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Abstract

Since the global financial crisis of 2008–09, derivative dealers charge to their
clients various add-ons, dubbed XVAs, meant to account for counterparty risk and
its capital and funding implications.

As banks cannot replicate jump-to-default related cash flows, deals trigger
wealth transfers from bank shareholders to bondholders and shareholders need
to set capital at risk. In view of this, we devise an XVA strategy, whereby the so-
called contra-liabilities and cost of capital are sourced from bank clients at trade
inceptions, on top of the fair valuation of counterparty risk, in order to compensate
shareholders for wealth transfers and risk on their capital.

The resulting all-inclusive XVA formula reads (CVA + FVA + KVA), where C
sits for credit, F for funding, and where the KVA is a cost of capital risk premium.
All these (portfolio-wide) XVA metrics are nonnegative and, despite the fact we
include the default of the bank itself in our modeling, unilateral. This makes them
immediately in line with the requirement that the reserve capital and capital at
risk of a bank should not decrease uniquely because the credit risk of the bank
worsens.
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1 Introduction

Since the global financial crisis of 2008–09, investment banks charge to their clients, in
the form of rebates with respect to the mark-to-market (MtM) of financial derivatives,
various add-ons meant to account for counterparty risk and its capital and funding im-
plications. These add-ons are generically termed XVAs, where VA stands for valuation
adjustment and X is a catch-all letter to be replaced by C for credit, D for debt, F for
funding, M for margin, or K for capital.

Paradoxically, whereas counterparty jump-to-default risk risk can fundamentally
not be hedged, most of the XVA literature relies on a replication paradigm. In this
paper, switching from a replication to a cost-of-capital approach, we devise an XVA
pricing, accounting, and dividend policy of a dealer bank, ensuring to the bank share-
holders a target hurdle rate on their capital at risk. In particular, our KVA is a risk
premium, in the line of the risk margin in the Solvency II insurance regulation (but
devised in a consistent continuous-time framework): It devises entry prices which keep
the position of a derivative market maker on an “efficient frontier” corresponding to a
given return on the shareholder capital at risk that is earmarked for coping with trading
losses. The resulting policy can be seen as a banking and continuous-time counterpart
to the cost-of-capital Solvency II insurance regulatory framework.

Related papers are Burgard and Kjaer (2011, 2013, 2017), Castagna (2012, 2013,
2014), Albanese and Andersen (2015), Albanese, Andersen, and Iabichino (2015), An-
dersen, Duffie, and Song (2019), and Green, Kenyon, and Dennis (2014). However,
except for the last one (which is still in a semi-replication mindset), these papers only
consider FVA (or its avatar MVA); they do not propose an approach to KVA.

We view the counterparty risk market incompleteness tenet as much more credible
and realistic than the competing XVA replication paradigm. Besides divergent impli-
cations, detailed in Albanese, Crépey, Hoskinson, and Saadeddine (2019), regarding
inclusion or not of the different XVAs in entry prices and in the balance sheet, our
approach also results in materially modified XVA formulas. In particular:

• Despite the fact that we include the default of the bank itself in our modeling,
our portfolio-wide XVA metrics are, ultimately, unilateral, and they are always
nonnegative; this makes them naturally in line with the requirement that reserve
capital and capital at risk of a bank should not diminish as an effect of the sole
deterioration of the bank credit spread;

• As opposed to the KVA in Green, Kenyon, and Dennis (2014), the KVA that
arises from our theory discounts future capital at risk projections at the hurdle
rate h; this makes an important difference given the very long time horizon of
XVA computations;

• Our XVA suite is self-contained and self-consistent: our main KVA input data
consists of future projections of an economic capital based on the CVA and FVA
desks trading loss processes, as opposed to future projections of (scriptural) reg-
ulatory capital in Green, Kenyon, and Dennis (2014).
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1.1 Outline

Sections 2 and 3 deliver the conceptual backbone of our dynamic cost-of-capital XVA
approach. Section 4 sets a technical stage, where the XVA equations are proven to
be well posed in Section 5. Section 6 compares the two competing XVA paradigms:
replication or so-called “semi-replication”, in most of the XVA literature, versus cost-
of-capital in this work. Section 7 concludes.

The main contributions of the paper are:

• The notion of shareholder valuation (of pre-bank default cash flows and of residual
shareholder value itself before the bank default time τ) as a systematic way to
address the successive XVA layers (starting with MtM at the bottom);

• The solution of the ensuing XVA equations by a reduction of filtration methodol-
ogy, which can be seen as a way to address the idea of computations “on a going
concern” for a bank, also related to the Schönbucher (2004) and Collin-Dufresne,
Goldstein, and Hugonnier (2004) notion of bank survival probability measure;

• The KVA specification as per Definition 3.3, formula (47), and the corresponding
optimality result of Proposition 5.1 and Theorem 5.2;

• The comparison of Section 6 between the semi-replication and the cost-of-capital
XVA approaches;

• The conclusion of Section 7.1 according to which, duly assessing the XVA orig-
inating cash flows in terms of shareholder valuation in order to account for all
wealth transfers involved, all the (portfolio-wide) XVA metrics are nonnegative
and, ultimately, unilateral.

2 General Setup

We consider a dealer bank, which is a market maker, involved into bilateral derivative
portfolios with clients. The client portfolio of the bank is assumed to be held on a
run-off basis, i.e. set up at time 0 and such that no new unplanned trades enter the
portfolio in the future (we refer the reader to Albanese et al. (2019, Section 4.2) for
the reconciliation of this setup with the realistic case of a trade incremental portfolio).
For simplicity, we only consider European derivatives.

The bank has two kinds of stakeholders: shareholders, who have the control of
the bank and are solely responsible for investment decisions before bank default, and
bondholders representing the junior creditors of the bank, which have no decision
power until bank default, but are protected by laws, of the pari-passu type, forbidding
trades that would trigger value away from them to shareholders during the default
resolution process of the bank. The bank also has senior creditors, represented in our
framework by an external funder that can lend unsecured to the bank and is assumed
to enjoy an exogenously given recovery rate in case of default of the bank.
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There are three kinds of business units within the bank: the CA desks, i.e. the
CVA desk and the FVA desk, in charge of contra-assets, i.e. of counterparty risk and
its funding implications for the bank; the clean desks, who focus on the market risk
of the contracts in their respective business lines; the management of the bank, in
charge of the dividend release policy of the bank.

Collateral means cash or liquid assets that are posted to guarantee a netted set of
transactions against defaults of the counterparties. We assume that the CA desks fully
guarantee the trading of the clean desks against clients and bank defaults, through a
clean margin account, which can be seen as collateral exchanged between the CA
desks and the clean desks. In addition, the CA desks value the contra-assets, charge
them to the clients at deal inception, deposit the corresponding payments in a reserve
capital account, and then are exposed to the corresponding payoffs. As time proceeds,
contra-assets realize (counterparty default losses and funding expenditures occur) and
are covered by the CA desks with the reserve capital account.

On top of reserve capital, the so-called risk margin is sourced by the management
of the bank from the clients at deal inception, deposited into a risk margin account,
and then gradually released as KVA payments into the shareholder dividend stream.
Another account contains the shareholder capital at risk earmarked by the bank
to deal with exceptional trading losses (beyond the expected losses that are already
accounted for by reserve capital).

Assumption 2.1 We write MtM, CA, KVA, and SCR for the respective (risk-free
discounted) amounts on the clean margin, reserve capital, risk margin, and shareholder
capital at risk accounts of the bank.

All these amounts are continuously, instantaneously reset to theoretical target
levels defined in Sections 3-4.

All cash accounts are remunerated at the risk-free rate.

Assumption 2.2 The initial amounts MtM0, CA0, and KVA0 are provided by the
clients at portfolio inception time 0. Resets between time 0 and the bank default time
τ (excluded) are on bank shareholders.

At the (positive) bank default time τ , the property of the residual amount on the
reserve capital and risk margin accounts is transferred from the shareholders to the
bondholders of the bank.

See Table 1 for a list of the main financial acronyms used in the paper.

2.1 Pricing Setup

We consider, on a measurable space (Ω,A), a pricing stochastic basis (G,Q), with
model filtration G = (Gt)t∈R+ and risk-neutral pricing measure Q, such that all the
processes of interest are G adapted and all the random times of interest are G stopping
times. The corresponding expectation and conditional expectation are denoted by E
and Et. All cash flow and price processes are modeled as semimartingales.
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CA Contra-assets valuation Assumption 2.1 and (5)
CL Contra-liabilities valuation Definition 3.2
CR Capital at risk (19)
CVA Credit valuation adjustment (10), (38), and example (60)
DVA Debt valuation adjustment Definition 3.2 and example (62)
EC Economic capital Section 3.6 and Definition 4.2
FDA Funding debt adjustment Definition 3.2 and example (63)
FV Fair valuation of counterparty risk Definition 3.2 and example (64)
FVA Funding valuation adjustment (11), (39), and example (61)
KVA Capital valuation adjustment Assumption 2.1 and (20), (40), (47)
MtM Mark-to-market Assumption 2.1 and (9), (37)
SCR Shareholder capital at risk Assumption 2.1 and (18)
XVA Generic “X” valuation adjustment First paragraph of Section 1

Table 1: Main financial acronyms and place where they are introduced conceptually
and/or specified mathematically in the paper, as relevant.

We denote by T a finite and constant upper bound on the maturity of all claims
in the portfolio, also including the time (such as two weeks) of liquidating defaulted
positions, so that all (cumulative) cash flow processes are stopped at T (starting from
0 at time 0); all prices and valuation adjustments are supposed to vanish on [T,+∞)
if T < τ .

We use the risk-free asset as a numéraire. To retrieve undiscounted equations,
one just needs to capitalize all cash flows and values (as well as the amounts on the
different banking accounts, economic capital, etc.) at the risk-free rate.

For any left-limited process Y , we denote by Y τ− and τ−Y the processes Y stopped
before τ and starting before τ , i.e.

Y τ− = JY + (1− J)Yτ−,
τ−Y = Y − Y τ−,

where J = 1J0,τJ is the survival indicator process of the bank.
Valuation below corresponds to the standard notion of risk-neutral expectation

of future (risk-free discounted) cash flows; shareholder valuation corresponds to the
valuation of pre-bank default cash flows and of the residual (shareholder) value at τ .

Definition 2.1 Given an optional, integrable process Y stopped at T (cumulative cash
flow stream in the financial interpretation), we call (risk-neutral) value process Z of Y
the optional projection of (YT − Y), such that

Zt = Et(YT − Yt), t ≤ T ; (1)

we call shareholder value process Y of Y, any process Y vanishing on [T,+∞) if T < τ
and such that

Yt = Et(Yτ− − Yt + Yτ−), t < τ. (2)
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Note that the shareholder value equation (2), for a process Y vanishing on [T,+∞)
if T < τ , is equivalent to

Y τ−
t = Et(Yτ−τ∧T − Y

τ−
t + 1{τ≤T}Y

τ−
τ ), t ≤ τ ∧ T. (3)

In particular, (Y + Y )τ− is then a martingale (stopped before τ).
This makes it apparent that shareholder valuation is actually an equation for Y τ−.

The corresponding backward stochastic differential equation (BSDE) is tantamount to
the notion of recursive valuation of defaultable securities in the special case where
Rt(x) = x in Collin-Dufresne et al. (2004, Section 3.2). In their setup this notion is
shown to be well posed in their Proposition 2, based on Schönbucher (2004)’s technical
tool of the bank survival pricing measure. We will address the issue by reduction of
filtration in Section 5.1.

Remark 2.1 In the XVA context, valuation corresponds to valuation from the point
of view of the bank as a whole; shareholder valuation indeed corresponds to valuation
from the bank shareholders point of view, because shareholders are only hit by pre-bank
default cash flows, as well as by the wealth transfer to creditors of any residual value
that shareholders may still have right before bank default. The latter directly applies,
at least, if this residual value is positive, which will be the case of all our XVAs below;
But it also applies if the corresponding value is negative, provided it is guaranteed by
a collateralization procedure, which will correspond to the MtM case.

3 Derivation of the XVA Equations

Unless explicitly specified, an amount paid (received) means effectively paid (received)
if positive, but actually received (paid) if negative. A similar convention applies to the
notions of cost vs. benefit, loss vs. gain, etc..

3.1 Trading Cash Flows

The (cumulative) trading cash flows of the bank consist of the contractually promised
cash flows P from clients, counterparty credit cash flows C to clients (i.e., because of
counterparty risk, the effective cash flows from clients are P − C), risky funding cash
flows F to the external funder, and hedging cash flows H to the financial hedging
markets (see Sections 4.2 and 5.4 for concrete specifications). All these cumulative
cash flow streams are assumed to be integrable (and stopped at T ).

In practice, Cτ− is made of nonnegative default losses of the bank upon client
defaults (see e.g. Lemma 5.3). Accordingly:

Assumption 3.1 The process Cτ− is nondecreasing.

The risky funding cash flows of the bank arise as the stochastic integral of pre-
dictable funding ratios against wealth processes of buy-and-hold strategies into funding
assets related to the default of the bank. These wealth processes are assumed to be
local martingales. Accordingly (also assuming integrability of F):
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Assumption 3.2 The risky funding cash flow process F is a finite variation martingale
with nondecreasing Fτ− component, stopped at τ .

See Lemma 5.2 for concrete illustration. The assumption that Fτ− is nondecreasing
rules out models where the bank could invest (not only borrow) at its unsecured bor-
rowing spread. Indeed, as a consequence on τ−F through the martingale condition on
the process F as a whole, such a possibility would imply that the bank can hedge its
own jump-to-default exposure, which we exclude in our setup (see the second para-
graph of Section 2 and Section 3.5). Finally, for the bank, the funding issue ends at τ ,
which explains why F is stopped at τ .

Similarly, regarding now hedging losses:

Assumption 3.3 The hedging loss H of the clean desks, inclusive of the cost of setting
their hedge, is a martingale stopped before τ , i.e. H = Hτ−.

The assumption H = Hτ− is made for consistency with our premise that a bank cannot
hedge its own jump-to-default exposure.

By Assumptions 3.2 and 3.3:

Remark 3.1 The processes F and H = Hτ− have zero value.

3.2 Trading Losses

Counterparty jump-to-default risk cannot be replicated: The risk of financial loss as a
consequence of client default is hard to hedge, because single name credit default swaps
(CDS instruments) that could in principle be used for that purpose are illiquid. The
possibility for the bank of hedging its own jump-to-default is even more questionable, for
practical but also legal reasons: For the bank, hedging its default means ‘monetizing’
it beforehand (cf. Section 3.5), which goes against the bondholder protection rules.
Accordingly, we conservatively assume no XVA hedge (see however Remark 3.2 and
cf. the discussion section 6), i.e. the bank hedging loss H is in fact the hedging loss of
the clean desks. Through our mark-to-model assumption 2.1 on all bank accounts, the
CVA and FVA desks trading losses are respectively given by

C + CVA− CVA0 and F + FVA− FVA0, (4)

for some theoretical target CVA and FVA levels, further specified in Section 3.3, such
that

CVA + FVA = CA. (5)

Likewise, clean desks trading gains, inclusive of their mark-to-model fluctuations
and hedging loss H, sum up to

P + MtM−MtM0 −H, (6)

for some theoretical target MtM level to be specified in Section 3.3. In line with the
fact that a dealer bank should not do proprietary trading (cf. the so-called Volcker
rule):
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Assumption 3.4 The clean desks are perfectly hedged, in the sense that (6) vanishes
identically.

As H = Hτ−, i.e. τ−H = 0, this perfect clean hedge assumption splits into

Pτ− + MtMτ− −MtM0 −Hτ− = 0, τ−MtM = −τ−P. (7)

The second part is also consistent with the fact that, from bank default onward, the
clean margin account is used for providing to the clean desks the contractually promised
cash flows that cease to be exchanged between the client and the bank (see before
Assumption 2.1).

The overall trading loss of the bank results from the above as

L = C + F + CA− CA0. (8)

The ensuing setup corresponds to a fully collateralized market hedge of its client port-
folio by the bank, so that only the counterparty risk related cash flows remain.

Remark 3.2 The inclusion of an XVA hedge yielding any additional martingale hedg-
ing loss process stopped before τ into (8), or a relaxation of the perfect clean hedge
assumption in the form of the left hand side in (7) becoming a (nonnecessarily vanish-
ing) martingale (with the right hand side in (7) still in force), would change nothing
to the qualitative conclusions of the paper, only implying possibly smaller economic
capital and KVA.

Remark 3.3 The industry terminology distinguishes an FVA, in the specific sense of
the cost of funding re-hypothecable collateral (variation margin), from an MVA defined
as the cost of funding segregated collateral (initial margin, see e.g. Albanese, Caenazzo,
and Crépey (2017)). In this paper, we merge the two in an overall FVA meant in the
broad sense of the cost of funding the derivative business of the bank.

If (assumed all cash) collateral happens to be remunerated at some basis with re-
spect to the risk-free rate, then this entails a further “liquidity valuation adjustment”.
However, the corresponding bases are typically small and the related adjustment neg-
ligible with respect to the XVA metrics considered in this paper.

3.3 MtM, CVA, and FVA

In accordance with Remark 2.1:

Definition 3.1 MtMτ−, CVAτ−, and FVAτ− are the shareholder value processes of
P, C, and F .

That is (see Definition 2.1), MtM, CVA, and FVA are killed at T on {T < τ} and, for
t < τ,

MtMt = Et
(
Pτ− − Pt + MtMτ−

)
, (9)

CVAt = Et
(
Cτ− − Ct + CVAτ−

)
, (10)

FVAt = Et
(
Fτ− −Ft + FVAτ−

)
. (11)
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Remark 3.4 The trading loss of the shareholders,

Lτ− = Cτ− + Fτ− + CAτ−−CA0 (12)

(cf. (8)), is a martingale (stopped before τ).

Proof. By the observation made after (3), the processes CVA and FVA are such that
the trading losses in (4), stopped before τ , are martingales. So is therefore their sum
Lτ−.

3.4 Contra-liabilities

The processes CVA and FVA (and KVA later on) are so far unconstrained on Jτ,+∞J
⋂(
{τ ≤

T} × R+

)
. We define the three XVA processes as zero there. As they already vanish

on [T,+∞) if T < τ , hence each of them, say Y (hence also Y = CA in (5)), is in fact
killed at τ . Therefore, in particular,

τ−Y = 1Jτ,+∞J(Yτ − Yτ−) = −1Jτ,+∞JYτ−. (13)

The above then yields the split of the overall trading cash flows L in (8), depicted
in Figure 1, between the pre-bank default trading cash flows, i.e. the shareholder trad-
ing cash flows, Lτ−, and the bondholder trading cash flows, dubbed contra-liabilities,
τ−(−L).

Shareholders Bondholders

Fτ− + FVAτ− − FVA0

Pτ− + MtMτ− −MtM0

Hτ− = H

Cτ− + CVAτ− − CVA0

τ−(−F) + 1Jτ,+∞JFVAτ−

τ−(−P −MtM) = 0

τ−(−H) = 0

τ−(−C) + 1Jτ,+∞JCVAτ−

Figure 1: Left: Pre-bank-default trading cash flows Lτ−. Right: Trading cash flows
from bank default onward τ−(−L).

Definition 3.2 We call

• DVA (debt valuation adjustment), the value process of (τ−(−C)+1Jτ,+∞JCVAτ−);

• FDA (funding debt adjustment), the value process of (τ−(−F) +1Jτ,+∞JFVAτ−);
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• CL = DVA + FDA, i.e. the value of the contra-liabilities

τ−(−L) =τ− (−C) +τ−(−F) + 1Jτ,+∞JCAτ−; (14)

• FV (fair valuation of counterparty risk), the value of (C+F), i.e. of C (by Remark
3.1 regarding F).

Lemma 3.1 We have

FVA = FDA (15)

FV = CA− CL = CVA−DVA. (16)

Proof. By (10), (11), (5), Definition 3.2, and Remark 3.1 regarding F .

3.5 Wealth Transfer Analysis

Let us temporarily assume, for the sake of the argument, that the bank would be
able to hedge its own jump-to-default risk, i.e. the contra-liabilities τ−(−L), by selling
a contract delivering the cash flows (zero valued martingale) CL − CL0 +τ− (−L).
Accounting for this hedge and assuming that the CA desks would pass to the client (at
time 0) and shareholders (through resets later on) the modified add-on CA−CL = FV
(instead of CA before without the hedge, see the first part in Assumption 2.2), then
(the amount that needs by borrowed by the CA desks for the trading requirements of
the bank is the same as before and) the trading loss of the bank would become (using
(16) in the first equality and (8) in the second one)

C + F + FV − FV0 + CL− CL0 +τ−(−L) =

C + F + CA− CA0 +τ−(−L) = L+τ−(−L) = Lτ−.

Hence the recovery of the bank at its own default becomes zero (as the process Lτ− is
stopped before τ), leaving the bondholders entirely wiped out by the hedge.

Assume, additionally, that the CA desks would have access to a further hedge of
the contra-assets

Cτ− + Fτ− + 1Jτ,+∞JCAτ− (17)

(the cash flows valued by CA itself, by (10), (11), and (5)), i.e. an hedge that would
generate (inclusive of the cost of funding the hedge) the proceeds Lτ− (a risk-neutral
martingale, as seen in Proposition 3.4). Then the trading loss process of the bank
would vanish entirely.

Thus, FV = CA−CL is the cost of replication of counterparty risk in a theoreti-
cal, complete counterparty risk market. However, in reality, jump-to-default exposures
(own jump-to-default, in particular) cannot be hedged by the bank. The difference
CL = CA−FV between the valuations CA and FV of counterparty risk making share-
holder trading losses a martingale in the respective realistic incomplete and theoreti-
cally complete markets is therefore interpreted as the wealth transfer from clients and
shareholders to bondholders triggered by the derivative portfolio of the bank, due to
the inability of the bank to hedge jump-to-default exposures.
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3.6 Shareholder Capital at Risk and Capital Valuation Adjustment

Since contra-assets (not even talking about contra-liabilities) cannot be replicated,
capital needs be set at risk by shareholders, who therefore deserve, in the cost-of-capital
pricing approach of this paper, a further KVA add-on as a risk premium.

Capital at risk (CR) is the resource of the bank devoted to cope with losses beyond
their expected levels, the latter being already taken care of by reserve capital (CA).
Economic capital (EC) is the level of capital at risk that a regulator would like to see
on an economic basis. In our dynamic setup, EC and CR will be updated continuously.
In particular, EC will be assumed to be killed at τ ∧ T (as will in turn be CR).

In the context of XVA computations that entail projections over decades, the main
source of information is market prices of liquid instruments, which allow the bank to
calibrate a risk-neutral pricing measure Q, whereas there is little of relevance that can
be said about the historical probability measure. Accordingly:

Assumption 3.5 The estimate of the historical probability measure used by the bank
in its economic capital and cost of capital computations is set equal to the risk-neutral
pricing measure.

Any discrepancy between the historical and the risk-neutral pricing measures is left to
model risk.

Remark 3.5 We calibrate the pricing measure to derivative market prices, including
the corresponding credit premia, and then we perform all our (including capital) calcu-
lations based on these. If we were able to estimate the historical probability measure
reliably for forward projection over time horizons that, in the XVA context, can be
as long as fifty years into the future, then we could have a more sophisticated, hybrid
setup, with historical measure distinct from the risk-neutral measure. In the absence of
such a reliable methodology, we do all the computations under the risk-neutral measure.
This is also the choice advocated by Solvency II insurance regulators. As, in particular,
implied CDS spreads are typically larger than statistical estimates of default probabil-
ities, we believe that this approach is conservative. Moreover, the hurdle rate h that
will appear in the KVA below can be interpreted as a risk aversion parameter of the
bank shareholders and the KVA as a corresponding risk premium (see Albanese et al.
(2019, Section 3.3)).

Counterparty default losses, as also funding payments, are materialities for default
if not paid. In contrast, risk margin (KVA) payments are at the discretion of the bank
management, hence they do not represent an actual liability to the bank. Accordingly
(see Section 6.2 for discussion):

Assumption 3.6 The risk margin is loss-absorbing, hence part of capital at risk.

As a consequence, CR ≥ KVA and shareholder capital at risk (SCR) is only the differ-
ence between the capital at risk (CR) of the bank and the risk margin (KVA), i.e.

SCR = CR−KVA. (18)
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Specifically:

Definition 3.3 We set

CR = max(EC,KVA), (19)

where KVA is the shareholder value process of
∫ ·
0 hSCRsds, i.e.

KVAt = Et
[ ∫ τ

t
hSCRsds+ KVAτ−

]
, t < τ, (20)

and KVA is killed at τ ∧ T .

The process KVAτ− is then a supermartingale with drift coefficient

−hSCR = −h
(

max(EC,KVA)−KVA
)

= −h
(
EC−KVA

)+
, (21)

by (18)-(19).
As more directly visible on the following differential formulation of (20) (cf. (3)):

KVAτ−
T = 0 on {T < τ} and, for t ≤ τ ∧ T,

dKVAτ−
t = −hdSCRt + dνt,

for some martingale ν,

(22)

the KVA corresponds financially to the amount to be maintained by the bank on its risk
margin account in order to be in a position to deliver to its shareholders, dynamically
into the future, a hurdle rate h on their capital at risk (SCR). Moreover the amount
on the risk margin account should land off at KVAT = 0 on {T < τ}, as ending up
in the negative would mean an insufficient risk margin for ensuring the hurdle rate h
to the shareholders, whereas ending up in the positive at T < τ would mean that the
bank is unnecessarily expensive to its clients.

Remark 3.6 In theory, the choice of a target hurdle rate h is a managerial decision
of the bank. In practice, the level of compensation required by shareholders on their
capital at risk in a firm is driven by market considerations. Typically, investors in
banks expect a hurdle rate of the order of 10%. In a real-life environment where banks
compete for clients (as opposed to our setup where only one bank is considered), an
endogenous and stochastic implied hurdle rate arises from the competition between
banks (cf. Section 7.2).

We will see in Proposition 5.1 and Theorem 5.2 that CR as per (19) is in fact the
minimal and cheapest capital at risk process C satisfying the risk admissibility condi-
tion C ≥ EC and consistent with the target hurdle rate h on shareholder capital at risk.

Shareholder dividends (shareholder trading gains and KVA risk margin payments)
accumulate as −(Lτ− + KVAτ− − KVA0). We emphasize that negative dividends are
possible in our model. They are interpreted as recapitalization.

As an immediate consequence of the respective martingale and supermartingale
properties of Lτ− and KVAτ−:
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Corollary 3.1 Shareholder dividends accumulate into a submartingale (stopped before
τ), with drift coefficient hSCR.

4 Technical Setup

This section yields a technical specification of the above abstract setup, in which the
XVA equations are shown to be well posed in Section 5.

4.1 Reduction of Filtration Setup

In addition to the full (financial) model filtration G = (Gt)t∈R+ , on (Ω,A), we introduce
a smaller (technical) filtration F = (Ft)t∈R+ , such that the bank default time τ is a “G
but not F” stopping time.

Assumption 4.1 For any G semimartingale Y on [0, τ ∧ T ], there exists a unique F
semimartingale Y ′ on [0, T ], called the F reduction of Y, that coincides with Y before
τ .

In particular, any G stopping time θ admits an F stopping time θ′, called F reduction
of θ, such that θ ∧ τ = θ′ ∧ τ.

Assumption 4.2 There exists a probability measure P on FT , equivalent to the re-
striction of Q to FT , such that stopping before τ turns (F,P) local martingales on
[0, T ] into (G,Q) local martingales on [0, τ ∧ T ] (stopped before τ); Conversely, the F
reductions of (G,Q) local martingales on [0, τ ∧ T ] without jump at τ are (F,P) local
martingales on [0, T ].

Remark 4.1 The case where P 6= Q corresponds to situations of hard wrong way
risk (strong adverse dependence, see e.g. Crépey and Song (2016) and Crépey and
Song (2017a)) between the defaults of the bank and a client, or between the default
of the bank and its portfolio exposure with a client. A regulator should consider such
situations with caution, as they include the cases of a client which is an affiliate of
the bank itself; or of the bank and a client trading CDS contracts on an affiliate of
the bank itself, or on a reference entity susceptible to default at the same time as the
bank. In other words, even if we are not restricted to it mathematically, our base case
is the “immersion” case where P = Q (hard wrong-way risk should mainly regard the
dependence between client defaults and portfolio exposures).

Unless explicitly mentioned, probabilistic statements still refer to the stochastic basis
(G,Q).

Assumptions 4.1 and 4.2, with filtrations F and G satisfying the usual condi-
tions and existence of F semimartingale reductions reinforced1 into existence of an “F
predictable reduction” on [0, T ] coinciding until τ (included) with any G predictable

1As shown in Song (2016).

13



process, mean that τ is an invariance time as per Crépey and Song (2017b) and Crépey
and Song (2018), with so called invariance probability measure P. We recall the fol-
lowing results (with J = 1J0,τJ):

Lemma 2.3, Theorem 3.5, and Section 4.2 in Crépey and Song (2017b)
Assuming that an F predictable reduction of any G predictable process exists and that
ST = Q(τ > T |FT ) > 0, then:

Any G optional process admits a unique F optional

reduction coinciding with it before τ on [0, T ].
(23)

If, moreover, τ has a (G,Q) intensity process γ = γJ− such that e
∫ τ
0 γsds is Q

integrable, then the existence on (Ω,A) and uniqueness on (Ω,FT ) of an invariance
probability measure P hold; on FT , P coincides with the bank survival probability mea-
sure associated with Q, i.e.2 the measure with (G,Q) density process Je

∫ ·
0 γsds.

Hereafter we work under the corresponding specialization of Assumptions 4.1 and 4.2.
The conditional expectation with respect to (Gt,Q) (respectively (Ft,P)) is de-

noted by Et (respectively E′t), or simply by E (respectively E′) if t = 0.

Definition 4.1 Given an F optional and P integrable process X stopped at T , we call
clean value process of X the F adapted process X vanishing on [T,+∞) and such that

Xt = E′t(XT −Xt), t ≤ T. (24)

As can be established by section theorem, for any G progressive Lebesgue inte-
grand X such that the G predictable projection p(−X) exists,3 the indistinguishable
equality

∫ ·
0
pXsds =

∫ ·
0 Xsds holds. As a consequence, one can actually consider the F

reduction X ′ of any G progressive Lebesgue integrand X (even if this means replacing
X by pX). We will need the following spaces of processes:

• S2, the space of càdlàg G adapted processes Y over [0, τ ∧ T ] without jump at
time τ such that, denoting Y ∗t = sups∈[0,t] |Ys|:

E
[
Y 2
0 +

∫ T

0
Jse

∫ s
0 γudud(Y ∗)2s

]
= E′

[
sup
t∈[0,T ]

(Y ′)2t

]
<∞, (25)

where the equality follows from the identity (9.3) in Crépey and Song (2018);
Note that, for Y ∈ S2,

E
[

sup
t∈[0,τ∧T ]

Y 2
t

]
≤ E

[
Y 2
0 +

∫ T

0
Js e

∫ s
0 γudud

(
Y ∗
)2
s

]
<∞; (26)

2cf. Schönbucher (2004), Collin-Dufresne et al. (2004), and see also Crépey and Song (2018, Section
A) for more details about it.

3For which σ integrability of X valued at any stopping time, e.g. X bounded or càdlàg, is enough.

14



• L2, the space of G progressive processes X over [0, T ] such that

E
[ ∫ τ∧T

0
e
∫ s
0 γuduX2

sds
]

= E′
[ ∫ T

0
(X ′s)

2ds
]
< +∞, (27)

where the equality follows from the identity (9.4) in Crépey and Song (2018);

• S ′2 and L′2, the respective spaces of F adapted càdlàg and F progressive processes
Y ′ and X ′ over [0, T ] that make the corresponding squared norm finite in the
right-hand side of (25) or (27).

Note that, in view of the above properties:

The F optional reduction operator is an isometry from S2 onto S ′2, with stopping

before τ as the reciprocal operator.
(28)

Finally, we postulate a standard weak martingale representation setup, driven by a
multivariate Brownian motion and an integer valued random measure (see e.g. Crépey
et al. (2019, Section 2.2)).

4.2 Trading Cash Flows

We now specify the trading cash flows: the contractually promised cash flows P (which,
via Assumption 3.4, also determine the hedging cash flows H), the counterparty credit
cash flows C, and the risky funding cash flows F .

The client (assumed all bilateral) portfolio of the bank is partitioned into netting
sets of contracts which are jointly collateralized and liquidated upon clients or bank
default. Given each netting set c of the client portfolio, we denote by:

• Pc, its contractually promised cash flows;

• τc and Rc, the default time and recovery rate of the client corresponding to the
netting set c, whereas τ and R are the analogous data regarding the bank itself;

• τ δc ≥ τc and τ δ ≥ τ , the end of the so called close-out periods of the related
client and of the bank itself, so that the effective liquidation of the netting set c
happens at time τ δc ∧ τ δ;

• P c, the clean value process of the netting set, i.e. of (P c)′ (assumed P integrable),
so that, by Definition 4.1,

P ct = E′t
(
(Pc)′T − (Pc)′t

)
, t ≤ T. (29)

Note that, by linearity, (29) is the sum over the netting set c of the analogous quantity
pertaining to each individual deal in c, called clean valuation of the deal (recall that
we restrict ourselves to European derivatives).

The rules regarding the settlement of contracts following defaults are that:
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Assumption 4.3 At the time a party (a client or the bank itself) defaults, the property
of the collateral posted on each involved netting set is transferred to the collateral
receiver. Moreover, at the liquidation time of a netting set c:

• any positive value due by a nondefaulted party on this netting set is paid in full,

• any positive value due by a defaulted counterparty on this netting set is only paid
up to the corresponding (assumed exogenously specified) recovery rate,

where value is here understood on a clean valuation basis as P c (cf. (29)), net of the
corresponding (already transferred) client collateral, but inclusive of all the promised
contractual cash flows unpaid during the liquidation period;

In addition, during the liquidation period, the CA desks pay to the clean desks all
the unpaid contractual cash flows and, at liquidation time, the property of an amount
P c on the clean margin amount is transferred from the CA desks to the clean desks.

One is then in the abstract setup of the previous sections (cf. the proof of Lemma
5.3 for a detailed derivation), for

P =
∑
c

(
(Pc)τδc∧τδ + 1[τδc∧τδ,∞)P

c
τδc∧τδ

)
and

C =
∑

c;τc≤τδ
(1−Rc)

(
P cτδc∧τδ

+ Pcτδc∧τδ − P
c
(τc∧τ)− − Γc(τc∧τ)−

)+
1[τδc∧τδ,∞)

− (1−R)
∑
c;τ≤τδc

(
P cτδ∧τδc

+ Pcτδ∧τδc − P
c
(τ∧τc)− − Γ̄c(τ∧τc)−

)−
1[τδ∧τδc ,∞),

(30)

where Γc and Γ̄c are the collateral amounts received and posted by the bank in relation
with the netting set c (cash amounts assumed stopped before the first-default time of
the involved parties).

The risky funding cash flows F depend on the actual nature (re-hypothecable
variation margin and/or segregated initial margin) of the collateral amounts Γc and Γ̄c

and on the funding policy of the bank: see Lemma 5.2 for a basic variation margin
illustration and see Albanese et al. (2017) for richer specifications, also involving initial
margin.

In any case, P andH are additive over individual trades, but C is only additive over
netting sets, and F only over (at least as large) funding sets (re-hypotecable collateral
is actually aggregatable throughout the whole bank).

4.3 Economic Capital

We recall that the value-at-risk of a random variable (loss) ` and its expected shortfall,
both at some level α ∈ (12 , 1), respectively denote the left quantile of level α of `, which

we denote by qα(`), and (1−α)−1
∫ 1
α q

a(`)da (see e.g. Föllmer and Schied (2016, Section
4.4)). As is well known, the expected shortfall operator is (1−α)−1 Lipschitz from the
space of integrable losses ` to R, and to R+ when restricted to centered losses `.
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Capital requirements are focused on the solvency issue, because it is when a reg-
ulated firm becomes insolvent that the regulator may choose to intervene, take over,
or restructure a firm. Specifically, Basel II Pillar II defines economic capital as the
α = 99% value-at-risk of the negative of the variation over a one-year period of core
equity tier I capital (CET1). Moreover, the Fundamental review of the trading book
required a shift from 99% value-at-risk to 97.5% expected shortfall as the reference risk
measure in capital calculations.

In our setup, before bank default, CET1 depletions correspond to the shareholder
trading loss process Lτ− (see Albanese et al. (2019, Proposition 4.1) for more detail
about it). In addition, economic capital calculations are typically made by a bank “on
a going concern”, hence assuming that the bank itself does not default. Accordingly,
under Assumption 3.5 and with L′ seen under (F,P) for “losses of the bank assessed
on a going concern basis” (cf. the last sentence in the paragraph following (23)):

Definition 4.2 The economic capital of the bank at time t, ECt, is the (Ft,P) condi-
tional expected shortfall of the random variable (L′(t+1)∧T −L

′
t) (assumed P integrable)

of level α = 97.5%, killed at τ .

Remark 3.4 and the converse part in Assumption 4.2 imply that the process L′

is an (F,P) local martingale. Assuming its P integrability is not a practical restriction
as, in concrete setups such as the one of Proposition 5.4, Lτ− and L′ are even square
integrable (G,Q) and (F,P) martingales.

Since the expected shortfall of a centered random variable is nonnegative:

Remark 4.2 EC is nonnegative.

Remark 4.3 In practice, capital at risk (CR) can be used by the bank for its funding
purposes. As developed in Crépey, Élie, Sabbagh, and Song (2019), this induces an
interference of CR with F , hence an intertwining of the FVA and the KVA. Instead,
for simplicity hereafter, we assume that the bank does not use capital at risk (CR) for
funding purposes.

5 XVA Equations Well-Posedness and Comparison Re-
sults

In this section, we show well-posedness results for the CVA, FVA, and KVA equations
(whereas the MtM process is characterized in (41)). We also establish a KVA optimality
principle.

5.1 Shareholder Valuation and Clean Valuation

Recall that the shareholder value equation (2), for a process Y vanishing on [T,+∞)
if T < τ , is equivalent to the BSDE (3) for Y τ−. This is in particular the case for the
MtM,CVA, and FVA equations (9), (10), and (11). In the case of the KVA equation
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(20), the drift in the equation also depends on the KVA itself. To formally include this
case (and also, as we shall see below, certain FVA specifications), we extend the notion
of shareholder value to cash flows including a component, depending on Y itself, of the
form ∫ ·

0
Jtjt(Yt)dt, (31)

for some random function j = jt(y) measurable with respect to the product of the F
predictable σ field by the Borel σ field on R. We thus consider the following shareholder
value equation (which generalizes (3)):

Y τ−
t = Et

(
Yτ−τ− − Yτ−t +

∫ τ∧T

t
js(Ys)ds+ Y τ−

τ ), t ≤ τ ∧ T, (32)

respectively the following clean value equation for Y ′ (cf. (24)):

Y ′t = E′t
(
Y ′T − Y ′t +

∫ T

t
js(Y

′
s )ds

)
, t ≤ T (33)

(and Y ′ vanishes on [T,+∞)).

Definition 5.1 By S2 solution (respectively S ′2 solution) to the (G,Q) BSDE (32) for
Y τ− (respectively the (F,P) BSDE (33) for Y ′), we mean any (G,Q) semimartingale
solution Y τ− in S2 to (32) with (Y + Y +

∫ ·
0 js(Ys)ds)

τ− in S2 (respectively any (F,P)
semimartingale solution Y ′ in S ′2 to (33) with (Y ′ + Y ′ +

∫ ·
0 js(Y

′
s )ds) in S ′2). By this

equation in S2 (respectively S ′2), we mean this equation considered in terms of S2
(respectively S ′2) solutions. By well-posedness of this equation in S2 (respectively S ′2),
we mean existence and uniqueness of an S2 (respectively S ′2) solution.

Theorem 5.1 The shareholder value equation (32) in S2 for Y τ− is equivalent, through
the bijection (28), to the clean value equation (33) in S ′2 for Y ′.

In the case where Y ′ is in S2, if the random function z 7→ jt(z − Y ′t) is Lipschitz
in the real z and such that j·(−Y ′· ) ∈ L′2, then the clean value equation (33) for Y ′ is
well-posed in S ′2, and so is the shareholder value equation (32) in S2 for Y τ−.

Proof. To alleviate the notation, we show the stated equivalence in the base case
j = 0, i.e. the one between (3) and

Y ′t = E′t(Y ′T − Y ′t), t ≤ T. (34)

First we show an equivalence between the following differential forms of (3) and (34):

Y τ−
T = 0 on {T < τ} and, for t ≤ τ ∧ T,
dY τ−

t = −dYτ−t + dνt,

for some (G,Q) martingale ν in S2,
(35)
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respectively
Y ′T = 0 and, for t ≤ T,
dY ′t = −dY ′t + dµt,

for some (F,P) martingale µ in S ′2.
(36)

By definition of F reductions, the terminal condition in (36) obviously implies the one
in (35). Conversely, taking the FT conditional expectation of the terminal condition in
(35) yields

0 = E[Y τ−
T 1{T<τ}|FT ] = E[Y ′T1{T<τ}|FT ] = Y ′TST ,

hence Y ′T = 0 (as by assumption ST > 0, see above (23)), which is the terminal condition
in (36).

For Y τ− in S2, the martingale condition in (36) implies the one in (35), by stopping
before τ and application to ν = µτ− of (28) and of the first part in Assumption 4.2.
Conversely, the martingale condition in (35) implies that (Y ′, µ = ν ′) satisfies the
second line in (36) on [0, τ ∧ T ], hence on [0, T ], by (23). Moreover, by application of
the second part in Assumption 4.2 and of (28), µ = ν ′ is an (F,P) martingale in S ′2.

Summarizing, if Y τ−, ν in S2 solve (35), then Y ′, µ = ν ′ in S ′2 solve (36); Con-
versely, if Y ′, µ in S ′2 solve (36), then Y τ− = (Y ′)τ−, ν = µτ− in S2 solve (35).

Now, if Y τ− is an S2 solution to (20), then Y τ−, ν in S2 solve (35) (for some ν),
hence Y ′, µ = ν ′ in S ′2 solve (36), therefore Y ′ is an S ′2 solution to (40); Conversely,
if Y ′ is an S ′2 solution to (40), then Y ′, µ in S ′2 solve (36) (for some µ), hence Y τ− =
(Y ′)τ−, ν = µτ− in S2 solve (35), thus Y τ− is an S2 solution to (20) (noting that ν ∈ S2
is Q square integrable over [0, τ ∧ T ], by (26)).

This shows the first part of the theorem. Under the additional assumptions made
in the second part, the well-posedness in S ′2 of the clean value equation (33) follows
from standard results (see e.g. Kruse and Popier (2016)) applied to the (F,P) BSDE
for Z ′ = Y ′ + Y ′, i.e. the (F,P) BSDE with terminal condition Y ′T and coefficient
z 7→ j(z − Y ′). The well-posedness of the shareholder value equation (32) in S2 for
Y τ− then follows from the first part of the theorem.

In particular, the equations (9), (10), (11), and (20) for MtM,CVA,FVA, and
KVA are respectively equivalent to the following more explicit formulations: For t ≤ T,

MtM′t = E′t
(
P ′T − P ′t

)
, (37)

CVA′t = E′t
(
C′T − C′t

)
, (38)

FVA′t = E′t
(
F ′T −F ′t

)
, (39)

KVA′t = E′t
∫ T

t
h(EC′s −KVA′s)

+ds (40)

(recalling (21)).
Regarding MtM, we then have, by specification (30) of P, (37), and (9),

MtM′ =
∑
c

P c1[0,(τδc )
′), MtMτ− =

(∑
c

P c1[0,τδc∧τδ)
)τ−

, (41)
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whereas, from τ onward, MtM proceeds from P by the second part in (7).
Clean valuations at the individual trade level that are involved in MtM computa-

tions (see the observation made after (29)) are of course standard (at least, in the base
case where P = Q). Hence we focus on the XVA equations in the sequel.

5.2 KVA in the Case of a Default-Free Bank

In this section we temporarily suppose the bank default free, i.e., formally,

“τ = +∞, (F,P) = (G,Q).”

The results are then extended to the case of a defaultable bank in Section 5.3.
At that stage we use the “·′” notation, not in the sense of F reduction (as F = G),

but simply in order to distinguish the equations in this part, where F = G, from the
ones in Section 5.3, where F 6= G (the present data will then be interpreted as the F
reductions of the corresponding data in Section 5.3).

Given C ′ ≥ EC′ ≥ 0 representing a putative capital at risk process for the bank,
we consider the auxiliary BSDE,

K ′t = E′t
∫ T

t
h
(
C ′s −K ′s

)
ds, t ≤ T, (42)

with the same interpretation as the KVA (cf. (22) and the following comment), but
relative to any putative capital at risk process C ′ (and simplified to the present setup
of a risk-free bank).

Lemma 5.1 • If C ′ is in L′2, then the equation (42) for K ′ has for unique S ′2
solution

K ′t = hE′t
∫ T

t
e−h(s−t)C ′sds, t ∈ [0, T ] (43)

(which is nonnegative, like C ′);

• If L′ is in L′2, then EC′ is in L′2 and the KVA′ equation (40) has a unique S ′2
solution.

Proof. If L′ is in L′2, then EC′ is in L′2, by Definition 4.2 and (1 − α)−1 Lipschitz
property of the (also conditional) expected shortfall operator recalled in the beginning
of Section 4.3. Moreover, the KVA′ BSDE (40) has a Lipschitz coefficient

kt(y) = h
(
EC′t − y

)+
, y ∈ R. (44)

Hence the result regarding KVA′ follows from the second part in Theorem 5.1 (applied
with Y = 0).

Even simpler considerations prove the analogous result pertaining to the linear
BSDE (42). Finally, the S ′2 solution K ′ to (43) solves (42).

20



To emphasize the dependence on C ′, we henceforth denote by K ′ = K ′(C ′) the
solution (43) to the linear BSDE (42). Assuming that L′ is in L′2, we define the set of
admissible capital at risk processes as

Adm′ = {C ′ ∈ L′2;C ′ ≥ max
(
EC′,K ′(C ′)

)
}, (45)

where C ′ ≥ EC′ is the risk acceptability condition, while C ′ ≥ K ′(C ′) expresses that
the risk margin K ′(C ′), which would correspond through the constant hurdle rate h
to the tentative capital at risk process C ′ (cf. the comment regarding the KVA itself
made after (22)), is part of capital at risk, by Assumption 3.6.

Let (cf. (19))

CR′ = max(EC′,KVA′), (46)

where KVA′ is the S ′2 solution to (40).

Corollary 5.1 Assuming that L′ is in L′2, the S ′2 solution KVA′ to (40) solves the
linear BSDE (42) corresponding to the implicit data C ′ = CR′ as per (46), i.e. we have
KVA′ = K ′(CR′), that is,

KVA′t = hE′t
∫ T

t
e−h(s−t)max(EC′s,KVA′s)ds, t ∈ [0, T ] (47)

(which is nonnegative, as already seen for EC in Remark 4.2).

Proof. The process KVA′ is in S ′2 with martingale part in S ′2 and, by virtue of (40),
we have, for t ∈ [0, T ],

KVA′t = E′t
∫ T

t
h
(
EC′s −KVA′s

)+
ds = E′t

∫ T

t
h
(

CR′s −KVA′s

)
ds, (48)

by (46). Hence, the process KVA′ solves the linear BSDE (42) corresponding to C ′ =
CR′ ∈ L′2. The identity KVA′ = K ′(CR′) follows by uniqueness of an S ′2 solution to the
linear BSDE (42) as seen in Lemma 5.1. Equation (47) then follows by an application
of (43) with C ′ = CR′ as per (46).

Remark 5.1 The KVA formula (47) appears as a continuous-time analog of the risk
margin formula under the Swiss solvency test cost of capital methodology: See Swiss Fed-
eral Office of Private Insurance (2006, Section 6, middle of page 86 and top of page
88).

We are now in a position to establish the minimality result announced after Re-
mark 3.6.

Proposition 5.1 Assuming that L′ is in L′2, we have:
(i) CR′ = min Adm′,KVA′ = minC′∈Adm′ K

′(C ′);
(ii) The process KVA′ is nondecreasing in the hurdle rate h.
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Proof. (i) We saw in Corollary 5.1 that KVA′ = K ′(CR′), hence

CR′ = max(EC′,KVA′) = max
(
EC′,K ′(CR′)

)
,

therefore CR′ ∈ Adm′. Moreover, for any C ′ ∈ Adm′, we have (cf. (44)):

kt(K
′
t(C
′)) = h

(
EC′t −K ′t(C ′)

)+ ≤ h(C ′t −K ′t(C ′)).

Hence, the coefficient of the KVA′ BSDE (40) never exceeds the coefficient of the linear
BSDE (42) when both coefficients are evaluated at the solution K ′t(C

′) of (42). Since
these are BSDEs with equal (null) terminal condition, the BSDE comparison principle
of Proposition 4 in Kruse and Popier (2016)4 applied to the BSDEs (42) and (40) yields
KVA′ ≤ K ′(C ′). Consequently, KVA′ = minC′∈Adm′ K

′(C ′) and, for any C ′ ∈ Adm′,

C ′ ≥ max(EC′,K ′(C ′)) ≥ max(EC′,KVA′) = CR′.

Hence CR′ = min Adm′.
(ii) The coefficient (44) of the KVA′ BSDE (40) is nondecreasing in the parameter
h. So is therefore the S ′2 solution KVA′ to (40), by the BSDE comparison theorem of
Kruse and Popier (2016, Proposition 4) applied to the BSDE (40) for different values
of the parameter h.

5.3 KVA in the Case of a Defaultable Bank

In the case of a defaultable bank, “·′” now denoting F reduction (predictable, optional,
or progressive, as applicable), we have by applications of the first part in Theorem 5.1
(with Y = 0 there):

Proposition 5.2 The equation

Kτ−
t = Et

( ∫ τ∧T

t
h
(
Cs −Ks

)
ds+ 1{τ≤T}K

τ−
τ

)
, t ≤ τ ∧ T (49)

in S2 for Kτ− is equivalent, through the bijection (28), to the equation (42) in S ′2 for
K ′ .

The equation (20) in S2 for KVAτ− 5 is equivalent, through the bijection (28), to
the equation (40) in S ′2 for KVA′.

Hence, given Lemma 5.1 :

Corollary 5.2 • If C ′ ∈ L′2, then the K equation (49) is well posed in S2 and the
F optional reduction K ′ of its S2 solution K is the S ′2 solution to (42);

• If L′ is in L′2, then the KVAτ− equation (20) is well posed in S2 and the F optional
reduction KVA′ of its S2 solution KVAτ− is the S ′2 solution to (40).

4Note that jumps are not an issue for comparison in our setup, where the coefficient k “only depends
on y”; cf. Kruse and Popier (2016, Assumption (H3’)).

5See (3) and the following comment.
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In the case of a defaultable bank, writing K = K(C) for the S2 solution to (49),
the set of admissible capital at risk processes is defined by (cf. (45) and the following
comments)

Adm = {C ∈ L2;C ≥ max
(
EC,K(C)

)
}. (50)

Theorem 5.2 Assuming that L′ is in L′2:
(i) We have CR = min Adm,KVAτ− = minC∈AdmK(C);
(ii) The process KVA is nondecreasing in h.

Proof. This follows by application of Proposition 5.1 via Corollary 5.2.

5.4 CVA and FVA

We now consider the CVA and the FVA equations (10) and (11) and their reduced
forms (38) and (39).

Regarding the funding cash flows, we postulate (as typical regarding variation
margin funding expenses, cf. (57) for a concrete example below)

dFτ−t = Jtft(FVAτ−
t )dt, (51)

for some random function f = ft(y) measurable with respect to the product of the F
predictable σ field by the Borel σ field on R.

Proposition 5.3 The equation (10) in S2 for CVAτ− is equivalent to the CVA′ for-
mula (38), which, if C′T is P square integrable, yields a well defined process in S ′2.

Then, for Fτ− as per (51), the equation (11) in S2 for FVAτ− is equivalent to the
following equation in S ′2 (cf. (39)):

FVA′t = E′t
∫ T

t
fs(FVA′s)ds, t ≤ T. (52)

Assuming f Lipschitz in y and f·(0) in L′2, this equation is well posed in S ′2 and the
equation (11) for FVAτ− is therefore well-posed in S2.

Proof. By two successive applications of Theorem 5.1 (with j = 0 in the CVA case
and Y = 0 in the FVA case).

Remark 5.2 A structure (51) for Fτ− as per (31) is a slight departure, as per Sec-
tion 5.1, from the abstract setup postulated Section 3.1, where F had been introduced
as an exogenous process. But, provided the ensuing FVAτ− equation is well-posed, for
which sufficient conditions are given in Proposition 5.3 (see also Proposition 5.4 for a
more explicit result in a concrete setup), one can readily check, by revisiting all the
above, that this dependence does not affect any of the qualitative conclusions drawn
in the previous sections of the paper.
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5.5 Example

Let

U0 = 1 and dUt = λtUtdt+ (1−R)Ut−dJt = Ut−
(
λtdt+ (1−R) dJt

)
, t ≤ τ ∧ T, (53)

represent the (risk-free discounted) risky funding asset supposed to be used by the bank
for its unsecured borrowing purposes, for some exogenous and constant recovery rate
R ∈ [0, 1]. Note that the bank can only be short in U , assuming the bank is not allowed
to sell default protection on itself.

The martingale condition that applies to U (cf. the comments preceding Assump-
tion 3.2) implies that λ = (1 − R)γ, where γ is the default intensity of the bank and
R its recovery rate toward its external funder (see the second paragraph of Section 2).
Hence

λtdt+ (1−R) dJt = (1−R)dµt, (54)

where dµt = γdt+ dJt is the compensated jump-to-default martingale of the bank.
We assume all re-hypothecable collateral (i.e. no initial margin) and we denote by

D an optional process representing the difference between the collateral MtM posted
by the CA desks to the clean desks and the collateral received by the CA desks from
the clients.

Lemma 5.2 For t ≤ T , we have

dFt = (1−R)(Dt− − CAt−)+dµt, (55)

i.e.

dFτ−t = Jtλt(Dt − CVAt − FVAt)
+dt,

d(τ−(−F))t = (1−R)(Dt− − CVAt− − FVAt−)+(−dJt).
(56)

If C′T is P square integrable, then Fτ− is of the form (51) with

f·(y) = λ′(D′ − CVA′ − y)+, (57)

where CVA′ is defined by (38).

Proof. Assuming that capital at risk is not used by the bank for its funding purposes
(cf. Remark 4.3), the funding strategy of the CA desks reduces to a splitting of the
amount CAt on the reserve capital account as

CAt = Dt︸︷︷︸
Posted collateral remunerated at the risk-free rate

+ (CAt −Dt)
+︸ ︷︷ ︸

Cash invested at the risk-free rate

− (CAt −Dt)
−︸ ︷︷ ︸

Cash unsecurely funded

=
(
Dt + (CAt −Dt)

+
)︸ ︷︷ ︸

=: ξt, invested at the risk-free rate

− (CAt −Dt)
−︸ ︷︷ ︸

=: ηtUt, unsecurely funded

(58)
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(all risk-free discounted amounts). Given our use of the risk-free asset as numéraire, a
standard self-financing equation yields6

d (ξt − ηtUt) = −ηt−dUt = −(1−R)ηt−Ut−dµt

= −(1−R)(Dt− − CAt−)+dµt, t ≤ τ ∧ T.

As CA = CVA + FVA, this yields (55), i.e. (56). If C′T is P square integrable, then (57)
follows by the first part in Proposition 5.3.

In what follows we further assume that the bank portfolio involves a single client
with default time denoted by τ1, that Q(τ1 = τ) = 0, that the liquidation of a defaulted
party is instantaneous, and that no contractual cash flows are promised at the exact
times τ and τ1.

Let J and J1, respectively R and R1, denote the survival indicator processes and
the assumed recovery rates of the bank and its client toward each other; we also assume
that the bank has identical recovery rates toward its client and its external funder. In
this case, D is of the form J1Q, where Q is the difference between the clean valuation
P of the client portfolio and the amount VM of variation margin (re-hypothecable
collateral) to be transferred7 between the client and the CA desks in case of a default
of the client or the bank.

The following result is in line with the generic specification of C in (30). For
illustration we provide a detailed derivation from Assumption 4.3.

Lemma 5.3 For t ≤ T,

dC?t = 1{τ1≤τ}(1−R1)Q
+
τ1(−dJ1

t ),

d(τ−(−C))t = 1{τ≤τ1}(1−R)Q−τ (−dJt).
(59)

Proof. Before the defaults of the bank or its client, the contractual cash flows are
delivered as promised, hence there are no contributions to the process C. Because of
this, and since liquidations are instantaneous, it is enough to focus on the contributions
to C at time τ∧τ1. By symmetry, it is enough to prove the first line in (59). Let ε = Q+

τ1 .
By Assumption 4.3, if the counterparty defaults at τ1 < τ, then (as Q = P − VM and
having excluded the possibility of contractual cash flows at times τ or τ1):

• On the client portfolio side, the CA desks receive

VMτ1 +R1Q
+
τ1 −Q

−
τ1 = 1ε=0Pτ1 + 1ε>0(VMτ1 +R1Qτ1);

• The property of the amount Pτ1 on the clean margin account is transferred from
the CA desks to the clean desks.

6A left-limit in time is required in η because U jumps at time τ, so that the process η, which is

defined through (58) as (CA−D)−

U
, is not predictable.

7Property-wise, having already been posted as a loan by the client to the CA desks (if positive, or
by the CA desks to the client otherwise), cf. Assumption 4.3.
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Combining both cash flows, the loss of the CA desks triggered by the default of the
client amounts to

Pτ1 −
(
1ε=0Pτ1 + 1ε>0(VMτ1 +R1Qτ1)

)
= 1ε>0(Pτ1 −VMτ1 −R1Qτ1) = (1−R1)Q

+
τ1 ,

which shows the first line in (59).

Proposition 5.4 If 1{τ ′1<T}(Q
′
τ ′1

)+ is P square integrable and λ′J1(Q′)+ is in L′2, then

the FVA′ equation (52) is well-posed in S ′2, the CVA and FVA equations (10)–(11) are
well-posed in S2 and we have, for t ≤ T :

CVA′t = E′t
[
1{t<τ ′1<T}(1−R1)(Q

′
τ ′1

)+
]
, (60)

FVA′t = E′t
∫ T

t
λ′s((J

1)′sQ
′
s − CVA′s − FVA′s)

+ds, (61)

DVAt = Et
[
1{t<τ≤τ1∧T}(1−R)Q−τ

]
+ Et

[
1{t<τ≤T}CVAτ−

]
, (62)

FDAt = Et
[
1{t<τ≤T}(J

1
τ−Qτ− − CAτ−)+

]
+ Et

[
β−1t βτ1{t<τ≤T}FVAτ−

]
, (63)

FVt = Et
[
1{t<τ1≤τ∧T}(1−R1)Q

+
τ1

]
− Et

[
1{t<τ≤τ1∧T}(1−R)Q−τ

]
, (64)

dL′t = (1−R1)(Q
′
τ ′1

)+(−d(J1)′t) + dCVA′t (65)

+λ′t(J
1)′t(Q

′
t − CVA′t − FVA′t)

+dt+ dFVA′t.

Moreover, L′ is in S ′2 and the ensuing KVA implications of Corollary 5.2 are in force,
in particular the KVA′ formula (47) holds.

Proof. The CVA and FVA related statements are obtained by application of Propo-
sition 5.3. The DVA, FDA, and FV formulas readily follow from Definition 3.2, (59),
and (56). The dynamics (65) for L′ are obtained by plugging the first lines of (59) and
(56) into (12) and then taking F reductions of all the data. Finally L′ belongs to S ′2 as
the sum (modulo a constant) between the (F,P) optional projection of 1{τ ′1<T}(Q

′
τ ′1

)+

(assumed P square integrable) and the (F,P) martingale part of FVA′.

The FV formula (64) is symmetrical between the bank and its client, hence con-
sistent with the so-called “law of one price”. But, as detailed in Section 3.5, the
corresponding notion of fair valuation is only a theoretical cost of replication formula,
forgetful of the wealth transfers from clients and shareholders to bondholders that arise
due to the incompleteness of counterparty risk.

6 Comparison with the XVA Replication Theory

In this section, we compare our method with alternative approaches in the litera-
ture that have been developed in the last years in what we therefore call the XVA
benchmark model, namely a Black–Scholes model S for an underlying market risk fac-
tor, in conjunction with independent Poisson counterparties and bank defaults: See,
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non-limitatively, the Burgard and Kjaer (2011, 2013, 2017) CVA and FVA approach,
referred to as the BK approach below, the Green et al. (2014) KVA approach, referred
to as the GK approach, Bichuch, Capponi, and Sturm (2018), or Crépey, Bielecki, and
Brigo (2014, Section 4.6).8

As a general comment, using a Black–Scholes replication framework as an XVA
toy model can be misleading. The view developed in the present paper is that XVAs
are mainly about market incompleteness, and therefore fall under a logic orthogonal to
Black–Scholes. From this perspective, promoting a Black–Scholes replication approach
in the XVA context is a bit comparable to the mispractice developed during the credit
derivative pre-2008 crisis era, when the notion of “Gaussian copula implied correlation”
of a CDO tranche was presented as a relative of the Black–Scholes implied volatility of
an option, whereas the Gaussian copula model is a purely static device not supported
by a sound hedging basis. Actually, in a complete setup, the all-inclusive XVA should
just be FV, i.e. the difference between the CVA and the DVA (see Section 3.5).

As a matter of fact, Burgard and Kjaer (2011, 2013, 2017), although availing
themselves of a replication pricing framework and blaming risk-neutral approaches
outside the realm of replication (see the first paragraph in their 2013 paper), end-
up doing what they call semi-replication, which is nothing but a form of risk-neutral
pricing without (exact) replication.

In the XVA field, even the restriction to a Markov setup (beyond Black–Scholes
or replication) is not necessarily innocuous, as we will see in the next-to-last paragraph
of Section 6.1.

What follows provides more detailed comparisons between these approaches and
the one of the present paper.

6.1 CVA and FVA: Comparison with the Burgard and Kjaer Ap-
proach

Burgard and Kjaer (2011, 2013, 2017) repeatedly (and rightfully) say that only pre-
default cash flows matter to shareholders. For instance, quoting the first paragraph in
the second reference:

“Some authors have considered cases where the post-default cash flows on
the funding leg are disregarded but not the ones on the derivative. But it
is not clear why some post default cashflows should be disregarded but not
others”,

to which we subscribe fully and refer to as their first principle.
The introduction of their classical “(funding) strategy I : semi-replication with no

shortfall at own default” (see e.g. (Burgard and Kjaer 2013, Section 3.2)) seems to be
in line with the idea, which we also agree with (see Assumption 3.2 and the comment
following it) and refer to as their second principle, that a shortfall of the bank at its
own default does not make sense and should be excluded from a model (which should

8In journal form Crépey (2015, Part II, Section 5).
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imply that DVA ≥ 0,FDA ≥ 0, and no admissible hedge causes a shortfall at bank
default that would allow the bank to manipulate the latter inequalities, see Section 3.5).

However, being rigorous with their first principle implies that the valuation jump
of the portfolio at the own default of the bank should be disregarded in the shareholder
cash flow stream. But their computations, stated in terms of (dV̂ + dΠ̄) in Burgard
and Kjaer (2013, equation (9)) or (dV̂ α + dΠ) in Burgard and Kjaer (2017, equation
(3.5)), include this cash flow (which in our setup would be tantamount to ignoring the
last terms in equations (9)–(11), cf. Remark 2.1).

For illustration, in order to be able to restrict attention on the CVA for simplicity,
let us assume, for the sake of the argument, that the bank, although risky (with default
intensity γ > 0), can both fund itself and invest at the risk-free rate.9 This corresponds
to the limiting case where F = 0 in Assumption 3.2. We put ourselves in the framework
of Section 5.4 where Proposition 5.4 was derived, specialized further to a BK setup
with volatility σ of a stock S underlying a (single) contract with payoff φ(ST ) sold
by the client to the bank. Taking the difference between the CVA′ PDE (cf. (60)
specialized to the present BK setup) and the Black–Scholes PDE for the clean valuation
of the contract shows that the bank pre-default CVA-deducted value of the contract,
V̂ ′t := P ′t − CVA′t, can be represented in functional form as V̂ ′(t, St, J

1
t ), where the

function Π(t, S) = V̂ ′(t, S, J1 = 1) satisfies the following pricing equation:

Π(T, S) = φ(S) and, for t < T,

(∂t +
1

2
σ2S2∂2S2)Π(t, S) + γ1

(
R1P

+ − P−
)
(t, S)− γ1Π(t, S) = 0.

(66)

Here γ1 is the default intensity of the counterparty, assumed constant in BK, and P (t, S)
is the Black-Scholes price of the option. Observe that the (positive) default intensity γ
of the bank does not appear in (66). In fact, (66) is nothing but the equation (10) for
V̂ in Burgard and Kjaer (2013) or (3.8) for V̂ α in Burgard and Kjaer (2017), but for a
default intensity of the bank, denoted by λB there, formally set equal to 0.

Hence, in a BK pure CVA setup, the CVA-deducted value of the option truly
disregarding all cash flows from time τ onward, including the jump in valuation at
time τ , is not given by the solution V̂ to equation (10) in Burgard and Kjaer (2013)
or V̂ α to equation (3.8) in Burgard and Kjaer (2017), but by V̂ = (V̂ ′)τ−, where V̂ ′

satisfies the formal analog of these equations with intensity of the bank set equal
to 0.

In the plain (counterparty risk and funding) BK setup, a strict application of their
two principles (which is nothing but taking a bank shareholder-centric view given the
impossiblity for a bank of hedging its own jump-to-default) should lead to a unilateral
CVA and to a unilateral (and asymetric) FVA, where the credit riskiness of the bank
only shows up throuh a funding spread driving the FVA.

Incidentally, the Itô derivation of the portfolio XVA-deducted value process in
Burgard and Kjaer (2013, Eq. (9)) relies on the implicit assumption that this value

9For instance because the bank is highly capitalized and can in fact use its capital at risk for funding
its trading (cf. Remark 4.3), or simply assuming exogenously a recovery rate of the bank R equal to 1.
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process V̂ is in the first place a (regular enough) function of the postulated risk factors
(for Itô’s formula to apply), which is not justified in their paper. For instance, in the
simplified (CVA only) BK setup above, CVA′t is a measurable function of t, St, and J1

t ,
and then it only holds that CVAτ− = (CVA′)τ−.

As a consequence of the above pitfall regarding V̂ , reviewing the funding strategies
in Burgard and Kjaer (2017, Section 4), but accounting for the transfer of the residual
reserve capital from shareholders to bondholders at the bank default time τ (cf. the
last part of Assumption 2.2):

• Their strategy III would no longer imply a unilateral CVA as per Albanese and
Andersen (2014) (i.e. (60) in the present paper). Considering for instance the
special case with sB = 0 there of a pure CVA setup, the funding strategy that
implies a unilateral CVA is simply the obvious one (having assumed sB = 0),
i.e. funding and investing at the risk-free rate;

• Their respective strategies I and II would not imply the claimed XVA formulas.
These strategies also breach the last part in Assumption 3.2, which may lead to
a violation of their second principle of no bank shortfall at its default, through a
negative FVA = FDA (unless in their notation V ≥ 0, respectively V̂ ≥ 0, i.e. in
our notation above P ≥ 0, respectively Π ≥ 0);

• Their replication strategy is not practical, as stated at the end of Burgard and
Kjaer (2013, Section 3.1), which is the motivation for their other strategies.

6.2 KVA: Comparison With the Green and Kenyon Approach

Despite what the “valuation adjustment” terminology induces one to believe, our KVA
is not part of the value of the derivative portfolio, but a risk premium in incomplete
counterparty risk markets: our risk margin (i.e. KVA) payments are meant to remu-
nerate the risk of unhedged trading losses. Hence, including the KVA to contra-assets,
which contribute to the trading losses of the bank, would be illogical (and induce a
circularity).

In Green et al. (2014) the KVA is instead treated as a liability in a replication
framework. The KVA is also treated as a liability in some theoretical actuarial lit-
erature, under the name of market-value margin (MVM, see Salzmann and Wüthrich
(2010, Section 4.4)). Viewing the KVA as a liability results in a non loss-absorbing risk
margin, hence CR = SCR (as opposed to (18) in our setup), and therefore hEC instead
of hSCR = h(EC−KVA)+ as Lebesgue integrand in the KVA equation (20) (cf. (21)).
This implies no discounting at the hurdle rate h in the (already risk-free discounted)
KVA formula (47) (recall KVA′ and KVA coincide before τ).

Moreover, if the KVA is viewed as a liability, forward starting one-year-ahead
fluctuations of the KVA must be simulated for economic capital calculation. This makes
it intractable numerically, unless one switches from economic capital to a (scriptural)
regulatory capital specification in the KVA equation. But using regulatory instead of
economic capital is less self-consistent: It loses the connection, established from the
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balance sheet in our approach (see Albanese et al. (2019, Proposition 4.1) for more
detail about it), whereby the KVA input is the shareholder trading loss Lτ− as per
(12).

A potential drawback of our approach with respect to using (scriptural) regulatory
capital specification is enhanced model risk. More generally, model risk in the XVA
context is an important and widely open issue, which we leave for further research.

7 Conclusion

Under a cost-of-capital, economical capital based, XVA approach, the input to economic
capital and KVA computations, i.e. the process Lτ− (cf. Definition 4.2 and (18)–(20)),
is an output of the CVA and FVA computations (cf. (12)). Moreover, in view of (30),
key inputs to the counterparty credit cash flows C, and, in turn, to the risky funding
cash flows F , are the clean value processes P c, as well as the collateralization schemes
that underlie Γc and Γ̄c. Hence, MtM computations flow into CVA computations,
which in turn flow into FVA computations, which all flow into KVA computations.
These connections make the MtM, CA = CVA + FVA, and KVA equations, thus the
derivative pricing problem as a whole, a self-contained and self-consistent problem.

7.1 Unilateral Versus Bilateral XVAs

Even though our setup crucially includes the default of the bank itself (which is the
essence of the contra-liabilities wealth transfer issue), we end up with unilateral (and
nonnegative) portfolio-wide CVA, FVA, and KVA formulas (38)–(40) pricing the related
cash flows until the final maturity T of the portfolio (as opposed to τ ∧T ), and without
any bank default intensity discounting—under the reduced filtration F and possibly
changed pricing measure P, but, as discussed in Remark 4.1, the base case is P = Q.

Unilateral and nonnegative portfolio-wide XVA costs to be accounted for in entry
prices is indeed what follows from our analysis of all wealth transfers involved. This
makes the corresponding XVAs more conservative than the bilateral (and sometimes
negative) XVAs that appear in most of the related literature.

A unilateral CVA is actually required for being in line with the regulatory require-
ment that reserve capital should not diminish as an effect of the sole deterioration of
the bank credit spread (see Albanese and Andersen (2014, Section 3.1)).

A bilateral KVA would be obtained instead of a unilateral one by deciding that,
upon bank default, notwithstanding the last part of Assumption 2.2, the residual risk
margin flows back into equity capital and not to bondholders. Likewise, disentangling
the CA desks into a CVA desk and an FVA desk, each endowed with their own reserve
capital account, a bilateral FVA would follow from asserting that, upon bank default,
the residual reserve capital of the FVA desk flows back into equity capital and not to
bondholders: See e.g. Albanese et al. (2017, Proposition 4.2). But the corresponding
violations of Assumption 2.2 induce “shareholder arbitrage”, in the sense of a riskless
profit to shareholders in the case where the bank would default instantaneously at time
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0, right after the client portfolio has been setup and the corresponding reserve capital
and risk margin amounts have been sourced from the clients.

7.2 Cost-of-Capital XVA Approach: Theory and Practice

The KVA formula (47) can be used either in the direct mode, for computing the KVA
corresponding to a given target hurdle rate h, or in the reverse-engineering mode,
like the Black–Scholes model with volatility, for defining the “implied hurdle rate”
associated with the actual amount on the risk margin account of the bank. Cost of
capital proxies have always been used to estimate return-on-equity. Whether it is used
in the direct or in the implied mode, the KVA is a refinement, dynamic and fine-tuned
for derivative portfolios, but the base concept is far older than even the CVA.

In the current state of the market, even when they are computed, the KVA and
even the MVA (which is included in the FVA in this paper) are not necessarily passed
into entry prices. But they are strategically used for collateral and capital optimization
purposes and detection of good/bad trade opportunities. This kind of balance sheet
optimization is very active in top tier banks at the moment.

In the post-crisis regulatory environment, bilateral exotic trades are typically
hedged by vanilla portfolios that are cleared through central counterparties. In this
paper, we considered a dealer bank involved into bilateral derivative portfolios with
clients and we refer the reader to Albanese et al. (2017) for numerical applications at
the scale of real-life bilateral trade portfolios; see also Abbas-Turki, Diallo, and Crépey
(2018) for a focus on the embedded nested Monte Carlo issues. Moreover, the abstract
analysis of Section 2–3 can be adapted to the case of centrally cleared derivative port-
folios, which is done in Armenti and Crépey (2019). A cost-of-capital XVA approach,
thus extended, can then be applied to the situation of a bank involved into an arbitrary
combination of bilateral and centrally cleared derivative portfolios.
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