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Abstract

The correction in value of an OTC derivative contract due to counterparty risk under
funding constraints, is represented as the value of a dividend-paying option on the value
of the contract clean of counterparty risk and excess funding costs. This representation
allows one to analyze the structure of this correction, the so-called Credit Valuation
Adjustment (CVA for short), in terms of replacement cost/benefits, credit cost/benefits
and funding cost/benefits. We develop a reduced-form backward stochastic differential
equations (BSDE) approach to the problem of pricing and hedging the CVA. In the
Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of
semilinear PDEs.
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1 Introduction

We pursue the study of valuation and hedging of bilateral counterparty risk on OTC deriva-
tives under funding constraints initiated in the companion paper Crépey (2012), to which
we refer the reader for all the background. We consider a netted portfolio of OTC deriva-
tives between two defaultable counterparties, generically referred to in our papers as the
“contract between the bank and the investor”. Within the bank, every particular busi-
ness trading desk has only a precise view on its own activity, lacking the global view, and
specifically the aggregated data, needed to properly value the CSA cash-flows related to
the defaultability of either party (margin calls and CSA close-out cash-flow on the netted
portfolio), as well as to fairly assess the related funding costs. Therefore in major invest-
ment banks today the trend is to have a central CVA desk in charge of collecting the global
information and of valuing and hedging counterparty risk, also accounting for any excess
funding costs involved. Here CVA stands for Credit Value Adjustment. The value-and-
hedge of a contract is then obtained as the difference between the “clean” value-and-hedge
provided by the trading desk (clean of counterparty risk and excess funding costs), and a
value-and-hedge adjustment computed by the CVA desk.

This allocation of tasks between the various business trading desks of an investment
bank, and a central CVA desk, motivates the present mathematical CVA approach to the
problem of valuing and hedging counterparty risk. Moreover this is done in a multiple-
curve setup accounting for the various funding costs involved, allowing one to investigate
the question of interaction between (bilateral in particular) counterparty risk and funding.

In the previous paper we identified a non standard backward stochastic differential
equation (BSDE) which was key in the pricing of a counterparty risky contract (or portfolio
of contracts) under funding constraints. Interestingly enough, the notion of CVA, which
emerged for practical reasons in banks, will also be useful mathematically. In a sense this
paper tells the story of the reduction of a non standard price BSDE, to an ultimately quite
classical pre-default CVA BSDE.

1.1 Outline of the Paper

Since the pioneering works of Brigo and Pallavicini (2008) for unilateral counterparty risk
and Brigo and Capponi (2010) in a context of bilateral counterparty risk, it is well under-
stood that the CVA can be viewed as an option, the so-called Contingent Credit Default
Swap (CCDS), on the clean value of the contract. Section 2 extends to a nonlinear multiple-
curve setup the representation of the CVA as the price of a CCDS. Our CVA accounts not
only for counterparty risk, but also for funding costs. The CCDS is then a dividend-paying
option, where the dividends correspond to these costs. We then develop in Section 3 a prac-
tical reduced-form CVA BSDE approach, to the problem of pricing and hedging bilateral
counterparty risk under funding constraints. Counterparty risk and funding corrections to
the clean price-and-hedge of the contract are represented as the solution of a pre-default
CVA BSDE stated with respect to a reference filtration, in which defaultability of the two
parties only shows up through their default intensities. In the Markovian setup of Section 4,
explicit CVA pricing and hedging schemes are formulated in terms of semilinear pre-default
CVA PDEs.

The paper sheds some light onto the structure of the CVA (see Examples 2.1 and 3.1)
and on the debate about unilateral versus bilateral counterparty risk (see Subsection 4.4).
Our main results are Proposition 4.2 and Corollary 4.2, which yield concrete recipes for
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risk-managing the contract as a whole or its CVA component, according to the following
objective of the bank: minimizing the (risk-neutral) variance of the cost process (which is
essentially the hedging error) of the contract or of its CVA component, whilst achieving a
perfect hedge of the jump-to-default exposure.

A take-away message is that the counterparty risk two stages valuation and hedging
methodology (counterparty risky price obtained as clean price minus CVA) which is cur-
rently emerging for practical reasons in banks, is also useful in the mathematical analysis
of the problem. This makes the CVA not only a very important and legitimate financial
object, but also a valuable mathematical tool.

1.2 Setup

This Subsection is a brief recap of the companion paper Crépey (2012). We refer the reader
to Sections 2 and 3 of this previous paper1 for the detailed notation, standing assumptions
and all the financial interpretation. All cash-flows that appear in the paper are assumed
to be integrable under the prevailing pricing measure. “Martingale” should be understood
everywhere as local martingale, a genuine martingale being called “true martingale”.

We consider a generic contract of time horizon T with promised dividends dDt from the
bank to the investor. The two parties are defaultable, with respective default times denoted
by � and �. This results in an effective dividend stream dCt = JtdDt, where Jt = 1t<� with
� = �∧ �. Moreover if � < T there is a CSA close-out cash-flow Ri at time � from the bank
to the investor. One denotes by �̄ = � ∧ T the effective time horizon of our problem (there
are no cash-flows after �̄). The case of unilateral counterparty risk (from the perspective of
the bank, as everything in the paper) can be recovered by letting � =∞.

After having sold the contract to the investor at time 0, the bank sets-up a collater-
alization, funding and hedging portfolio (“hedging portfolio” for short). Let ℳ denote the
ℝd-valued gain process of a buy-and-hold position into the hedging assets traded in swapped
form (that is, when every hedging instrument is either a genuine swap, or exchanged on a
repo market). A standing stochastic basis (Ω,GT ,G,ℙ), where G = (Gt)t∈[0,T ], is interpreted
as a risk-neutral pricing model on the primary market, in the sense that

Assumption 1.1 The primary risky gain process ℳ is a (G,ℙ)-martingale.

Accounting for funding costs, the self-financing condition imposes the following dynamics
for the wealth of the hedging portfolio, for t ∈ [0, �̄ ]:

dWt = −dCt + (rt + gt(Wt, �t)dt+ �tdℳt.

Here rt is the risk-free interest rate (in the abstract economic sense of time-value of money,
without necessarily a related funding asset); a “hedge” � denotes a left-continuous locally
bounded ℝd-valued row-vector process representing the number of units of the hedging assets
which are held in the bank’s hedging portfolio; and a random function gt(�, &) represents a
funding benefit coefficient of the bank in excess over the risk-free rate. The funding of the
bank’s position is ensured by an external risk-free funder. The (algebraic) debt of the bank
to this funder at time t is given as X+

t−(Wt−, �t−), for an external debt random function
X+
t (�, &). In case the bank defaults at time � = � < T, this results in an additional, external

1Subsections 2.2 and 3.1 therein actually refer to a particular example of funding specification which can
be ignored to begin with.
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funding close-out cash-flow, from the funder to the bank (so this is a funding benefit of the
bank at her own default), worth

(1− r)X+
�−(W�−, ��−)

in which a G�-measurable random variable r represents the recovery rate of the bank towards
its external funder. In case r < 1 the bank defaults at time � not only on its commitments in
the contract with regard to the investor, but also on its related funding debt. The case r = 1
corresponds to a partial default in which at time � the bank only defaults on its contractual
commitments with regard to the investor, but not on its funding debt with respect to its
funder. It can be used for rendering the situation of a bank in a global net lender position,
so that it actually does not need any external lender. In case cash is needed for funding
its position, the bank simply uses its own cash. By convention we also let r = 1 in case of
unilateral counterparty risk of the bank where � =∞.

Given a G-semimartingale Π and a hedge �, we denote R = Ri − 1�=�R
f , in which

Rf := (1− r)X+
�−(Π�−, ��−).

Note R implicitly depends on (Π�−, ��−) in this notation.

Definition 1.1 Let a pair (Π, �) made of a G-semimartingale Π and a hedge �, satisfy the
following BSDE on [0, �̄ ]:

Π�̄ = 1�<TR and for t ∈ [0, �̄ ] :

dΠt + dCt −
(
rtΠt + gt(Πt, �t)

)
dt = d�t

(1.1)

for some G-martingale � null at time 0. Process (Π, �) is then said to be a price-and-hedge
of the contract. The related cost process is the G-martingale " defined by "0 = 0 and for
t ∈ [0, �̄ ]

d"t = d�t − �tdℳt. (1.2)

As shown in the previous paper, the cost process " essentially corresponds to the hedging
error of a price-and-hedge (Π, �). Equivalently to the BSDE (1.1) in differential form, one

can write in integral form, letting also �t = e−
∫ t
0 rsds and denoting Et = E

(
⋅
∣∣∣Gt)

�tΠt = Et
(∫ �̄

t
�sdCs −

∫ �̄

t
�sgs(Πs, �s)ds+ ��̄1�<TR

)
. (1.3)

The BSDE (1.1) is made non-standard by the random terminal time �̄ , the dependence
of the terminal condition R in (Π�−, ��−), the dividend term dCt, and the fact that it is
not driven by an explicit set of fundamental martingales like Brownian motions and/or
compensated Poisson measures.

From the BSDE point of view, a particularly simple situation will be the one where

X+
t (�, &) = X+

t (�) , gt(�, &) = gt(�). (1.4)

We call it the fully swapped (as opposed to externally funded) hedge case in reference to
its financial interpretation seen in the previous paper. This is the most common case in
practice, see however (Burgard and Kjaer 2011a; Burgard and Kjaer 2011b) and Section 5
of the previous paper for a case of an externally funded hedge.
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2 CVA

Since the pioneering works of Damiano Brigo and his coauthors, it is well understood that
the CVA can be viewed as an option, the so-called Contingent Credit Default Swap (CCDS),
on the clean value of the contract. This Section extends to a nonlinear multiple-curve setup
the notion of CVA and its representation as the price of a CCDS. In our setup the CVA
actually accounts not only for counterparty risk, but also for excess funding costs. The
CCDS is then a dividend-paying option, where the dividends correspond to these costs.

2.1 Bilateral Reduced Form Setup

We assume henceforth that the model filtration G can be decomposed into G = ℱ∨ℋ�∨ℋ�,
where ℱ is some reference filtration and ℋ� and ℋ� stand for the natural filtrations of �
and �. Let also Ḡ = ℱ ∨ ℋ, where ℋ is the natural filtration of �̄ (or equivalently, of �).
We refer the reader to Bielecki and Rutkowski (2002) for the standard material regarding
the reduced-form approach in credit risk modeling. The Azéma supermartingale associated
with � is the process G defined by, for t ∈ [0, T ],

Gt = ℙ(� > t ∣ ℱt). (2.1)

We assume that G is a positive, continuous and non-increasing process. This is a classical,
slight relaxation of the so-called immersion or (ℋ)-hypothesis of ℱ into Ḡ. In particular,

Lemma 2.1 (i) An ℱ-martingale stopped at � is a Ḡ-martingale, and a Ḡ-martingale
stopped at � is a G-martingale.
(ii) An ℱ-adapted càdlàg process cannot jump at �. One thus has that ΔX� = 0 almost
surely, for every ℱ-adapted càdlàg process X.

Proof. (i) Since � has a positive, continuous and non-increasing Azéma supermartingale,
it is known from Elliot et al. (2000) that an ℱ-martingale stopped at � , is a Ḡ-martingale.
Besides, two successive applications of the Dellacherie-Meyer Key Lemma (see for instance
Bielecki and Rutkowski (2002)) yield that for every Ḡ-adapted integrable process M , one
has for every 0 ≤ s ≤ t ≤ T

E (Mt∧� ∣ Gs) = 1s≥�M� + 1s<�
E (Mt∧�1s<� ∣ ℱs)
ℙ (s < � ∣ ℱs)

= 1s≥�Ms∧� + 1s<�E
(
Mt∧� ∣ Ḡs

)
,

which, in case M is a Ḡ-true martingale, boils down to Ms∧� . A Ḡ-true martingale stopped
at � is thus a G-true martingale. A standard localization argument then yields that a Ḡ-
(local) martingale stopped at � is a G-(local) martingale.
(ii) As G is continuous, � avoids ℱ-stopping times in the sense that ℙ(� = �) = 0 for any
ℱ-stopping time � (see for instance Coculescu and Nikeghbali (2012)). The results then
follows from the fact that by Theorem 4.1 page 120 in He et al. (1992), there exists a
sequence of ℱ-stopping times exhausting the jump times of an ℱ-adapted càdlàg process.
□

2.2 Clean Price

In the sequel, the risk-free short rate process r, or equivalently the risk-free discount factor
process � = e−

∫ ⋅
0 rtdt, and the clean dividend process D, are assumed to be ℱ-adapted. In
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order to define the CVA process Θ, one first needs to introduce the clean price process P
of the contract. This is a fictitious, instrumental value process, which would correspond to
the price of the contract without counterparty risk nor excess funding costs. In the present
reduced-form setup, the clean price process P of the contract is naturally defined as, for
t ∈ [0, T ],

�tPt = E
(∫ T

t
�sdDs

∣∣∣ℱt) . (2.2)

The discounted cumulative clean price,

�P +

∫
[0,⋅]

�tdDt, (2.3)

is thus an ℱ-martingale. The corresponding clean ℱ-martingale M on [0, T ], to be compared
with the G-martingale component � of Π in the price BSDE (1.1), is defined by, for t ∈ [0, T ],

dMt = dPt + dDt − rtPtdt, (2.4)

along with the terminal condition PT = 0.

Lemma 2.2 (i) The clean price process P satisfies for t ∈ [0, �̄ ]

�tPt = Et
[ ∫ �̄

t
�sdDs + ��̄P�̄

]
. (2.5)

(ii) There can be no promised dividend of the contract nor jump of the clean price process
at the default time �, so ΔD� = ΔP� = 0 almost surely.

Proof. (i) Since the discounted cumulative clean price (2.3) is an ℱ-martingale, by Lemma
2.1(i), this process stopped at � is a G-martingale, integrable by standing assumption in all
the paper, thus (2.5) follows.
(ii) Since all our semimartingales are taken in a càdlàg version, then by Lemma 2.1(ii) the
ℱ-semimartingales D and P cannot jump at �. □

Remark 2.1 (Immersion) A reduced-form approach draws its computational power from,
essentially, an immersion hypothesis between the reference filtration “ignoring” the default
times of the two parties, and the filtration progressively enlarged by the latter. This im-
mersion hypothesis implies a kind of weak or indirect dependence between the reference
contract and the default times of the two parties (see Jeanblanc and Le Cam (2008), Morini
and Brigo (2011) or Jamshidian (2002)). In other words, in the language of counterparty
risk, the immersion hypothesis (at least in the basic form of this paper, see Remark 3.5)
precludes major right/wrong-way-risk effects such as the ones that are observed for instance
with counterparty risk on credit derivatives. A contrario, in the case without strong de-
pendence between the contract and the default of the parties, this “advantage” should be
“pushed” in the model, and this is precisely the object of a reduced-form approach (see also
Remark 2.4 for results which hold true in a general case without immersion).

Moreover, with credit derivatives, a reduced-form approach to counterparty risk, be-
sides losing in relevance from the point of view of financial modeling, also loses from its
computational appeal. With credit derivatives the discontinuous and high-dimensional na-
ture of the problem is such that the gain in tractability resulting from the above reduction of
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filtration, is not so tangible. As a consequence, a reduced-form approach, at least in the ba-
sic form of this paper, is inappropriate to deal with counterparty risk on credit derivatives.
We refer the reader to Brigo and Chourdakis (2008), Brigo and Capponi (2010), Lipton
and Sepp (2009), Bielecki and Crépey (2011), or Blanchet-Scalliet and Patras (2008) re-
garding possible approaches to appropriately deal with CVA on credit derivatives (or strong
wrong-way risk more generally). Immersion may also be a concern in some cases with FX
derivatives since it has been shown empirically that there can be some rather strong depen-
dence between the default risk of an obligor and an exchange rate (see Remark 3.1 about
related aspects regarding the collateral).

Of course ideally counterparty risk should not be considered at the level of a specific
class of assets, but at the level of all the contracts between two counterparties under a given
CSA. The construction of a global model and methodology for valuing and hedging a CSA
hybrid book of derivatives, including credit derivatives, will be dealt with in future research.

On a related line of thought note that continuous collateralization is a very efficient
way of mitigating counterparty risk in a reduced-form model (see Example 3.1), but it may
not be enough in a model2 without immersion (see Bielecki and Crépey (2011)).

2.3 CSA Close-Out Cash-Flow

Before moving to CVA we now need to specify Ri in the CSA close-out cash-flow 1�<TR
i.

Toward this end we define a G� -measurable random variable � as

� = Q� − Γ� (2.6)

where Q denotes the so-called CSA close-out valuation process of the contract, expectation
of future cash-flows or so, in a sense defined by the CSA (see Example 3.1 for possible spec-
ifications). From the point of view of financial interpretation, � represents the (algebraic)
debt of the bank to the investor at time � , given as the CSA close-out price Q� less the
margin amount Γ� (since the latter is ‘instantaneously transferred’ to the investor at time
�). We then set

Ri = Γ� + 1�=�

(
��+ − �−

)
− 1�=�

(
��− − �+

)
− 1�=�� (2.7)

in which the [0, 1]-valued G�- and G�-measurable random variables � and � denote the
recovery rates of the bank and the investor to each other. So:

∙ If the investor defaults at time � < � ∧ T , then Ri = Γ� −
(
��− − �+

)
,

∙ If the bank defaults at time � < � ∧ T , then Ri = Γ� + ��+ − �−,

∙ If the bank and the investor default simultaneously at time � = � < T , then Ri =
Γ� + ��+ − ��−.

Note that the margin amount Γ typically depends on Q, often in a rather path de-
pendent way. We refer the reader to Brigo et al. (2011) or Bielecki and Crépey (2011)
regarding this and other, theoretically minor, yet practically important issues, like haircut,
re-hypothecation risk and segregation, or the cure period. All these can also be accommo-
dated in our setup.

2Or a market, as recurrently observed with credit derivatives.
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Remark 2.2 The practical behavior of the counterparty risk is of course quite sensitive to
the choice of a precise close-out formulation. We refer the reader to Example 3.1 for various
concrete specifications of Q and Γ. See also Brigo and Morini (2010) for an analysis of the
consequences of different possible choices of Q. Our abstract formulation (2.7) for the CSA
close-out cash-flow Ri offers a good paradigm for the theoretical study of this paper, but
it is not the only possible one, is still a stylized payoff, and does not cover the totality of
cases encountered in practice. Capponi (2011) thus considers a more general payoff with
different level of recoveries applying to different components of the exposure �, in order to
account for the fact that the collateral which is lent can in certain cases be recovered at a
better rate than the rest of the exposure (for instance in the case of a collateral segregated
by a third-party, on this see also Bielecki and Crépey (2011)).

2.4 CVA Representation

With Ri thus specified in R = Ri − 1�=�R
f , we are now ready to introduce the CVA

process Θ of the bank. Recall from Definition 1.1 that unless r = 1, the terminal condition
R = Ri − 1�=�R

f in a solution (Π, �) to the price BSDE (1.1), implicitly depends on
(Π�−, ��−), via Rf = (1− r)X̂+

�−, where X̂t is used as a shorthand for Xt(Πt, �t). Also note
that

P� −R

= P� −Q� + �− 1�=�

(
��+ − �−

)
+ 1�=�

(
��− − �+

)
+ 1�=��+ 1�=�(1− r)X̂+

�−

= P� −Q� + 1�=�

(
(1− �)�+ + (1− r)X̂+

�−

)
− 1�=�(1− �)�−.

(2.8)

One can then state the following

Definition 2.1 Given a solution (Π, �) to the price BSDE (1.1), the corresponding CVA
process Θ is defined by Θ = P −Π on [0, �̄ ]. In particular, Θ�̄ = 1�<T �, where

� := P� −R

= P� −Q� + 1�=�

(
(1− �)�+ + (1− r)X̂+

�−

)
− 1�=�(1− �)�−.

(2.9)

Remark 2.3 The clean contract is assumed to be funded at the risk-free rate rt. The clean
price P is thus not only clean of counterparty risk, but also of excess funding costs. Our
Credit Valuation Adjustment (CVA) should thus rather be called Credit and Funding Value
Adjustment. We stick to the name Credit Valuation Adjustment (CVA) for simplicity.

The following result extends to the multiple-curve setup, the one-curve bilateral CVA
representation result of Brigo and Capponi (2010). Note that in a multiple-curve setup this
representation, in the form of Equation (2.10) below, is implicit. Namely, the right-hand
side of (2.10) involves Θ and �, via R in � and via g in the integral term. This is at least
the case unless r = 1 and a funding coefficient g(�, &) = g(�) is linear in �, so that one can
get rid of these dependencies by a suitable adjustment of the discount factor (see Remark
3.2).

Proposition 2.1 Let be given a hedge � and G-semimartingales Π and Θ such that Θ =
P −Π on [0, �̄ ]. The pair-process (Π, �) is a solution to the price BSDE (1.1) if and only if
Θ satisfies for t ∈ [0, �̄ ]

�tΘt = Et
[
��̄1�<T � +

∫ �̄

t
�sgs(Ps −Θs, �s)ds

]
. (2.10)
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Proof. Recall PT = 0 and ΔD� = 0, so P�̄ = 1�<TP� and 1�<TΔD�̄ = 0. Taking the
difference between (2.5) and (1.3), one gets for t ∈ [0, �̄ ]

�t (Pt −Πt) = Et
[
��̄1t<�̄

(
ΔD�̄ − 1�̄<�ΔD�̄

)
+

∫ �̄

t
�sgs(Πs, �s)ds+ ��̄1�<T (P� −R)

]
= Et

[ ∫ �̄

t
�sgs(Πs, �s)ds+ ��̄1�<T �

]
which is Equation (2.10) in Θ. □

One thus recovers in the multiple-curve setup, the general interpretation of the CVA
as the price of the so-called contingent credit default swap (CCDS, see Brigo and Pallavicini
(2008), Brigo and Capponi (2010)), which is an option on the debt � (sitting via R in �) of
the bank to the investor at time � . However, in a multiple-curve setup, this is a dividend-
paying option, paying not only the amount � at time � < T , but also dividends at rate
gt(Pt −Θt, �t)− rtΘt between times 0 and �̄ .

Example 2.1 In the fully swapped hedge case (1.4) and under the funding specifications
of Subsection 2.3 in the previous paper, we saw there that

gt(�, &) = gt(�) = btΓ
+
t − b̄tΓ

−
t + �t

(
� − Γt

)+ − �̄t(� − Γt
)−
, (2.11)

where b and b̄ stand for bases over the risk-free rate related to the remuneration of the
collateral Γ, and � and �̄ for the bases related to the remuneration of the external funding
debt of the bank. The CVA representation of Equation (2.10) then reads as follows:

�tΘt = Et
[
1�<T��̄ (P� −Q� )

]
+ Et

[
1�=�<T��̄ (1− �)(Q� − Γ� )+

]
− Et

[
1�=�<T��̄ (1− �)(Q� − Γ� )−

]
+ Et

[
1�=�<T��̄ (1− r)(P�− −Θ�− − Γ�−)− +

∫ �̄

t
�s

(
bsΓ

+
s + �s (Ps −Θs − Γs)

+
)
ds

−
∫ �̄

t
�s

(
b̄sΓ
−
s + �̄s (Ps −Θs − Γs)

−
)
ds
]
.

(2.12)

From the perspective of the bank, the four terms in this decomposition of the (net) CVA
Θ, can respectively be interpreted as a replacement benefit/cost (depending on the sign of
P� − Q� ), a beneficial debt value adjustment, a costly (non-algebraic, strict) credit value
adjustment, and an excess funding benefit/cost. We shall dwell more about such decompo-
sitions in Example 3.1. See also Section 5 of the previous paper for a decomposition that
arises in the context of an externally funded hedge (as opposed to the most common case
of a fully swapped hedge with g(�, &) = g(�) in (2.11)).

Remark 2.4 In a model without immersion (see Remark 2.1), defining the clean price P
by

�tPt = E
(∫ T

t
�sdDs

∣∣∣Gt) (2.13)

(instead of expectation given ℱt in (2.2)), then (2.5) is satisfied by definition, and one can
check that all the results of this Subsection still hold true provided one adds a further
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term ΔD� (which can be non-zero without immersion) to the exposure � in (2.6), so for an
exposure redefined as

� = Q� + ΔD� − Γ� (2.14)

(see Bielecki and Crépey (2011)).

2.4.1 CCDS Static Hedging Interpretation

Let us temporarily assume just for the sake of the argument that the clean contract with
price process P and the CCDS were traded assets. It is interesting to note that in that
case, Definition 1.1 of a price-and-hedge (Π, �) would make perfect sense provided static
hedging is used, and this even in case � = 0. Indeed, given a price process Π solving the
price BSDE (1.1) for � = 0, a static replication scheme of the bank shortening the contract
to the investor and funding it by its external funder would consist in:

∙ At time 0, using the proceeds Π0 from the shortening of the contract and Θ0 = P0−Π0

from the shortening of a CCDS to buy the clean contract at price P0,

∙ On the time interval (0, �̄), holding P and (−Θ), transferring to the investor all the
dividends dDt which are perceived by the bank through its owning of P , and incurring
dt-costs at rate rtPt + g(Πt, 0) − rtΘt = gt(Πt, 0) + rtΠt. These costs exactly match
the dt-funding benefits from the short naked (non dynamically hedged) position in
the contract.

Thus, at time �̄ :

- If �̄ = � < T, the bank is left with an amount P� −Θ� = P� − � = R, which is exactly
the close-out cash-flow it must deliver to the investor and to its funder,

- If �̄ = T, there are no cash-flows at �̄ .

In both cases the bank is left break-even at �̄ .
But of course this static buy-and-hold replication strategy is not practical, since neither

the clean contract nor the CCDS are traded assets. One is thus led to active management
of the cost and error of the trading strategy through dynamic hedging. Here a question
arises whether one should try to hedge the contract globally, or (if any freedom in this is
left by the internal organization of the bank) to hedge the clean contract P separately from
the CVA component Θ of Π. In order to address these issues one needs to dig further into
the analysis of the cost process d" = d� − �dℳ of a price-and-hedge (Π, �).

3 Pre-Default BSDE Modeling

We develop in this Section a reduced-form CVA BSDE approach to the problem of pricing
and hedging counterparty risk under funding constraints. Counterparty risk and funding
corrections to the clean price-and-hedge of the portfolio are obtained as the solution of a
pre-default BSDE stated with respect to the reference filtration, in which defaultability of
the two parties only shows up through their default intensities.
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3.1 Reduction of Filtration

Let us call the CVA BSDE of the bank, the G-BSDE on the random time interval [0, �̄ ],
with terminal condition 1�<T � at �̄ , and driver coefficient gt(Pt−#, &)− rt#, # ∈ ℝ, & ∈ ℝd.
The following Lemma rephrases Proposition 2.1 in BSDE terms.

Lemma 3.1 Given a hedge � and G-semimartingales Π and Θ summing-up to P , (Π, �)
solving the price BSDE is equivalent to (Θ, �) solving the corresponding CVA BSDE.

Passing from the price BSDE in (Π, �) to the CVA BSDE in (Θ, �), allows one to get rid
of the dCt-term (contract’s dividend) in (1.1). This makes the CVA BSDE more tractable
than the price BSDE (1.1). We assume in the sequel that:

∙ The G-semimartingale (collateral) Γt is ℱ-adapted. By Lemma 2.1(ii), one then almost
surely has that ΔΓ� = 0;

∙ The CSA close-out price process Q is left-continuous, and thus G-predictable. This
makes financial sense since what Q� is really meant to be is a notion of fair value of
the contract right before the default time � of either party;

∙ The recovery rates �, � and r can be represented as ��, �� and r�, for some G-predictable
processes �t, �t and rt.

Remark 3.1 Assuming ℱ-adaptedness of Γt also makes financial sense since securities
eligible as collateral are only cash or very basic securities which should not be affected by
the default of either party. There is one reservation however. It is often so that collateral can
be posted in different currencies. The choice of the collateral currency is actually a debated
problem in the industry, see Fujii et al. (2010). Now, as already mentioned in Remark
2.1, it has been shown empirically that there can be some situations of strong dependence
between the default risk of an obligor and an exchange rate, yielding to models accounting
for the possibility of default of a large firm feeding an instantaneous jump in the FX rate of
the related economy that is driven by the default time (see Ehlers and Schönbucher (2006)).
In case of such strong dependence, and even for collateral posted as cash (but in this other
currency), Γt would typically jump upon default of this obligor, and it would therefore not
be ℱ-adapted.

By Theorem 67.b in Dellacherie and Meyer (1975), the G�−-measurable random vari-
ables ℙ(� = � ∣ G�−) and ℙ(� = � ∣ G�−) can be represented as p� and p� , for some G-
predictable process p and p. Since ΔΓ� = 0, there exists likewise an ℱ-predictable process
with the same value as Γ at �, so that one can assume that the collateral process Γ is in
fact ℱ-predictable. The debt � of the bank to the investor, and, given a price-and-hedge
(Π, �), the terminal payoff � of a CCDS, are then the values at time � of the G-predictable
process �t and of the G-progressively measurable process �t defined as, for t ∈ [0, T ]

�t = Qt − Γt

�t = (Pt −Qt) + 1t≥�

(
(1− �t)�+

t + (1− rt)X̂
+
t−

)
− 1t≥�(1− �̄t)�

−
t

(3.1)

where X̂t is a shorthand for Xt(Πt, �t). Let for t ∈ [0, T ], � ∈ ℝ and & ∈ ℝd

�̄t(�, &) = (Pt −Qt) + pt

(
(1− �t)�+

t + (1− rt)X
+
t−(�, &)

)
− pt(1− �t)�−t . (3.2)
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Let also J denote the non-default indicator process such that Jt = 1t<� and Jt− = 1t≤� for
t ∈ [0, �̄ ]. Observe that given a hedge �, a process Θ solving Equation (2.10) over [0, �̄ ] is
equivalent to Θ = JΘ̄ + (1− J)1�<T �, for a process Θ̄ such that for t ∈ [0, �̄ ]

�tΘ̄t = Et
[
��̄1�<T �̄� (P�− − Θ̄�−, ��−) +

∫ �̄

t
�sgs(Ps − Θ̄s, �s)ds

]
. (3.3)

To simplify the problem further, we now introduce an equivalent pre-default CVA BSDE
over [0, T ], relative to the pre-default filtration ℱ . The following result is classical, see for
instance Bielecki et al. (2009) for precise references.

Lemma 3.2 For any G-adapted, respectively G-predictable process X over [0, T ], there exists
a unique ℱ-adapted, respectively ℱ-predictable, process X̃ over [0, T ], called the pre-default
value process of X, such that JX = JX̃, respectively J−X = J−X̃ over [0, T ].

Given the structure of the data, we may therefore assume without loss of generality
that process gt(Pt − #, &) is ℱ-progressively measurable for every # ∈ ℝ, & ∈ ℝd, and
that all the processes (including for instance p and p) which appear as building blocks
in �̄, are ℱ-predictable. We assume further that the Azéma supermartingale G of � is
time-differentiable. This allows one to define the hazard intensity 
t = −d lnGt

dt of �, so

Gt = e−
∫ t
0 
sds. We then define the credit-risk-adjusted-interest-rate r̃ and the credit-risk-

adjusted-discount-factor �̃ as, for t ∈ [0, T ],

r̃t = rt + 
t , �̃t = �tGt = �t exp(−
∫ t

0

sds) = exp(−

∫ t

0
r̃sds).

One can then state the following

Definition 3.1 The pre-default CVA BSDE of the bank is the ℱ-BSDE in (Θ̃, �) on [0, T ]
with a null terminal condition at T , and with driver coefficient

g̃t(Pt − #, &) = gt(Pt − #, &) + 
t�̃t(Pt − #, &)− r̃t# (3.4)

where �̃t(�, &) denotes for every � ∈ ℝ and & ∈ ℝd the ℱ-progressively measurable process
defined by, for t ∈ [0, T ]

�̃t(�, &) = (Pt −Qt) + pt

(
(1− �t)�+

t + (1− rt)X
+
t (�, &)

)
− pt(1− �t)�−t . (3.5)

An ℱ-special semimartingale Θ̃ and a hedge � to the contract, thus solve the pre-default
CVA BSDE if and only if {

Θ̃T = 0, and for t ∈ [0, T ] :

− dΘ̃t = g̃t(Pt − Θ̃t, �t)dt− d�̃t
(3.6)

where �̃ is the ℱ-martingale component of Θ̃. Or equivalently to the second line in (3.6):
For t ∈ [0, T ]

− d(�̃tΘ̃t) = �̃t

(
gt(Pt − Θ̃t, �t) + 
t�̃t(Pt − Θ̃t, �t)

)
dt− �̃td�̃t. (3.7)

Or equivalently to (3.6), in integral form: For t ∈ [0, T ]

�̃tΘ̃t = E
[ ∫ T

t
�̃s
(
gs(Ps − Θ̃s) + 
s�̃s(Ps − Θ̃s)

)
ds
∣∣∣ℱt]. (3.8)
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Remark 3.2 (Linear Case) In the linear case with r = 1 and gt(P −#, &) = g∗t (P )−�∗t#,
the CVA equations (2.10) and (3.8) respectively boil down to the explicit representations

�∗t Θt = E
[
�∗�̄1�<T � +

∫ �̄
t �
∗
sg
∗
s(Ps)ds

∣∣∣Gt] (3.9)

�̃∗t Θ̃t = E
[ ∫ T

t �̃∗s

(
g∗s(P

∗
s ) + 
s�̃

∗
s

)
ds
∣∣∣ℱt] (3.10)

for the funding-adjusted discount factors

�∗t = exp(−
∫ t

0
(rs + �∗s)ds) , �̃

∗
t = exp(−

∫ t

0
(r̃s + �∗s)ds)

and with in (3.10)

�̃∗t = (Pt −Qt) + pt(1− �t)�+
t − pt(1− �t)�

−
t .

On the numerical side such explicit representations allow one to estimate these “linear
CVAs” by standard Monte Carlo loops (provided P and Q can be computed explicitly), as
opposed to time-discretisation BSDE techniques that must be used in general (and as soon
as r < 1).

Remark 3.3 (CSA Close-Out Pricing and Collateralization Schemes) It is implic-
itly understood above that the CSA close-out price process Q is an exogenous process, as
in the standard clean CSA close-out pricing scheme Q = P−. An a priori unusual situation
from this point of view, yet one which is sometimes considered in the counterparty risk
literature, is the so-called pre-default CSA close-out pricing scheme Q = Π− (see Crépey
et al. (2010); see also Example 3.1 below and Brigo and Morini (2010) on the impact of al-
ternative CSA close-out pricing schemes). It’s interesting to note that from a mathematical
point of view such an “implicit” scheme Q = Π− can be accounted for at no harm, simply
by letting Q = P−−Θ̃− everywhere in the coefficient g̃t of the pre-default CVA BSDE (3.6).

Note however that in order to meet ISDA requirements, a real-life collateralization
scheme Γ is typically path dependent in Q (see Section 3.2 of Bielecki and Crépey (2011)).
Under the pre-default CSA close-out pricing scheme, and in case of a path dependent
collateralization, one ends-up with a time-delayed BSDE with a coefficient depending on
the past of Θ̃. This raises a mathematical difficulty of the pre-default CSA close-out pricing
scheme since even for a Lipschitz coeffficient, a time-delayed BSDE may only have a solution
for T small enough, depending on the Lipschitz constant of the coefficient (see Delong and
Imkeller (2010)).

Example 3.1 Under the fully swapped hedge funding specification of Example 2.1 with
g(�, &) = g(�) given by (2.11), one obtains by plugging (2.11) into (3.4) and reordering
terms that

g̃t(Pt − #) + rt# = 
t (Pt − #−Qt)
+ 
tpt

(
(1− �)(Qt − Γt)

+

− 
tpt(1− �)(Qt − Γt)
−

+
(
btΓ

+
t + �t (Pt − #− Γt)

+ )− (b̄tΓ−t + �̃t (Pt − #− Γt)
− )

(3.11)

where the coefficient �̃t := �̄t − 
tpt(1 − r) of (Pt − #− Γt)
− can be interpreted as an

external borrowing rate adjusted for credit risk, or liquidity (as opposed to credit) external
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borrowing funding basis (see Remark 4.5). The four terms (lines) in this decomposition can
be interpreted as those of (2.12).

In case of a clean CSA recovery scheme Q = P−, (3.11) rewrites as follows

g̃t(Pt − #) + r̃t# = 
tpt
(
(1− �)(Pt − Γt)

+

− 
tpt(1− �)(Pt − Γt)
−

+
(
btΓ

+
t + �t (Pt − #− Γt)

+ ) − (b̄tΓ−t + �̃t (Pt − #− Γt)
− ) (3.12)

which in case of no collateralization (Γ = 0), respectively continuous collateralization with
Γ = Q = P−, reduces to


tpt(1− �)P+
t − 
tpt(1− �)P−t + �t (Pt − #)+ − �̃t (Pt − #)− (3.13)

respectively

btP
+
t − b̄tP

−
t + �t#

− − �̃t#+. (3.14)

In case of a pre-default CSA recovery scheme Q = Π− = P − Θ−, (3.11) rewrites as
follows (with rt in the left-hand side as opposed to r̃t above)

g̃t(Pt − #) + rt# = 
tpt
(
(1− �)(Pt − #− Γt)

+

− 
tpt(1− �)(Pt − #− Γt)
−

+
(
btΓ

+
t + �t (Pt − #− Γt)

+ ) − (b̄tΓ−t + �̃t (Pt − #− Γt)
− ) (3.15)

which in case of no collateralization (Γ = 0), respectively continuous collateralization with
Γ = Q = P −Θ−, reduces to(


tpt(1− �) + �t
)
(Pt − #)+ −

(

tpt(1− �) + �̃t

)
(Pt − #)− (3.16)

respectively

bt(Pt − #)+ − b̄t(Pt − #)−. (3.17)

In view of (3.14) and (3.17), it is under the pre-default CSA recovery scheme Q = Π−
that continuous collateralization is the most efficient. In this case continuous collateraliza-
tion works almost perfectly (in the present reduced-form setup, see end of Remark 2.1),
the corresponding CVA vanishing up to a term related to the excess-remuneration of the
collateral. In the line of the discussion in Brigo and Morini (2010), this would plead in
favor of the scheme Q = Π− as the less “intrusive” CSA recovery convention. But on the
other hand this scheme induces more asymmetry than the clean scheme Q = P− between
the (even bilateral) CVAs computed from the perspective of the two parties (see Remarks
2.3 and 4.9 in the previous paper).

3.2 Modeling Assumption

From now on, our approach to deal with the price BSDE (1.1) will consist in modeling the
counterparty risky price process Π via the corresponding pre-default CVA process Θ̃. In
this Section we work under the following

Assumption 3.1 The pre-default CVA BSDE (3.6) admits a solution (Θ̃, �).
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Remark 3.4 At this stage this may seem quite an assumption. However this is only
a temporary one, which is made for examining its consequences in terms of existence of a
solution (Π, �) to the price BSDE (1.1) in this Subsection, and of analysis of the cost process
" of (Π, �) in Subsection 3.3. We refer the reader to Section 4 for more about the issue of
existence and uniqueness of a solution to (3.6) (or an equivalent BSDE (4.1)), which will
ultimately hold under mild regularity and square-integrability conditions on the data (after
specification of a jump-diffusion setup endowed with a martingale representation property).

Lemma 3.3 Under Assumption 3.1:
(i) The pair (Θ, �) with Θ defined over [0, �̄ ] as

Θ := JΘ̃ + (1− J)1�<T � (3.18)

solves the CVA BSDE (2.10) over [0, �̄ ]. Therefore, the pair (Π, �) with

Π := P −Θ = J(P − Θ̃) + (1− J)1�<TR (3.19)

solves the price BSDE (1.1) over [0, �̄ ];
(ii) The G-martingale component � of the counterparty risky price Π = P − Θ and the
G-martingale component � = M − � of Θ,3 satisfy for t ∈ [0, �̄ ]:

d�t = d�̃t −
(

(�t − Θ̃t)dJt + 
t(�̂t − Θ̃t)dt
)

d�t = d�̃t −
(

(Rt − Π̃t)dJt + 
t(R̃t − Π̃t)dt
)
.

(3.20)

Here �̂t is a shorthand for �̃t(Pt − Θ̃t, �t); Π̃ := P − Θ̃ is the pre-default value process of Π;
�̃ := M − �̃ is an ℱ-martingale component of Π̃; the G-progressively measurable process Rt
and the ℱ-progressively measurable process R̃t are defined by, for t ∈ [0, T ],

Rt = Γt + 1t≥�

((
�t�

+
t − �

−
t

)
− (1− rt)X̂

+
t−

)
− 1t≥�

(
�t�
−
t − �

+
t

)
− 1t≥�=��t

R̃t = Γt + pt

((
�t�

+
t − �

−
t

)
− (1− rt)X̂

+
t

)
− pt

(
�t�
−
t − �

+
t

)
− qt�t

(3.21)

in which X̂t stands as a shorthand for Xt(Π̃t, �t), and q in R̃ is an ℱ-predictable process
such that q� = ℙ(� = � ∣ G�−).

Proof. (i) Using the pre-default CVA BSDE (3.6) which is solved by (Θ̃, �) over [0, T ],
reduction-of-filtration computations similar to those of Bielecki et al. (2009) show via (3.3)
that (Θ, �) solves the CVA BSDE (2.10) over [0, �̄ ]. By Lemma 3.1, the pair (Π, �), where
Π := P − Θ, thus solves the price BSDE (1.1). Also recall PT = 0, which justifies the
right-hand side identity in (3.19).
(ii) The proof is similar to the one of Lemma 4.1 in Bielecki et al. (2009), and is thus
omitted. □

Remark 3.5 The jump-to-default exposure corresponding to the dJ-term in either line of
(3.20) can be seen as a marked process, where the mark corresponds to the default being
a default of the investor alone, of the bank alone, or a joint default. Consistently with this
interpretation, the compensator of either dJ-term in (3.20) corresponds to the “average
jump size” given by the dt-term in the same line, where the average is taken with respect
to the probabilities of the marks, conditionally on the fact that a jump occurs at time �.

Enriching further the mark space of � would be a way of going beyond the basic
immersion setup of this paper, as we shall illustrate in further work.

3Recall (1.1) and (2.4) for the definition of � and M.
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3.3 Cost Processes Analysis

Let us now postulate for the G-martingale component ℳ of the primary risky assets price
process denoted by P, with pre-default value process P̃, a structure analogous to the one
which is apparent in the second line of (3.20) for the G-martingale component � of Π. One
thus assumes that on [0, �̄ ]

dℳt = dℳ̃t −
((
ℛt − P̃t

)
dJt + 
t(ℛ̃t − P̃t)dt

)
(3.22)

for an ℱ-martingale ℳ̃, a G-progressively measurable primary recovery process ℛt, and an
ℱ-progressively measurable process ℛ̃t such that 
t(ℛ̃t − P̃t)dt compensates

(
ℛt − P̃t

)
dJt

over [0, �̄ ].
For every hedges � and �, to be understood as hedges of the contract clean price P

and price Π, let � = �− � denote the corresponding hedge of the CVA component Θ of Π.
Let then the cost processes "P,�, "Θ,� and "Π,� be defined by "P,�0 = "Θ,�

0 = "Π,�
0 = 0, and

for t ∈ [0, �̄ ]

d"P,�t = dMt − �tdℳt , d"
Θ,�
t = d�t − �tdℳt , d"

Π,�
t = d"P,�t − d"Θ,�

t = d�t − �tdℳt.(3.23)

One retrieves in particular "Π,� = ", the cost process of a price-and-hedge (Π, �) in (1.2).
An immediate application of (3.20) and (3.22) yields,

Proposition 3.1 For t ∈ [0, �̄ ],

d"P,�t =
(
dMt − �tdℳ̃t

)
+ �t

(
ℛt − P̃t

)
dJt + 
t�t

(
ℛ̃t − P̃t

)
dt (3.24)

d"Θ,�
t =

(
d�̃t − �tdℳ̃t

)
−
((
�t − Θ̃t

)
− �t

(
ℛt − P̃t

))
dJt (3.25)

−
t
((
�̂t − Θ̃t

)
− �t

(
ℛ̃t − P̃t

))
dt

d"Π,�
t =

(
d�̃t − �tdℳ̃t

)
−
((
Rt − Π̃t

)
− �t

(
ℛt − P̃t

))
dJt (3.26)

−
t
((
R̃t − Π̃t

)
− �t

(
ℛ̃t − P̃t

))
dt.

We thus get decompositions of the related cost processes as ℱ-martingales stopped at � ,
hence G-martingales, plus G-compensated jump-to-default exposures. These decompositions
can then be used for devising specific pricing and hedging schemes, such as pricing at the
cost of hedging by replication (if possible), or of hedging only pre-default risk, or of hedging
only the jump-to-default risk (dJ-terms), or of min-variance hedging, etc. This will now be
made practical in a Markovian setup.

4 Markovian Case

In a Markovian setup, explicit CVA pricing and hedging schemes can be formulated in
terms of semilinear pre-default CVA PDEs. More precisely, we shall relate suitable notions
of orthogonal solutions to the pre-default CVA BSDE to:

∙ From a financial point of view, corresponding min-variance hedging strategies of the
bank, based on the cost processes analysis of Subsection 3.3;
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∙ From a mathematical point of view, classical Markovian BSDEs driven by an explicit
set of fundamental martingales given in the form of a multi-variate Brownian motion
and a compensated jump measure.

These Markovian BSDEs will be well posed under mild conditions, yielding related or-
thogonal solutions to the pre-default CVA BSDE, and providing in turn the corresponding
min-variance hedges to the bank. This approach will be developed for three different min-
variance hedging objectives, respectively considered in Subsections 4.2, 4.3 and 4.4. In the
end the preferred criterion (we mainly see the analysis of Subsection 4.2 as preparatory to
those of Subsections 4.3 and 4.4) can be optimized by solving (numerically if need be) the
related Markovian BSDE, or (if more efficient) by solving an equivalent semilinear parabolic
PDE. Also we shall see that this methodology can be applied to either the risk-management
of the overall contract, or of its CVA component in isolation. But in all cases the pre-default
CVA BSDE will be key in the mathematical analysis of the problem. Our main results are
Proposition 4.2 and Corollary 4.2, which yield concrete recipes for risk-managing the con-
tract as a whole or its CVA component, according to the following objective of the bank:
minimizing the variance of the cost process of the contract or of its CVA component, whilst
achieving a perfect hedge of the jump-to-default exposure.

As explained in the introduction, a clean price-and-hedge (P, �) is typically determined
by the business trading desks of the bank. The central CVA desk is then left with the task
of devising a CVA price-and-hedge (Θ, �). Consistently with this logic, given a clean price-
and-hedge (P, �), a solution (Θ̃, �) to the pre-default CVA BSDE will be sought henceforth
in the form (Θ̃, �− �), where an ℱ-adapted triplet (Θ̃, �, �) solves{

Θ̃T = 0, and for t ∈ [0, T ] :

− dΘ̃t = g̃t(Pt − Θ̃t, �t − �t)dt−
(
�tdℳ̃t + d�t

) (4.1)

for an ℱ-predictable4 integrand � and an (ℱ ,ℙ)-martingale �. The pre-default CVA BSDE
in form (4.1) is indeed equivalent to the original pre-default CVA BSDE (3.6), letting
� = � − �, and � be defined through the second line of (4.1) (and �0 = 0). Henceforth,
accordingly,

Definition 4.1 We call CVA price-and hedge, any pair-process (Θ, �) such that (Θ̃, �, �),
with Θ̃ = JΘ and � defined through (Θ̃, �) by the second line of (4.1) (and �0 = 0), solves
(4.1), meaning that � thus defined is an (ℱ ,ℙ)-martingale.

4.1 Factor Process

We assume further that the pre-default CVA BSDE thus redefined as (4.1) is Markovian,
in the sense that any of its input data of the form Dt is given as a deterministic function
D(t,Xt) of an ℱ-Markov factor process X. So in particular (Pt, �t) = (P (t,Xt), �(t,Xt)).
Consequently, one has for an obviously defined deterministic function g̃(t, x, �, &):

g̃t(Pt − Θ̃t, �t − �t)dt = g̃
(
t,Xt, P (t,Xt)− Θ̃t, �(t,Xt)− �t

)
dt. (4.2)

We shall use as drivers of the pre-default factor process X an ℝq-valued ℱ-Brownian mo-
tion W and an ℱ-compensated jump measure N on [0, T ] × ℝq (see for instance Jacod

4Typically left-continuous in a Markov setup.
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and Shiryaev (2003)), for some integer q. Given coefficients b(t, x), �(t, x), �(t, x, y) and
F (t, x, dy) to be specified depending on the application at hand, we assume that the pre-
default factor process X satisfies the following Markovian (forward) SDE in ℝq : X0 = x
given as an observable or calibratable constant, and for t ∈ [0, T ]

dXt = b(t,Xt) dt+ �(t,Xt) dWt + �(t,Xt−) ⋅ dNt (4.3)

with a (random) jump intensity measure given by F (t,Xt, dx). We denote for every matrix-
valued function f = f(t, x, y) on [0, T ]× ℝq × ℝq (like f = � in (4.3))

f(t,Xt−) ⋅ dNt =

∫
ℝq

f(t,Xt−, x)N(dt, dx) ,
(
f ⋅ F

)
(t, x) =

∫
ℝq

f(t, x, y)F (t, x, dy).

The matrix-integrals are performed entry by entry of f , so that one ends up with matrices
of the same dimensions as f .

Example 4.1 (Systemic counterparty risk) In the aftermath of the 2007–09 financial
crisis, a variety of spreads have developed between rates that had been essentially the same
until then, notably LIBOR-OIS spreads. By the end of 2011, with the sovereign credit crisis,
these spreads were again significant (close to 100 basis points). Interestingly enough, this
can also be interpreted as a manifestation of a form of counterparty risk, we call it systemic
counterparty risk, in reference to a default and/or liquidity risk of the banking sector as a
whole (see Filipović and Trolle (2011)).

The resulting discrepancy between risk-free rates which are used for discounting and
LIBORs which are used as underlyings of interest rate derivatives, must be reflected in a
clean valuation model P of interest rate derivatives. We refer the reader to Crépey et al.
(2012) for a defaultable HJM clean valuation methodology which is developed in this regard,
ending up with simple Markovian short-term specifications X of the form (4.3) such that

Pt = P (t,Xt) (4.4)

(a prerequisite to (4.2)) for most vanilla interest rate derivatives (including IR swaps, basis
swaps, cap/floors and swaptions). The vector factor process X consists of the risk-free
short rate process r, a “systemic” short credit spread process � of the LIBOR banks,
and auxiliary processes which may be needed for the sake of (4.4). The most tractable
specification found in Crépey et al. (2012) consists of the following Lévy Hull-White model
for a two-dimensional Xt = (rt, ℓt)

drt = a(ℎ(t)− rt)dt+ �dLrt

dℓt = a∗(ℎ∗(t)− ℓt)dt+ �∗dLℓt
(4.5)

in which Lr and Lℓ denote Lévy subordinators (non-decreasing Lévy processes starting at
0) and where the coefficients are defined in connection with a defaultable HJM setup.

Remark 4.1 Since the jumps of Lr and Lℓ only affect r and ℓ linearly (via � and �∗) in
this model, and since one only deals with finite variation processes here, therefore in this
example an explicit representation (4.5) of X in terms of the driving Lévy noises is available
(explicit representation as opposed to a representation in terms of the related compensated
jump measure N in a generic jump-diffusion setup (4.3); see also Example 4.2).
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Remark 4.2 In case one of the two parties in an OTC interest-rate derivative contract
is a LIBOR bank (or peer to a LIBOR bank), her default risk and the above-mentioned
systemic counterparty risk have some dependence, which should be reflected in a a realistic
model of counterparty risk.

Further analysis of the cost processes (3.24)-(3.26) depends on a hedging criterion of
the bank. In the following Subsections we shall propose three tractable approaches, all
of them involving, to some extent, min-variance hedging. In case of a complete primary
market, min-variance hedging of course reduces to hedging by replication. Moreover we
shall consider the two issues of hedging the contract globally, or to only hedge its CVA. In
all cases the mathematical analysis will ultimately rely on the pre-default CVA BSDE (4.1).

Remark 4.3 We refer the reader to Schweizer (2001) for a survey about various quadratic
hedging approaches which can be used in an incomplete market. For the sake of tractability
we only consider in this work minimization under the martingale pricing measure ℙ, whereas
the main difficulty with quadratic hedging usually comes from the fact that one aims at
minimizing the hedging error under the historical probability measure. To emphasize this
difference we write in our case min-variance hedging instead of mean-variance hedging. This
min-variance hedging will be performed with respect to the reference filtration ℱ , on the
top of a given choice of a hedging strategy regarding the jump-to-default exposure of the
bank: no hedge in Subsection 4.2, perfect hedge in Subsection 4.3 and hedge of an isolated
default of the investor in Subsection 4.4.

Given a vector-valued function u = u(t, x) on [0, T ] × ℝq, let ∇u(t, x) denote the
Jacobian matrix of u with respect to x at (t, x), and let �u be the function on [0, T ]×ℝq×ℝq
such that for every (t, x, y) ∈ [0, T ]× ℝq × ℝq

�u(t, x, y) = u(t, x+ �(t, x, y))− u(t, x).

Given another vector-valued function v = v(t, x) on [0, T ]× ℝq, we denote likewise

(u, v)(t, x) = (∇u�)(∇v�)T(t, x) +
(
(�u�vT) ⋅ F

)
(t, x), (4.6)

in which T stands for “transposed”. So, if u and v are n- and m-dimensional vector-functions
of (t, x), one ends-up with an ℝn×m-valued matrix-function (u, v) of (t, x).

We assume further that P̃t = P̃(t,Xt) for some pre-default primary risky assets pricing

function P̃, so that the dynamics of the ℱ-martingale component ℳ̃ of ℳ in (3.22) write
as follows

dℳ̃t = (∇P̃�)(t,Xt)dWt + �P̃(t,Xt−) ⋅ dNt.

4.2 Min-Variance Hedging of Market Risk

Our first objective will be to min-variance hedge the market risk corresponding to the term
d�̃t − �tdℳ̃t in the CVA cost process "Θ,� in (3.25), or d�̃t − �tdℳ̃t in the overall contract
cost process "Π,� = " in (3.26).

Regarding (3.25), this is tantamount to seeking for a solution (Θ̃, �, �) to the pre-default

CVA BSDE (4.1) in which � is ℱ-orthogonal to ℳ̃ (cf. Proposition 5.2 in El Karoui et al.
(1997)). Given such an orthogonal solution (Θ̃, �, �) to (4.1), and if moreover Θ̃t = Θ̃(t,Xt),
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one then has by a standard min-variance oblique bracket formula,5 in the (⋅, ⋅) notation of
(4.6):

�t = d<�̃,ℳ̃>t

dt

(
d<ℳ̃>t

dt

)−1
=
((

Θ̃, P̃
)

Λ
) (

t,Xt−
)

=: �(t,Xt−) (4.7)

where we let Λ =
(
P̃, P̃

)−1
. Here invertibility of the ℱt-conditional covariance matrix

d<ℳ̃>t
dt is assumed.

This leads to the following Markovian BSDE in (Θ̃(t,Xt), (∇Θ̃�)(t,Xt), �Θ̃(t,Xt−, ⋅))
over [0, T ]:⎧⎨⎩

Θ̃(T,XT ) = 0, and for t ∈ [0, T ] :

− dΘ̃(t,Xt) = ĝ
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�P̃T) ⋅ F

)
(t,Xt)

)
dt

− (∇Θ̃�)(t,Xt)dWt − �Θ̃(t,Xt−) ⋅ dNt,

(4.8)

with for every (t, x, #, z, w) ∈ [0, T ]× ℝq × ℝ× ℝq × ℝd (for row-vectors z, w)

ĝ (t, x, #, z, w) = g̃ (t, x, P (t, x)− #, �(t, x)− �̂(t, x, #, z, w))

where we let
�̂(t, x, #, z, w) =

(
z(∇P̃�)T(t, x) + w

)
Λ(t, x).

Indeed one then has in view of (4.6) and (4.7):

�̂(t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),
(

(�Θ̃�P̃T) ⋅ F
)

(t,Xt)) = �(t,Xt)

ĝ
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�P̃T) ⋅ F

)
(t,Xt)

)
dt =

g̃
(
t,Xt, P (t, x)− Θ̃(t,Xt), �(t,Xt)− �(t,Xt)

)
dt.

We refer the reader to the literature (see for instance Parts II and III of Crépey (2011))
regarding the fact that under mild regularity and square-integrability conditions on the
coefficient ĝ, the Markovian BSDE (4.8) has a unique square-integrable solution; moreover,
the pre-default CVA function Θ̃ = Θ̃(t, x) in this solution can be characterized as the unique
solution in suitable spaces to the following semilinear partial integro-differential equation
(PDE for short):{

Θ̃(T, x) = 0 , x ∈ ℝq

(∂t + X ) Θ̃(t, x) + ĝ(t, x, Θ̃(t, x), (∇Θ̃�)(t, x),
(
(�Θ̃�P̃T) ⋅ F

)
(t, x)) = 0 on [0, T )× ℝq,

(4.9)
where X stands for the infinitesimal generator of X.

Remark 4.4 In Crépey and Matoussi (2008), it is postulated that the driver coefficient, ĝ
in the case of the Markovian BSDE (4.8), only depends on �Θ̃(t,Xt−, ⋅) through one average
of �Θ̃(t,Xt−, ⋅) against some jump measure, rather than through d such averages in (4.8)
(the last argument w of ĝ is a row-vector in ℝd). By inspection of the proof in Crépey and
Matoussi (2008), the comparison principle which is established there, and which is key in
the connection between a BSDE and a PDE approach to a semilinear parabolic equation

5See for instance Part I of Crépey (2011).
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(see for instance Part III of Crépey (2011)), can be elevated from the scalar case to the case
of any finite number of averages. However this comparison is, as already in the scalar case,
subject to a monotonicity condition of ĝ with respect to w, so

ĝ (t, x, #, z, w) ≤ ĝ
(
t, x, #, z, w′

)
if wi ≤ w′i, i = 1, . . . , d.

See also Royer (2006) for such technicalities. Of course these vanish in the (most common)
case of a fully swapped hedge satisfying (1.4) so that g̃

(
t, x, �, &

)
= g̃

(
t, x, �) (see also

Remark 4.6 for the corresponding Markovian BSDEs and semilinear PDEs).

Proposition 4.1 Assuming invertibility of the primary-risky-assets-covariance-matrix
(
P̃, P̃

)
,

the solution Θ̃ = Θ̃(t, x) to (4.9) yields, via (4.7) for � and in turn (4.1) for �, an orthogonal
solution (Θ̃, �, �) to the pre-default CVA BSDE (4.1).

The CVA-market-risk-min-variance hedge is thus given by Formula (4.7) as

�t = �(t,Xt−) =

((
Θ̃, P̃

)(
P̃, P̃

)−1
)

(t,Xt−).

Process � in the solution to (4.1) is the residual CVA market risk under the CVA hedge �.

Hedging of the Contract as a Whole We now consider hedging of the market risk
d�̃t − �tdℳ̃t of the overall contract cost process "Π,� = " in (3.26). Let the clean hedge �
be specifically given here as the coefficient of regression in an ℱ-orthogonal decomposition
dM = �dℳ̃+ de. By the min-variance oblique bracket formula, one thus has for t ∈ [0, �̄ ]

�t = d<M,ℳ̃>t

dt

(
d<ℳ̃>t

dt

)−1
=
((
P, P̃

)
Λ
) (

t,Xt−
)

=: �(t,Xt−). (4.10)

Besides, in view of (3.24)-(3.26), it holds that

d�̃t − �tdℳ̃t =
(
dMt − �tdℳ̃t

)
−
(
d�̃t − �tdℳ̃t

)
.

Therefore, dM−�dℳ̃ and d�̃−�dℳ̃ being ℱ-orthogonal to dℳ̃, implies the same property
for d�̃ − �dℳ̃. In other words, Proposition 4.1 admits the following

Corollary 4.1 For � given as the regression coefficient of M against ℳ̃, the strategy �t :=
(� − �)(t,Xt−) is a min-variance hedge of the market risk component d�̃ − �dℳ̃ of the
contract cost process "Π,� = ". The residual market risk of the contract hedged in this way
is given by e− �.

4.3 Min-Variance Hedging Constrained to Perfect Hedging of Jump-to-
Default Risk

The previous approach disregards the jump-to-default risk corresponding to the dJ-terms
in (3.25) or (3.26). We now wish to min-variance hedge the market risk corresponding to

the term d�̃t − �tdℳ̃t in the CVA cost process "Θ,� in (3.25) (respectively d�̃t − �tdℳ̃t in
the overall contract cost process "Π,� = " in (3.26)), under the constraint that one perfectly
hedges the jump-to-default risk corresponding to the dJ-term in (3.25) (respectively (3.26)).
Note that in view of the marked point process interpretation provided in Remark 3.5,
cancelation of the dJ-term in any of Equation (3.24) to (3.26), implies cancelation of the



22

dt-driven process which compensates it in the same equation. We are thus equivalently
minimizing the variance of the cost processes "Θ,� or "Π,� = " under the constraint of
perfectly hedging the jump-to-default exposure.

Let us re-order if need be the primary risky assets so that the first ones (if any) cannot
jump at time �, and the last ones (if any) can jump at time �. We then let a superscript
0 refer to the subset of the hedging instruments with price processes which cannot jump
at time �, so ℛ0 = ℛ̃0 = P̃0, and we let 1 refer to the subset, complement of 0, of the
hedging instruments which can jump at time �.6 The CVA cost equation (3.25) can thus be
rewritten as, for t ∈ [0, �̄ ]:

d"Θ,�
t =

(
d�̃t − �0

t dℳ̃0
t − �1

t dℳ̃1
t

)
−
((
�t − Θ̃t

)
− �1

t

(
ℛ1
t − P̃1

t

))
dJt

− 
t
((
�̂t − Θ̃t

)
− �1

t

(
ℛ̃1
t − P̃1

t

))
dt.

(4.11)

The condition that a CVA price-and-hedge (Θ, �) perfectly hedges the dJ-term in
(4.11) reads as follows:

�t − Θ̃t− = �1
t

(
ℛ1
t − P̃1

t

)
, t ∈ [0, �̄ ] (4.12)

where it should be noted in view of (3.1) that �t is, via (1 − rt)X̂
+
t−, a random function of

Θ̃t− and �t− = �t− − �t−. Condition (4.12) is thus implicitly a nonlinear equation in �1
t ,

unless one is in the special case where (in the present Markov setup)

(1− r(t,Xt))X
+(t,Xt, �, &) = (1− r(t,Xt))X

+(t,Xt, �) (4.13)

does not depend on &, so that �t does not depend on �t−. In this case, in view of the
expression of �t in (3.1), depending on whether one considers a model of unilateral coun-
terparty risk (� = ∞), of bilateral counterparty risk without joint default of the bank and
of the investor (�, � < ∞ with � ∕= � almost surely), or of bilateral counterparty risk with
a possible joint default of the bank and of the investor, then Equation (4.12) respectively
boils down to a system of one, two or three linear equations in �1

t .

Remark 4.5 (Discussion of Condition (4.13)) Condition (4.13) holds in the (quite typ-
ical) case of a fully swapped hedge, as well as in the partial default case (covering the case
of unilateral counterparty risk) where r = 1. Besides in specific cases a solution to Equation
(4.12) may be found without condition (4.13), see Section 5 of the previous paper for an
example based on (Burgard and Kjaer 2011a; Burgard and Kjaer 2011b).

If condition (4.13) does not hold, a possible idea to recover it if need be however, could
be to forget about the close-out funding cash-flow Rf = (1 − r�)X̂

+
�− in R, thus working

everywhere as if r was equal to one, whilst using a dt-funding-coefficient gt(�, &) adjusted
to

g♯t(�, &) = gt(�, &)− 
tpt(1− rt)X
+
t (�, &). (4.14)

The problem thus modified then satisfies (4.13). The adjusted funding benefit coefficient

g♯t(�, &) represents a pure liquidity (as opposed to credit risk) funding benefit coefficient.
Using this approach also allows one to decouple the credit risk ingredients in the model,

6This is to an harmless abuse of notation that Y 0 and Y 1 do not represent anymore the “coordinates 0

and 1” of an ℝd-valued vector Y, or these are now “group-coordinates”.
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represented by � and �, from the liquidity funding ingredients, represented by the adjusted
funding coefficient g♯. Note that simply ignoring the close-out funding cash-flow Rf without
adjusting g as in (4.14), would induce a valuation and hedging bias. In contrast, accordingly
adjusting g as in (4.14) makes it at least correct from the valuation point of view, for every
fixed �. But this correctness in value is only for a given hedge process �. Since a central
point in all this (particularly without (4.13)) is precisely on how to choose �, we believe this
adjustment approach is in the end fallacious.

We work henceforth in this Subsection under the assumption that Equation (4.12) has
a solution of the form

�1
t = �1

t (Θ̃t−) = �1(t,Xt−, Θ̃t−). (4.15)

Again, under condition (4.13), this is satisfied under a mild non-redundancy condition on
the hedging instruments in group 1, with �1 typically univariate in case � =∞, bivariate in
case �, � <∞ with � ∕= �, and trivariate otherwise; and we also refer the reader to Section
5 in the previous paper for a case where this is satisfied without condition (4.13).

For any CVA hedge � with components �1 of � in group 1 given as �1
t (Θ̃t−) in (4.15),

the CVA cost process (4.11) reduces to

d"Θ,�
t =d�̃t − �0

t dℳ̃0
t − �1

t dℳ̃1
t . (4.16)

This leads us to seek for a solution (Θ, �) to the problem of min-variance hedging of the
CVA constrained to perfect hedging of CVA jump-to-default risk, with �t of the form

�t =
(
�0
t , �

1
t (Θ̃t−)

)
, (4.17)

and with (Θ̃, �, �) solving the pre-default CVA BSDE (4.1), where � is defined through Θ̃
and � by the second line of (4.1). Note in view of the pre-default CVA BSDE (4.1) that d�t
then boils down to d"Θ,�

t in (4.16), the variance of which one would like to minimize. Now, in

order to minimize the variance of d"Θ,�
t = d�t among all solutions (Θ̃, �, �) of (4.1) such that

�1
t = �1

t (Θ̃t−), one must choose �0 as the coefficient of regression of d�̄t := d�̃t−�1
t (Θ̃t−)dℳ̃1

t

against dℳ̃0
t . In other words we are now looking for a solution (Θ̃, �, �) to the pre-default

CVA BSDE (4.1), with �1
t = �1

t (Θ̃t−) and with d�̃t − �1
t (Θ̃t−)dℳ̃1

t − �0
t dℳ̃0

t orthogonal to

dℳ̃0
t . In such a solution, assuming further a deterministic Θ̃t = Θ̃(t,Xt), it comes by the

min-variance oblique bracket formula:

�0
t =

d < �̄,ℳ̃0 >t
dt

(
d < ℳ̃0 >t

dt

)−1

=
((

Θ̃, P̃0
)

Λ0
)

(t,Xt−)− �1(t,Xt−, Θ̃(t,Xt−))
((
P̃1, P̃0

)
Λ0
)

(t,Xt−)

=: �0(t,Xt−) (4.18)

where we let Λ0 =
(
P̃0, P̃0

)−1
, assumed to exist. This leads us to the following Markovian

BSDE in (Θ̃(t,Xt), (∇Θ̃�)(t,Xt), �Θ̃(t,Xt−, ⋅)) over [0, T ]:⎧⎨⎩
Θ̃(T,XT ) = 0, and for t ∈ [0, T ] :

− dΘ̃(t,Xt) = ḡ
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�(P̃0)T) ⋅ F

)
(t,Xt)

)
dt

− (∇Θ̃�)(t,Xt)dWt − �Θ̃(t,Xt−) ⋅ dNt,

(4.19)
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with for every (t, x, #, z, w) ∈ [0, T ]×ℝq×ℝ×ℝq×ℝd0 , in which d0 is the number of assets
in group 0:

ḡ (t, x, #, z, w) = g̃
(
t, x, P (t, x)− #, �(t, x)−

(
�̄0(t, x, #, z, w), �1(t, x, #)

))
where we let

�̄0(t, x, #, z, w) =
(
z
(
∇P̃0�)T(t, x) + w

)
Λ0(t, x)− �1(t, x, #)

((
P̃1, P̃0

)
Λ0
)

(t, x).

Indeed one then has in view of (4.6) and (4.18)

�̄0
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�(P̃0)T) ⋅ F

)
(t,Xt)

)
= �0(t,Xt)

ḡ
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�(P̃0)T) ⋅ F

)
(t,Xt)

)
dt

= g̃
(
t,Xt, P (t,Xt)Θ̃(t,Xt), �(t,Xt)−

(
�0(t,Xt), �

1(t,Xt, Θ̃(t,Xt))
))
dt.

Now, under mild technical conditions, the Markovian BSDE (4.19) has a unique solu-
tion, and7 the pre-default CVA function Θ̃ = Θ̃(t, x) in this solution can be characterized
as the unique solution to the following semilinear PDE:{

Θ̃(T, x) = 0 , x ∈ ℝq

(∂t + X ) Θ̃(t, x) + ḡ(t, x, Θ̃(t, x), (∇Θ̃�)(t, x),
(
(�Θ̃�(P̃0)T) ⋅ F

)
(t, x)) = 0 on [0, T )× ℝq.

(4.20)
One then has by virtue of the above analysis,

Proposition 4.2 Assume existence of a solution �1
t = �1(Θ̃t−) to Equation (4.12) and

invertibility of the group 0-primary-risky-assets-covariance-matrix
(
P̃0, P̃0

)
. Then the so-

lution Θ̃ = Θ̃(t, x) to (4.20) yields, via (4.17)-(4.18) for � and (4.1) for �, a solution (Θ̃, �, �)

to the pre-default CVA BSDE (4.1), such that �1
t = �1

t (Θ̃t−) and d�̃−�1
t (Θ̃t−)dℳ̃1

t−�0
t dℳ̃0

t

is orthogonal to dℳ̃0
t .

The min-variance hedge of the CVA (market risk) constrained to perfect hedge of the
CVA jump-to-default risk, is thus given as

(
�0
t , �

1
t (Θ̃t−)

)
, where �1

t (Θ̃t−) is the assumed
solution to (4.12), and where �0

t = �0(t,Xt−) is in turn given by Formula (4.18):

�0
t =

((
Θ̃, P̃0

)(
P̃0, P̃0

)−1
)

(t,Xt−)− �1
t (Θ̃t−)

((
P̃1, P̃0

)(
P̃0, P̃0

)−1
)

(t,Xt−).

Process � = "Θ,� represents the residual CVA (market) risk under this CVA hedge �.

Hedging of the Contract as a Whole We now consider the constrained min-variance
hedging problem of the contract as a whole, rather than simply of its CVA component. We
assume further that the hedge � of the contract clean price P , only involves the primary
assets in group 0, and that �0 is given as the coefficient of regression in an ℱ-orthogonal
decomposition dM = �0dℳ̃0 + dē, so

�0
t = d<M,ℳ̃0>t

dt

(
d<ℳ̃0>t

dt

)−1
=
((
P, P̃0

)
Λ0
) (
t,Xt−

)
=: �0(t,Xt−).

7Up to the monotonicity condition of Remark 4.4, applying here to ḡ.
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For (Θ̃, �, �) as in Proposition 4.2 and for � := � − �, the cost equations (3.24)-(3.26) boil
down to

d"P,�t =dMt − �0
tdℳ̃0

t = dēt

d"Θ,�
t =d�̃t − �0

t dℳ̃0
t − �1

t (Θ̃t−)dℳ̃1
t = d�t

d"Π,�
t =d"t = d"P,�t − d"Θ,�

t

=d�̃t − �0
t dℳ̃0

t + �1
t (Θ̃t−)dℳ̃1

t .

Therefore dMt − �0
tdℳ̃0

t and d�̃t − �0
t dℳ̃0

t − �1
t (Θ̃t−)dℳ̃1

t being ℱ-orthogonal to dℳ̃0
t ,

implies the same property for d�̃t− �0
t dℳ̃0

t +�1
t (Θ̃t−)dℳ̃1

t . Proposition 4.2 thus admits the
following

Corollary 4.2 For �0 given as the regression coefficient of M against ℳ̃0, the strategy
�t =

(
�0(t,Xt−) − �0(t,Xt−),−�1

t (Θ̃t−)
)
, is a min-variance hedge of the contract (market

risk), under the contract jump-to-default perfect hedge constraint that �1
t = −�1

t (Θ̃t−). The
residual (market) risk of the contract hedged in this way is given by "Π,� = " = ē− �.

Remark 4.6 Under the fully swapped hedge condition (1.4), which in the current Markov
setup implies (4.13) through a more specific g̃

(
t, x, �, &

)
= g̃
(
t, x, �), the Markovian BSDEs

(4.8) and (4.19) both boil down to:⎧⎨⎩ Θ̃(T,XT ) = 0, and for t ∈ [0, T ] :

− dΘ̃(t,Xt) = g̃
(
t,Xt, P (t,Xt)− Θ̃(t,Xt)

)
dt− (∇Θ̃�)(t,Xt)dWt − �Θ̃(t,Xt−) ⋅ dNt,

(4.21)
with a related semilinear PDE given as{

Θ̃(T, x) = 0 , x ∈ ℝq

(∂t + X ) Θ̃(t, x) + g̃(t, x, P (t, x)− Θ̃(t, x)) = 0 on [0, T )× ℝq.
(4.22)

Note that even though the value Θ̃ of the CVA is uniquely defined through (4.21)-(4.22),
the hedges � related to it via Propositions 4.1 or 4.2 (resp. � via Corollaries 4.1 or 4.2)
differ.

Example 4.2 Assuming (4.2) forX given as the pair (r, ℓ) in (4.5), and in the fully swapped
hedge case g̃

(
t, x, �, &

)
= g̃
(
t, x, �), the generator X of X in (4.22) writes as follows

X Θ̃ (t, x) =(a(ℎ(t)− r))∂rΘ̃ + (a∗(ℎ∗(t)− ℓ))∂ℓΘ̃+∫
�,�>0

(
Θ̃(t, r + ��, ℓ+ �∗�)− Θ̃(t, r, ℓ)

)
F (d(�, �))

(4.23)

where F stands for the Lévy measure of (Lr, Lℓ).8 The CVA Markovian BSDE (4.21) writes:
Θ̃(T,XT ) = 0, and for every t ∈ [0, T ] :

−dΘ̃(t,Xt) =g̃(t,Xt, Θ̃(t,Xt))dt

−
∫
�,�>0

(
Θ̃(t, rt− + ��, ℓt− + �∗�)− Θ̃(t,Xt−)

)
N(dt, d(�, �))

(4.24)

8The integral in (4.23) converges under technical conditions stated in Crépey et al. (2012).
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where N stands for the compensated jump measure of (Lr, Lℓ). In case of path dependence,
for instance via the collateral Γ (see Subsection 2.3), further state variables can be added to
X for the sake of markovianity. From the point of view of numerical solution, deterministic
PDE schemes can be used provided the dimension of X is less than 3 or 4; otherwise
simulation BSDE schemes are the only viable alternative.

4.4 Unilateral or Bilateral in the End?

The importance of hedging counterparty risk in terms not only of market risk, but also of
jump-to-default exposure, was revealed in the aftermath of the 2007–09 credit crisis. But,
since selling one’s own CDS is illegal, whether it is practically possible to hedge one’s own
jump-to-default exposure is rather dubious, due to lacking of suitable hedging instruments
(apart from the possibility considered in Burgard and Kjaer or Section 5 of the previous
paper to repurchase its own bond; and as opposed to hedging its own credit spread, which
is possible by factor hedging through peers).

If not possible and/or wished (or in case of unilateral counterparty risk), the bank can
resort to a variant of the approach of Subsection 4.3 consisting in min-variance hedging of
market risk constrained to perfect hedging of the investor’s jump-to-default risk, whilst not
hedging its own default. Only hedging the investor’s jump-to-default risk means hedging
the dJ-term in (4.11) on the random set {� < � ∧ T}. In view of the CVA cost equation
(4.11) and given the specification (3.1) of �t, this boils down to the following univariate
explicit linear equation to be satisfied by a scalar process �1

t , for t ∈ [0, T ] :

Pt −Qt − (1− �t)�−t − Θ̃t− = �1
t

(
ℛ1
t − P̃1

t

)
. (4.25)

Min-variance hedging the CVA market risk of the contract (or of the contract as a whole)
subject to perfect hedge of the investor’s isolated jump-to-default, thus boils down to min-
variance hedging the CVA market risk of the contract (or of the contract as a whole) subject
to �1

t = �1
t (Θ̃t−) solving (4.25). This min-variance hedging can be implemented along similar

lines as in Subsection 4.3, yielding easily derived analogs of Proposition 4.2 and Corollary
4.2. Note this involves no technical condition like (4.13).
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Crépey, S., Z. Grbac, and H. N. Nguyen (2012). A multiple-curve HJM model of interbank
risk. Mathematics and Financial Economics 6 (3), 155–190.
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