδb }
(1−Rc)(Qτδ − C

c
τ )+ − 1{τb≤τδc }(1−Rb)(Qτδ − C

b
τ )−, (8.12)

where

1{τc≤τδb }
= 1{τc≤τδ} = 1−

∏
Y ∈Yc

(1−HY
τδ ), 1{τb≤τδc } = 1{τb≤τδ} = 1−

∏
Y ∈Yb

(1−HY
τδ ).

Moreover, in the case of vanilla credit derivatives such as CDS and CDO contracts as of (6.12), we
have in the DMO model:

Qτδ = Pτδ +∆τδ = Pτδ +∆?τδ − e
∫ τδ
τ rudu∆?τ− = P (τδ,Γτδ ,Kτδ ) +∆?(τ

δ,Γτδ ,Kτδ )− e
∫ τδ
τ rudu∆?τ−,

for continuous functions P and ∆?.

Remark 81 Similar as in the DGC case (see the remark 71), any continuity statement with respect
to the second components tY of the values kY of the KY

t , Y ∈ Y, has to be understood in the sense of
the corresponding “order sets” domain and topology.

Hence, ξ can be written in functional form as

ξ = ξ?(τ
δ,Γτδ ,Kτδ ,Cτ ,∆

?
τ−) = ξ?(Xτδ ,Cτ ,∆

?
τ−), (8.13)

for some function ξ? continuous in the values x of X and where Cτ and ∆?τ− are considered as Gτ
measurable parameters. We consider the (F,P = Q) reduced factor process X̃t = (Γt, K̃t,C

′
t, (∆

?
−)′t),

where K̃ = (1Y ∈Y◦K
Y )Y ∈Y . Note that there exist unique F predictable reductions C′ of C (assumed

G predictable) and (∆?−)′ of ∆?− on [0, T ], by virtue of the condition (B) and of the positivity of ST
established in the DMO model in Theorem 5. We denote by k and x̃ respective values of K (or K̃) and
X̃ and we write kY,t for the vector obtained from k by replacing the component with index Y by (1, t).
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Lemma 81 We have cdvat = Jt−cdva(t, X̃t), Q× λ a.e., where

cdva(t, X̃t) =
∑
Y ∈Y•

γYt ξ̄
(
t,Γt, K̃

Y,t
t ,C′t, (∆

?
−)′t), (8.14)

for a continuous function ξ̄(t, x̃) such that

ξ̄τ = ξ̄(τ, X̃τ ). (8.15)

Proof. In view of (8.13), the (G,Q) Markov property of X yields

ξ̄τ = E(β−1
τ βτδξ | Gτ ) = E(β−1

τ βτδξ?(Xτδ ,Cτ ,∆
?
τ−) | Gτ ) = ξ̄(Xτ ,Cτ ,∆

?
τ−), (8.16)

for some continuous function ξ̄(x, c, d). On {τ = ηY < T}, we have

Kτ = (K̃τ−)Y,τ

and hence

ξ̄
(
Xτ ,Cτ ,∆

?
τ−
)

= ξ̄
(
τ,Γτ ,Kτ ,Cτ ,∆

?
τ−
)

= ξ̄
(
τ,Γτ , (Kτ−)Y,τ ,Cτ ,∆

?
τ−
)

= ξ̄
(
τ,Γτ , (K̃τ−)Y,τ ,C′τ , (∆

?
−)′τ

)
,

(8.17)

from which the results follows by an application of Lemma 61.

In view of (5.6) and of Lemma 81, postulating that lvat(ϑ) in (5.6) is given before τ as a continuous
function lva(t, X̃t, ϑ), the condition (6.11) holds for the function f̃(t, x̃, ϑ) such that, with x̃ = (γ, k̃, c, d)
and γ(t, x̃) =

∑
Y ∈Y• γY :

f̃(t, x̃, ϑ) + (r(t) + γ(t, x̃))ϑ = cdva(t, x̃) + lva(t, x̃, ϑ). (8.18)

Therefore, Theorem 8 still holds for δ > 0 with f̃ as of (8.18) instead of (8.9) in (DMO.3). Hence, we
can derive the following cure period analog of Corollary 81.

Corollary 82 In the DMO model, we have γ′ = γ(·, X̃·) =
∑
Y ∈Y•γ

Y ∈ H̃2. Assuming all the other

conditions in Theorem 2 and for a cure period δ > 0, hence for f̃ = f̃(t,γ, k̃, c, d, ϑ) as of (8.18), the

corresponding reduced TVA BSDE (4.5) admits a unique square integrable solution Θ̃t = Θ̃(t, X̃t), where

the function Θ̃(t, x̃) is a continuous viscosity solution to the corresponding semilinear PIDE. A solution Θ

to the full TVA BSDE (3.6) is obtained by setting Θ = Θ̃ on [0, τ̄) and

Θτ̄ = 1{τ<T}

(
ξ̄
(
τ,Γτ , (K̃τ−)ı,τ ,C′τ , (∆

?
−)′τ

)
− (Pτ− − Cτ− − Θ̃τ−)+

1{−1∈ı}Λ
)
,

where ı ∈ Y• is the identity of the shock triggering the first default of a party. The (G,Q) local martingale

component µ of Θ satisfies, for t ∈ [0, τ̄ ]:

dµt = dµ̃t −
(
ξ̄
(
τ,Γτ , (K̃τ−)ı,τ ,C′τ , (∆

?
−)′τ

)
− Θ̃t− − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ
)
dJt

−
( ∑
Y ∈Y•

(ξ̄
(
t,Γt, (K̃t)

Y,t,C′t, (∆
?
−)′t
)
− Θ̃t)γYt − (Pt − Ct − Θ̃t)+Λ

∑
Y ∈Yb

γYt

)
dt.
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9 Numerical Implementation and Results

Due to funding costs, the TVA equations are nonlinear BSDEs. In the case of credit derivatives, they are
also very high-dimensional. For nonlinear and very high-dimensional problems, any numerical scheme
based, even to some extent, on dynamic programming, such as purely backward deterministic PDE
schemes, but also forward/backward simulation/regression BSDE schemes, are ruled out by the curse
of dimensionality (see e.g. Crépey (2013, Part IV)). Now, in any bottom-up credit portfolio model
such as the DGC or the DMO model, the dimension is at least the number of credit names. Hence,
for n greater than a few units, the only feasible TVA schemes are purely forward simulation schemes,
such as the branching particles scheme of Henry-Labordère (2012) or a Monte Carlo estimation of the
successive terms of the linear expansion of Fujii and Takahashi (2012a,2012b), respectively dubbed
“PHL scheme” and “FT scheme” below. In our setup, the PHL scheme involves a nontrivial and rather
sensitive fine-tuning for finding a polynom in ϑ that approximates the terms (Pt − Ct − ϑ)± in lvat(ϑ)
in a suitable range for ϑ. Ideally, such a polynom should be adaptive and depend on (Pt − Ct), but
in a PHL scheme the approximating polynom has to be fixed once for all in the simulation. The only
way we were able to achieve a good fine-tuning is by using a preliminary knowledge on the solution
obtained by running the FT scheme or a linear approximation in the first place. Since a numerical
scheme that can be run automatically and does not involve any fine-tuning is preferable, we focus on
the FT scheme in the sequel.

9.1 Fujii and Takahashi’s TVA Linear Expansion

The FT scheme is based on an expansion of the coefficient, hence of the solution Θ̃, to a Markovian
BSDE on [0, T ] such as (4.5)/(6.11), as a series Θ̃ ≈ Θ̃(0) + Θ̃(1) + Θ̃(2) + Θ̃(3) + · · · of solutions to linear
BSDEs, where the next BSDE in the series uses the solution to the previous one as input data. Let

f̄(t, x̃, ϑ) := f̃(t, x̃, ϑ) + γ(t, x̃)ϑ = cdva(t, x̃) + lva(t, x̃, ϑ)− r(t, x̃)ϑ (9.1)

(cf. (5.6)). In order to exploit some cancellation between related discount factors in Lemma 91 below,
it is preferable to use an FT expansion of the coefficient f̄ rather than f̃ , treating the γ(t, x̃)ϑ term in
f̃ as a discount factor (cf. the right identity in (5.8)). In terms of f̄ , the reduced BSDE (4.5) is written
as: Θ̃T = 0 and, for t ∈ [0, T ],

−dΘ̃t = f̃(t, X̃t, Θ̃t)dt− dµ̃t =
(
f̄(t, X̃t, Θ̃t)− γ(t, X̃t)Θ̃t

)
dt− dµ̃t.

The corresponding FT expansion reads (cf. Fujii and Takahashi (2012a, Equations (2.4), (2.6) and
(2.7) in the arXiv version)): Θ̃εT = 0 and, for t ∈ [0, T ],

−dΘ̃εt =
(
εf̄(t, X̃t, Θ̃

ε
t)− γ̃(t, X̃t)Θ̃

ε
t

)
dt− dµ̃εt

Θ̃εt = Θ̃
(0)
t + εΘ̃

(1)
t + ε2Θ̃

(2)
t + ε3Θ̃

(3)
t + · · ·

f̄(t, X̃t, Θ̃
ε
t) = f̄(t, X̃t, Θ̃

0
t ) +

(
εΘ̃(1) + ε2Θ̃(2) + ε3Θ̃(3) + · · ·

)
∂ϑf̄(t, X̃t, Θ̃

(0)
t ) + . . . .

Quoting Fujii and Takahashi (2012a, page 4 in the arXiv version), “by putting ε = 1, Θ̃(0) + Θ̃(1) +
Θ̃(2) + Θ̃(3) + · · · is expected to provide a reasonable approximation for the original Θ̃ as long as the
residual term is small enough to allow the perturbative treatment.” This is studied mathematically in
a diffusive setup in Takahashi and Yamada (2015). Collecting all terms in εi, the resulting first Θ̃(i)

terms are written as Θ̃(0) = 0, due to the null terminal condition of the reduced TVA BSDE (4.5), and

Θ̃
(1)
t = Ẽ

[ ∫ T

t

e−
∫ s
t γ(r,X̃r)dr f̄

(
s, X̃s, Θ̃

(0)
s = 0

)
ds
∣∣Ft],

Θ̃
(2)
t = Ẽ

[ ∫ T

t

e−
∫ s
t γ(r,X̃r)dr∂ϑf̄

(
s, X̃s, Θ̃

(0)
s = 0

)
Θ̃

(1)
s ds

∣∣Ft],
Θ̃

(3)
t = Ẽ

[ ∫ T

t

e−
∫ s
t γ(r,X̃r)dr∂ϑf̄

(
s, X̃s, Θ̃

(0)
s = 0

)
Θ̃

(2)
s ds

∣∣Ft].
(9.2)
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The first two lines correspond to the identities (2.19) and (2.22) in the arXiv version of Fujii and
Takahashi (2012a). Compared with the third line, the complete third order term comprises another
component based on ∂2

ϑ2 f̃ . In our case, ∂2
ϑ2 f̃ involves a Dirac measure via the terms (Pt − Ct − ϑ)±

in lvat(ϑ) (cf. (5.6)), so that we truncate the expansion to the term Θ̃
(3)
t as above. Moreover, we use

the interacting particles implementation of these formulas provided in Fujii and Takahashi (2015) and
Fujii, Sato, and Takahashi (2014). Namely, we randomize, based on independent exponential draws ζj
with parameters µj , each time integral that intervenes in (9.2) either explicitly or implicitly through

the terms Θ̃
(1)
s and Θ̃

(2)
s . Specifically, the following identities follow from (9.2) by the tower rule :

Θ̃
(1)
0 = Ẽ

[
1ζ1<T

eµ1ζ1

µ1
e−

∫ ζ1
0 γ(r,X̃r)dr f̄

(
ζ1, X̃ζ1 , 0

)]
,

Θ̃
(2)
0 = Ẽ

[
1ζ1+ζ2<T

eµ1ζ1+µ2ζ2

µ1µ2
e−

∫ ζ1+ζ2
0 γ(r,X̃r)dr∂ϑf̄

(
ζ1, X̃ζ1 , 0

)
f̄
(
ζ1 + ζ2, X̃ζ1+ζ2 , 0

)]
,

Θ̃
(3)
0 = Ẽ

[
1ζ1+ζ2+ζ3<T

eµ1ζ1+µ2ζ2+µ3ζ3

µ1µ2µ3
e−

∫ ζ1+ζ2+ζ3
0 γ(r,X̃r)dr×

∂ϑf̄
(
ζ1, X̃ζ1 , 0

)
∂ϑf̄

(
ζ1 + ζ2, X̃ζ1+ζ2 , 0

)
f̄
(
ζ1 + ζ2 + ζ3, X̃ζ1+ζ2+ζ3 , 0

)]
.

(9.3)

In the case of dynamic (G,Q) copula models as considered in this second part of the paper, (F,P)
simulation may be nontrivial. That would for instance be an issue in the DGC model (in the DMO
model (F,P = Q) simulation is equally easy as (G,P = Q) simulation due to the immersion properties of
the setup). But, as explained after the next result, it is always possible to reformulate the P expectations
in (9.3) as Q expectations, by a direct formula not involving any Girsanov weights, which allows

estimating the Θ̃
(i)
0 simply by (G,Q) simulation.

Lemma 91 Assuming the conditions (B) and (C) and the positivity of ST , then, for any F progressively

measurable nonnegative process h and any independent nonnegative random variable ζ, it holds:

Ẽ
[
1{ζ<T}e

−
∫ ζ
0
γ′sdshζ

]
= E

[
1{ζ<τ̄}hζ

]
. (9.4)

Proof. By Fubini’s theorem, we only need to prove the lemma for ζ = s constant positive. Let Hs =
1{s<T}hs. Since h is F adapted, E[Hs1{s<τ}] = E[HsSs]. We recall from Crépey and Song (2015a,
Lemma 2.2 5)) the following multiplicative stochastic exponential decomposition of S on [0, T ] (having
assumed ST > 0):

S = S0E(−
1

S−
�D)E( 1

pS
�Q),

where S = Q−D is the (F,Q) canonical Doob-Meyer decomposition of S. By Crépey and Song (2015a,
Theorem 3.1), the (F,Q) density process of P is given by E( 1

pS �Q) on [0, T ]. Therefore,

E[Hs1{s<τ}] = E[HsSs] = E[HsS0E(−
1

S−
�D)sE(

1
pS

�Q)s] = Ẽ[HsS0E(−
1

S−
�D)s]. (9.5)

Note that S0 = 1 and D is the drift of the Azema supermartingale of τ in (F,Q), so that D is absolutely
continuous, i.e. D = ν�λ for some density process ν. Hence, the stochastic exponential E(− 1

S−
�D) is a

usual exponential. By Jeulin (1980, Remark 4.5), 1(0,τ ]
ν
S−

�λ is the (G,Q) predictable dual projection

of 1[τ,∞). Therefore,

1(0,τ ]
ν

S−
= γ′1(0,τ ],

so that, in view of the remark 41, ν
S−

= γ′ holds on [0, T ]. As a consequence, after substitution of ζ for

s, the identity (9.5) is rewritten as (9.4).
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Applications of Lemma 91 to (9.3) yield

Θ̃
(1)
0 = E

[
1ζ1<τ̄

eµ1ζ1

µ1
f̄
(
ζ1, X̃ζ1 , 0

)]
,

Θ̃
(2)
0 = E

[
1ζ1+ζ2<τ̄

eµ1ζ1+µ2ζ2

µ1µ2
∂ϑf̄

(
ζ1, X̃ζ1 , 0

)
f̄
(
ζ1 + ζ2, X̃ζ1+ζ2 , 0

)]
,

Θ̃
(3)
0 = E

[
1ζ1+ζ2+ζ3<τ̄

eµ1ζ1+µ2ζ2+µ3ζ3

µ1µ2µ3

∂ϑf̄
(
ζ1, X̃ζ1 , 0

)
∂ϑf̄

(
ζ1 + ζ2, X̃ζ1+ζ2 , 0

)
f̄
(
ζ1 + ζ2 + ζ3, X̃ζ1+ζ2+ζ3 , 0

)]
.

(9.6)

In the two cases considered with δ = 0 in this second part of the paper, the reduced factor process
X̃ consists of some components of a full factor process X, namely Xt = (mt,kt) in the DGC setup
without cure period of Sect. 7.2 and Xt = (Γt,Ht) in the DMO setup without cure period of Sect. 8.2.

Hence, for δ = 0, we can compute the Θ̃
(i)
0 based on (9.6) by (G,Q) simulation of X, which is fast and

easy in both cases based on the copula properties of each model. In the DMO setup with positive cure
period δ > 0 of Sect. 8.3, one residual difficulty with the formulas (9.6) is that f̄(t, x̃, ϑ) in (9.1) involves
nontrivial cdva(t, x̃) terms as of (8.14). But the computation of these can be avoided by resorting to

the following add-on to Lemma 91, (9.7) implying that the Θ̃
(i)
0 in (9.6) can be computed by (G,Q)

simulation of X, C and ∆?. Recall ξ? from (8.13).

Lemma 92 In the DMO setup with positive cure period δ > 0 of Sect. 8.3, the notation of which we use

here, for any F predictable process h and for any independent diffuse random variable ζ such that hζ is Q
integrable, we have:

E[1{ζ<τ̄}hζcdva(ζ, X̃ζ)] = E
[
1{ζ<τ̄}hζ

∑
Y ∈Y• γ

Y
ζ e
−

∫ ζ+δ
ζ r(s)dsξ?

(
XY,ζ
ζδ

,Cζ ,∆
?
ζ

)]
, (9.7)

where we write XY,s
t = (t,Γt, (Kt)

Y,s), for any 0 ≤ s ≤ t.

Proof. By the recursively immersed feature of the DMO model (Markov copula properties of Bielecki
et al. (2014a, Part I) and Bielecki, Jakubowski, and Niewȩglowski (2012)), the process X−Y obtained
as X deprived from the Y th component of K is a (G,Q) homogeneous strong Markov process, for any
Y ∈ Y. We denote by T Yδ the transition function of the process X−Y killed at the rate r over the time
horizon δ, i.e., k−Y representing a value of K deprived from its Y th component,

(ϕ, (t,γ,k−Y ))→ T Yδ [ϕ](t,γ,k−Y ) = E
[
e−

∫ tδ
t r(s)dsϕ(X−Y

tδ
)|X−Yt = (t,γ,k−Y )

]
= E

[
e−

∫ tδ
t r(s)dsϕ(X−Y

tδ
)|Gt

]
.

On {τ = ηY }, we have Kτδ = (Kτδ )
Y,τ , hence (cf. (8.13))

ξ = ξ?(τ
δ,Γτδ , (Kτδ )

Y,τ ,Cτ ,∆
?
τ−) = ξY (X−Y

τδ
,Cτ ,∆

?
τ−),

for functions ξY such that, for any x = (s,γ,k), c, d,

ξY (x−Y , c, d) = ξ?(s,γ,k
Y,s−δ, c, d).

Viewing Cτ and ∆?τ− as Gτ− measurable parameters, we compute:

ξ̄τ = E[e−
∫ τδ
τ r(s)dsξ|Gτ ] = E[e−

∫ τδ
τ r(s)ds

∑
Y ∈Y•

ξY (X−Y
τδ

,Cτ ,∆
?
τ−)1{τ=ηY }|Gτ ]

=
∑
Y ∈Y•

E[e−
∫ τδ
τ r(s)dsξY (X−Y

τδ
,Cτ ,∆

?
τ−)1{τ=ηY }|Gτ ]

=
∑
Y ∈Y•

T Yδ [ξY (·,Cτ ,∆
?
τ−)](X−Yτ )1{τ=ηY } =

∑
Y ∈Y•

T Yδ [ξY (·,Cτ ,∆
?
τ−)](X−Yτ− )1{τ=ηY },
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where the fact that {τ = ηY } = {τ ≥ ηY } ∈ Gτ (resp. X−Y doesn’t jump at τ on {τ = ηY }) was used
to pass to the third line (resp. in the last identity). Hence, Lemma 61 yields

cdvat = Jt−
∑
Y ∈Y•

γYt T Yδ [ξY (·,Ct,∆
?
t−)](X−Yt− ), Q× λ a.e. (9.8)

As a consequence, given an independent random variable ζ with density p such that hζ is Q integrable,

we can write, using respectively the formula (9.8) and the definition of T Yδ to pass to the second and
third line:

E[hζ 1{ζ≤τ̄}cdva(ζ, X̃ζ)] =
∫ T
0

E
[
ht1{t<τ̄}cdva(t, X̃t)

]
p(t)dt =

∫ T
0

E
[
ht1{t<τ̄}cdvat

]
p(t)dt

=
∫ T
0

E
[
ht1{t≤τ}

∑
Y ∈Y• γ

Y
t T Yδ [ξY (·,Ct,∆

?
t−)](X−Yt )

]
p(t)dt

=
∫ T
0

E
[
ht1{t≤τ}

∑
Y ∈Y• γ

Y
t E
[
e−

∫ tδ
t r(s)dsξY (X−Y

tδ
,Ct,∆

?
t−)|Gt

]]
p(t)dt

=
∫ T
0

E
[
ht1{t≤τ}

∑
Y ∈Y• γ

Y
t e
−

∫ tδ
t r(s)dsξ?(t

δ,Γtδ , (Ktδ )
Y,t,Ct,∆

?
t−)
]
p(t)dt

= E
[
1{ζ≤T}hζ1{ζ≤τ}

∑
Y ∈Y• γ

Y
ζ e
−

∫ ζδ
ζ r(s)dsξ?(X

Y,ζ
ζδ

,Cζ ,∆
?
ζ)
]
.

Note that this proof exploits the specific immersion and Markov copula properties of the DMO model,
through which each process X−Y is Markov in the full model filtration G.

To conclude this paper we present TVA computations in the above DGC and DMO models,
on CDS contracts and protection legs of CDO tranches corresponding to dividend processes of the
respective forms Di and D as of (6.12). For these computations we follow the most conservative TVA
approach of ignoring windfall benefits at own default, setting Rb = 1 and Λ = 0 (see the remark 54),
which allows numerical validation of the results based on the reduced BSDE (1) by results based on
the full BSDE (3.6). Namely, further setting c = λ = 0, we have the following linear approximation
formula for the time-0 value of the solution to the full TVA BSDE:

Θ0 ≈ E
[
1{τ<T}βτδξ +

∫ τ̄

t

βsgs(Ps)ds
]

= E
[
1{τ<T}βτδ1{τc≤τδb }

(1−Rc)(Pτδ +∆τδ − Cτ )+ +

∫ τ̄

t

βsλ̄s (Ps − Cs)+
ds
]
.

(9.9)

For λ̄ = 0, this approximation is exact and a Monte Carlo loop based on the second line in (9.9) yields

an unbiased estimate for Θ0 = Θ̃0 alternative to Monte Carlo estimates for Θ̃
(1)
0 + Θ̃

(2)
0 + Θ̃

(3)
0 in (9.3)

or (9.6). For λ̄ 6= 0, (9.9) is only a linear approximation to Θ0.
Unless stated otherwise, the following numerical values are used (on top of Rb = 1 and Λ = c =

λ = 0, for consistency with (9.9), and of the values set after (6.12) regarding the parameters of the
credit derivative contracts):

r = 0, Rc = 40%, δ = 0, V = Ic = Ib = 0, λ̄ = 100 bp = 0.01, µj =
2

T
, m = 104, (9.10)

where m is the number of runs that are used in all the Monte Carlo estimates. In particular, for these
data, Θ is nonnegative.

9.2 Numerical Results in the DGC Model

We start by TVA computations on CDS contracts with maturity T = 10 years in a DGC model with
ς =

1[0,T+1]√
T+1

and % = 0.6 unless otherwise stated. The functions hi are chosen so that the τi follow

exponential distributions calibrated to the fair contractual CDS spreads that appear in Table 1. In
Figure 2, the left graph shows the TVA on a CDS on name 1, computed in a DGC model with n = 1 by
FT schemes of order 1 to 3, for different levels of nonlinearity represented by the value of the unsecured
borrowing spread λ̄. The right graph shows similar results regarding a portfolio of one CDS contract on
each name i = 1, . . . , 10. The time-0 clean value of the default leg of the CDS in case n = 1, respectively
the sum of the ten default legs in case n = 10, is 4.52, respectively 40.78 (of course P0 = 0 in both
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i -1 0 1
Si 36 41 47

i −1 0 1 2 3 4 5 6 7 8 9 10
Si 39 40 47 36 41 48 54 54 27 30 36 50

Table 1 Time-0 bp CDS spreads of names -1 (the bank), 0 (the counterparty) and of the reference names 1 to n
used when n = 1 (left) and n = 10 (right).

cases by definition of the fair contractual CDS spreads). Hence, in relative terms, the TVA numbers
visible in Figure 2 are quite high, much greater for instance than in the cases of counterparty risk on
interest rate derivatives considered in Crépey, Gerboud, Grbac, and Ngor (2013). This is explained by
the wrong-way risk feature of the DGC model, namely, the default intensities of the surviving names
and the value of the CDS protection spike at defaults in this model (as will be demonstrated by the
left graph in our concluding figure 7). When λ̄ increases (for λ̄ = 0 that’s a case of linear TVA where
FT higher order terms equal 0), the second (resp. third) FT term may represent in each case up to
5% to 10% of the first (resp. second) FT term, from which we conclude that the first FT term can be
used as a first order linear estimate of the TVA, with a nonlinear correction that can be estimated by
the second FT term.
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Fig. 2 Left: DGC TVA on one CDS computed by FT scheme of order 1 to 3, for different levels of nonlinearity
(unsecured borrowing spread λ̄). Right: Similar results regarding the portfolio of CDS contracts on ten names.

In Figure 3, the left graph shows the TVA on one CDS computed by FT schemes of order 3 as
a function of the DGC correlation parameter %, with other parameters set as before. The right graph
shows the analogous results regarding the portfolio of ten CDS contracts. In both cases, the TVA
numbers increase (roughly linearly) with %, as desirable from the financial interpretation point of view.
For more about this (regarding also the change of monotonicity that would occur at very high % in case
of a reference entity of the CDS significantly riskier than the counterparty), see Brigo and Chourdakis
(2008), Brigo and Capponi (2010) and Brigo, Capponi, and Pallavicini (2014).

In Figure 4, the left graph shows that the errors, in the sense of the % relative standard errors
(% rel. SE), of the different orders of the FT scheme don’t explode with the dimension (number of
credit names that underlie the CDS contracts). The middle graph, produced with n = 1, shows that
the errors don’t explode with the level of nonlinearity represented by the unsecured borrowing spread
λ̄. Consistent with the fact that the successive FT terms are computed by purely forward Monte Carlo
schemes, their computation times are essentially linear in the number of names, as visible in the right
graph.

Table 2 illustrates the statement made after (9.9). Namely, for λ̄ = 0, the 95% confidence interval
of the FT scheme based on (9.6) is included into (in particular, fully consistent with) the 95% confidence
interval of the Monte Carlo based on the formula (9.9), formula which is unbiased for λ̄ = 0. But, as λ̄
increases (i.e. from bottom to top in the table), the approximation (9.9) reveals a significant upward
bias increasing with λ̄, for (9.9) uses (Ps −Cs)+ instead of what should be (Ps −Cs −Θs)+ under the
time integral, with Θ ≥ 0 here. On top of this bias, one can see in Table 2 that the confidence intervals
of the Monte Carlo estimates based on (9.9) are substantially broader than the FT ones. In addition,
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Fig. 3 Left: TVA on one CDS computed by FT scheme of order 3 as a function of the DGC correlation parameter %.
Right: Similar results regarding a portfolio of CDS contracts on ten different names.

3 6 9 12
1

2

3

4

5

6

7

8

9

Number of names

%
 r

e
l 
S

E

Relative standard error different dimensions

 

 

 Order 1

Order 2

Order 3

0 0.01 0.02 0.03
1

2

3

4

5

6

7

8

λ̄

%
 r

e
l 
S

E

Relative standard error different borrowing spreads

 

 

 Order 1

Order 2

Order 3

3 6 9 12
0

50

100

150

200

250

300

Number of names

C
P

U
 t
im

e
 (

s
)

CPU time different dimensions

 

 

 Order 1

Order 2

Order 3

Fig. 4 Left: The % relative standard errors of the different orders of the expansions don’t explode with the number
of names (λ̄ = 100 bp). Middle: The % relative standard errors of the different orders of the expansions don’t explode
with the level of nonlinearity represented by the unsecured borrowing spread λ̄ (n = 1). Right: Since FT terms
are computed by purely forward Monte Carlo schemes, their computation times are linear in the number of names
(λ̄ = 100 bp).

to evaluate the time integral in (9.9) with the required accuracy, we used time discretisation with 500
time points (i.e. a time mesh of T/500 ≈ one week for T = 10y here), so that the computation times
with (9.9) are much larger than the FT ones, typically a few minutes for FT versus a few hours with
(9.9) (all of course proportional to the number of CDS contracts that are used). An alternative would
be to randomize the time-integral in (9.9) as we do in the FT schemes, but this would result in an
even greater variance than the one reflected in the last column of Table 2 (for computation times that
would be similar to the ones of the FT scheme). Summarizing, in the DGC model, the TVA numbers
based on the full BSDE take significantly more time and/or are significantly less accurate than the
TVA numbers based on the reduced BSDE.

λ̄ (bps) FT3 95% CI (9.9) 95% CI
300 0.60 [0.58, 0.63] 1.17 [1.11, 1.22]
200 0.54 [0.52, 0.56] 0.91 [0.85, 0.96]
100 0.48 [0.47, 0.50] 0.65 [0.59, 0.70]
0 0.43 [0.41, 0.44] 0.40 [0.34, 0.45]

Table 2 TVA computations on one CDS (% = 0.6). Columns 2 and 3: by the FT scheme based on (9.6). Columns 4
and 5: by Monte Carlo based on the formula (9.9).
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9.3 Numerical Results in the DMO Model

We consider a DMO model with constant shock intensities and n = 120 credit names (unless stated
otherwise). Note that the dependence between names is all in the common shocks in this model.
The stochasticity of the intensities is not crucial for the gap risk feature that we want to investigate
here. Using deterministic (constant in this case) intensities allows speeding up the simulations. We take
individual shock intensities γ{i} = 10−4×(100+i), which increases from 101 bp to 220 bp as i increases
from 1 to 120. We consider four nested groups of joint defaults, respectively consisting of the riskiest
3%, 9%, 21% and 100% (i.e. all) names, with respective shock intensities of 20, 10, 6.67 and 5 bp. The
counterparty (resp. the bank) is taken as the eleventh (resp. tenth) safest name in the portfolio. In
this model, we consider CDO tranches with upfront payment (dividend process D as of (6.12)), for a
maturity T = 2 years and attachment (resp. detachment) points 0%, 3% and 14% (resp. 3%, 14% and
100%). Figure 5 shows the corresponding TVA computed by FT scheme of order 1 to 3 for different
levels of nonlinearity (unsecured borrowing spread λ̄). The respective values of P0 (upfront payment)
for the equity, mezzanine and senior tranche are 229.65, 5.68 and 2.99. Compared with these, the
TVA numbers of Figure 5 are very high, especially for the higher tranches, considerably greater again
(cf. Figure 2 and related comments) than the TVA numbers computed on interest rate derivatives in
Crépey et al. (2013). This is explained by the gap risk feature of the DMO model, namely, the joint
default dividend ∆τ 6= 0. By comparison, in the DGC model we have ∆τ = 0 but the default intensities
of surviving names and the cost of credit protection spike at defaults (whereas default intensities of
surviving names are not affected by defaults in the DMO model). It is in this sense that we view the
DGC and the DMO model as respective wrong-way and gap risk setups.

The second (resp. third) FT term never exceeds in each case, depending on λ̄ increasing from 0
to 300 bp (for λ̄ = 0 that’s a case of linear TVA with higher order FT terms all equal to 0), more than
5% of the first (resp. second) FT term in Figure 5, from which we conclude that the first FT term can
be used as a first order linear estimate of the TVA, with a nonlinear correction that can be estimated
by the second FT term. Figure 6 is the analog of the DGC CDS Figure 4, but for the DMO CDO
tranches of Figure 5, with similar conclusions. Table 3 compared with Figures 5 and 6 shows that
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Fig. 5 TVA on CDO tranches with 120 underlying names computed by FT scheme of order 1 to 3, for different
levels of nonlinearity (unsecured borrowing spread λ̄). Left: Equity tranche. Middle: Mezzanine tranche. Right: Senior
Tranche.

on top of being biased (depending on λ̄, equal to 100 bp in Table 3), a Monte Carlo estimate based
on the linear approximation formula (9.9) has a large variance, especially for higher tranches. In fact,
for higher tranches, nonzero payoffs become quite rare events, so that exploiting the knowledge of the
explicit formulas for the intensities in an FT scheme greatly improves the variance by comparison with
a crude simulation based on (9.9). In addition, the simulations for (9.9) take considerably more time,
due to the discretisation that is used for valuing the time integral (or, if the integral was randomized
as in the FT scheme, then this would increase the variance even further).
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Fig. 6 Analog of Figure 4 for the mezzanine CDO tranche of the middle panel of Figure 5 in the DMO model.

Tranche TVA Rel. SE 95% CI
Eq. 5.00 7.43% [4.63 , 5.37]

Mezz. 2.05 63.25% [0.75 , 3.34]
Sen. 1.67 64.59 % [0.59 , 2.75]

Tranche TVA Rel. SE 95% CI
Eq. 4.94 2.40% [4.82 , 5.06]

Mezz. 2.14 19.60% [1.72 , 2.55]
Sen. 1.74 20.02% [1.39 , 2.09]

Table 3 Linearized DMO TVA on CDO tranches computed by a Monte Carlo based on (9.9) (λ̄ = 100 bp). Left:
m = 104. Right: m = 105.

In the remaining paragraphs of this section, we show some results computed in the DMO setup
in the continuous variation-margining case where Vτ = Pτ− (cf. the remark 51), as opposed to V = 0
before.

Table 4 compares the performance of the FT scheme based on the reduced BSDE and of Monte
Carlo simulations based on the formula (9.9) to compute the TVA in the continuous variation-margining
case where Vτ = Pτ−. As already repeatedly found above, the FT scheme has significantly less variance,
crucially so for higher tranches. The FT scheme also takes considerably less computation time, due to
the need of computing the time integral in the case of (9.9) (unless this integral is randomized but this
would increase the variance even more). Note that even in this continuous variation-margining case,

Tranche TVA Rel. SE 95% CI
Eq. 0.99 5.02% [0.96 , 0.99]

Mezz. 2.12 4.94% [2.09 , 2.15]
Sen. 1.76 4.94% [1.74 , 1.79]

Tranche TVA Rel. err. 95% CI
Eq. 1.02 17.02% [0.84 , 1.19]

Mezz. 1.95 66.51% [0.65 , 3.24]
Sen. 1.62 66.64% [0.54 , 2.70]

Table 4 TVA computations in the continuous variation-margining case Vτ = Pτ− (λ̄ = 100 bp, δ = 0, m = 104).
Left: FT scheme based on (9.3). Right : Monte Carlo based on the formula (9.9).

we have

Qτδ − C
c
τ = (Pτδ − Pτ−) +∆τδ − I

c
τ , (9.11)

where the wrong-way and gap terms (Pτδ − Pτ−) and ∆τδ = β−1
τδ

∫
[τ,τδ]

βsdDs, in which ∆τδ includes

the “joint default dividend” Dτ −Dτ− = ∆τ , can be quite substantial. Accordingly, observe from the
left panel in Table 4 that, even though Vτ = Pτ− and δ = 0, the TVA numbers are still important
relatively to the corresponding values of P0 especially for higher tranches. By comparison with Table
3, we see that it’s only for the equity tranche that the TVA is substantially reduced by the variation
margins, whereas the TVA of higher tranches, essentially due to common shocks, cannot be mitigated
by variation margining.

These findings motivate the need for initial margins Ic. But the left panel of Table 5, computed
with δ = 0 based on (9.3), shows that the amount of initial margins Ic, assumed a constant proportional
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to Θ0 for simplicity here, that is required to balance the DMO gap risk term (joint default dividend
∆τ = Dτ −Dτ−) is huge, especially for higher tranches. This is consistent with the extreme tail event
feature of CVA on long protection (especially higher) CDO tranches. Namely, most of the CVA comes
from the few joint default scenarios giving rise to the joint default dividends ∆τ = Dτ − Dτ−. To
compete with these, initial margins must be of the same level of magnitude, i.e. very large, and this
at every point in time of every possible scenario, as DMO default times are totally inaccessible. Such
levels of initial margins would represent a huge funding charge for the counterparty. We only consider
the perspective of the bank here, but a huge funding charge for the counterparty means that the bank
could hardly claim such levels of initial margins. About the difficulty of mitigating joint to default risk
by collateralization, see also Bo and Capponi (2015, last paragraph of Sect. 3.1).

Back to Ic = 0, the right panel in Table 5 shows the impact of the cure period δ, using Lemma 92

to compute the Θ̃
(i)
0 by (G,Q) simulation based on (9.7). Regarding long default protection positions

of the bank corresponding to payoffs D as of (6.12), most of the CVA is due to the joint default
dividend ∆τ in the common-shock model, especially for higher tranches. This gap risk is already there
for δ = 0, instantaneously realized in the joint default dividend ∆τ = Dτ −Dτ−, rather than developing
progressively through δ > 0. Accordingly, the right panel in Table 5 shows that the impact of δ is very
limited, even if a bit less for the equity tranche. In the DGC model, we would have a similar effect
through a large term (Pτδ − Pτ−) in (9.11), already large for δ = 0 as revealed by the comparison
between the left graphs in Figures 3 and 7. However, this limited impact of δ > 0 (or instantaneous
impact of τ, already present for δ = 0) is restricted to this particular situation of counterparty risk
on credit derivatives that we consider here. For counterparty risk on other kinds of derivatives, the
methodology of the first part of this paper (Sect. 2 through 6) is equally relevant and the impact
of δ is significant. In fact, the continuously variation-margined TVA for δ = 0 is then equal to zero.
Hence, once a position is fully collateralized in terms of variation margins, the gap risk related to the
cure period becomes the first order residual risk. The reader is referred in this regard to Armenti and
Crépey (2015, Sect. 8.5), where an impact in

√
δ is observed in the context of a model of counterparty

risk on interest rate derivatives.

Tranche/Ic Θ0 10Θ0 102Θ0 103Θ0 104Θ0

Eq. 0.97 0.85 0.16 0.00 0.00
Mezz. 2.12 2.11 1.99 0.87 0.00
Sen. 1.77 1.76 1.66 0.73 0.00

Tranche/ δ 0 2 weeks 1 year

Eq. 0.99 0.99 1.49
Mezz. 2.12 2.12 2.14
Sen. 1.76 1.76 1.76

Table 5 Impact on Θ0 of the initial margin Ic posted by the counterparty (left panel with δ = 0) and of the cure
period δ ≥ 0 (right panel with Ic = 0) in the continuous variation-margining case where Vτ = Pτ−.

9.4 Conclusions

To put a final point on the respective wrong-way and gap risk features of the DGC and DMO models,
our concluding figure 7 shows the analogs of the left graph in Figure 3 and of the middle graph in
Figure 5 using flawed simulations where we replace P̃ et + ∆̃et by Pt− in all the coefficients f̃ (cf. (6.10),
(7.17) and (8.9)), thus artificially removing the respective wrong-way and gap risk from the DGC and
DMO models. We can see from the figure that the corresponding fake TVA numbers are up to five
(resp. ten) times smaller than the “true” TVA levels that can be seen in Figure 3 (resp. 5). In addition
of being much smaller, the fake DGC TVA numbers in the left panel are now mostly decreasing with
%, showing by comparison with the previous DGC results that it is actually the wrong-way risk that
explains the “systemic” increasing feature observed in the “true” DGC model. As for the fact that the
fake DMO TVA numbers are so small, it confirms that most of the TVA in the genuine DMO model
is due to joint defaults, which is consistent with the findings in Bo and Capponi (2015, Figure 1).

From a broader numerical perspective, independent of the particular credit derivative models
that are used in the second part of this paper, let’s recap the advantages of the reduced TVA BSDE
(4.5) with respect to the full TVA BSDE (3.6) from a numerical point of view. First, in case Λ > 0,
no direct simulation approach for the full TVA BSDE (3.6) seems possible. Second, when Λ = 0 and a
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Fig. 7 Left: Analog of the left graph of Figure 3 in a fake DGC model without wrong-way-risk. Right: Analog of the
middle graph of Figure 5 in a fake DMO model without gap risk.

direct simulation approach for the full BSDE (3.6) could be possible, in the case of high dimensional
applications where only purely forward simulation schemes are feasible, it’s only a first order linear
approximation (9.9) that can be estimated directly based on (3.6). By contrast, a nonlinear correction
can be computed for (4.5) based on the FT expansion (9.2) and its particle implementation (9.3) or
(9.6). The tractability of the FT schemes (9.3) or (9.6) is due to the null terminal condition Θ̃T = 0

in (3.6), implying that Θ̃
(0)
s = 0 in (9.2), (9.3) or (9.6), which would not be the case in a tentative

adaptation of the FT scheme to the full BSDE (3.6). Third, even in cases where one can neglect the
nonlinearity in (3.6) and solve it by standard Monte Carlo, using the reduced BSDE (4.5) improves
the variance of the simulation.

A Gaussian Estimates

In this appendix we derive Gaussian estimates used in the study of the DGC model of Sect. 7.

Lemma A1 Given a positive decreasing continuously differentiable function Γ on R+ such that∫
R+

tdΓ (t)dt <∞ and lim
t↑∞

td−1Γ (t)→ 0,

for some integer d ≥ 0, we write g(y) = −Γ
′(y)
Γ (y) , G(y) =

∫∞
y
tdΓ (t)dt. Let ȳ ≥ 0 and α, ε > 0.

(i) If g(y) ≥ αy for y > ȳ, then

G(y) ≤
( 1

α
+ ε
)
yd−1Γ (y) for y > ȳ ∨

√
|d− 1|( 1

εα2
+

1

α
).

(ii) If g(y) ≤ αy for y > ȳ, then

G(y) ≥
( 1

α
− ε
)
yd−1Γ (y) for y > ȳ ∨

√
|d− 1|( 1

εα2
− 1

α
).

Proof. We only prove (i), for (ii) is similar. For every positive continuously differentiable function ϕ

on (0,+∞),

(G(y)− ϕ(y)Γ (y))
′ = −ydΓ (y)− ϕ′(y)Γ (y) + ϕ(y)g(y)Γ (y)

= (ϕ(y)g(y)− yd − ϕ′(y))Γ (y) ≥ (αyϕ(y)− yd − ϕ′(y))Γ (y)
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for y ≥ ȳ. For ϕ(y) = ( 1
α + ε)yd−1,

αyϕ(y)− yd − ϕ′(y) = (1 + εα)yd − yd − (
1

α
+ ε)(d− 1)yd−2 =

εαyd − (
1

α
+ ε)(d− 1)yd−2 = (εαy2 − (

1

α
+ ε)(d− 1))yd−2.

Therefore, if y > ȳ ∨
√
|d− 1|( 1

εα2 + 1
α ), then (G(y)− ϕ(y)Γ (y))

′ ≥ αyϕ(y) − yd − ϕ′(y) ≥ 0. But

limy↑∞ (G(y)− ϕ(y)Γ (y)) = 0, hence G(y)− ϕ(y)Γ (y) ≤ 0.

We use the notation (7.3) as well as Φ and φ for the standard normal survival and density functions.
By a first application of Lemma A1, to the standard normal density Γ = φ, we recover the following
classical inequalities on ψ = φ

Φ : for any constant c > 1,

c−1y ≤ ψ(y) ≤ cy, y > y0, (A.1)

for some y0 > 0 depending on c. The following estimate, where c and y0 are as here, can be seen as a
multivariate extension of the right hand side inequality in (A.1).

Lemma A2 There exist constants a and b such that, for every j ∈ J,

0 ≤ ψjρ,σ
(
z
)
≤ a+ b||z||∞. (A.2)

Proof. By conditional independence of the components of a multivariate Gaussian vector with homo-

geneous pairwise correlation %, we have Φρ,σ
(
z
)

=
∫
R Γ (y)dy, where Γ (y) =

∏
l∈J Φ

(
zl+σ

√
ρ y

σ
√

1−ρ

)
φ(y).

Hence

ψjρ,σ
(
z
)

=
1

σ
√

1− ρ

∫
R
wρ,σ(z, y)ψ

(
zj + σ

√
ρ y

σ
√

1− ρ

)
dy, (A.3)

where wρ,σ(z, y) = Γ (y)

Φρ,σ
(
z
) . Straightforward computations yield

g(t) = −Γ
′(t)

Γ (t)
=
∑
l∈J

ψ(
zl + σ

√
ρt

σ
√

1− ρ
)

σ
√
ρ

σ
√

1− ρ
+ t ≥ t,

whereas for t > maxl∈J
1

σ
√
ρ (σ
√

1− ρy0 − zl) and t > 1
σ
√
ρ maxl∈J zl, we have

g(t) ≤
∑
l∈J c

zl+σ
√
ρt

σ
√

1−ρ
σ
√
ρ

σ
√

1−ρ + t ≤ ᾱt,

with ᾱ :=
∑
l∈J 2c

σ
√
ρ

σ
√

1−ρ
σ
√
ρ

σ
√

1−ρ + 1 ≥ 1. Applying Lemma A1(i) with d = 1, α = 1 and ε = 1,

respectively (ii) with d = 0, α = ᾱ and ε = 1
2ᾱ , yields∫ ∞

y

tΓ (t)dt ≤ 2Γ (y), y > 0, respectively

∫ ∞
y

Γ (t)dt ≥ 1

2ᾱy
Γ (y), y > ȳ ∨ 1√

ᾱ
,

where ȳ = 1
σ
√
ρ maxl∈J |zl|+ 1

σ
√
ρσ
√

1− ρy0. Thus, setting y1 = ȳ+1 = 1
σ
√
ρ maxl∈J |zl|+ 1

σ
√
ρσ
√

1− ρy0+

1, ∫ ∞
0

tΓ (t)dt =

∫ y1

0

tΓ (t)dt+

∫ ∞
y1

tΓ (t)dt ≤ y1

∫ y1

0

Γ (t)dt+ 2Γ (y1)

≤ y1

∫ y1

0

Γ (t)dt+ 4ᾱy1

∫ ∞
y1

Γ (t)dt ≤ (1 + 4ᾱ)

∫ ∞
0

Γ (t)dt,

i.e. ∫ ∞
0

twρ,σ(z, t)dt ≤ (1 + 4ᾱ)y1. (A.4)
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Now, by (A.3) and the right hand side inequality in (A.1),

0 ≤ σ
√

1− ρψjρ,σ
(
z
)

≤
∫
R

(
1

Φ(y0)
1
{
zj+σ

√
ρy

σ
√

1−ρ ≤y0}
+ c

zj + σ
√
ρy

σ
√

1− ρ
1
{
zj+σ

√
ρy

σ
√

1−ρ >y0}

)
wρ,σ(z, y)dy

=

(
1

Φ(y0)
+

czj

σ
√

1− ρ

)
+

cσ
√
ρ

σ
√

1− ρ

∫
R
1{σ√ρy>σ

√
1−ρy0−zj}ywρ,σ(z, y)dy

≤
(

1

Φ(y0)
+

czj

σ
√

1− ρ

)
+

cσ
√
ρ

σ
√

1− ρ

∫ ∞
0

ywρ,σ(z, y)dy,

(A.5)

so that by substitution of (A.4) into (A.5)

0 ≤ σ
√

1− ρψjρ,σ
(
z
)
≤
(

1

Φ(y0)
+

czj

σ
√

1− ρ

)
+

cσ
√
ρ

σ
√

1− ρ
(1 + 4ᾱ)y1.

Lemma A3 Let mt =
∫ t
0
ς(s)dBs, where B is a a univariate standard Brownian motion and ς is a square

integrable function with unit L2 norm. For any constant q > 0, eq sup0≤s≤tm
2
s is integrable for sufficiently

small t.

Proof. The process (mt)t≥0 is equal in law to a time changed Brownian motion (Wt̄)t≥0, where W is

a a univariate standard Brownian motion and t̄ =
∫ t
0
ς2(s)ds goes to 0 with t. Thus, it suffices to show

the result with m replaced by W . Let rt be the density function of the law of sup0≤s≤t |Ws| and let

Rt(y) =
∫∞
y
rt(x)dx, y > 0, so that

E[eq sup0≤s≤tW
2
s ] =

∫ ∞
0

eqy
2

rt(y)dy = −[Rt(y)e
qy2

]∞0 + 2q

∫ ∞
0

yRt(y)e
qy2

dy (A.6)

and (using the reflection principle of the Brownian motion)

Rt(y) = Q[sup0≤s≤t(W
+
s +W−s ) > y] ≤ Q[sup0≤s≤tW

+
s > y

2 ] + Q[sup0≤s≤tW
−
s > y

2 ]
= 2Q[sup0≤s≤tWs >

y
2 ] = 2Q[|Wt| > y

2 ] = 2Q[|W1| > y

2
√
t
] = 4Φ( y

2
√
t
),

where by the left hand side in (A.1)

Φ(
y

2
√
t
)
y

2
√
t
≤ cφ(

y

2
√
t
) =

c√
2π
e−

y2

8t ,
y

2
√
t
> y0.

Therefore, for 1
8t > q, both terms are finite in the right hand side of (A.6), which shows the result.
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