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Abstract

Since the great financial crisis of 2008–09, derivative dealers charge to their
clients various add-ons, dubbed XVAs, meant to account for counterparty risk and
its capital and funding implications. XVAs deeply affect the derivative pricing
task by making it global, nonlinear, and entity dependent. But, before these
technical implications, the fundamental points are to understand what deserves to
be priced and what does not, and to establish, not only the pricing, but also the
corresponding collateralization, accounting, and dividend policy of a bank.

As banks cannot replicate jump-to-default related cash flows, deals trigger
wealth transfers from bank shareholders to bondholders and shareholders need
to set capital at risk. On this basis, we devise a theory of XVAs, whereby the so-
called contra-liabilities and cost of capital are sourced from bank clients at trade
inceptions, on top of the fair valuation of counterparty risk, in order to compensate
shareholders for wealth transfer and risk on their capital.

The resulting all-inclusive XVA formula, meant incrementally at every new deal,
reads (CVA + FVA + KVA), where C sits for credit, F for funding, and where the
KVA is a cost of capital risk premium. This formula corresponds to the cost of the
possibility for the bank to go into run-off, while preserving a constant hurdle rate
h, from any point in time onward if wished: It ensures to the bank shareholders
a submartingale wealth process corresponding to the hurdle rate h, consistently
between and throughout deals.
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Acronyms

Amounts on dedicated cash accounts of the bank:

CM Clean margin.

RC Reserve capital.

RM Risk margin.

SCR Shareholder capital at risk.

UC Uninvested capital.

Valuations:

CA Contra-assets valuation.

CL Contra-liabilities valuation.

CVA Credit valuation adjustment.

DVA Debt valuation adjustment.

FDA Funding debt adjustment.

FV Fair valuation of counterparty risk.

FVA Funding valuation adjustment.
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KVA Capital valuation adjustment.

MtM Mark-to-market.

XVA Generic “X” valuation adjustment.

Also:

AE Accounting equity.

CCP Central counterparty.

CDS Credit default swap.

CET1 Core equity tier I capital.

CR Capital at risk.

EC Economic capital.

FRTB Fundamental review of the trading book.

FTP Funds transfer price.

SHC Shareholder capital (i.e. wealth).
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1 Introduction

Since the great financial crisis of 2008–09, investment banks charge to their clients,
in the form of rebates with respect to the counterparty-risk-free value of financial
derivatives, various add-ons meant to account for counterparty risk and its capital and
funding implications. In this paper the counterparty-risk-free value is dubbed mark-to-
market (MtM) and the counterparty risk related add-ons are generically termed XVAs,
where VA stands for valuation adjustment and X is a catch-all letter to be replaced by
C for credit, D for debt, F for funding, M for margin, or K for capital.

XVAs deeply affect the derivative pricing task by making it global, nonlinear, and
entity dependent. But, before these technical implications, the fundamental points are
to:

1 Understand what deserves to be priced and what does not, and

2 Establish, not only the pricing, but also the corresponding collateralization, ac-
counting, and dividend policy of the bank.

These are the two objectives of this paper. Its contributions are:

• The devising of a sustainable strategy for profits retention for a dealer bank,
meant to prevent Ponzi kind of schemes, such as the one observed during the
2008–09 crisis, where always more trades are entered for the sole purpose of
funding previously entered ones;

• An FTP (all-inclusive XVA add-on) meant as the cost of a “soft landing option”
that allows the bank to go into run-off, i.e. lock its portfolio and let the balance
sheet of the bank amortize in the future, while ensuring a constant target hurdle
rate h to the shareholders, from any point in time onward if wished;

• An extension in continuous-time of the static notion of a“cost-of-capital pricing
model in incomplete markets”;

• A dynamic interpretation of the Solvency II risk margin formula;

• The connection between the XVAs and core equity tier I capital (CET1), the
regulatory metric meant to represent the core financial strength of a bank;

• The connection between the XVAs and shareholder equity (i.e. shareholder wealth),
which, under our cost-of-capital XVA approach, is shown to be a submartingale
with drift coefficient corresponding to a constant hurdle rate h on shareholder
capital at risk;

• An XVA theory based on a counterparty risk market incompleteness tenet, much
more credible and realistic than the competing XVA replication paradigm;

• A theoretically sound but workable XVA approach that can be implemented in
practice at the level of a real banking portfolio (as opposed to most theoretical
pricing approaches in incomplete markets);
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• The understanding that the rise of the XVA metrics reflects a shift of paradigm
regarding the pricing and risk management of financial derivatives, from hedging
to balance sheet optimization, and insights into related ways these metrics can
be used in practice;

• A detailed comparison between the two competing XVA paradigms: replication,
in most of the XVA literature, versus cost-of-capital in this paper;

• A refined understanding and formalization of the XVA related wealth transfer
issues;

• An economical justification, through a notion of consistent valuations in a setup
where two pricing models coexist, of the reduction of filtration methodology that
is used for solving the XVA equations mathematically;

• XVA formulas that, accounting for the transfer of the residual value on the bank
accounts from clients and shareholders to bondholders at the default of the bank,
happen to be unilateral XVA formulas (even though the default of the bank is
present as a key ingredient of our model), naturally in line with the regulatory
requirement that capital should not diminish as an effect of the sole deterioration
of the bank credit spread;

• A KVA formula, resulting from our approach, where the hurdle rate enters the
discount factor applied to future capital at risk, which makes a crucial practical
difference at the very large time horizon of a banking portfolio;

• An FVA formula, resulting from our approach, that is asymmetric and always
nonnegative, in line with the pari passu requirement that there can be no shortfall
but only windfall at the default of a bank;

• A self-consistent, self-contained XVA suite, where the input to KVA computations
happens to be the output of the CVA and FVA model;

• A clarification of the connections between XVAs and the Modigliani-Miller in-
variance principle;

• A one-static XVA model with explicit formulas for all the quantities at hand,
offering a concrete grasp on the related wealth transfer and risk premium issues.

1.1 Context

Coming after several papers on the valuation of defaultable assets in the 90’s (see
e.g. Duffie and Huang (1996)), Bielecki and Rutkowski (2002, Eq. (14.25) p. 448)
yields the formula (CVA − DVA) for the fair valuation of bilateral counterparty risk
on a swap, assuming risk-free funding. This formula, rediscovered and generalized
by others since the 2008–09 financial crisis (cf. e.g. Brigo and Capponi (2010)), is
symmetrical, i.e. it is the negative of the analogous quantity considered from the point
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of view of the counterparty, consistent with the law of one price and the Modigliani
and Miller (1958) theorem.

Around 2010, the materiality of the DVA windfall benefit of a bank at its own
default time became the topic of intense debates in the quant and academic finance
communities. At least, it seemed reasonable to admit that, if the own default risk
of the bank was accounted for in the modeling, in the form of a DVA benefit, then
the cost of funding (FVA) implication of this risk should be included as well, which
would lead to the modified formula (CVA − DVA + FVA). See for instance Burgard
and Kjaer (2011, 2013, 2017), Crépey (2015), Brigo and Pallavicini (2014), or Bichuch,
Capponi, and Sturm (2018); see also Bielecki and Rutkowski (2015) for an abstract
funding framework (without explicit reference to XVAs), generalizing Piterbarg (2010)
to a nonlinear setup.

Then Hull and White (2012) objected that the FVA was only the compensator
of another windfall benefit of the bank at its own default, corresponding to the non-
reimbursement by the bank of its funding debt. Accounting for the corresponding
“DVA2” (akin to the FDA in Albanese and Andersen (2014) or in the present paper)
would bring back to the original fair valuation formula:

CVA−DVA + FVA− FDA = CVA−DVA,

as FVA = FDA.
However (see Burgard and Kjaer (2013, end of Section 3.1) as well as Sections 5.3

and B.3 below), this argument assumes that the bank can perfectly hedge its own
default, which, as a bank is an intrinsically leveraged entity, is not the case in prac-
tice. One can mention the related corporate finance notion of debt overhang in Myers
(1977), by which a project valuable for the firm as a whole may be rejected by share-
holders because the project is mainly valuable to bondholders. But, until recently, such
considerations were hardly considered in the field of derivative pricing.

Related articles in this regard are Burgard and Kjaer (2011, 2013, 2017), Castagna
(2012, 2013, 2014), Albanese and Andersen (2015, 2014), Albanese, Andersen, and
Iabichino (2015), Andersen, Duffie, and Song (2017), and Green, Kenyon, and Dennis
(2014). These papers are put further into perspective in Section 1.2. However, except
for the last one, these papers only consider FVA (or its avatar MVA); they do not
propose an approach to KVA.

1.2 Contents of the Paper

Our key premise, detailed in Section 2.1, is that counterparty risk entails two distinct
but intertwined sources of market incompleteness:

• A bank cannot hedge its own jump-to-default exposure;

• A bank cannot perfectly hedge counterparty default losses.

In this paper we specify the banking XVA metrics that align derivative entry prices to
shareholder interest, given this impossibility for a bank to replicate the jump-to-default
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related cash flows. We develop a continuous-time “cost-of-capital” XVA approach con-
sistent with the accounting standards set out in IFRS 4 Phase II (see International Fi-
nancial Reporting Standards (2013)), inspired from the Swiss solvency test and Sol-
vency II insurance regulatory frameworks (see Swiss Federal Office of Private Insurance
(2006) and Committee of European Insurance and Occupational Pensions Supervisors
(2010)), which so far has no analogue in the banking domain. Under this approach,
the valuation CL of the so-called contra-liabilities and the cost of capital (KVA) are
sourced from clients at trade inceptions, on top of the complete market valuation of
counterparty risk, in order to compensate bank shareholders for wealth transfer and
risk on their capital.

Regarding objective 2 above, our XVA-inclusive trading strategies achieve a
given hurdle rate to shareholders in the conservative limit case that no new trades
occur. We devise a collateralization, accounting, and dividend policy of a dealer bank
meant to preserve the possibility for the bank to go into run-off, i.e. lock its portfolio
and let the balance sheet of the bank amortize in the future, while ensuring a constant
target hurdle rate to the shareholders, from any point in time onward if wished. Such
a “soft landing option” is key from a regulatory point of view, as it guarantees that the
bank should not be tempted to go into snowball or Ponzi kind of schemes, such as the
one observed during the 2008–09 financial crisis, where always more trades are entered
for the sole purpose of funding previously entered ones.

Regarding objective 1 above, we show that the XVA cost of the corresponding
“soft landing option” is, by contrast with the complete market valuation (CVA−DVA)
of counterparty risk:

CVA + FVA + KVA, (1)

computed unilaterally in a certain sense (even though we do crucially include the default
of the bank itself in our modeling) and charged to clients on an incremental run-off
basis at every new deal. Our KVA is a risk premium, in the line of the risk margin
in the Solvency II insurance regulation (but devised in a consistent continuous-time
framework): It devises entry prices which keep the position of a derivative market
maker on an “efficient frontier” corresponding to a given return (constant hurdle rate h)
on the shareholder capital at risk that is earmarked for coping with trading losses. Our
cost-of-capital XVA strategy makes shareholder equity (i.e. wealth) a submartingale
with drift corresponding to such a hurdle rate h, consistently between and throughout
deals. Thus, we arrive to a sustainable strategy for profits retention, much like in the
above-mentioned insurance regulation, but in a consistent continuous-time and banking
framework.

The first ones to recast the XVA debate in the perspective of the balance sheet
of the bank were Burgard and Kjaer (2011), but this was to conclude that adding an
appropriately hedged derivative has no impact on the dealer’s funding costs, notwith-
standing the fact that the corresponding hedge is a violation of the pari passu rules
that protect the junior creditors of a firm. Also relying on balance sheet models of
a dealer bank, Castagna (2012, 2013, 2014) and Andersen, Duffie, and Song (2017)
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end up with conflicting conclusions, namely that the FVA should, respectively should
not, be included in the valuation of financial derivatives. Adding the KVA, but in a
replication framework, Green, Kenyon, and Dennis (2014) conclude that both the FVA
and the KVA should be included as add-ons in entry prices and as liabilities in the
balance sheet.

By contrast, postulating that deals should guarantee to shareholders a certain
hurdle rate h in an incomplete market setup, our approach implies that the FVA (and
the MVA that is included into it in our notation in this paper) should be included as
an add-on in entry prices and as a liability in the balance sheet; the KVA should be
included as an add-on in entry prices but not as a liability in the balance sheet.

We view the counterparty risk market incompleteness tenet as much more credible
and realistic than the competing XVA replication paradigm. Besides the divergent
implications regarding inclusion or not of the different XVAs in entry prices and/or in
the balance sheet, our approach also results in materially modified XVA formulas. In
particular:

• Even though we do include the default of the bank itself in our modeling, our
XVAs are, in a certain sense, unilateral. In particular, this makes our CVA im-
mediately in line with the corresponding regulatory requirement that the reserve
capital of a bank should not decrease uniquely because the credit risk of the bank
worsens;

• The KVA that arises from our theory discounts future capital at risk projections
at a rate including the hurdle rate h;

• Our XVA suite is self-contained and self-consistent: the main KVA input is the
CVA and FVA desks trading loss process.

Generic pricing approaches in incomplete markets include risk-minimisation and min-
imal martingale measures, utility maximisation, utility indifference pricing, good-deal
pricing, and probability distortions, among others (see e.g., respectively, Schweizer
(2001), Rogers (2001), Carmona (2009), Cochrane and Saa-Requejo (2000), and Madan
(2015)). We emphasize that, by contrast with most of these, as the companion paper
Albanese, Caenazzo, and Crépey (2017) demonstrates, a dynamic cost-of-capital XVA
approach is implementable at the scale of a real banking portfolio, including thousands
of counterparties and hundreds of thousands of trades (provided optimized implemen-
tations and technologies are used).

1.3 Outline

Section 2 sets a financial stage where a bank is split across several trading desks with
related cash flows detailed in Section 3. Consistency of valuation across the different
trading desks is represented by a suitable martingale invariance principle exposed in
Section 4. However, in our framework, valuation is not price, which entails an additional
adjustment in the form of a cost-of-capital risk premium. Based on these principles,
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Section 5 derives the XVA equations that apply to a static portfolio (or more precisely,
a derivative portfolio held on a run-off basis). Section 6 revisits the corresponding ap-
proach at the trade incremental level, specifies the “soft landing” pricing, accounting,
and dividend policy implied by our overall XVA approach, and establishes the corre-
sponding submartingale property with hurdle rate h of shareholder wealth, consistenly
between and throughout deals.

Sections 2 through 6 yield the conceptual backbone of the paper. Section 7 estab-
lishes various well-posedness and comparison results for the XVA equations of Section
5, specialized to a full-fledged continuous-time setup. Section 8 revisits the XVA equa-
tions when different choices are made on the fate of the residual reserve capital and risk
margin in case of default of the bank. Section 9 discusses in the light of the outputs of
this paper alternative XVA approaches that have been developed in the last years in
the setup of what we therefore call the XVA benchmark model, namely a Black–Scholes
model for an underlying market risk factor, combined with independent Poisson coun-
terparties and bank defaults. Section 10 reviews our approach and discusses its main
assumptions, results, and formulas.

Section A details the balance sheet perspective on the XVA metrics. Section B
develops a stylized cost-of-capital XVA approach in a one-period static setup, yielding
explicit XVA formulas and illustrating the XVA wealth transfer and risk premium
issues.

1.4 Probabilistic Setup

We work in an abstract dynamic setup on a measurable space (Ω,A), endowed with a
filtration with respect to which all the introduced processes are adapted, meant to cover
discrete and continuous time in a common formalism (hence, in a first stage, we will
not be able to distinguish between martingale and local martingale, etc.). This setup
will be made more precise a first time in Section 4.1, specialized into a continuous-
time model in Section 7, and simplified into a one-period model in Section B. All our
notation is discounted at the risk-free rate. In other terms, we use the risk-free asset,
assumed to exist, as a numéraire.

Remark 1.1 The core underlying issue here is the existence of a publicly observable,
reference rate for the remuneration of cash collateral (cf. Section 2.1). In developed
economies, this is provided by the overnight indexed swap (i.e. OIS) rate, which, when-
ever available, is together the best market proxy for a risk-free rate and the reference
rate for the remuneration of cash collateral.

To retrieve the corresponding “undiscounted” equations and formulas, just capitalize
all cash flows and values (as well as the amounts on the different banking accounts,
economic capital, etc.) at the risk-free (i.e. OIS) rate everywhere. All cumulative cash
flow processes introduced below (accounting results, trading losses, hedging losses,..)
start from 0 at time 0.

Unless explicitly specified, an amount paid (received) means effectively paid (re-
ceived) if positive, but actually received (paid) if negative. A similar convention applies
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to the notions of cost vs. benefit, loss vs. gain, etc.

2 Financial Setup

This section sets the financial stage. We consider a dealer bank, which is a market
maker, engaged into derivative trading with clients.

A market maker cannot decide on asset selection: trades are proposed by clients
and the market maker needs to stand ready to bid for a trade at a suitable price no
matter what the trade is and when it arrives.

Bank clients are price taker corporates willing to accept a loss in a trade for the
sake of receiving benefits acounting for their base business line. These benefits become
apparent only once one includes their real investment portfolio, which cannot be done
explicitly in a pricing model.

2.1 From Hedging to Netting, Capital, and Collateralization

Counterparty risk is related to cash flows or valuations linked to either counterparty
default or the default of the bank itself.

The risk of financial loss as a consequence of client default is hard to replicate,
because single name CDS instruments that could in principle be used for that purpose
are illiquid and are typically written on bonds, not on swaps with rapidly varying
value (“contingent credit swap exposures” to which counterparty risk exposures are
tantamount).

The possibility for the bank of hedging its own default is even more questionable
since, in order to hedge it, a bank would need to be able to freely trade its own debt.
But banks are special firms that are intrinsically leveraged and cannot be transformed
into a pure equity entity. There is also an argument of scale. It has been estimated that,
if all European banks were to be required to have capital equal to a third of liabilities,
then the total capitalization of banks would be greater than the total capitalization of
the entire equity market as we know it today. Last, even if a bank was free to redeem
all its debt, bank shareholders could not effectively monetise the hedging benefit, which
would be hampered by bankruptcy costs. See Castagna and Fede (2013, Section 10.7)
for a detailed discussion regarding this impossibility for a bank to hedge its own jump-
to-default exposure, and cf. also Burgard and Kjaer (2013, Sections 3.1 and 3.2).

As counterparty risk is hard to hedge in practice, the management of counterparty
risk is more about netting and collateralization than hedging, the residual risk being
handled on reserve and capital bases, whether it is in a bilateral or in a centrally
cleared trading setup (see e.g. Basel Committee on Banking Supervision (2015) and
Official Journal of the European Union (2012)).

Netting means that default exposures are assessed at an aggregated portfolio (or
netted set) level, after accounting for value compensation between the components
of each netting set and for the transfer of property of the corresponding collateral.
The exact specification of the netting sets depends on the trading setup of the bank
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(bilateral, with netting by counterparty, and/or centrally cleared, with netting by asset
class, in particular).

Collateral means cash or liquid assets that are posted to guarantee a netted set
of transactions against the default of the posting party. Liquidation losses beyond the
collateral posted by a defaulted party impact the capital of the shareholders within the
bank. We assume cash only collateral, which stays the property of the posting party
unless a default in a related netting set happens; posted collateral is remunerated at
the risk-free (i.e. OIS, see Remark 1.1) rate. Collateral can be re-hypothecable, in the
form of a variation margin (VM) that tracks the mark-to-market of a deal and can be
re-used by the receiving party for its funding purposes. A variation-margined position
is still subject to gap risk, which is the risk of slippage between the market value of a
netting set and its variation margin during the liquidation period of a defaulted party.
Hence, an additional layer of margin can be required, in the form of the so-called initial
margin (IM). The initial margin is typically segregated and it is dynamically updated at
a frequency that can be similar to the one used for variation margin. Under the current
regulation, both forms of collateralization (VM and IM) are becoming mandatory, with
some variants specific to bilateral versus centrally cleared transactions.

Remark 2.1 The industry terminology tends to distinguish an FVA, in the specific
sense of the cost of funding the cash collateral for variation margin, from an MVA
defined as the cost of funding segregated collateral posted as initial margin (see e.g. Al-
banese, Caenazzo, and Crépey (2017)). In this paper, we merge the two in an overall
FVA meant in the broad sense of the cost of funding the derivative business of the
bank.

If cash collateral happens to be remunerated at some basis with respect to the
reference risk-free (OIS) rate (see Remark 1.1), then this entails further liquidity val-
uation adjustments. However, the corresponding bases and adjustments are typically
much smaller than the other XVAs considered in this paper, hence we ignore them
hereafter.

2.2 One Bank, Several Desks, Different Stakeholders

A bank is a defaultable entity and has two different classes of stakeholders: shareholders
and creditors.

More precisely, we model our bank as a composite entity split into shareholders
and so-called bondholders. Shareholders have the control of the bank and are solely
responsible for investment decisions before bank default. At the bank default time τ ,
shareholders are wiped out. Bondholders represent the junior creditors of the bank,
which have no decision power until the time of default, but are protected by pari-
passu laws forbidding certain trades that would trigger wealth away from them to
shareholders during the default resolution process of the bank. The bondholders have
to cope with bankruptcy costs, which are outside the scope of an XVA model, that they
need to face to liquidate the bank when it defaults. The trading cash flows received
by the bank prior its default time τ go to bank shareholders, whereas the trading cash
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flows received by the bank during the default resolution period that starts at τ go to
bondholders. Note that our setup is self-financed in the sense that, in order to make
it a “closed system”, we suppose that the shareholders and bondholders hold nothing
outside the bank.

The bank also has senior creditors, represented in our framework by an external
funder that can lend unsecured to the bank at some exogenously given risky funding
spread.

Hereafter, in order to fix the mindset, we restrict ourselves to bilateral deriva-
tive portfolios. But we stress that centrally cleared derivatives can also be included
along similar lines (in the post-crisis regulatory environment, bilateral exotic trades are
typically hedged through cleared vanilla portfolios): see Remarks 2.3 and A.2.

The counterparty default losses and the (other than risk-free) funding expenditures
of the bank can be viewed as synthetic derivative payoffs, which we call contra-assets
(cf. Definition 3.5), that emerge, due to counterparty risk, at the aggregated level of the
portfolio of the bank. We call CA desk(s) a mathematical entity regrouping the CVA
desk and the FVA desk (the latter sometimes represented in practice by the ALM or the
Treasury) of a bank. As will be detailed in the paper, the CA desk values the contra-
assets and charges the corresponding CVA and FVA to the clients of the bank, deposits
the corresponding payments in a reserve capital account, and then is exposed to
the corresponding payoffs. As time proceeds, counterparty default losses and funding
expenditures occur and are covered by the CA desk with the reserve capital account.

After the contracts have thus been filtered out of their counterparty risk and risky
funding implications by the CA desk, the other trading desks of the bank, which we call
clean desks, can ignore counterparty risk and focus on the management of the market
risk of the contracts in their respective business lines. In particular, as we will formalize
in Section 5.1, the re-hypothecable collateral provided by the Treasury of the bank to
the clean desks funds their trading at the risk-free cost of collateral remuneration. Thus
the clean desks do not need any cash account, the financing function of a cash account
being already played by their risk-free remunerated collateral account, which we call
the clean margin account.

Hence, in our setup, we, in fact, deal with two portfolios: the client portfolio,
between the clients of the bank and the CA desk, and the so-called cleaned portfolio,
between the CA desk and the clean desks. The corresponding promised cash flows are
the same. But, as should be intuitively clear from the above and seen in detail below,
counterparty risk only impacts the client portfolio.

Remark 2.2 Reflecting into the model the distinction (that exists for fact in banks)
between the CA desks and the clean desks allows one to:

• Provide the economical background and motivation for the mathematical tools
of reduction of filtration that will be introduced in the second part of the paper
to solve our XVA equations;

• Explain the mechanism of “a fully collateralised market hedge” in the context of
bilateral trade portfolios;
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• Provide direct derivations of the XVA equations, coming in contrast with most
other XVA references in the literature, where the XVA equations are obtained
in two steps, as the difference between a linear equation for the mark-to-market
of the portfolio ignoring counterparty risk and another equation for the “risky
value” of the portfolio;

• Yield a much clearer view on the contra-liability cash flows. For instance, the
derivation (83) shows in an elementary static setup how, accounting for a fully
collateralised market hedge, these cash flows are not a fiction or an abstract
compensation of others, but actual cash flows that fall into the estate of the
defaulted bank, increasing the realized recovery rate of bondholders.

Remark 2.3 In the case of centrally cleared trading, the role of the clean desks is
played by a central counterparty (CCP), which “clears the delta” of the bank, also
providing, although by a different mechanism, a “fully collateralized market hedge” to
the client portfolio of the bank (see Armenti and Crépey (2018)).

Each (CA or clean) trading desk may also setup a related hedge, typically dy-
namic and possibly imperfect (especially in the case of the CA desk), which generates
a (cumulative) hedging loss process intended to control the fluctuations of their respec-
tive trading loss process. Note that we are restricting ourselves to the most common
situation of hedges that are either swapped or traded through a repo market, without
upfront payment. The related hedging loss processes are meant inclusive of associated
funding costs, assumed risk-free. See Example 4.1 below and cf. Crépey, Bielecki, and
Brigo (2014, Section 4.2.1) for more details.

We emphasize that the CA desk is not in charge of the KVA, which under our
approach is of a different nature and is treated separately by the management of the
bank. Namely, on top of reserve capital, the so-called risk margin is sourced by the
bank from the clients at each deal, deposited into a risk margin account, and then
gradually released as KVA payments into the shareholder dividend stream. The risk
margin account also yields risk-free interest payments to the shareholders.

Another account contains the shareholder capital at risk earmarked by the
bank to deal with exceptional trading losses (beyond the expected losses that are al-
ready accounted for by reserve capital). Last, there may be one more bank account with
an additional (typically unknown) amount of uninvested capital. These accounts also
yields risk-free interest payments to the shareholders.

In practice, losses-and-earnings realization times are typically quarter ends for
bank profits, released as dividends, versus recapitalization managerial decision times
for losses. For simplicity in our model:

Assumption 2.1 (Mark-to-model) We write CM, RC, RM, SCR, and UC for the
respective (discounted) amounts on the clean margin, reserve capital, risk margin,
shareholder capital at risk, and uninvested capital accounts of the bank.

Except for UC, all these amounts are continuously, instantaneously reset to some
(to-be-determined hereafter) theoretical target levels.

14



As the amounts on all the accounts but one are marked-to-model through Assumption
2.1 and because our setup is self-financed, hence the last, residual amount UC plays
the role of an “adjustment variable”.

Definition 2.1 Shareholder capital is

SHC = SCR + UC; (2)

The core equity tier I capital of the bank is

CET1 = RM + SCR + UC. (3)

Remark 2.4 From a financial interpretation point of view, CET1 represents the fi-
nancial strength of the bank when assessed from a regulatory (i.e. structural solvency)
point of view (see Section A); SHC = SCR + UC represents shareholder wealth,
whereas bondholder wealth will be the value of the contra-liabilities (cf. Theorem
5.1).

The rise of the XVA metrics reflects a shift, regarding the pricing and risk manage-
ment of financial derivatives, from a hedging paradigm to balance sheet optimization.
In fact, the afore-described setup can be viewed as an abstraction of the bank bal-
ance sheet (or, vice versa, the latter can be viewed as a metaphorical representation of
the former), displayed Figure 1 in Section A, where the horizontal subdivision (from
bottom to top) embodies the functional distinction between clean desks, the CA desk,
and the management of the bank, whereas the vertical subdivision has to do with the
capitalistic distinction between shareholders and bondholders.

2.3 Default Model of the Bank

In the spirit of structural models of the default time of a firm, such as the Merton (1974)
model, the core equity capital of a firm corresponds to its “distance to default” and the
default itself would be modeled as the first time where CET1 ≤ 0. However, a negative
CET1 (via UC, specifically) is allowed in our setup, interpreted as recapitalisation (or
equity dilution). Hence we never have structural default in our setup.

Instead we model the default of the bank as a totally unpredictable event at
some exogenous time τ calibrated to the bank CDS curve, which we view as the most
reliable and informative credit data regarding anticipations of markets participants
about future recapitalization, government intervention, bail-in, and other bank failure
resolution policies.

Assumption 2.2 At the bank default time τ , the property of the residual amount on
the reserve capital and risk margin accounts is instantaneously transferred from the
shareholders to the bondholders of the bank.
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Remark 2.5 The default of a bank does not necessarily mean insolvency, i.e. negative
equity, but, more precisely, liquid assets less than short term liabilities (see e.g. Duffie
(2010)). In fact, the legal definition of default is an unpaid coupon or cash flow, which
is a liquidity event. For instance, at the time of its collapse in April 2008, Bear Stearns
had billions of capital.

At the bank default time, the property of any residual SHC = SCR + UC amount
flows back to shareholders. Note that, should the bank default instantaneously at time
0 right after the client portfolio has been setup and the corresponding RC and RM
amounts have been sourced from client, having RC and/or RM (or part of them) flow
back to shareholders would make it a “positive arbitrage” to their benefit. Conversely,
having SCR (or part of it) go to bondholders would make it a “negative arbitrage”
to shareholders. Shareholders declaring default at time 0 should be possible without
contradiction (or “arbitrage”) in the model. Hence, in our setup, the SCR amount is
only “earmarked by the bank” and dedicated to absorb (exceptional) trading losses if
they arise, but, in case of bank default, the residual SCR and a fortiori UC amounts
flow back to the shareholders.

Remark 2.6 As the clean margin is collateral, its property is transferred from the
clean margin poster (or lender) to the clean margin receiver (or borrower) at the liq-
uidation time of the bank. In the case of the clean desks, this will exactly compensate
the amount that they need to close their position (cf. Assumption 6.3). The CA desk
nets its corresponding cash flow with the ones that it obtains from the liquidation of
the client portfolio; the netted output flows into the so-called contra-liabilities of the
bank, i.e. the realized recovery stream of the bondholders (see Definition 3.5), via the
term C• in (13) below.

3 Cash Flows

In this section, we describe the cash flows streams of the clean and the CA desks.

Assumption 3.1 The derivative portfolio of the bank is held on a run-off basis, i.e. set
up at time 0 and such that no new unplanned trades1 ever enter the portfolio in the
future.

In practice, unless precisely a bank goes into run-off, derivative portfolios are incre-
mental and XVA models are especially required for computing an entry price (or coun-
terparty risk related add-on) for every new trade. Assumption 3.1 will be relaxed
accordingly in Section 6.

1Other than the ones initially planned at time 0, noting that the latter may still include forward
starting contracts or dynamic hedges.
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The rules regarding the settlement of contracts at defaults yield the counterparty
exposure (CVA and DVA originating) cash flows, denoted by C: cf. Assumption 6.3
and see Lemmas 7.7 and B.1 for concrete examples below.

The risky funding cash flows2 of the CA desk, which is in charge of the risky
funding of the bank, are represented in the form of a process F . In practice, F is
determined by the collateralization and funding policy of the bank through a relevant
self-financing condition: See e.g. Lemmas 7.6 and B.1 below.

Last, the (partial) hedging policy of the CA desk results in a (cumulative) CA
desk hedging loss process H.

3.1 Accounting Result Processes

Definition 3.1 We call accounting result of the CA desk, denoted by Γca, the cumu-
lative cash flow process triggered to the bank by the activity of the CA desks, i.e., in
view of the above description:

Γca = −(RC−RC0 + C + F +H). (4)

See (57) and (83) for illustrations in concrete set-ups (where RC = CA as per Propo-
sition 5.2).

In particular, the term RC−RC0 in (4) accounts for the resets of the RC amounts
by the shareholders as per Assumption 2.1, beyond the initial contribution RC0 pro-
vided by the clients of the bank at portfolio inception time 0.

We label the netting sets of the client portfolio by an index c (like ‘contract’, as,
from an XVA viewpoint, any netted set is tantamount to a single contract). Given
a netting set labeled by c, we denote by Pc, CMc, and Hc the related contractually
promised cash flow stream, amount on the clean margin account (counted positively
when received by the clean desks), and hedging loss. Hence, in particular,

CM =
∑
c

CMc, (5)

where, here and henceforth, c in the summations ranges over all netting sets of the
client portfolio.

Definition 3.2 We call accounting results of the clean desks, denoted by Γcl, the
cumulative cash flow process triggered to the bank by the activity of the clean desks,
i.e., in view of the above description:

Γcl =
∑
c

(CMc−CMc
0 + Pc −Hc)τδc , (6)

where the stopping time τ δc denotes the liquidation time of the netting set c.

2Other than the risk-free accrual of the reserve capital (cash) account of the CA desk, which is
already included in our choice of the risk-free deposit asset as a numéraire.
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In particular, the term CMc−CMc
0 in (6) accounts for the resets of the CMc amounts

between the CA and the clean desks as per Assumption 2.1, beyond the initial contri-
bution CMc

0 provided by the clients of the bank at portfolio inception time 0.

3.2 Trading Loss Processes

For any process Y , the corresponding process stopped before the bank default time τ
is denoted by Y ◦ (whenever well-defined). We also define Y • = Y ◦ − Y, so that

Y = Y ◦ − Y •. (7)

In order to avoid the ambiguity between “a process Y stopped before τ” in the respec-
tive meanings of Y = Y ◦ or to denote the stopped process Y ◦, we (abusively) say that
a process Y is “without jump at τ” if Y = Y ◦, i.e. Y • = 0.

In particular, as the RC, RM, SCR, and UC amounts will only really matter before
τ , we assume all these amounts without jump at τ , to avoid unnecessary use of the ·◦
notation. Moreover, as C◦ is only made in practice of counterparty default losses of the
bank (see e.g. Lemmas 7.7 and B.1):

Assumption 3.2 The counterparty exposure cash flow C is a finite variation process
with nondecreasing component C◦.

In view of the distinction between shareholders and bondholders we must differ-
entiate between cash flows from the point of view of the bank as a whole (shareholders
and bondholders altogether), such as the processes Γca and Γcl, and cash flows affect-
ing the bank shareholders, corresponding in our terminology (assessed as loss after sign
change) to the trading loss processes below. However, this is ignored by the clean desks,
which do not incorporate the default of the bank in their modeling: the latter is only
local, at the level of their particular business line. But this is then corrected by the
CA desk, which has a modeling view at the level of the bank as a whole.

Accordingly, by trading loss Lcl of the (bank generated by the and from the point
of view of the) clean desks (who ignore the default of the bank in their modeling),
we just mean the negative of their accounting result process; by trading loss Lca of
the (bank shareholders generated by the) CA desk, we mean the negative of their
accounting result process, stopped before τ for alignment with shareholder interest.
Namely:

Definition 3.3 We call trading loss of the clean desks, of the CA desk, and of the
bank, the respective processes

Lcl = −Γcl, Lca = −(Γca)◦ , and L = −(Γcl + Γca)◦ = (Lcl)◦ + Lca. (8)

That is, in view of (4)–(6):

Lcl = −
∑
c

(CMc−CM0 + Pc −Hc)τδc ,

Lca = RC−RC0 + C◦ + F◦ +H◦,
L = RC−RC0 + C◦ + F◦ +H◦ + (Lcl)◦.

(9)
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See (57) and (82) for illustrations in concrete set-ups (where RC = CA as set after
Proposition 5.2).

From the balance sheet perspective depicted on Figure 1 in Section A, as long as
the bank is nondefault, the overall accounting result Γ = Γcl + Γca of the bank and
its trading loss L correspond to the appreciation of the accounting equity and to the
depreciation of the core equity of the bank (see (11) and Section A).

3.3 Dividend, Contra-Asset, and Contra-Liability Cash Flow Pro-
cesses

The trading gains (−L) of the bank (cf. Definition 3.3) continuously flow into the
shareholder dividend stream. Also accounting for the risk margin payments, for the
risk-free interest that is earned by the shareholders on the risk margin account, and for
the default of the bank that stops the dividend stream before τ :

Definition 3.4 Shareholder (cumulative, discounted) dividends D are

D = −(L+ RM− RM0). (10)

We emphasize that, in our model, negative dividends are possible. They are interpreted
as recapitalisation, i.e. equity dilution (cf. Section 2.3).

Lemma 3.1 The core equity of the bank and shareholder wealth satisfy

CET1 = CET10 − L (11)

SHC = SHC0 +D. (12)

Proof. Recall that shareholders hold nothing outside the bank. Hence, as long as the
bank is nondefault, the trading of the bank (i.e. the activity of the clean and the CA
desks) requires from CET1 the amount L in (8), which can be analyzed as amounts

(RC− RC0) and −
∑

c(CMc − CMc
0)τ

δ
c needed for resetting the reserve capital and

clean margin amounts and further amounts C + F +H and −
∑

c(Pc −Hc)τ
δ
c needed

for absorbing the CA and clean desks trading and hedging losses (the latter flowing
between CET1 and clients, external funder and hedgers). This establishes the identity
(11) before τ , and therefore also from τ onward as both sides are without jump at τ .

Recalling SHC = SCR + UC = CET1− RM (cf. (2) and (3)), we have by (11)

SHC = CET10 − L− RM = CET1− RM0 − (L+ RM− RM0),

which in view of (10) is (12).

Definition 3.5 We call contra-assets (S) and contra-liabilities (B) the cash flows trig-
gered by the activity of the CA desk from the shareholders, respectively to the bond-
holders, i.e., also accounting for the related bank default cash flows RCτ (cf. Assump-
tion 2.2),

S = C◦ + F◦ +H+ 1{[τ,+∞)}RCτ

B = C• + F• + 1{[τ,+∞)}RCτ .
(13)
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Contra-assets, respectively contra-liabilities, draw their names from the fact that, from
the point of view of the balance sheet of the bank depicted Figure 1 in Section A, their
(to be defined) value processes will appear as special liabilities, respectively assets,
that arise from the feedback of counterparty risk on financial payables (respectively
receivables).

We emphasize that the purpose of our capital structure model of the bank (see
Figure 1 in Section A) is not to model the default of the bank, like in a Merton (1974)
model, as the point of negative equity (CET1 < 0), which in the case of a bank would
be unrealistic (cf. Section 2.3). Instead, our aim is to put in a balance sheet perspective
the contra-assets and contra-liabilities of a dealer bank, items which are not present in
the Merton model and will play a key role in our analysis.

4 Pricing Principles

This section states our cost-of-capital pricing principles for the cash flows of Section 3.

4.1 Invariance Valuation Setup

We denote by T a finite and constant upper bound on the maturity of all claims in
the portfolio, also including the time (such as two weeks) of liquidating the position
between the bank or any of its clients. We write τ̄ = τ ∧T, where τ is the default time
of the bank

Consistent with the divergent views of the clean and the CA traders exposed
before Definition 3.3, our setup involves not one, but actually two pricing models.

Assumption 4.1 Clean desks compute their model prices and hedging sensitivities
using a filtration F = (Ft)t≥0 such that the bank default time τ is not an F stopping
time. The CA desk uses a larger filtration G = (Gt)t≥0 such that τ is a G stopping
time.

Any G semimartingale Y on [0, τ̄ ] admits a unique F semimartingale Y ′ on [0, T ],
called F reduction of Y, that coincides with Y before τ . Any G stopping time η admits
an F stopping time η′, called F reduction of η, such that

η ∧ τ = η′ ∧ τ. (14)

All cash flow and price processes are modeled as G or F semimartingales. The contractu-
ally promised derivative cash flow stream of the client portfolio is an F semimartingale.
The counterparty exposure, risky funding, and hedging cash flows C, F , and H are G
semimartingales.

The representation of valuation by the clean and CA desks of the bank, as well
as the consistency of valuation across their different perspectives, are encoded into the
following:
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Assumption 4.2 (Invariance valuation principle) The clean and XVA desks use
not only different filtrations, but also potentially different pricing measures P on FT
and Q on GT , equivalent on FT .

The process Lcl is an (F,P) martingale on [0, T ]. The process Lca is a (G,Q)
martingale on [0, τ̄ ] without jump at τ .

Stopping before τ turns (F,P) martingales on [0, T ] into (G,Q) martingales on
[0, τ̄ ] without jump at τ . Conversely, the F reductions3 of (G,Q) martingales on [0, τ̄ ]
without jump at τ are (F,P) martingales on [0, T ].

Remark 4.1 We leave aside the question of knowing whether such framework could
be related to a suitable notion of no arbitrage in a situation where two different pricing
models (different filtrations, in particular) are involved.

In continuous time (see Section 7.1), the probabilistic setup of Assumption 4.2 corre-
sponds to the notions of invariance time τ and invariance probability measure P studied
in Crépey and Song (2017b).

As we will see in Sections 5.1 and 5.3, the martingale conditions on the processes
Lcl and Lca in Assumption 4.2 embed the theoretical target levels for the levels CM
and RC to be maintained by the bank on its clean margin and reserve capital accounts.

Remark 4.2 As a consequence of Assumption 4.2 and of (8), the trading loss L of the
bank is a (G,Q) martingale on [0, τ̄ ] without jump at τ ; Its F reduction L′ is an (F,P)
martingale on [0, T ].

4.2 Valuation of the Funding and Hedging Assets

Assumption 4.3 The hedging loss Hc related to the hedging of each netting set c by
the clean desks, including the risk-free cost of setting the hedge, is an (F,P) martingale.

The rationale is that clean desks hedging gains arise in practice as the stochastic integral
of predictable hedging ratios against wealth processes of buy-and-hold strategies in
available (F adapted, “clean”) hedging assets. Recall from Section 2.2 that we are
considering wealth processes inclusive of the associated funding costs, assumed risk-
free, here. Such wealth processes are assumed to be (F,P) martingales, as are in
turn stochastic integrals against them. As a consequence, each process Hc (of the
corresponding discounted cash flows) is an (F,P) martingale.

Example 4.1 Assuming the hedge of a contract c of the cleaned portfolio implemented
through a repo market on a (discounted) Black-Scholes stock S with volatility σ, then,
supposing no dividends and risk-free repo funding of S:

dHct = −ζct dSt = −ζct σStdWt, (15)

where W is the (F,P) Brownian motion driving the stock and ζc is the correspond-
ing hedging ratio (the instantaneous risk-free cost of funding the hedge is implicitly
contained in (15) through our choice of the risk-free deposit asset as a numéraire).

3cf. Assumption 4.1.
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Assumption 4.4 The hedging loss H of the CA desk, including the costs of setting
the hedge, is a (G,Q) martingale without jump at τ (i.e. H = H◦).

The rationale is the same as for Assumption 4.3, this time with respect to (G,Q). The
assumption H = H◦ is made for consistency with our premise that a bank cannot hedge
its own jump-to-default exposure (cf. Section 2.1).

Assumption 4.5 The risky funding cash flow process F is a (G,Q) finite variation
martingale with nondecreasing F◦ component.

The rationale here is that risky funding cash flows arise as the stochastic integral
of predictable funding ratios against wealth processes of buy-and-hold strategies into
funding assets related to the default of the bank. These wealth processes are assumed
to be (G,Q) martingales. Therefore the risky funding (discounted) costs handled by
the CA desk accumulate into a (G,Q) martingale F : See Lemmas 7.6 and B.1 for
concrete illustration below.

The assumption that F◦ is nondecreasing rules out models where the bank could
invest (not only borrow) at its unsecured borrowing spread over risk-free, because, as a
consequence on F• through the martingale condition on the process F as a whole, this
would imply that the bank can hedge its own jump-to-default exposure. That is, to ban
the latter, we assume only windfall at bank own default, no shortfall (cf. Sections 5.3
and 9.1).

The last parts in Assumptions 4.4 (i.e. H = H◦) and 4.5 also insure some kind
of “orthogonality” between the risky funding martingale F and the CA hedging loss
martingale H, so that F and H are nonsubstitutable with each other (the bank cannot
manipulate by using one for the other, see again Sections 5.3 and 9.1).

4.3 Capital at risk and Cost of Capital

Not only a bank cannot hedge its own jump-to-default: it cannot replicate its counter-
party default losses either. Then the regulator comes and requires that capital be set at
risk by the shareholders, which therefore require a risk premium. Capital at risk (CR)
is the resource of the bank devoted to cope with losses beyond their expected levels,
the latter being already taken care of by reserve capital (RC). Counterparty default
losses, as also funding payments, are materialities for default if not paid. In contrast,
risk margin payments are at the discretion of the bank management, hence they do not
represent an actual liability to the bank. Accordingly (see Section 9.2 for discussion):

Assumption 4.6 The risk margin is loss-absorbing, hence part of capital at risk.

As a consequence, shareholder capital at risk (SCR) is only the difference between the
capital at risk (CR) of the bank and the risk margin (RM), i.e.

SCR = CR− RM. (16)

The broad axiom that follows will be turned into a tangible KVA equation in
Section 5.4:
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Assumption 4.7 (Constant hurdle rate principle) An exogenous and constant hur-
dle rate h ≥ 0 prevails, in the sense that KVA payments are such that, at any time
t,

“Shareholder instantaneous average returnt = hurdle rate h × SCRt.” (17)

Remark 4.3 In principle, the choice of h to be used in KVA computations is a manage-
rial decision of the bank. In practice, the level of compensation required by shareholders
on their capital at risk in a firm is driven by market considerations. Typically, investors
in banks expect a hurdle rate of about 10% to 12%. In a real-life environment where
banks compete for clients (as opposed to our setup where only one bank is considered),
an endogenous and stochastic implied hurdle rate arises from the competition between
banks (see Remark 5.4 and Section B.4).

In our setup, the duality of perspective of the clean versus CA desks, on pricing
as reflected by Assumptions 4.1 and 4.2, also applies to risk measurement.

Capital calculations are typically made “on a going concern”, hence assuming
that the bank is not in default. Instead, cost of capital calculations are made by the
management in a model including the default of the bank.

Moreover, in the context of XVA computations that entail projections over decades,
the main source of information is market prices of liquid instruments, which allow the
bank to calibrate its pricing models (cf. Remark 6.2 below), and there is little of rele-
vance that can be said about the historical probability measure.

Accordingly:

Assumption 4.8 Capital and cost of capital computations are made with respect to
the respective filtrations F and G.

The estimates P̂ and Q̂ of the historical probability measure used by the bank in its
respective economic capital and cost of capital computations are the pricing measures
P and Q.

Any discrepancies between P̂ and P or Q̂ and Q are left to model risk, meant to be
included in an AVA (additional valuation adjustment) in an FRTB terminology. Model
risk in the XVA context is an important and widely open issue, which we leave for
future research (see e.g. Glasserman and Yang (2018) for a tentative treatment in the
case of the CVA).

We emphasize that we calibrate the pricing measures to derivative market prices,
including the corresponding credit premia, and then we perform all our (including
capital) calculations based on these. If we were able to estimate risk premia reliably
over time horizons that, in the XVA context, can be as long as fifty years into the
future, then we could have a more sophisticated, hybrid approaches, with historical
measures distinct from the pricing measures, deduced from the latter by deduction
of corresponding risk premia. In the absence of such a reliable methodology, we do
all the computations under pricing measures. As, in particular, implied CDS spreads
are typically larger than statistical estimates of default probabilities, we believe that
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this approach is conservative. Moreover, the hurdle rate h can be interpreted as a
risk aversion parameter of the bank shareholders and the KVA as a corresponding risk
premium: see Section B.4.

5 Derivation of the XVA Equations

In this section, based on the cost-of-capital pricing principles of Assumptions 4.2 and
4.7, we derive the XVA equations that determine the theoretical target levels for the
RC and RM amounts to be maintained by the bank on its reserve capital, and risk
margin accounts. We also characterize the theoretical target level of the CM amount
on the clean margin account.

The well-posedness of the ensuing equations in continuous time will be established
in Section 7. So far, all our XVA processes are only sought for in an abstract vector
space S2 of Q (typically square) integrable G adapted processes defined until time
τ̄ = τ ∧ T . We denote by S◦2 the corresponding subspace of processes Y without jump
at τ and such that YT = 0 holds on {T < τ}.

Definition 5.1 The conditional expectation with respect to (Gt,Q) (respectively (Ft,P))
is denoted by Et (respectively E′t), or simply by E (respectively E′) if t = 0.

Given a G, respectively F adapted cumulative cash flow stream X , we call (G,Q),
respectively (F,P) value process of X the process X such that (assuming the integra-
bility implied by the related identity in (18))

Xt = Et(Xτ̄ −Xt), t ∈ [0, τ̄ ], respectively Xt = E′t(XT −Xt), t ∈ [0, T ] . (18)

Remark 5.1 Put differently, the (G,Q) value process of a G adapted cash flow stream
X is the G adapted process X on [0, τ̄ ] such that Xτ̄ = 0 and (X + X ) is a (G,Q)
martingale on [0, τ̄ ]; The (F,P) value process of an F adapted cash flow stream X is the
F adapted process X on [0, T ] such that XT = 0 and (X + X ) is an (F,P) martingale
on [0, T ].

Note that our hypothesis underlying Assumption 4.5 (see the comments following
it) that wealth processes of buy-and-hold strategies in the funding assets are (G,Q)
martingales is equivalent to saying that the risky funding assets are priced by the (G,Q)
valuation rule in Definition 5.1 (see e.g. (55)-(56) below); The hypothesis underlying
Assumption 4.3 (see the comments following it) that wealth processes of buy-and-hold
strategies in (F adapted, “clean”) hedging assets, inclusive of risk-free funding costs,
are (F,P) martingales, is equivalent to saying that the hedging assets are priced by the
(F,P) valuation rule in Definition 5.1.

As immediate consequences of Assumptions 4.4–4.5:

Remark 5.2 The processes H = H◦ and F have zero (G,Q) value.
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5.1 Clean Margin and Mark-to-Market

Definition 5.2 By clean valuation of a contract (or portfolio of contracts) with F
adapted contractually promised cash flow stream D, we mean the (F,P) value process
of D.

Note that, for simplicity, we only consider European derivatives.
By linearity of the conditional expectation that is embedded in the (F,P) valua-

tion operator, clean valuation is additive over contracts and intrinsic to the contracts
themselves. As it only entails the promised cash flows, it is independent of the involved
parties and of their collateralization, funding, and hedging policies.

In the notion of mark-to-market of the (cleaned or client) portfolio, counterparty
risk is ignored for the future, but only the contracts not yet liquidated are considered:

Definition 5.3 Given a netting set c of the client portfolio, we denote by P c the
related clean value process.

By mark-to-market (MtM) of the (cleaned or client) portfolio, we mean

MtM =
∑
c

P c1[0,τδc ] (19)

on [0, T ].

Proposition 5.1 If we set, for each netting set c,

CMc = P c1[0,τδc ], (20)

then the (F,P) martingale condition on Lcl in Assumption 4.2 is satisfied.

Proof. By Definition 5.2 and Remark 5.1, the process (P c+Pc) is an (F,P) martingale,
whereas Hc is an (F,P) martingale by Assumption 4.3. The conclusion then follows in
view of the first line in (9).

Hereafter we work under the clean margin specification (20). Hence, by plug-
ging (20) into the first line in (9), we obtain

Lcl = −
∑
c

(P c−P c0 + Pc −Hc)τδc ; (21)

Moreover, by (5), (20), and (19),

CM = MtM. (22)

25



5.2 Contra-assets and Contra-liabilities Valuation

Definition 5.4 We call CA, CVA (credit valuation adjustment), and FVA (funding
valuation adjustment), the solutions to the following fixed-point problems, assumed
well-posed in S◦2 :4 For t ≤ τ̄ ,

CAt = Et
(
C◦τ̄ + F◦τ̄ − C◦t −F◦t + 1{τ<T}CAτ

)
, (23)

CVAt = Et
(
C◦τ̄ − C◦t + 1{τ<T}CVAτ

)
, (24)

FVAt = Et
(
F◦τ̄ −F◦t + 1{τ<T}FVAτ

)
. (25)

We define

CL = DVA + FDA, (26)

where, denoting by CVACL and FVACL the respective (G,Q) value processes of bullet
cash flows 1{τ<T}CVAτ and 1{τ<T}FVAτ at time τ̄ :

• DVA (debt valuation adjustment) is the sum between the (G,Q) value process of
C• and CVACL;

• FDA (funding debt adjustment) is the sum between the (G,Q) value process of
F• and FVACL.

We call fair valuation of counterparty risk, denoted by FV, the (G,Q) value of (C +
F +H).

Lemma 5.1 We have

CA = CVA + FVA, (27)

FVA = FDA, (28)

and

FV = CA− CL = CVA−DVA, (29)

which is also the (G,Q) value process of C.

Proof. The assumed uniqueness of S◦2 solutions to the CVA, FVA, and CA fix-point
equations yields (27). Since F and H are zero (G,Q) valued (cf. Remark 5.2), the
remaining statements directly follow from Definition 3.5.

Proposition 5.2 If

RC = CA, (30)

then the (G,Q) martingale condition on Lca in Assumption 4.2 is satisfied.

4See Section 7 for concrete well-posedness results.
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Proof. Assuming (30), then, by the second line in (9) we have Lca = CA−CA0 +
C◦ +F◦ +H. In view of the definition of CA and of the (G,Q) martingale property of
H = H◦ postulated in Assumption 4.4, this process Lca is a (G,Q) martingale.

Hereafter we work under the reserve capital specification (30). Hence, in
particular, observe that our CVA and FVA incorporate the impact of the default
of the bank on shareholders as per Assumption 2.2, whereby the residual amounts
1{τ<T}CVAτ and 1{τ<T}FVAτ , summing up to 1{τ<T}CAτ = 1{τ<T}RCτ as per (30),
are transferred from the reserve capital account to bank bondholders at time τ .

Regarding the contra-liabilities, our DVA and FDA include CVACL and FVACL,
which are contra-liability components of the CVA and the FVA, valuing the above
transfers.

5.3 Wealth Transfer Analysis

Let us now temporarily assume, for the sake of the argument, that the bank would be
able to hedge its own jump-to-default risk by selling further on the market the contra-
liability cash flow stream B = C• + F• + 1{[τ,+∞)}CAτ (cf. (30) and (13)), cash flow
stream assumed priced in the market by its (G,Q) value process CL (cf. the comments
following Remark 5.1). Then, in order to reach the target amount RC = CA as per (30)
on the cash (reserve capital) account of the CA desk, given the external contribution
CL to RC already provided by the proceeds of the above hedge, it becomes enough
for the CA desks to require from clients (at time 0) and shareholders (later on) the
diminished amount

CA− CL = FV = FV0 + (FV − FV0),

where FV0 is provided by clients at portfolio inception and (FV−FV0) by shareholders
through reset of the RC account at later times. Note that the risky funding cash flow
process F has not changed (assuming the funding policy of the bank unchanged),
because the total amount on the reserve capital account of the CA desk is still the
same as before, given by the CA process as per (30). In particular, due to the above
hedge, the contra-liability process is now given by B − B = 0. See Section B.3 for the
corresponding argument in a more explicit one-period static setup.

This observation qualifies the name of “fair valuation of counterparty risk” for
the process FV, as follows: Would the bank be able to hedge its own default, then
the price of counterparty risk given by FV would indeed be fair, as clients paying FV0

to the CA desk at time 0 and shareholders resetting the reserve capital account by
(FV − FV0) at later times would constantly suffice to let the shareholders cover their
future counterparty default and funding costs in conditional expectation, whilst leaving
the bondholders break even at τ .

But, due to the impossibility for a bank to sell credit protection on itself, a bank
cannot hedge its own default and the amount required by the shareholders to cover
their future counterparty default and funding costs in conditionally expected terms
is in fact CA = FV + CL, even if this entails a “gift” from the clients (who provide
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CA0 = FV0 +CL0) and shareholders (who provide CA−CA0 = FV−FV0 +CL−CL0)
to the bondholders, of value CA − FV = CL. Note, however, that this seemingly gift
is not necessarily a “positive arbitrage” for the bondholders: the process CL can be
interpreted as a market price of the bankruptcy costs, which are outside the scope of
an XVA model, that the bondholders need to face in order to liquidate the bank when
it defaults.

In conclusion, we interpret CA−FV = CL as the wealth transfer from shareholders
(were it not for compensation into prices by the clients) to bondholders triggered by
the derivative portfolio of the bank, due to the inability of the bank to hedge its own
jump-to-default exposure.

5.4 Economic Capital and KVA

We recall that the value-at-risk of a random variable (loss) ` and its expected shortfall
(also known as average value-at-risk), both at some level α (≥ 50%), respectively denote
the quantile of level α of `, which we denote by qα(`), and (1 − α)−1

∫ 1
α qa(`)da. The

latter is well defined if ` is integrable: see e.g. Föllmer and Schied (2016, Section 4.4)
for these and other basic properties.

Capital requirements are focused on the solvency issue, because it is when a regu-
lated firm becomes insolvent that the regulator may choose to intervene, take over, or
restructure a firm. Economic capital (EC) is the level of capital at risk that a regulator
would like to see on an economic basis. Specifically, Basel II Pillar II defines economic
capital as the 99% value-at-risk of the negative of the variation over a one-year period
of core equity tier I capital (CET1), the regulatory metric that represents the core
financial strength of a bank.

As CL is bondholder wealth that cannot be monetized by shareholders (see Remark
2.4 and the next-to-last paragraph in Section 5.3), it is not included in CET1 (cf. (3)
and Section A). Now, by (11), CET1 depletions correspond in our setup to the trading
loss process L of the bank. Moreover, the FRTB required a shift from 99% value-at-
risk to 97.5% expected shortfall as the reference risk measure in capital calculations.
Accordingly, under Assumption 4.8 and with L′, the F reduction of L, for “L understood
on a going concern basis”:

Definition 5.5 The (discounted) economic capital of the bank at time t, ECt, is the
(Ft, P̂ = P) conditional α = 97.5% expected shortfall of (L′t+1 − L′t).

Lemma 5.2 EC is nonnegative.

Proof. As seen in Remark 4.2, the process L′ is an (F,P) martingale. The result then
follows from the fact that the α expected shortfall of a centered random variable ` is
nonnegative (as E(`1{`>α}) ≥ 0).

In view of (10) and (16), and since L is a (G, Q̂ = Q) martingale (cf. Remark 4.2
and Assumption 4.8), also accounting for the risk-free remuneration to shareholders of
the risk margin account, our risk premium principle (17) translates in mathematical
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terms into the following generic KVA equation in S◦2 for the theoretical target RM
level:

(−KVA) has the (G,Q) drift coefficient h (CR−KVA). (31)

The last step is to fully specify the capital at risk (CR) in (31). Toward this aim,
assume that, for any tentative (nonnegative) capital at risk process C in a suitable
space L2 of Q integrable processes containing both S2 and the process EC, the equation
(cf. (31))

(−K) has the (G,Q) drift coefficient h(C −K) (32)

defines a unique process K = K(C) in S◦2 . Then:

Definition 5.6 The set of admissible capital at risk processes is

C = {C ∈ L2;C ≥ max
(
K(C),EC

)
}. (33)

In (33), C ≥ EC is the risk acceptability condition and C ≥ K(C) expresses that the
risk margin K(C) that would correspond through (31) (cf. (17)) to a tentative capital
at risk C is part of capital at risk, by Assumption 4.6.

Consistent with (32) and (33), with also minimality of (an admissible) capital at
risk and its cost in mind5:

Definition 5.7 We set

CR = max(EC,KVA), (34)

for the supposedly unique process (theoretical target RM level) KVA in S◦2 such that

(−KVA) has the (G,Q) drift coefficient h
(

max(EC,KVA)−KVA
)
. (35)

In particular, the (discounted) KVA is a (G, Q̂ = Q) supermartingale with drift

−h
(

max(EC,KVA)−KVA
)

= −h
(
EC−KVA

)+
= −hSCR.

Remark 5.3 As a sanity check, let us temporarily assume, for the sake of the argu-
ment, perfect clean but also CA hedges, in the sense that both processes Lcl and Lca

(hence also L and L′) would vanish. That is, in view of (21) and (9), (30),

Hc = P c−P c0 + Pc, for each netting set c, and H = −
(
CA−CA0 + C◦ + F◦

)
(assuming such Hc and H would be achievable hedging loss processes). Then EC
vanishes, by Definition 5.5, and KVA = 0 obviously solves (35) in S◦2 : There is no
unhedged risk in this case, hence no capital at risk and no KVA risk premium.

5Minimality to be formally established in the continuous-time setup of Section 7, along with the
well-posedness of (35) in the first place, as Theorem 7.1 and Lemma 7.4 below.
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Remark 5.4 The KVA formula (48) that will result from (35) in a full-fledged contin-
uous time setup (see also Section B.4 in a static setup) can be used either in the direct
mode, for computing the KVA corresponding to a given target hurdle rate h, or in the
reverse-engineering mode, like the Black–Scholes model with volatility, for defining the
“implied hurdle rate” associated with the actual RM level on the risk margin account
of the bank.

Cost of capital proxies have always been used to estimate return on equity (ROE).
Whether it is used in the direct or in the implied mode, the KVA is a refinement,
dynamic and fine-tuned for derivative portfolios, but the base concept of ROE is far
older than even the CVA.

Although, in the current state of the market, the KVA and even the MVA (which is
included in the FVA in this paper) are rarely passed into entry prices, they are actively
used for collateral and capital optimization purposes and detection of good/bad trade
opportunities: This kind of balance sheet optimization is very active in top tier banks
at the moment.

In any case, we stress that, beyond the notions of KVA level or of a corresponding
implied hurdle rate, as the axiomatic introduction (17) emphasized, our KVA concept
is a sustainable dividend release strategy in the first place.

5.5 Shareholder Balance Conditions

Summing up our conclusions in this section:

Theorem 5.1 Under a cost-of-capital XVA strategy applied to a portfolio held on a
run-off basis, the following shareholder balance conditions hold at all times:

CM = MtM, RC = CVA + FVA, RM = KVA, (36)

where CA = CVA + FVA and KVA are given by the equations (23)–(25) and (35) (all
assumed well posed in a suitable vector space S◦2 of Q integrable processes without jump
at τ), while MtM is given by (19).

The processes CA = CVA + FVA and CL = DVA + FDA are the respective (G,Q)
values of the contra-asset and contra-liability processes S and B in (13).

Shareholder wealth SHC = SCR + UC satisfies

SHC = SHC0 − (L+ KVA−KVA0), (37)

which is a (G,Q) submartingale with drift coefficient hSCR, without jump at τ (the
trading loss process L = CET10 − CET1 in (37) is a (G,Q) martingale).

Proof. The shareholder balance conditions (36) are the synthesis of Proposition 5.1 and
the ensuing specification (20) for CMc, Proposition 5.2 and the ensuing specification
(30) for RC, and of our RM specification in the form of a KVA as per (35). All the
subsequent statements in the theorem until (37) included then follow from (10) and
(13). The last part of the theorem follows from the facts that L is a (G,Q) martingale
while KVA is a (G,Q) supermartingale with drift coefficient (−hSCR) (see the comment
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following Definition 5.7), both without jump at τ (regarding L , see (11) and Remark
4.2).
One can also note that, equivalently to the (G,Q) submartingale property without jump
at τ of SHC in Theorem 5.1, the F reduction SHC′ of SHC is an (F,P) submartingale
with drift coefficient hSCR′ on [0, T ].

5.6 Connection With the Modigliani-Miller Theory

The Modigliani-Miller invariance result, with Modigliani and Miller (1958) as a seminal
reference, consists in various facets of a broad statement that the funding and capital
structure policies of a firm are irrelevant to the profitability of its investment decisions.
Modigliani-Miller (MM) irrelevance, as we put it for brevity hereafter, was initially
seen as a pure arbitrage result. However, it was later understood that there may be
market incompleteness issues with it. So quoting Duffie and Sharer (1986, page 9),
“generically, shareholders find the span of incomplete markets a binding constraint
[...] shareholders are not indifferent to the financial policy of the firm if it can change
the span of markets (which is typically the case in incomplete markets)”; or Gottardi
(1995, page 197): “When there are derivative securities and markets are incomplete
the financial decisions of the firm have generally real effects”.

A situation where shareholders may “find the span of incomplete markets a bind-
ing constraint” is when market completion is legally forbidden. This may seem a narrow
situation but it is precisely the XVA case, which is also at the crossing between market
incompleteness and the presence of derivatives pointed out above as the MM non irrele-
vance case in Gottardi (1995). Specifically, the contra-assets and contra-liabilities that
emerge endogenously from the impact of counterparty risk on the derivative portfolio
of a bank cannot be “undone” by shareholders, because jump-to-default risk cannot be
replicated by a bank.

As a consequence, MM irrelevance is expected to break down in the XVA setup.
In fact, as will be directly visible on the trade incremental FTP (pricing) formula (38),
cost of funding and cost of capital are material to banks and need be reflected in entry
prices for ensuring shareholder indifference to the trades.

For further related discussion, see Andersen, Duffie, and Song (2017, Section
VII.A).

6 Incremental XVA Approach, Funds Transfer Price, and
Cost of Run-Off Interpretation

So far we worked under Assumption 3.1 that the derivative portfolio of the bank is held
on a run-off basis, i.e. set up at time 0 and assuming that no new unplanned trades
will ever enter the portfolio in the future. Then the balance conditions (36) hold at all
times.

But, in practice derivative portfolios are incremental. Yet, given the derivative
porfolio of a bank at time 0, the considerations of the previous sections can be applied
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to the version of the portfolio that would be run-off by the bank from time 0 onward.
In this perspective, the above notions of MtM and XVAs can therefore be interpreted
as the appropriate amounts to be maintained by the bank on its clean margin, reserve
capital, and risk margin accounts (cf. (36)), so that the bank could go into run-
off, while staying in line with shareholder interest, i.e. preserving the hurdle rate h, if
wished. We refer to this possibility as the “soft landing option” for the bank. Moreover,
since we relied on a dynamic analysis, such a soft landing option, for a bank respecting
the balance conditions (36), is granted not only from time 0 onward, but from any
future time onward, as long as there are no new deals in the portfolio.

Now, when a new deal shows up at some time θ > 0, it has three impacts: it mod-
ifies the mark-to-market of the portfolio (cf. Section 5.1), it triggers a wealth transfer
from clients and shareholders to bondholders (cf. Section 5.2-5.3), and it alters the risk
profile of the portfolio (cf. Section 5.4). Hence the shareholder balance conditions are
impaired by the deal, unless somebody fills in the missing amounts on the clean margin,
reserve capital, and risk margin accounts to restore them. Since shareholders have the
control of the bank before bank default, it is natural to postulate that, for a new deal
to occur, shareholders should be indifferent to it, in the following sense:

Assumption 6.1 (Preservation of the hurdle rate throughout a new deal) The
entry price of a new deal should be set at a level allowing the shareholder balance
conditions (36) (with constant and unchanged hurdle rate h, in particular) to be pre-
served throughout the deal, without modification of the shareholder equity6 SHC =
SCR + UC.

Denoting by ∆·, for any portfolio related process, the difference between the time
θ value of this process for the run-off version of the portfolio with and without the new
deal, we propose the following pricing and accounting scheme in case a new contract
with clean valuation P is concluded at time θ (deal obviously assumed not part of a
netting set already involved in a liquidation procedure, hence ∆MtM = P ):

• The clean desks pay P to the client; If P > 0, then an amount P is added by
the CA desk on the clean margin account, otherwise an amount (−P ) is added
to this account by the clean desks;

• The CA desk charges to the client an amount ∆CA and adds it on7 the reserve
capital account;

• The management of the bank charges the amount ∆KVA to the client and adds
it on8 the risk margin account.

Proposition 6.1 The above-described trade incremental pricing and accounting scheme
satisfies Assumption 6.1. The ensuing all-inclusive XVA add-on passed by the bank to

6i.e. shareholder wealth, see Remark 2.4.
7i.e. removes |∆CA| from, if ∆CA < 0.
8i.e. removes |∆KVA| from, if ∆KVA < 0.
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the client of the deal, called funds transfer price (FTP), amounts to

FTP = ∆CA + ∆KVA = ∆CVA + ∆FVA + ∆KVA

= ∆FV + ∆CL + ∆KVA,
(38)

which is interpreted as the rebate to deduct from the clean valuation P of the contract
in order to preserve the hurdle rate h of bank shareholders, without altering their wealth
SHC = SCR + UC, throughout the deal.

Proof. By construction of the above FTP scheme, the soft landing option with constant
hurdle rate h, i.e. the balance conditions (36), are preserved throughout the deal.
Moreover, it is the client that provides all the required amounts on the clean margin,
reserve capital and risk margin accounts of the bank, hence ∆SHC = 0.

The ensuing overall client price is MtM − ∆CA − ∆KVA = MtM − FTP with
FTP as per (38), in view of the identities (27) and (29) applied to the portfolios with
and without the new deal. The market incompleteness interpretation follows from the
analyses of Section 5.3 and Remark 5.3.

Hereafter we stick to the FTP scheme considered in Proposition 6.1.
In view of the FTP formula (38), the only XVAs that ultimately matter in entry

prices are the CVA, the FVA, and the KVA. Obviously, the endowment (legacy portfolio
of the bank) has a key impact on the FTP of a new trade. It may very well happen
that a new deal is risk-reducing with respect to the endowment, in which case FTP <
0, i.e. the overall XVA-inclusive price charged by the bank to the client would be
P − FTP > P (subject of course to the commercial attitude adopted by the bank
under such circumstance).

Remark 6.1 In an asymmetric setup with a price maker and a price taker, the price
maker passes his costs to the price taker. For transactions between dealers, it is possible
that one is the price maker and the other one is the price taker. It is also possible that
a transaction triggers gains for the shareholders of both entities. The detailed consid-
eration of these dynamics would lead to an understanding of the drivers to economical
equilibrium in a situation where multiple dealers are present (as opposed to our setup
where only one bank is considered).

Remark 6.2 Market quotes used for model calibration are typically prices provided
by the clean desks of different banks at time 0. Hence, in view of the first bullet point in
Proposition 6.1, clean valuation is the relevant notion of valuation for model calibration
purposes.

6.1 Cost-of-Capital XVA Rolling Strategy

We assume the following cost-of-capital XVA strategy:

• between time 0 and the next deal, as if no new deal should ever enter the portfolio,
as per the balance conditions (36),
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• the way described before Proposition 6.1 at the (G stopping) time θ (whenever
finite) of the next deal.

The processes L and KVA of Section 5, as well as the amounts on the different banking
accounts, are extended from [0, τ̄ ] to [0,+∞)∩ [0, τ ] by constancy from time T onward.

Lemma 6.1 Under the above cost-of-capital XVA strategy, assuming the processes L
and KVA do not jump at time θ, shareholder equity (i.e. wealth) SHC is a (G,Q)
submartingale on [0,+∞) ∩ [0, τ ∧ θ], with drift coefficient hSCR.

Proof. Assuming the new trade at time θ handled by the trade incremental policy of
Proposition 6.1 after the balance conditions (36) have been held before θ, then, by The-
orem 5.1, (37) holds on [0,+∞)∩ [0, τ ]∩ [0, θ). Moreover, by invariance of SHC at the
new deal and having assumed L and KVA do not jump at θ, (37) still holds at θ itself.
This establishes (37) on [0,+∞)∩[0, τ∧θ]. The result then follows from the submartin-
gale property that holds on [0,+∞) regarding the process SHC0− (L+ KVA−KVA0)
in (37), by the last part in Theorem 5.1.

In view of the nature of the processes L and KVA, which are respectively martingales
and solutions to BSDEs, the technical assumption that these processes do not jump at
time θ in Lemma 6.1 holds naturally if θ is a predictable stopping time in a continuous
time setup. This is a reasonable assumption regarding the time at which a financial
contract is concluded. It was actually already implicitly assumed regarding the fixed
time 0 at which the portfolio of the bank is supposed to have been setup in the first
place.

The cost-of-capital XVA strategy described before Lemma 6.1 can be iterated at
every new trade. We call this approach the cost-of-capital XVA rolling strategy.
By an iterated application of Lemma 6.1 at every new trade, we obtain the following:

Theorem 6.1 Under the cost-of-capital XVA rolling strategy, assuming the trading
loss L and KVA processes relative to each successive portfolio do not jump at the time
where the following deal is concluded, the shareholder equity (i.e. wealth) SHC is a
(G,Q) submartingale on [0,+∞) ∩ [0, τ ] with drift coefficient hSCR.

As already noted about Lemma 6.1, the technical assumption about “the processes L
and KVA relative to each successive portfolio” is not an issue in Theorem 6.1. Also note
that Lemma 6.1 and Theorem 6.1 are in fact equally valid with (F,P) instead of (G,Q)
(cf. Remark 4.2 regarding L), replacing all the processes involved by F reductions and
τ by +∞.

Hence, the application of the FTP (38) as a rebate on the clean valuation of every
new deal, associated with the clean collateralization, accounting, and dividend policies
preserving the balance conditions (36) between deals, ensure to the bank the possibility
of “soft landing” its portfolio, with a constant hurdle rate h, from any point in time
onward if wished. Thus we arrive to a sustainable strategy for profits retention, which
is already the key principle behind Solvency II.
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Note that, without the KVA (i.e. for h = 0), the (discounted) shareholder wealth
process would only be a risk-neutral martingale, which could only be acceptable to
shareholders without risk aversion (cf. Section B.4).

6.2 Fine-Tuning of the Assumptions

In view of Proposition 6.1, XVA computations, whether they regard a new trade,
which is then treated on an incremental run-off basis, or targeting the preservation
of the shareholder balance conditions (36) between deals, only entail portfolios that
would be held on a run-off basis. Hence, in the following we may and do restrict
attention to the case of a portfolio held on a run-off basis.

Moreover, in view of the above soft landing interpretation, it is natural to perform
the XVA computations under the following assumption, in line with a run-off procedure
where market risk is first hedged out by the bank, but we conservatively assume no
XVA hedge, and the portfolio is then let to amortize until its final maturity:

Assumption 6.2 We assume a perfect clean hedge by the clean traders, i.e. Lcl con-
stant, which can be taken as zero as trading loss processes only matter through their
fluctuations, and we assume no CA hedge, i.e. H = 0.

As it then immediately follows from (4), (9), (12), and (30), we thus have

Γca = −(CA−CA0 + C + F),

L = Lca = CA−CA0 + C◦ + F◦,
D = −(C◦ + F◦ + CA−CA0 + KVA−KVA0).

(39)

In particular, the process L, which is the input to the capital and KVA computa-
tions (cf. (35) and Definition 5.5), happens to be an output of the CA = CVA + FVA
computations.

Moreover, the rules regarding the settlement of contracts at defaults are that:

Assumption 6.3 On the client portfolio side, at the time a party (a client or the
bank itself) defaults, the property of the collateral posted on each involved netting
set is transferred to the collateral receiver. Moreover, at the liquidation time of each
netting set c:

• any positive value due by a nondefaulted party on this netting set is paid in full
to its bondholders,

• any positive value due by a defaulted counterparty on this netting set is only paid
up to some exogenously specified recovery rate,

where value is here understood on a counterparty risk free basis as P c, net of the
corresponding (already transferred) client collateral, but inclusive of all the promised
contractual cash flows unpaid during the liquidation period;

On the cleaned portfolio side, at each liquidation time, the property of the corre-
sponding clean margin amount CMc = P c is transferred from the clean margin paying
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party to the clean margin receiving party (i.e. from the CA desk to the clean desks in
case P c at liquidation time is positive and vice versa in case P c at liquidation time is
negative).

In concrete setups, taking the difference between the client and cleaned portfolio cash
flows as per the two bullet points in Assumption 6.3 yields the counterparty exposure
cash flows C. Hence, a major underlying to the counterparty exposure C and, in turn,
risky funding processes F is the MtM process: See e.g. Lemmas 7.6–7.7 and B.1.

These connections make the MtM, CA, and KVA equations, hence the derivative
portfolio pricing problem as a whole, a self-contained problem under a cost-of-capital
XVA approach.

Clean valuation that is involved in MtM computations is not the main topic of
the paper. Hence we focus on the XVA equations in the sequel.

As a final note, in practice, the equity capital of the bank (capital at risk CR and
uninvested capital UC beyond it) can be used by the bank for its funding purposes
(provided shareholders agree with it, in exchange of some risk-free remuneration). As
developed in Crépey, Élie, Sabbagh, and Song (2018), this induces an intertwining of
capital at risk (CR) and the FVA. Instead, for simplicity in the sequel:

Assumption 6.4 The bank does not use its equity capital (CR + UC) for funding
purposes.

7 XVA Equations Well-Posedness and Comparison Re-
sults

In Section 5, we formulated the CVA, FVA, and KVA equations as fix-point problems
(24), (25), and (35) in an abstract space S◦2 of (square) integrable processes without
jump at the bank default time τ . In this section, we establish concrete well-posedness
and comparison results for these problems in the continuous-time setup. See also
Section B for a stylized cost-of-capital XVA approach in a one-period static setup.

7.1 Continuous-Time Setup

In continuous time, Assumptions 4.1 and 4.2, with filtrations F and G satisfying the
usual conditions, martingale understood as local martingale, and existence of F semi-
martingale reductions reinforced9 into existence of an “F predictable reduction” on
[0, T ] coinciding until τ (included) with any G predictable process, mean that τ is an
invariance time as per Crépey and Song (2017b), with so called invariance probability
measure P. This covers the mainstream immersion setup (but not only, see e.g. Crépey
and Song (2017a)), where (F,Q) local martingales are (G,Q) local martingales without
jump at τ , in which case τ is an invariance time with P = Q.

9As shown in Song (2016).
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We recall the following result, where J = 1[0,τ) denotes the survival indicator
process of τ :
Theorem 3.5 in Crépey and Song (2017b) Assuming that an F predictable reduc-
tion of any G predictable process exists and that ST = Q(τ > T |FT ) > 0, then

any G optional process admits a unique F optional

reduction coinciding with it before τ on [0, T ].
(40)

If, moreover, τ has a (G,Q) intensity process γ = γJ− such that e
∫ τ
0 γsds is Q

integrable, then the existence on (Ω,A) and uniqueness on (Ω,FT ) of an invariance
probability measure P hold.

Hereafter we work in the sequel under the corresponding specialization of Assumptions
4.1 and 4.2 and we assume that γ is F predictable, without loss of generality by F
reduction.

As can be established by section theorem, for any G progressive Lebesgue in-
tegrand X such that the G predictable projection pX exists,10 the indistinguishable
equality

∫ ·
0
pXsds =

∫ ·
0 Xsds holds. As a consequence, one can actually consider the F

reduction X ′ of any G progressive Lebesgue integrand X (even if this means replacing
X by pX).

All the value, XVA, and price processes are now continuous-time processes mod-
eled as G (or “clean” F) semimartingales (in a càdlàg version).

In continuous time, the process Y ◦ in (7) is defined, for any left-limited process
Y , by

Y ◦ = Y τ− = JY + (1− J)Yτ−.

The CVA, FVA, and KVA fix-point problems (24), (25), and (35) are then a matter
of backward stochastic differential equations (BSDEs) involving the following spaces of
processes (recall E and E′ denote Q and P expectations):

• S2, the space of càdlàg G adapted processes Y over [0, τ̄ ] such that, denoting
Y ∗t = sups∈[0,t] |Ys|:

E
[
Y 2

0 +

∫ T

0
e
∫ s
0 γudu1{s<τ}d

(
|Y ∗s |2

)]
= E′

[
sup
t∈[0,T ]

|Y ′t |2
]
<∞, (41)

where the equality follows from Lemma 5.1 in Crépey, Élie, Sabbagh, and Song
(2018);

• S◦2 , the subspace of the processes in S2 such that Y is without jump at τ and
YT = 0 holds on {T < τ};

10For which σ integrability of X valued at any stopping time, e.g. X bounded or càdlàg, is enough.
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• L2, the space of G progressive processes X over [0, T ] such that

E
[ ∫ T

0
e
∫ s
0 γudu1{s<τ}X

2
sds
]

= E′
[ ∫ T

0
|X ′t|pdt

]
< +∞, (42)

where the equality follows from Lemma 5.1 in Crépey, Élie, Sabbagh, and Song
(2018);

• S ′2 and L′2, the respective spaces of F adapted càdlàg and F progressive processes
Y ′ and X ′ over [0, T ] such that Y ′T = 0 and that make the corresponding norm
finite in the right-hand side of (41) or (42).

Finally, we postulate a classical weak martingale representation setup a la Jacod
(1980).

7.2 KVA in the Case of a Default-Free Bank

Note that the primary raison d’etre for the KVA is the default of bank clients, as
opposed to the default of the bank itself (which on the other hand is the key of the
contra-liabilities wealth transfer issue, cf. Section 5.3). In this section we temporarily
suppose the bank default free, i.e., formally,

“τ = +∞, (F,P) = (G,Q).”

The results are then extended to the case of a defaultable bank in Section 7.3.
At that stage we use the “·′” notation, not in the sense of F reduction (as F = G),

but simply in order to distinguish the equations in this part, where F = G, from the
ones in Section 7.3, where F 6= G (the present data will then be interpreted as the F
reductions of the corresponding data in Section 7.3).

Given C ′ ≥ EC ≥ 0 representing a putative capital at risk process for the bank,
we consider the following BSDEs (cf. (32) and (35) with τ set to ∞):

K ′t = E′t
∫ T

t
h
(
C ′s −K ′s

)
ds, t ∈ [0, T ] (43)

KVA′t = E′t
∫ T

t

(
h(ECs −KVA′s)

+ds, t ∈ [0, T ], (44)

to be solved for respective processes K ′ and KVA′.

Lemma 7.1 • If C ′ is in L′2, then the the K ′ BSDE (43) is well posed in S ′2, with
S ′2 solution

K ′t = hE′t
∫ T

t
e−h(s−t)C ′sds, t ∈ [0, T ] (45)

(which is nonnegative, like C ′);
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• If EC is in L′2, then the KVA′ BSDE (44) is well posed in S ′2,
where well-posedness here and later includes square integrable existence, unique-

ness, and comparison11.

Proof. The KVA′ BSDE (44) has a Lipschitz coefficient

kt(y) = h
(
ECt − y

)+
, y ∈ R. (46)

Therefore, by standard results (see e.g. Becherer (2006) or Kruse and Popier (2016)),
the BSDE (44) is well-posed in S ′2 if EC is in L′2, where well-posedness includes exis-
tence, uniqueness, and comparison (note that comparison is not an issue in our setup,
even with jumps, where our coefficient k “only depends on y”, cf. e.g. Kruse and Popier
(2016, Assumption (H3’) and Proposition 4)). Even simpler considerations prove the
statements pertaining to the linear BSDE (43). Finally, (45) obviously solves (43).

To emphasize the dependence on C ′, we henceforth denote by K ′ = K ′(C ′) the
solution (45) to the linear BSDE (43). Assuming that EC is in L′2, we define the set of
admissible capital at risk processes as (cf. (33))

C′ = {C ′ ∈ L′2;C ′ ≥ max
(
EC,K ′(C ′)

)
}

and we set (cf. (34))

CR′ = max(EC,KVA′), (47)

where KVA′ is the S ′2 solution to (44).

Lemma 7.2 Assuming that EC is in L′2, the S ′2 solution KVA′ to (44) solves the linear
BSDE (43) for the implicit data C ′ = CR′ in (47), i.e. we have KVA′ = K ′(CR′), that
is,

KVA′t = hE′t
∫ T

t
e−h(s−t)max(ECs,KVA′s)ds, t ∈ [0, T ] (48)

(which is nonnegative, like EC).

Proof. The process KVA′ is in S ′2 and, by virtue of (44) and (47), we have, for t ∈ [0, T ],

KVA′t = E′t
∫ T

t

(
h
(
ECs −KVA′s

)
+ ds

= E′t
∫ T

t
h
(

CR′s −KVA′s

)
ds.

(49)

Hence, the process KVA′ solves the linear BSDE (43) for C ′ = CR′ in L′2. The identity
KVA′ = K ′(CR′) follows by uniqueness of an S ′2 solution to the linear BSDE (43)
established in Lemma 7.1. Equation (48) then follows by an application of (45) with
C ′ = CR′ as per (47).

11“Ordered data implies ordered solutions”, see e.g. Kruse and Popier (2016, Proposition 4).
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Remark 7.1 The KVA formula (48) appears as a continuous-time analog of the risk
margin formula under the Swiss solvency test cost of capital methodology. see Swiss Fed-
eral Office of Private Insurance (2006, Section 6, middle of page 86 and top of page
88).

Proposition 7.1 Under the assumptions of Lemma 7.2, we have:
(i) CR′ = min C′,KVA′ = minC′∈C′ K

′(C ′);
(ii) The process KVA′ is nondecreasing in the hurdle rate h.

Proof. (i) We saw in Lemma 7.2 that KVA′ = K ′(CR′), hence

CR′ = max(EC,KVA′) = max
(
EC,K ′(CR′)

)
,

therefore CR′ ∈ C′. Moreover, for any C ′ ∈ C′, we have (cf. (46)):

kt(K
′
t(C
′)) = h

(
ECt −K ′t(C ′)

)+ ≤ h(C ′t −K ′t(C ′)).

Hence, the coefficient of the KVA BSDE (44) never exceeds the coefficient of the linear
BSDE (43) when both coefficients are evaluated at the solution K ′t(C

′) of (43). Since
these are BSDEs with equal (null) terminal condition, the BSDE comparison principle
applied to the BSDEs (43) and (44) yields KVA′ ≤ K ′(C ′). Consequently, KVA′ =
minC′∈C′ K(C ′) and, for any C ′ ∈ C′,

C ′ ≥ max(EC,K ′(C ′)) ≥ max(EC,KVA′) = CR′.

Hence CR′ = min C′.
(ii) By Lemma 5.2, EC is nonnegative. Hence, in view of (46), the coefficient kt(y)
of the KVA′ BSDE (44) is nondecreasing in the parameter h. So is therefore the S ′2
solution KVA′ to (44), by the BSDE comparison theorem of Kruse and Popier (2016,
Proposition 4) applied to the BSDE (44) for different values of the parameter h.

7.3 KVA in the Case of a Defaultable Bank

In the case of a defaultable bank, specializing to the continuous-time setup of Section 7.1
the abstract equations of Section 5.4, “·′” now denoting F reduction (predictable, op-
tional, or progressive, as applicable):

Lemma 7.3 For any C ∈ L2, we have C ′ ∈ L′2, and the (G,Q) BSDE (32) for a
process K = K(C) in S◦2 is equivalent, via F reduction, to the (F,P) BSDE (43) for
a process K ′(C ′) in S ′2. Assuming EC in L′2, the (G,Q) KVA BSDE (35) in S◦2 is
equivalent, via F reduction, to the (F,P) KVA′ BSDE (44) in S ′2.

Proof. We only prove the stated equivalence between (35) and (44), as the one between
(32) and (43) can be established similarly. First we show the equivalences in the sense
of local martingale solutions between the differential formulations of (35) and (44), i.e.

KVAT = 0 on {T < τ} and, for t ∈ (0, τ̄ ],

dKVAτ−
t = −h

(
ECt −KVAt

)+
dt+ dνt,

(50)
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where ν denotes some (G,Q) local martingale stopped before τ , respectively

KVA′T = 0 and, for t ∈ (0, T ],

dKVA′t = −h
(
ECt −KVA′t

)+
dt+ dµt,

(51)

for some (F,P) local martingale µ.
By definition of F reductions (see Section 7.1), the terminal condition in (51)

obviously implies the one in (50). Conversely, taking the FT conditional expectation
of the terminal condition in (50) yields

0 = E[KVAT1{T<τ}|FT ] = E[KVA′T1{T<τ}|FT ] = KVA′TST ,

hence KVA′T = 0 (as by assumption ST > 0, see above (40)), which is the terminal
condition in (51).

The martingale condition in (51) implies the one in (50), by stopping before τ and
application to ν = µτ− of the second part in Assumption 4.2 (specialized to continuous
time local martingales as explained in the beginning of Section 7.1). Conversely, as-
suming the martingale condition in (50) implies, by application to µ = ν ′ of the third
part in Assumption 4.2, that (KVA′, µ = ν ′) satisfies the martingale condition in (51)
on [0, τ̄ ], hence on [0, T ], by (40).

Given this equivalence between (50) and (51), i.e. between (35) and (44), in the
sense of local martingale solutions, if KVA solves the (G,Q) BSDE (35) in S◦2 , hence
in the sense of local martingale solutions, then KVA′ solves (44) in the sense of local
martingale solutions and therefore in S ′2, by virtue of the identity (41). Conversely, if
KVA′ solves (44) in S ′2, then KVA solves the (G,Q) BSDE (35) in the sense of local
martingale solutions and therefore in S◦2 , by (41).

Lemma 7.4 • If C ∈ L2, hence C ′ ∈ L′2 (cf. the identity (42)), then the (G,Q)
linear BSDE (32) for K = K(C) is well posed in S◦2 and the F optional reduction
K ′ of its S◦2 solution K is the S ′2 solution to the continuous-time version (43) of
(32);

• If EC is in L′2, then the (G,Q) KVA BSDE (35) is well posed in S◦2 and the F op-
tional reduction KVA′ of its S◦2 solution KVA is the S ′2 solution to the continuous-
time version (44) of (35).

Proof. This follows from Lemma 7.1 through the equivalences of Lemma 7.3.

This allows us to prove the minimality result announced in Section 5.4 according
to which, in the present continuous-time setup, CR and KVA as per Definition 5.7
(are well-defined, by Lemma 7.4, and) provide the minimal admissible capital at risk
process, with the cheapest ensuing cost of capital (for the fixed and given hurdle rate
h), the latter being nondecreasing in the hurdle rate h:
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Theorem 7.1 Assuming that EC is in L′2, using the notation of Section 5.4 specified
by Lemma 7.4:
(i) We have CR = min C,KVA = minC∈CK(C);
(ii) The process KVA is nondecreasing in h.

Proof. This follows by application of Proposition 7.1 via Lemma 7.4.

7.4 CVA and FVA

We now consider the CVA and the FVA.
Note that the nondecreasing cash flows C◦ and F◦ (by Assumptions 3.2 and 4.5)

can be assumed to be F (rather than simply G) adapted, without loss of generality by
F reduction (and recall Assumption 6.2 set H = 0). Moreover, regarding the funding
cash flows, whenever the CVA process is already well defined in S◦2 so that the quest
for a theoretical target RM = CA = CVA + FVA level (cf. (36) and (27)) reduces to
the one for the FVA component, we postulate a more specific

dF◦t = ft(FVAt)dt until τ, (52)

for some random function f = ft(y) measurable with respect to the product of the F
predictable σ field by the Borel σ field on R.

Lemma 7.5 For C and F thus specialized, the CVA and FVA equations (24) and (25)
in S◦2 are equivalent to the following equations in S ′2:

CVA′t = E′t(C◦T − C◦t ), t ∈ [0, T ] , (53)

and (provided CVA′ defined by (53) is in S ′2)

FVA′t = E′t
∫ T

t
fs(FVA′s)ds, t ∈ [0, T ] . (54)

Proof. Analogous to the proof of Lemma 7.3, hence omitted.

Remark 7.2 A structure (52) for F is a slight departure from the abstract setup
postulated since Section 3.1, where F had been introduced as an exogenous process
(implicitly, at least). But, in applications, the dependence (52) of F on the FVA is only
semi-linear (see e.g. (59) and (90)). Provided the ensuing FVA fixed-point problem is
well-posed, for which sufficient conditions will be given in Proposition 7.2 based on
Lemma 7.5, one can readily check, by revisiting all the above, that this dependence
does not affect any of the qualitative conclusions drawn in the previous sections of the
paper.
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The remainder of this section is only illustrative example. We refer the reader to
Albanese et al. (2017) and Armenti and Crépey (2018) for more developed applications,
involving in particular initial margin (cf. Remark 2.1). Let

U0 = 1 and dUt = λtUtdt+ (1−R)Ut−dJt = Ut−
(
λtdt+ (1−R) dJt

)
, 0 ≤ t ≤ τ̄ , (55)

represent the (discounted) risky funding asset supposed to be used by the bank for
its unsecured borrowing purposes, for some exogenous and constant recovery rate R ∈
[0, 1].

Remark 7.3 Such a funding asset is based on idealized “instantaneous digital CDSs”
that we assume available for notational simplicity here; in practice one could use rolling
CDSs as per Bielecki, Jeanblanc, and Rutkowski (2008) (see the concluding Remark to
their Section 2.2.3).

Note that the bank can only be short in U , as pari passu rules forbid to sell default
protection on oneself.

The (G,Q) martingale condition that applies to U under the (G,Q) valuation rule in
Definition 5.1 (cf. the comments following Remark 5.1) implies that λ = (1 − R)γ,
where γ is the (G,Q) default intensity of the bank and R its anticipated recovery rate.
Hence

λtdt+ (1−R) dJt = (1−R)dµt, (56)

where dµt = γdt + dJt is the (G,Q) compensated jump-to-default martingale of the
bank.

We assume all re-hypothecable collateral and we denote by D a G optional process
representing the difference between the collateral MtM posted by the CA desk to the
clean desks (cf. (22)) and the collateral received by the CA desk from the clients.

Lemma 7.6 For 0 ≤ t ≤ τ̄ :

dFt = (1−R)(Dt− − CAt−)+dµt,

dΓcat = −(dCAt + dCt)− (1−R)(Dt− − CAt−)+dµt,

dLt = dLcat = dCAt + dC◦t + λt(Dt − CAt)
+dt.

(57)

Assuming the CVA equation (24) already well-posed in S◦2 , we have

dF◦t = λt(Dt − CVA′t − FVAt)
+dt,

dF•t = (1−R)(Dt− − CVAt− − FVAt−)+(−dJt).
(58)

In particular, F◦ is of the form (52), with

f·(y) = λ(D − CVA′ − y)+. (59)
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Proof. Under Assumption 6.4 that equity capital is not used for funding purposes by
the bank, the funding strategy of the CA desk reduces to a splitting of the amount RCt

on the reserve capital account as

RCt = Dt︸︷︷︸
Posted collateral remunerated risk-free

+ (RCt −Dt)
+︸ ︷︷ ︸

Cash invested at the risk-free rate

− (RCt −Dt)
−︸ ︷︷ ︸

Cash unsecurely funded

=
(
Dt + (RCt −Dt)

+
)︸ ︷︷ ︸

Amount ξt invested at the risk-free rate

− (RCt −Dt)
−︸ ︷︷ ︸

Unsecurely funded as ηtUt

(60)

(all in discounted amounts). Given our current use of the risk-free asset as numéraire,
a standard continuous-time self-financing equation expressing the conservation of cash
flows yields12

d (ξt − ηtUt) = −ηt−dUt = −(1−R)ηt−Ut−dµt = −(1−R)(Dt− − CAt−)+dµt, , 0 ≤ t ≤ τ̄ .

by the second balance condition RC = CA = CVA + FVA (cf. (36) and (27)). This
yields the first line in (57), which is equivalent to (58) (assuming the CVA already
well-defined in S◦2 ). An application of the first line in (39) then yields the second line
in (57), from which the third line (under Assumption 6.2 that Lcl = 0) follows by
Definition 3.3 (also noting that CA does not jump at τ).

In what follows we further assume that the bank portfolio involves a single client
with default time denoted by τ1, that Q(τ1 = τ) = 0, that the liquidation of a defaulted
party is instantaneous, and that no contractual cash flows are promised at the exact
times τ and τ1. We refer the reader to Albanese et al. (2017) and Armenti and Crépey
(2018) for the relaxation of all these assumptions, in respective bilateral and centrally
cleared setups.

Let J and J1, respectively R and R1, denote the survival indicator processes and
the assumed recovery rates of the bank and its client toward each other. In this case,
D is of the form J1Q, where Q is the difference between the clean valuation P of the
client portfolio and the amount VM of variation margin (re-hypothecable collateral) to
be transferred13 between the client and the CA desk in case of a default.

Lemma 7.7 For 0 ≤ t ≤ τ̄ ,

dC◦t = (1−R1)Q+
τ1(−dJ1

t ),

dC•t = 1{τ≤τ1}(1−R)Q−τ (−dJt).
(61)

12A left-limit in time is required in η because U jumps at time τ, so that the process η, which is

defined through (60) as (RC−D)−

U
, is not predictable.

13Property-wise, having already been posted as a loan by the client to the CA desk (if positive, or
by the CA desk to the client otherwise).
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Proof. Before the defaults of the bank or its client, the contractual cash flows from
the client to the CA desk exactly compensate the contractual cash flows from the clean
desk to the CA desk, so that there are no contributions to the process C. Because of
this, and since liquidations are instantaneous, it is enough to focus on the contributions
to C at time τ ∧ τ1. By symmetry (noting that 1{τ1≤τ} is implicitly present in the first
line of (61) via the restriction 0 ≤ t ≤ τ̄), it is enough to prove the first line in (61).
Let ε = Q+

τ1 . By Assumption 6.3, if the counterparty defaults at τ1 < τ, then (as
Q = P − VM and having excluded the possibility of contractual cash flows at times τ
or τ1):

• On the client portfolio side, the CA desk receives

VMτ1 +R1Q
+
τ1 −Q

−
τ1 = 1ε=0Pτ1 + 1ε>0(VMτ1 +R1ε);

• The cleaned portfolio between the CA desk and the clean desk of the bank is
unwound, resulting in a settlement of Pτ1 from the CA desk to the clean desks
(transfer of property of the corresponding amount on the CA account).

Combining both cash flows, the CA desk loss amounts to

Pτ1 −
(
1ε=0Pτ1 + 1ε>0(VMτ1 +R1ε)

)
= 1ε>0(Pτ1 −VMτ1 −R1ε) = (1−R1)ε,

which shows the first line in (61).

Note that, by F reduction, we may and do assume that τ1 is an F stopping time
and that Q is an F optional process.

Proposition 7.2 Assuming that CVA′ defined by (63) is in S ′2, and that the processes
λ and λJ1Q+ are in L′2, then the FVA′ equation (54) is well-posed in S ′2, the CA,
CVA, and FVA equations (23), (24), and (25) are well-posed in S◦2 , and we have, for
0 ≤ t ≤ τ̄ :

CVAt = (CVA′)τ−t and FVAt = (FVA′)τ−t , where, for 0 ≤ t ≤ T : (62)

CVA′t = E′t
[
1{t<τ1<T}(1−R1)Q+

τ1

]
, (63)

FVA′t = E′t
∫ T

t
λs(J

1
sQs − CVA′s − FVA′s)

+ds; (64)

CLt =

FTDDVAt︷ ︸︸ ︷
Et
[
1{t<τ≤τ1∧T}(1−R)Q−τ

]
+

CVACL
t︷ ︸︸ ︷

Et
[
1{t<τ<T}CVAτ

]︸ ︷︷ ︸
DVAt

+

FTDFVAt︷ ︸︸ ︷
Et
[
1{t<τ<T}(J

1
τ−Qτ− − CAτ−)+

]
+

FVACL
t︷ ︸︸ ︷

Et
[
β−1
t βτ1{t<τ<T}FVAτ

]︸ ︷︷ ︸
FDAt

;

(65)

45



FVt = Et
[
1{t<τ1≤τ∧T}(1−R1)Q+

τ1

]︸ ︷︷ ︸
FTDCVAt

−Et
[
1{t<τ≤τ1∧T}(1−R)Q−τ

]︸ ︷︷ ︸
FTDDVAt

; (66)

dLt = (1−R1)Q+
τ1(−dJ1

t ) + dCVAt (67)

+λt(J
1
t Qt − CVAt − FVAt)

+dt+ dFVAt.

Proof. Under the assumptions of the proposition, the (F,P) FVA′ BSDE (54), for f
as per (59) with D = J1Q there, is a Lipschitz coefficient BSDE well-posed in S ′2, by
standard results (see e.g. Kruse and Popier (2016, Sect. 4) or Becherer (2006)). In
view of Lemma 7.5, this proves the CVA and FVA, hence CA = CVA + FVA, related
statements. The CL and FV formulas (65) and (66) readily follow from (26), (58) and
(61), for CL, and, for FV, from (61) and the last part in Lemma 5.1. The dynamics
(67) for L are obtained by plugging the first line in (61) into the last line in (57).

In the contra-liability or fair valuation formulas (65) and (66), “FTD” in FTDCVA
or FTDDVA stands for “first to-default” CVA and DVA, which only value the related
cash flows until the bank default τ .

The FV formula (66) is symmetrical between the bank and its client, hence con-
sistent with the so-called “law of one price”. But the corresponding notion of fair
valuation is forgetful of the wealth transfers from clients and shareholders to bond-
holders that arise due to the incompleteness of counterparty risk (cf. Sections 5.3 and
5.6).

Remark 7.4 In the simple example above, without joint defaults in particular, we
have

FTDCVA = CVA− CVACL, FTDDVA = DVA− CVACL. (68)

See Albanese et al. (2017) for detail differences that arise in more general cases with
joint defaults: with FTDCVA and FTDDVA defined as in (66), the identity FV =
FTDCVA − FTDDVA (= CVA − DVA, by the second identity in (29)) remains valid
in general, but the term by term identification (68) is no longer exactly true.

8 Unilateral Versus Bilateral XVAs

Even though our setup includes the default of the bank itself (which is the essence of
the contra-liabilities wealth transfer issue), we end up with unilateral CVA, FVA, and
KVA formulas (63), (64), and (48) pricing the related cash flows until the final maturity
T of the portfolio (as opposed to τ̄ = τ ∧ T )—under a reduced filtration (and possibly
changed pricing measure), but without any bank default intensity discounting.

Recall from (38) that the only XVAs that ultimately matter in entry prices are
the CVA, the FVA, and the KVA. Unilateral XVA costs to be accounted for in entry
prices is indeed what follows from our analysis of the wealth transfers involved and
from the mathematical analysis of the resulting fix-point equations. However, this also
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makes the corresponding XVAs more expensive than the bilateral XVAs that appear in
most of the related literature (see for instance Burgard and Kjaer (2017, Section 4.4)).

A unilateral CVA is actually required for being in line with the regulatory re-
quirement that reserve capital should not diminish as an effect of the sole deterioration
of the bank credit spread (see Albanese and Andersen (2014, Section 3.1)). But a bi-
lateral FVA already satisfies this regulatory monotonicity requirement (essentially, as,
when the bank credit spread deteriorates, the shortest duration of a bilateral FVA is
compensated by the higher funding spread). The KVA is not directly concerned by this
requirement but indirectly it is, through the related monotonicity condition on capital
at risk CR = max(EC,KVA).

In this section we revisit the XVA equations when different choices are made on
the fate of the residual risk margin and reserve capital in case of default of the bank
(cf. Assumption 2.2 and Definition 3.5).

We denote by S•2 the subspace of the processes in S2 with a null terminal condition
at τ̄ .

8.1 From Unilateral to Bilateral KVA

A bilateral KVA would follow by deciding that, upon bank default, as an exception
to Assumption 2.2, the residual risk margin flows back into equity capital and not to
bondholders.

In the thus-modified setup, we obtain the following modified KVA equation in S•2 :

(−KVA) has the (G,Q) drift coefficient h
(

max(EC,KVA)−KVA
)
, (69)

instead of our original KVA equation (35) in S◦2 . That is, in the continuous-time setup
of Sections 7.2–7.3:

KVAt = hEt
∫ τ̄

t
e−h(t−s) max(ECs,KVAs)ds, t ∈ [0, τ̄ ]. (70)

Or, in an an equivalent (F,P) formulation obtained via the identity (41): KVA =
(KVA′)τ on [0, τ̄ ], where

KVA′t = hE′t
∫ T

t
e−

∫ s
t (h+γu)du max(ECs,KVA′s)ds, t ∈ [0, T ]. (71)

By comparison with our original KVA′ equations (47)–(48), note in particular the bank
default intensity discounting in (71).

8.2 From Unilateral to Bilateral FVA

A bilateral FVA, which already satisfies the regulatory monotonicity requirement on
the related reserve capital, might be advocated as follows (similar developments would
apply to the MVA if we had it explicitly in our model, see Remark 2.1).
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Assume, for the sake of the argument, that the portfolio of the defaulted bank
with clients is unwound with counterparty risk-free counterparties, called novators.
The residual amount of CVA reserve capital is required by the novators to deal with
the residual counteparty risk on the deals. But the residual amount of FVA reserve
capital is useless to the (counterparty risk-free) novators. In view of this, one could
disentangle the CA desk into a CVA desk and an FVA desk, each endowed with their
own reserve capital account, and decide that, upon bank default, as an exception to
Assumption 2.2, the residual FVA capital reserve flows back into equity capital and
not to bondholders.

Revisiting the CVA and FVA derivations of Sections 5.3 and 7.4 in the thus-
modified setup, the CVA equations do not change, but we obtain the following modified
FVA equation in S•2 :

FVAt = Et
(
F◦τ̄ −F◦t

)
, t ≤ τ̄ , (72)

instead of the FVA equation (25) in S◦2 . That is, in the continuous-time setup of
Section 7.4:

FVAt = Et
∫ τ̄

t
fs(FVAs)ds, t ∈ [0, τ̄ ]. (73)

Or, equivalently: FVA = (FVA′)τ on [0, τ̄ ], where

FVA′t = E′t
∫ T

t
e−

∫ s
t γudufs(FVA′s)ds, t ∈ [0, T ]. (74)

Note again the bank default intensity discounting in (74).

8.3 A Bank with Four Floors

The considerations of Section 8.2 point out to the vision of a bank with four floors:14

clean desks are the bottom floor. On top of it sits the CVA floor, which obtains risk-free
funding from the FVA floor above it, just like the clean desks, and is only in charge
of filtering out counterparty risk from client deals. Conversely, the FVA (third) floor
is just in charge of the funding of the bank, obtaining risky funding from the outside
of the bank and distributing risk-free funding, in the form of collateral provided at an
risk-free cost, to the CVA and clean desks for funding their trading.

The CVA and FVA desks are now on different floors: They have their own and
separate reserve capital account, hedge, and trading loss process, whereas they were
sharing each of these in the earlier sections of the paper. Clean desks continue to be
served by the floors above them with a cleaned portfolio worth MtM (in the sense of
Definition 5.3). Each of the three trading floors generates a martingale trading loss
process:

14It would be even five if the MVA was disintangled from a FVA then meant in the strict sense of
the cost of funding variation margin, cf. Remark 2.1.

48



• For the clean floor, an (F,P) martingale that, stopped before τ, is a (G,Q) mar-
tingale;

• For the CVA floor, a (G,Q) martingale without jump at τ ;

• For the FVA floor, a (G,Q) martingale jumping to 0 at time τ , this jump to 0
reflecting the deviation from Assumption 2.2 considered in Section 8.2.

The upper (fourth) floor is the management in charge of the KVA payments, i.e. of the
dividend distribution policy of the bank.

This view is applied to bilateral portfolios (with a bilateral KVA as per Section 8.1)
in Albanese et al. (2017). A more simplistic take made in Armenti and Crépey (2018),
where the focus is less mathematical and more on the CCP feature of the setup there,
is to view all the XVA equations as endowed with a null terminal condition at τ̄ . This
allows avoiding any enlargement of filtration technicality, as all equations can then be
solved directly in G. However, it results in a bilateral CVA (such as CVA − CVACL,
or FTDCVA in the context of Proposition 7.2) that misses the CVACL wealth transfer
from clients and shareholders to bondholders. Likewise, a bilateral KVA misses the
fact that the residual RMτ falls into the estate of the bondholders at time τ (if < T ).

9 Comparison with Other Approaches in the XVA Bench-
mark Model

To conclude the main body of this paper, we compare our findings with alternative
approaches in the literature that have been developed in the last years in what we
therefore call the XVA benchmark model, namely a Black–Scholes model S for an
underlying market risk factor, in conjunction with independent Poisson counterparties
and bank defaults: See, not exhaustively, the Burgard and Kjaer (2011, 2013, 2017)
CVA and FVA approach, referred to as the BK approach below, the Green et al. (2014)
KVA approach, referred to as the GK approach, Bichuch et al. (2018), and Crépey
et al. (2014, Section 4.6).15

A general comment in this regard is that using a Black–Scholes replication frame-
work as an XVA toy model can be quite misleading. The view developed in the present
paper is that XVAs are mainly about market incompleteness, and therefore fall under
a logic orthogonal to Black–Scholes. From this perspective, promoting a Black–Scholes
replication approach in the XVA context is a bit comparable to the mispractice de-
veloped during the credit derivative pre-2008 crisis era, when the notion of “Gaussian
copula implied correlation” of a CDO tranche was presented as a relative of the Black–
Scholes implied volatility of an option, whereas the Gaussian copula model is a purely
static device not supported by a sound hedging basis.

Furthermore it is interesting to note that Burgard and Kjaer (2011, 2013, 2017), al-
though availing themselves of a replication pricing framework and blaming risk-neutral

15In journal form Crépey (2015, Part II, Section 5).
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approaches outside the realm of replication (see the first paragraph in their 2013 pa-
per), end-up doing what they call semi-replication, which is nothing but a form of
risk-neutral pricing without (exact) replication.

Actually, in this XVA field, even the restriction to a Markov setup (beyond Black–
Scholes or replication) is not necessarily innocuous, as we will see in the next-to-last
paragraph of Section 9.1.

What follows provides more detailed comparisons between these approaches and
the one of the present paper.

9.1 CVA and FVA: Comparison with the BK Approach

Burgard and Kjaer (2011, 2013, 2017) repeatedly (and rightfully) say that only pre-
default cash flows matter to shareholders. For instance, quoting the first paragraph in
the second reference:

“Some authors have considered cases where the post-default cash flows on
the funding leg are disregarded but not the ones on the derivative. But it
is not clear why some post default cashflows should be disregarded but not
others”,

to which we subscribe fully and refer to as their first principle below.
The introduction of their classical “(funding) strategy I : semi-replication with no

shortfall at own default” (see e.g. (Burgard and Kjaer 2013, Section 3.2)) seems to be
in line with the idea, which we also agree with (see Assumption 4.5 and the comment
following it) and refer to as their second principle, that a shortfall of the bank at its
own default (i.e. “CL < 0”) does not make sense and should be excluded from a model.

However, being rigorous with their first principle above implies that the valua-
tion jump of the portfolio at the own default of the bank should be disregarded in the
shareholder cash flow stream, as included in our Assumption 2.2 (cf. also Definition
3.5). But their computations, stated in terms of (dV̂ +dΠ̄) in Burgard and Kjaer (2013,
equation (9)) or (dV̂ α + dΠ) in Burgard and Kjaer (2017, equation (3.5)), include this
cash flow.

For illustration, in order to be able to restrict attention on the CVA for simplicity,
let us assume, for the sake of the argument, that the bank, although risky, can both
fund itself and invest at the risk-free rate.16 This corresponds to the limiting case where
F = 0 in Assumption 4.5. We put ourselves in the framework of Section 7.4 where
Proposition 7.2 was derived, specialized further to a BK setup with volatility σ of a stock
S underlying a (single) contract with payoff φ(ST ) sold by the client to the bank. Taking
the difference between the CVA′ PDE (cf. (63) specialized to the present BK setup)
and the Black–Scholes PDE for the clean valuation of the contract shows that the bank
pre-default CVA-deducted value of the contract, V̂ ′t := Pt−CVA′t, can be represented in

16For instance because the bank is highly capitalized and, notwithstanding Assumption 6.4, can in
fact use its capital for funding its trading.
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functional form as V̂ ′(t, St, J
1
t ), where the function Π(t, S) = V̂ ′(t, S, J1 = 1) satisfies

the following pricing equation:

Π(T, S) = φ(S) and, for t < T,

(∂t +
1

2
σ2S2∂2

S2)Π + γ1

(
R1P

+ − P−
)
− γ1Π = 0.

(75)

Here γ1 is the default intensity of the counterparty, assumed constant in BK. Now, (75)
is nothing but the equation (10) for V̂ in Burgard and Kjaer (2013) or (3.8) for V̂ α in
Burgard and Kjaer (2017), but for a default intensity γ of the bank, denoted by λB
there, formally set equal to 0.

Hence, in this BK setup, the CVA-deducted value of the option truly disregarding
all cash flows from time τ onward, including the jump in valuation at time τ , is not
given by the solution V̂ to equation (10) in Burgard and Kjaer (2013) or V̂ α to equation
(3.8) in Burgard and Kjaer (2017), but by V̂ = (V̂ ′)τ−, where V̂ ′ satisfies the formal
analog of these equations with intensity of the bank set equal to 0.

Incidentally, the Itô derivation of the portfolio XVA-deducted value process in
Burgard and Kjaer (2013, Eq. (9)) relies on the implicit assumption that this value
process V̂ is in the first place a (regular enough) function of the postulated risk factors
(for Itô’s formula to apply), which is not justified in their paper. For instance, in the
simplified (CVA only) BK setup above, it is only the process CVA′ that is obviously
Markov in t, S, and the nondefault indicator process J1 of the bank client, and then it
only holds that CVA = (CVA′)τ−.

As a consequence of the above pitfall regarding V̂ , reviewing the funding strategies
in Burgard and Kjaer (2017, Section 4), in the special case with sB = 0 there of a pure
CVA setup:

• Their strategy III, claimed to imply a unilateral CVA as per Albanese and An-
dersen (2014) (i.e. (62)–(63) in the present paper), does in fact not: Accounting
for the transfer of the residual reserve capital from shareholders to bondholders
at the bank default time τ (cf. Assumption 2.2 and Definition 3.5 ), the funding
strategy that implies a unilateral CVA is simply the obvious one (having assumed
sB = 0), i.e. funding and investing at the risk-free rate;

• Their respective strategies I and II, not only do not imply the claimed XVA
formulas (as all the BK equations forget the above-mentioned wealth transfer),
but they also breach the second part in Assumption 4.5, which may lead to a
violation of their second principle of no bank shortfall at its default, through a
negative FVA = FDA (unless in their notation V ≥ 0, respectively V̂ ≥ 0, i.e. in
our notation above P ≥ 0, respectively Π ≥ 0);

• Their replication strategy is not practical, as admitted at the end of Burgard
and Kjaer (2013, Section 3.1), which is the motivation for their other (but partly
flawed as seen) strategies.
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9.2 KVA: Comparison With the GK Approach

Despite what the “valuation adjustment” terminology fallaciously induces one to be-
lieve, in our view, the KVA is not part of the value of the derivative portfolio, but a
risk premium in incomplete counterparty risk markets: Under our incomplete market
approach, risk margin payments are meant to remunerate the risk of unhedged trading
losses. Hence, including the KVA to contra-assets (which contribute to the trading loss
process of the bank) would induce a circularity that we think is illogical.

In Green et al. (2014) the KVA is instead treated as a liability in a replication
framework. The KVA is also treated as a liability in some theoretical actuarial litera-
ture, under the name of risk margin or market-value margin MVM there (see Salzmann
and Wüthrich (2010, Section 4.4)). Viewing the KVA as a liability results in a non
loss-absorbing risk margin, hence CR = SCR = EC (as opposed to (16) in our setup),
and therefore hEC instead of h(EC−KVA)+ in the KVA equation (35). This implies
no discounting at the hurdle rate h in the (already risk-free discounted) KVA formula
(48) (where KVA′ and KVA coincide before τ), and therefore a “much higher” KVA
(considering the very long time horizon T ).

Moreover, if the KVA is viewed as a liability, forward starting one-year-ahead
fluctuations of the KVA must be simulated for economic capital calculation. This makes
it intractable numerically, unless one switches from economic capital to regulatory
capital in the KVA equation. Using regulatory instead of economic capital is then
motivated by practical considerations but is less self-consistent. It loses the connection,
established from a balance sheet perspective in our approach, whereby the KVA input
is the CA desk loss process L = Lca as per (39).

10 Conclusion

To conclude this paper we summarize our dynamic cost-of-capital XVA strategy.
We root our XVA approach in a balance sheet perspective, depicted Figure 1 in

Section A, which is key in identifying the economic meaning of the XVA accounting
terms as well as their connections with the core equity CET1 of the bank and share-
holder wealth SHC. Due to counterparty risk incompleteness, the derivative portfolio
of the bank triggers a wealth transfer from clients and shareholders to bondholders,
for which shareholders can only be compensated by a corresponding add-on to entry
prices.

Moreover, shareholders bear the trading risk of the bank. Our KVA is devised
as the cost of a corresponding dividend policy which would be sustainable even in the
limit case of a portfolio held on a run-off basis, with no new trades ever entered in the
future. Conceived in the spirit of a portfolio optimization tool for a derivative market
maker in incomplete counterparty risk markets, the KVA in this sense is a risk premium
tuned to keep the shareholders on an “efficient frontier” such that

“Shareholder instantaneous average returnt = hurdle rate h × SCRt
′′
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(cf. (17)), where SCR is shareholder capital at risk. Our KVA is genuinely dynamic, re-
sulting in a cost-of-capital pricing framework in continuous time. It is a risk premium
taking as input data the marked-to-model counterparty defaults and risky funding
(i.e. contra-assets) loss process L. Thanks to this connection, the equation for contra-
assets CA valuation and the KVA equation, i.e. the XVA equations as a whole, are a
self-contained, self-consistent problem. As risk margin is retained earnings meant to be
released to the bank shareholders, the KVA in our sense does not belong to the balance
sheet as a liability.

The main hypotheses characterizing our cost-of-capital XVA modeling approach
are Assumptions 4.2 and 4.7, which respectively define valuation and risk premium at
the portfolio level, and Assumption 6.1, which conveys the ensuing pricing rule at the
trade incremental level by postulating the constancy of the hurdle rate throughout each
new trade.

The main results of the paper are:

• Proposition 5.2, which identifies the contra-asset CA = CVA+FVA value process
of the bank as the counterparty risk deduction to apply to the mark-to-market
of a run-off portfolio in order to ensure the martingality of the core equity of the
bank (CET1 process, cf. (11)); the value CL of the contra-liabilities is interpreted
in Section 5.3 as the wealth transfer triggered by the derivative portfolio from
clients and shareholders to bondholders, due to the inability of the bank to hedge
its own jump-to-default exposure;

• Theorem 7.1, which identifies the cheapest admissible capital at risk process and
the ensuing KVA (cost of capital) pricing correction ensuring to shareholders a
positive hurdle rate h on their capital at risk, in the case of run-off portfolio;

• Proposition 6.1, which identifies the funds transfer price (FTP), i.e. the all-
inclusive counterparty risk add-on preserving the hurdle rate of bank shareholders
throughout a new trade, as the incremental (CVA + FVA + KVA) of the trade;

• The companion Theorems 5.1 and 6.1, concluding that under our XVA approach,
shareholder equity (i.e. wealth) SHC is a submartingale with drift corresponding
a positive hurdle rate h on shareholder capital at risk, consistently between and
throughout deals.

Our CVA, FVA, and KVA formulas (63), (64), and (48) convey the general
message (even if the first two are specific to the illustrative setup of Section 7.4),
discussed in detail in Section 8, that, although we include the default of the bank itself
in our modeling, the XVA formulas accounting for all the wealth transfers involved
are unilateral, pricing the related cash flows until the final maturity T of the portfolio
–under a reduced filtration (and possibly changed probability measure) ignoring the
default of the bank itself, but without bank default intensity discounting.
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A XVAs Accounting Interpretation

With XVAs, the pricing and risk management of financial derivatives evolve from a
hedging paradigm to balance sheet optimization. This section details the balance sheet
perspective on the XVA metrics.

From an accounting perspective, the wealth of a firm is measured by its so-called
accounting equity.

Definition A.1 The accounting equity (AE) of a (dealer) bank is

AE = CL + Other Assets− CA−Other Liabilities, (76)

where the contra-assets (CA) and the contra-liabilities (CL) have been formally intro-
duced in Definition 3.5, and:

• In “Other Assets”, one places the mark-to-market MtM+ of the portfolio receiv-
ables and the collateral CM− posted by the clean desks (cf. (22)); “Other Assets”
also include reserve capital (RC), risk margin (RM), shareholder capital at risk
(SCR), and an additional (typically unknown) amount of uninvested capital (UC);

• In “Other Liabilities”, one places the mark-to-market MtM− of the portfolio
payables and the collateral CM+ received by the clean desks.

The above decompositions are reflected in the bank balance sheet Figure 1, where:

• The mark-to-market of the portfolio payables and receivables, as well as the
corresponding collateral (clean margin CM), are shown in dashed boxes at the
bottom, because their role vanishes under Assumption 6.2, as the clean desks
then generate no trading losses (or profit, i.e. Lcl = 0);

• Contra-liabilities at the top of the figure are shown in dotted boxes because, as
explained in Section 5.3, they can only be an actual benefit to bank bondholders,
upon bank default, whereas it is the interest of shareholders that matters regard-
ing the determination of derivative entry prices and the related accounting and
dividend policies of the bank, as long as the bank is nondefault;

• The arrows in the left column represent trading losses of the CA desk in “normal
years 1 to 39” and in an “exceptional year 40” with full depletion (i.e. refill
via UC, under our mark-to-model Assumption 2.1) of RC, RM, and SCR (the
numberings yr1 to yr40 are fictitious yearly scenarios in line with the 97.5%
expected shortfall of the losses that is used for defining the notion of economic
capital which underlies our definition of capital at risk);

• The arrows in the right column symbolize the average depreciation in time of
contra-assets between deals.
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Reserve capital (RC)

Shareholder capital at risk (SCR)
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Uninvested capital (UC)
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Core equity tier I capital (CET1)
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Contra-liabilities (CL)

yr1 yr39 yr40

Contra-assets (CA)

Accounting equity (AE)

Capital at risk (CR)

CVA

Collateral posted by the

clean desks

Collateral received by the
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FVA

DVA

FVA desk

(Treasury)CA desks

Clean desks

KVA desk

(management)

CVA desk

Risk Margin (RM=KVA)

(MtM+) (CM+)

(CM−) (MtM−)

FDA = FVA

Figure 1: Balance sheet of the bank. Shareholder wealth is SHC = SCR + UC.
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In particular, via the balance conditions (36) that hold in our (or in any marked-to-
model) setup,

AE = RM + SCR + UC + CL. (77)

We emphasize that, since our risk margin is loss-absorbing (part of capital at risk),
we do not put its theoretical KVA target value as a liability (or contra-asset) on the
balance sheet (cf. Sections 4.3 and 9.2), which explains the presence of RM = KVA in
AE.

Remark A.1 Figure 1 depicts the balance sheet of a “three floor” bank, as considered
in most of the paper. To render the situation of a “four floor” bank as per Sections 8.2–
8.3, the CA floor would need to be disentangled into a CVA floor and an FVA floor,
each endowed with their own reserve capital account (and hedge).

Remark A.2 Although we wrote in Section 2.2 that we restricted ourselves to bilateral
trade portfolios to fix the mindset, the conceptual picture of the balance-sheet a dealer
bank provided by Figure 1 is general and also applies to a bank engaged into both
bilateral and centrally cleared transactions. The involvement of a bank in centrally
cleared transactions can be either direct, as clearing member of CCPs (as typical for
major banks), or/and indirect, via external CCP accounts. A detailed consideration
of the balance sheet of a bank also involved into centrally cleared derivatives only
requires a more stratified “mille-feuille” of items, with, in particular, an overall risk
margin account that needs be split into one risk margin account dedicated to each
CCP membership and a residual risk margin account for the bilateral transactions:
cf. Remark 2.3 and, for more detail, see Armenti and Crépey (2018).

Core equity tier I capital is the regulatory metric meant to represent the core
financial strength of a bank when assessed from a structural solvency perspective.
Broadly speaking, it corresponds to the wealth of the shareholders within the bank.
Since the contra-liabilities of a dealer bank do not benefit to its shareholders:

Definition A.2 (CET1) The core equity tier I capital (CET1) of a dealer bank is
given by

CET1 = AE− CL. (78)

Hence, by (77),

CET1 = CR + UC = RM + SCR + UC, (79)

which is (3).
However, in our setup where the risk margin is only gradually released to the

shareholders through the KVA payments, shareholder wealth strictly speaking only
corresponds to shareholder equity SHC = SCR + UC = CET1−RM (see Remark 2.4).
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B XVA Analysis in a One-Period Setup

In this section, we apply a cost-of-capital XVA approach to an uncollateralized portfolio
made of a single deal P (promised random variable) between a client and the bank
without prior endowment and with fully invested initial equity CR, in an elementary
one-period (one year) setup.

The bank and client are both default prone with zero recovery to each other. The
bank also has zero recovery to its external funder. The bank wants to charge to its
client an add-on (or obtain from its client a rebate, depending on whether the bank
is seller or buyer), denoted by CA, accounting for its expected counterparty default
losses and funding expenditures, as well as a KVA risk premium sized by its unhedged
trading loss over the year. The all-inclusive XVA add-on to the entry price for the deal,
which we call funds transfer price (FTP), follows as

FTP = CA︸︷︷︸
Expected costs

+ KVA︸ ︷︷ ︸
Risk premium

.
(80)

A one-period setup is too narrow for practical XVA purposes. However, the key
concept of XVAs as pricing adjustments aligning the mark-to-market of a deal (or
portfolio) to the interest of bank shareholders remains (cf. Proposition 6.1). Moreover,
this setup gives useful insights, as it is then possible to derive stylized formulas for all
the quantities at hand and for the particularly transparent view that it offers on the
related wealth transfer and risk premium issues.

B.1 One-Period XVA Setup

In a one-period setup, there are no filtrations involved and it is enough to work with,
instead of processes throughout the paper, random variables, which correspond to the
increment of these processes over the single time step in the model. Accordingly, in
this part, all the processes Y = C, F (recall Assumption 6.2 set H = 0) and the
related processes Y ◦ and Y • in Sections 4–5, as also all the trading loss processes, are
identified with random variables on the (one and only, in this context) probability space
(Ω,A,Q). Hence, we may and do dismiss the ·′ notation everywhere (cf. Assumption
4.1).

Since values, prices, and XVAs only matter at time 0 in a one-period setup, we
identify all the XVA processes, as well as the clean valuation process P of the portfolio,
with their values at time 0. We assume that all the prices that are due are instanta-
neously paid at time 0. We assume likewise that the KVA paid by the client at time 0
is immediately transferred by the bank management to the shareholders. Hence there
is no need and purpose for reserve capital and risk margin bank accounts, so that we
may and do assume these to be zero.

There is no residual value on the (non-existing) reserve capital account when the
bank defaults. Hence CVACL and FVACL are redefined as zero.

Definition 5.5 just corresponds to defining EC as the 97.5% expected shortfall of
the bank trading loss L. As L is centered, EC ≥ 0 (cf. Lemma 5.2). Besides, as there
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is no risk margin account, hence CR = SCR, so that the minimal admissible capital at
risk (cf. Section 5.4) is simply CR = EC.

We denote by J and J1 the survival indicators (random variables) of the bank and
client at time 1, with default probability of the bank Q(J = 0) = γ and no joint default
for simplicity, i.e Q(J = J1 = 0) = 0. The terms Y ◦ and Y • in the decomposition (7)
are meant as

Random variables Y ◦ of the form JU and Y • of the form (1− J)V , (81)

for some random variables U and V .

B.2 One-Period XVA Formulas

Lemma B.1 We have

C◦ = (1− J1)P+, F◦ = γ(P − CA)+

C• = (1− J)P−, F• = (1− J)(P − CA)+

Γca = −
(
C◦ + F◦ − CA

)
+ C• + F•

L = Lca = C◦ + F◦ − CA.

(82)

Proof. For the deal to occur, the CA desk needs borrow (P−CA)+ unsecured or invest
(P − CA)− risk-free. Having assumed zero recovery to the external funder, unsecured
borrowing is priced γ × the amount borrowed by the bank (cf. the comments following
Remark 5.1), so that at time 0 the CA desk must pay

γ(P − CA)+

for the risky funding of the bank.
At time 1 (cf. Assumption 6.3):

• On the client portfolio side:

– If the bank is not in default (i.e. J = 1), then the CA desk closes the position
with the client while receiving P from its client if the latter is not in default
(i.e. J1 = 1), whereas the bank pays P− to its client if the latter is in
default (i.e. J1 = 0). In addition, the CA desk reimburses its funding debt
(P − CA)+ or receives back the amount (P − CA)− it had lent at time 0.

– If the bank is in default (i.e. J = 0), then the CA desk receives back P+ on
the derivative as well as the amount (P − CA)− it had lent at time 0.

• On the cleaned portfolio side, the CA desk delivers a cash flow (P − P ) to the
clean desks, whatever the default status of the parties at hand.
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Collecting all cash flows, the result Γca of the CA desk over the year is:

Γca = −γ(P − CA)+

+ J
(
J1P − (1− J1)P− − (P − CA)+ + (P − CA)−

)
+ (1− J)

(
P+ + (P − CA)−

)
− (P − P )

= −
(

(1− J1)P+︸ ︷︷ ︸
C◦

+ γ(P − CA)+︸ ︷︷ ︸
F◦

−CA
)

+ (1− J)P−︸ ︷︷ ︸
C•

+(1− J)(P − CA)+︸ ︷︷ ︸
F•

(83)

(as easily checked for each of the three possible values of the pair (J, J1)), where the
identification of the different terms as C◦, F◦, C•, and F• follows from their financial
interpretation. In view of (8) and of the interpretation (81) of the decomposition (7)
in a one-period setup, (83), which is the next-to-last line in (82), also implies the last
line (recalling Assumption 6.2 set Lcl = 0). These results are also consistent with
(39), remembering that Assumption 6.2 set H = 0 and that, in the present one-period
setup, CA corresponds to the time 0 value or, equivalently, to “the negative of the first
increment” of the CA process in (39)).

Observe that F◦ = γ(P − CA)+ is deterministic in our one-period setup.

Remark B.1 Dropping Assumption 6.4 while conservatively assuming UC = 0 would
lead to the same expressions for the various quantities in (82), except for (P − CA)
replaced by (P − CA− EC) in the funding cash flows.

Remark B.2 The derivation (83) implicitly allows for negative equity (that arises
whenever L > CR), which is interpreted as recapitalization. In a variant of the model
excluding recapitalization, the default of the bank would be modeled in a structural
fashion as L = EC (= CR), where

L = Lca = (C◦ + F◦ − CA) ∧ EC, (84)

and we would have

Γca = (EC− L)+ + 1{EC<L}(P− + (P − CA)+)− EC)

= 1{EC>L}(−L) + 1{EC≤L}(P− + (P − CA)+ − EC),

with L as per (84) (compare with the two last lines in (82)). In this paper we consider
a model with recapitalization for the reasons explained in Section 2.3.

Proposition B.1 We have:

CVA = EC◦ = E[(1− J1)P+], DVA = EC• = E[(1− J)P−] (85)

FVA = FDA = EF◦ = EF• =
γ

1 + γ
(P − CVA)+ (86)

CA = CVA + FVA, CL = DVA + FVA (87)

KVA = hEC. (88)
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Proof. In line with Definition 3.5, but for CVACL and FVACL redefined as zero in a
one-period setup, we have

CVA = EC◦, DVA = EC•

FVA = FDA = EF◦ = EF•,
(89)

where the involved cash flows are given by Lemma B.1. But, since F◦ = γ(P − CA)+

where CA = CVA + FVA (cf. (27)), the formula FVA = EF◦ in the above is in fact a
semi-linear equation

FVA = γ(P − CVA− FVA)+. (90)

However (cf. Remark 7.2), as γ (a probability) is nonnegative, this equation has the
unique solution given by the right-hand side in (86).

In our one-period setup with, there is no risk margin account and we have CR =
SCR = CR. Hence (17) reduces to (88).

Through the last line in (82), constancy of F◦, and cash-invariance of the expected
shortfall risk measure, one can also note that EC reduces to the 97.5% expected shortfall
of C◦, net of the CVA.

The value FDA = E[(1−J)(P −CA)+] of the default funding cash flow F• equals
the FVA cost γ(P − CA)+ for the bank of funding its position. But the FVA and the
FDA do not impact the same economic agent. Namely, the FVA hits bank shareholders,
whereas the FDA benefits bondholders. Hence the net effect of funding is not nil to
shareholders, but reduces to an FVA cost.

In the static setup, our hurdle rate h is nothing but the return on equity (ROE).

B.3 Monetizing the Contra-Liabilities?

Let us now assume, for the sake of the argument, that the bank would be able to hedge
its own jump-to-default exposure through a further deal, corresponding to a payment
by the bank to a third party of

C• + F• = (1− J)(P− + (P − CA)+)

at time 1, in exchange of a time 0 fee fairly valued as CL = E(C•+F•) = DVA + FVA
(cf. Proposition B.1). As CL has already been received through the hedge fee in order
to preserve a trading loss Lca = L as per (82), it suffices to the CA desk to charge to the
client a diminished rebate CA−CL = FV. The amount that needs by borrowed by the
CA desk for implementing this strategy is still F◦ as before. The client is better off by
the amount CA−FV = CL. The shareholders are indifferent in expected counterparty
default and funding expenses term. But the bondholders are completely wiped out
(because of the hedge their realized recovery is now 0). By comparison with (83), the
CL originating cash flow C• + F• = (1 − J)(P− + (P − CA)+) has been hedged out
and monetized by the shareholders as an amount CL received by the bank at time 0.
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Hence, if the bank was able to hedge its own jump-to-default in the above sense,
then, in order to satisfy its shareholders in expectation, it would be enough for the
bank to charge to its client the compressed add-on FV = CVA − DVA. However, the
bank would still charge to its client the KVA add-on hEC as risk compensation for the
non flat loss-and-profit L triggered by the trading of the bank—unless the bank would
also hedge its client default (on top of its own), e.g. through a CDS contract assumed
available on the client, in order to cancel out L, in which case the KVA would in turn
vanish.

In conclusion, FV is interpreted as the fair valuation of counterparty risk when
market completeness and no pari passu trading restrictions are assumed. By contrast,
under market incompleteness and pari passu trading restrictions, the FTP aligning the
deal to shareholder interest (in the sense of a given hurdle rate h) is (80), which can
be decomposed as (cf. (38))

FTP = CVA + FVA︸ ︷︷ ︸
Expected costs CA

+ KVA︸ ︷︷ ︸
Risk premium

= CVA−DVA︸ ︷︷ ︸
Fair valuation FV

+ DVA + FDA︸ ︷︷ ︸
Wealth transfer CL

+ KVA︸ ︷︷ ︸
Risk premium

,
(91)

where CVA and FVA are given by (85) and where the random variable L used to size
the economic capital in the KVA formula (88) is the bank trading loss L as per (82).

B.4 KVA Risk Premium and Indifference Pricing Interpretations

The CA component of the FTP corresponds to the expected costs for the CA desk of
concluding the deal, making the trading loss L = C◦+F◦−CA = C◦−CVA of the bank
centered. On top of these expected costs, the bank charges a suitable risk margin (RM).
Assume the bank shareholders endowed with a (standard) utility function U on R such
that U(0) = 0. Under a canonical indifference pricing framework (see e.g. Carmona
(2009)), RM is defined through the following equation:

EU(RM− L) = EU (0) = 0, (92)

the expected utility of the bank without the deal. The corresponding value of RM is
interpreted as the minimal admissible risk margin for the deal to occur, seen from the
bank perspective.

Taking for concreteness U(−`) = 1−eρ`
ρ , for some fixed risk aversion parameter ρ,

(92) yields RM = (1
ρ) lnEeρL. In the limiting case where the shareholder risk aversion

parameter ρ→ 0 and EU(−L) = −E(L) = 0, then RM = 0.
Comparing with the expression (88) for the KVA, with EC there sized as the

α = 97.5% expected shortfall of L as suggested in Section B.1, which we denote below
by ES(L), we conclude that the implied KVA and hurdle rate corresponding to pricing
the deal by exponential utility would be

KVA = ρ−1 lnEeρL, h =
ρ−1 lnEeρL

ES(L)
. (93)
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This makes apparent that the hurdle rate h in our KVA setup plays the role of a risk
aversion parameter, like ρ in an exponential utility framework. It shows that ending up
with a centered trading loss L, i.e. setting the historical probability measure equal to
the pricing probability measure in our model (cf. Assumption 4.8), does by no means
imply that our setup is “risk-neutral” in the sense that shareholders would have no
aversion to risk: It is only so when h is equal to 0 (i.e. ρ = 0) in the above. A positive
value of h encodes a positive risk aversion of the bank shareholders. In fact, there are
two layers of risk premium in our model, the first one which is included in the choice of
the pricing measure by the traders of the bank and the second one through the KVA
that is charged by the management of the bank.

Under a canonical pricing by indifference framework backed to a standard utility
function, the indifference price has a competitive game (or optimization) interpretation.
Assume the bank is competing for the client with other banks. Then the bank can only
win the deal is if its own indifference price, i.e. the minimal admissible price from its own
perspective, is the smallest indifference price of all the competing banks: depending
on the detail of the bargaining process taking place between the client and the banks,
the effective price at which the transaction will settle can be any intermediate price
between the indifference price of the winning bank and the one immediately next above
it (assuming both of them less than the reservation price of the client). In the limit of
a continuum of competing banks with a continuum of indifference prices, whenever a
bank makes a deal, this can only be at its own indifference price.

Our stylized indifference pricing model of a KVA defined by a constant hurdle rate
h exogenizes (by comparison with the “endogenous KVA” (93)) the impact on pricing
of the competition between banks. It does so in a way that generalizes smoothly in
continuous time, as required to deal with a real derivative banking portfolio. It provides
a refined notion of return on equity (ROE) for derivative portfolios, where an “explicit”
optimization approach would be impractical.
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