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Abstract In Crépey [9], a basic reduced-form counterparty risk modelling approach
was introduced under a standard immersion hypothesis between a reference filtration
and the filtration progressively enlarged by the default times of the two parties. This
basic setup, with a related continuity assumption on some of the data at the first default
time of the two parties, is too restrictive for wrong-way and gap risk applications,
such as counterparty risk on credit derivatives. This paper introduces an extension
of the basic approach, implements it through marked default times and applies it to
counterparty risk on credit derivatives.
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1 Introduction

Counterparty risk is the risk of default of a counterparty in OTC derivative transactions,
a topical issue since the global financial crisis. The default risk of a bank also induces a
spread between its unsecured borrowing rate and its investing rate. Hence, banks need
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to compute a total valuation adjustment (TVA) in order to account for counterparty
and funding risk.

As is well known since the seminal papers by Korn [23], Cvitanic and Karatzas
[14] or El Karoui et al. [16], in presence of different borrowing and lending rates,
pricing rules become nonlinear. Accordingly, the TVA equation is a Lipschitz BSDE
(see Crépey [9], Brigo and Pallavicini [7] or Bichuch et al. [2]). Moreover, it is posed
over a random time interval and may involve a nonstandard, implicit terminal condition
at the first default time of a party.

To deal with such equations, a first reduced-form counterparty risk modelling
approach has been introduced in Crépey [9], in a basic immersion setup between the
reference filtration of the underlying market exposure and the full model filtration
progressively enlarged by the default times of the two parties.

This basic immersion setup, with a related continuity assumption on some of the
data at the first default time of the two parties, is too restrictive for applications such as
counterparty risk on credit derivatives, characterized by wrong-way risk, i.e., adverse
dependence between the exposure and the credit risk of the counterparties, and gap
risk, i.e., slippage between the portfolio and its collateral during the so-called cure
period that separates the default from the liquidation. In the case of credit derivatives
one also faces specific dependence and dimensionality challenges.

To tackle these issues, this paper introduces an extended counterparty risk reduced-
form modelling approach, implements it with marked default times and applies it to
counterparty risk on credit derivatives.

The outline of the paper is as follows. In Sect. 2 we present the bilateral coun-
terparty risk and funding setup. In Sect. 3 we derive the full TVA BSDE. Sect. 4
deals with a reduced BSDE that is applicable whenever the first default time of the
two parties satisfies the condition (C) in this paper. In Sect. 5 we establish the well-
posedness of the TVA BSDEs. In the marked default times framework of Sect. 6, we
derive a CVA/DVA (credit/debt valuation adjustment) and FVA (funding valuation
adjustment) decomposition of the TVA. Sect. 7 uses this approach for designing a
dynamic Marshall-Olkin (DMO) model of TVA on credit derivatives. A suitable TVA
numerical scheme is presented in Sect. 8. Numerical results are commented in Sect. 9.

The main theoretical contribution of this work is to establish the mathematical
well-posedness of the full and reduced TVA BSDEs, under a relaxed dependence
assumption between the counterparties first-to-default time τ and the market reference
filtrationF.From a practical point of view, these results allow modelling a TVA process
as a solution to the “simple”, reduced TVA BSDE, including in wrong-way and gap
risk setups such as the DMO model that we propose for dealing with TVA on credit
derivatives.
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Part I

TVA BSDEs

Throughout the paper we consider a netted portfolio of OTC derivatives, with final
maturity T, traded between two defaultable counterparties, which we generically refer
to as the “contract between the bank and its counterparty”. We adopt the perspective
of the bank. In particular, a cashflow of �1 means �1 to the bank.

Here is a summary list of notations introduced in the first part of the paper.

CVA, DVA, FVA, TVA Credit valuation adjustment, debt valuation adjustment, fund-
ing valuation adjustment, total valuation adjustment.

G,F Full model filtration (including the information related to the default of the two
counterparties), market reference filtration.

E, Ẽ Expectations under the probability measures Q and P.
Rc, Rb,3 2 T0, 1U Recovery rate of the counterparty to the bank, of the bank to the

counterparty, fractional loss of the funder in case of default of the bank.
T, δ Maturity of the contract, length of the cure (or liquidation) period.
τc, τb, τ, Nτ , τ δ, Nτ δ Default time of the counterparty, default time of the bank, first de-

fault time of the two parties, τ ^T, τCδ, time horizon Nτ δ D 1fτ<T gτ
δ C 1fτ�T gT

of the TVA problem.
J D 1J0,τJ, S Joint survival indicator process of the bank and the counterparty, Azéma

supermartingale of τ
τ ? D τb ^ τ δc , Nτ ? D 1fτ<T gτ

? C 1fτ�T gT, J ? D 1J0,τ ?J
γ c, γ b, γ Intensities of τc, τb and τ .
U 0 F predictable reduction of a G predictable process U
r, r C c, r C λ, r C Nλ, λ̃ D Nλ� γ b3 Risk-free rate, rate of remuneration of the posted

collateral, investing rate of the bank, unsecured funding rate of the bank, liquidity
funding spread of the bank.

P Risk-free price or mark-to-market of the contract, ignoring counterparty risk and
assuming a risk-free funding rate.

1 D ∫
J0,τ ?K e

∫
�

s rudud Du Cumulative contractual dividends that fail to be paid from
time τ onwards, capitalized at the risk-free rate.

Q D P C1 Algebraic debt of the counterparty to the bank (before consideration of
the collateral).

5,2 D Q �5 Risky price of the contract accounting for counterparty and funding
risk (as opposed to the risk-free price P), TVA process.

V, I c � 0, I b � 0,Cc D V C I c,Cb D V C I b,C D V C I c C I b Variation margin
counted positively when posted by the counterparty and negatively when posted
by the bank, initial margin posted by the counterparty, negative of the initial mar-
gin posted by the bank, total collateral guarantee for the bank, negative of the total
collateral guarantee for the counterparty, negative of the collateral funded by the
bank.

εc D (Qτ δ � Cc
τ )

C, εb D (Qτ δ � Cb
τ )

� Liquidation debts of the counterparty to the
bank, of the bank to the counterparty
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χ, ξ D Qτ δ � χ D 1fτc�τ
δ
b g
(1 � Rc)εc � 1fτb�τ δc g

(1 � Rb)εb Close-out cashflow of
the bank, counterparty risk exposure of the bank.

W, (�Wτb� � Cτb�)
C Value process of the hedging, collateralization and funding

portfolio of the bank, debt of the bank to its funder right before τb.
gt (ϑ) Funding coefficient such that (�rtWt Cgt (�Wt ))dt represents the bank fund-

ing cost over (t, t C dt).
ft (ϑ) D gt (Qt � ϑ)� rtϑ, f̃t (ϑ) Coefficients of the full and reduced BSDEs.
τe, γ

eI EI Eb, Ec Stopping time with mark e and intensity γ e; finite set of marks such
that τ D mine2E τeI subsets of E such that τb D mine2Eb τe, τc D mine2Ec τe.

We write x� D max(�x, 0),
∫ b

a D ∫
(a,bU. We denote by B(S) the Borel σ field

on a topological space S and by P(F), O(F) and R(F) the predictable, optional and
progressive σ fields with respect to a filtration F. Order relationships between random
variables (resp. processes) are meant almost surely (resp. in the indistinguishable
sense). All time intervals are random unless stated otherwise.

2 Bilateral counterparty risk and funding setup

Let (�,G,Q) represent a risk-neutral pricing stochastic basis, such that all our pro-
cesses are G adapted and all the random times of interest are G stopping times. We
suppose that the model filtration G D (Gt )t2RC

satisfies the usual conditions and we
denote by E the expectation under Q.

We define the risk-free price P of the contract as its mark-to-market ignoring
counterparty risk and assuming a risk-free funding rate, i.e.,

βt Pt D E
(∫ T

t
βsd Ds

∣∣∣Gt

)
, t 2 T0, T U. (2.1)

Here the finite variation process D represents the cumulative promised dividend pro-
cess of the contract (contractual cashflows ignoring counterparty risk); βt D e�

∫ t
0 rs ds

is the risk-neutral discount factor at the risk-free rate r , assumed progressively mea-
surable and Lebesgue integrable.

But the two parties in the contract are defaultable. Let τb and τc stand for the
default times of the bank and of the counterparty, modelled as G stopping times
with (G,Q) (predictable) intensities γ b and γ c. As a consequence, the first default
time of the two parties, τ D τb ^ τc, is a stopping time with intensity γ such that
max(γ b, γ c) � γ � γ bCγ c (with indistinguishable equality in the right-hand side iff
τb 6D τc holds almost surely). Note that in such an intensity setup, any event fτb D tg or
fτc D tg, for any fixed time t, has zero probability and can be ignored in the analysis.

An additional feature is a time lag δ � 0, called the cure period, a few days usually,
between the first default time τ of the two parties and the liquidation of the contract
(or portfolio). We write

Nτ D τ ^ T , τ δ D τ C δ, Nτ D 1fτ<T gτ
δ C 1fτ�T gT

τ ? D τb ^ τ δc , Nτ ? D 1fτ<T gτ
? C 1fτ�T gT .
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We assume that the bank, having bought the contract from its counterparty at
time 0, sets-up a collateralization, hedging and funding portfolio. Collateral consists
of cash or various possible eligible securities posted through margin calls as default
guarantee by the two parties. If τ < T , then the contractual dividends d Dt cease to
be paid and the collateral is frozen from time τ onwards; A close-out cashflow χ paid
to the bank at time τ δ closes out its position. Hence, the liquidation procedure results
in an effective time horizon Nτ δ of the pricing problem. The collateralization, hedging
and funding portfolio of the bank is supposed to be held by the bank itself before Nτ ?
and, if τ < T and τb � τ δc (hence τ ? D τb), taken over by a risk-free liquidator on
J Nτ ?, Nτ δK.

Regarding hedging, for simplicity, we restrict ourselves to a securely funded hedge,
entirely implemented by means of swaps, short sales or repurchase agreements, at no
upfront payment. This assumption encompasses the vast majority of hedges that are
used in practice. The meaning of a risk-neutral pricing measure in our setup, with
different funding rates in particular, is specified by a martingale condition that will be
introduced in the form of the risky price BSDE (3.1). But, in the first place, a pricing
measure must be such that the gains associated with the trading of unit positions in the
hedging assets, gain processes denoted in vector form by M, are local martingales.
This rules out arbitrage opportunities in the market of hedging instruments (provided
one restricts attention to hedging strategies resulting in a wealth process bounded from
below; see Bielecki and Rutkowski [5, Corollary 3.1] for a formal statement).

Until Nτ ?, the bank needs to fund its position, i.e., the contract and its collateral (the
cost of funding the hedge is already accounted for in the hedging assets gain martingale
M). We denote by g D gt (π) an R(G)
 B(R)-measurable funding coefficient such
that (� rtWt C gt (�Wt )

)
dt (2.2)

represents the bank’s funding cost over (t, t C dt), where W is the value process of
the hedging, collateralization and funding portfolio of the bank. In addition, the bank
may receive a funding windfall benefit at its own default, modelled as a cashflow

(�Wτb� � Cτb�)
C3 (2.3)

at τb if τb < Nτ δ . Here the process (�C) represents the amount of collateral funded
by the bank, so that (�Wτb� � Cτb�)

C represents the funding debt of the bank right
before τb;3 2 T0, 1U corresponds to the fractional loss of the funder in case of default
of the bank, where we call funder a risk-free third party insuring funding of the trading
strategy of the bank.

In Sect. 5 we will provide a typical specification of all the data, in particular χ, g
and C .

Let (5, ζ ) denote a to-be-determined price-and-hedge for the bank. After having
bought the contract from the counterparty at time 0 at some price50, the bank sets up
a hedge (�ζ ), which is a left-continuous row-vector process of the same dimension
as M.

We write J D 1J0,τJ, J ? D 1J0,τ ?J.
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Lemma 2.1 (Dynamics of the wealth process of the bank) Ignoring the close-out
cashflow χ at Nτ δ if τ < T , which will be added separately later (see Lemma 3.2), we
have W0 D �50 and, for 0 < t � Nτ δ ,

dWt D rtWt dt C Jt d Dt � J ?t gt (�Wt )dt

� (�Wτb� � Cτb�)
C31fτ ?Dτb<T gd J ?t � ζt dMt .

(2.4)

Proof Collecting all terms in the above-described collateralization, hedging and fund-
ing scheme, we obtain W0 D �50 and, for 0 < t � Nτ δ:

dWt D Jt d Dt︸ ︷︷ ︸
bank gets dividends

� ζt dMt︸ ︷︷ ︸
hedging loss

C J ?t (rtWt � gt (�Wt ))dt︸ ︷︷ ︸
funding benefits / costs to bank

� (�Wτb� � Cτb�)
C31fτ ?Dτb<T gd J ?t︸ ︷︷ ︸

windfall funding benefit of the bank at its own default time τb if τb � τ δc
C (1 � J ?t )rtWt dt,︸ ︷︷ ︸

risk-free funding benefits/costs of the liquidator during the cure period

which yields (2.4). ut

3 Full TVA BSDE

In this section we derive the TVA BSDE with respect to the full model filtration G.

3.1 Risky price

The risky price 5 is the value of the contract inclusive of counterparty and funding
risk (as opposed to the risk-free price P). The justification for the following definition
is provided by Lemma 3.2 below.

Definition 3.1 A risky price of the contract for the bank is a (G,Q) semimartingale
5 that satisfies the following price BSDE on J0, Nτ δK:

5 Nτ δ D 1fτ<T gχ,

dνt VD d5t � rt5t dt

C (5τb� � Cτb�)
C31fτ ?Dτb<T gd J ?t C Jt d Dt � J ?t gt (5t )dt

(3.1)

defines a (G,Q) local martingale on J0, Nτ δK.
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Lemma 3.2 If a risky price 5 can be found with dνt D ζt dMt for some hedge ζ,
assuming gt (π) Lipschitz in π with a Lipschitz constant that is Lebesgue integrable
on T0, T U (ω-wise), then (50, ζ ) yields a replication price and hedge for the bank, i.e.,
the resulting wealth process of the bank satisfies W D �5 on J0, Nτ δK. In particular,
we have

W Nτ δ D �5 Nτ δ D �1fτ<T gχ,

so that after the close-out cashflow1fτ<T gχ has been paid to the bank (or its liquidator
if τ < T and τb � τ δc ) at time Nτ δ , the bank’s position is closed break-even.

Proof Under the assumptions of the lemma, the process Z D β5 C βW satisfies
Z0 D 0 and d Z t D αt Z t dt on J0, Nτ ?J, where αt VD 1f5t 6DWt g

gt (5t )�gt (�Wt )
5t�(�Wt )

is
Lebesgue integrable over T0, T U. Hence,

d(e�
∫ t

0 αs ds Z t ) D e�
∫ t

0 αs ds(d Z t � αt Z t dt) D 0,

i.e., e�
∫ t

0 αs ds Z t is constant on J0, Nτ ?J, equal to 0 in view of the initial condition for Z ,
i.e., W D �5 holds on J0, Nτ ?J. If τ < T and τb � τ δc , then this is followed by a jump
of the two processes W and (�5) by the same amount (2.3) at τb D τ ? D Nτ ?. In any
case, W and (�5) coincide on J0, Nτ ?K, and then again on J Nτ ?, Nτ δK by an argument
similar to the one used in the beginning of the proof. Hence, W D �5 holds on
J0, Nτ δK. ut

More broadly, if a risky price can be found with dνt D ζt dMt C dεt for some hedge
ζ and a “small” cost martingale ε, then the hedging error ρ D W C5, which starts
from 0 at time 0, remains “small” all the way through. In particular,

W Nτ δ � �5 Nτ δ D �1fτ<T gχ,

so that after the close-out cashflow 1fτ<T gχ at Nτ δ, the bank’s position is closed with
a “small” hedging error.

3.2 Total valuation adjustment

Let

Qt D Pt C1t , where βt1t D
∫
Tτ,tU

βsd Ds

(in particular, 1t D 0 and Qt D Pt for t < τ ). In words, 1t represents the cumu-
lative contractual dividends capitalized at the risk-free rate that fail to be paid by the
counterparty to the bank from time τ onwards. Hence1t belongs to Qt , the algebraic
debt of the counterparty to the bank (before consideration of the collateral).

Definition 3.3 Given a risky price 5, the corresponding TVA is the process defined
on J0, Nτ δK as 2 D Q �5.
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Let

ft (ϑ) D gt (Qt � ϑ)� rtϑ (ϑ 2 R)

and

ξ D Qτ δ � χ, Nξt D E(β�1
t βτ δξ jGt ) (t � Nτ δ), (3.2)

assuming integrability of the so-called counterparty risk exposure ξ.

Lemma 3.4 Let there be given G semimartingales 5 and 2 such that 2 D Q �5
on J0, Nτ δK. The process 5 is a risky price of the contract for the bank if and only if
the process 2 satisfies the following (G,Q) TVA BSDE on J0, Nτ δK:

2 Nτ δ D 1fτ<T gξ,

dµt D d2t � rt2t dt C J ?t gt (Qt �2t )dt

C (Qτb� �2τb� � Cτb�)
C31fτ ?Dτb<T gd J ?t

(3.3)

defines a (G,Q) local martingale on J0, Nτ δK.

Proof Assuming 2 defined in terms of a risky price 5 as (Q � 5) on J0, Nτ δK, the
terminal condition for2 in (3.3) follows, by definition of the exposure ξ in the left-hand
side of (3.2), from the terminal condition for 5 in (3.1). Moreover, for t 2 J0, Nτ δK,
we have

� βt2t D �βt Qt C βt5t D �
(
βt Pt C

∫ t

0
βsd Ds

)
C
(
βt5t C

∫ t

0
βs Jsd Ds

)
.

Hence,

� βt2t �
∫ t

0
βs J ?s gs(Qs �2s)ds

C
∫ t

0
βτb (Qτb� �2τb� � Cτb�)

C31fτ ?Dτb<T gd J ?s

D �
(
βt Pt C

∫ t

0
βsd Ds

)
Cβ050 C

∫ t

0
d(βs5s)

C
∫ t

0

(
βτb (5τb� � Cτb�)

C31fτ ?Dτb<T gd J ?s C βs Jsd Ds � βs J ?s gs(5s)ds
)

D �
(
βt Pt C

∫ t

0
βsd Ds

)
Cβ050 C

∫ t

0
βsdνs

(cf. (3.1)). Since (βP C ∫ �0 βsd Ds) (cf. (2.1)) and ν are (G,Q) local martingales, this
establishes the martingale condition in (3.3). Hence, (3.1) implies (3.3). The converse
implication is proven similarly. ut
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As reflected in (3.3), the TVA problem, just like the risky pricing problem (3.1),
is originally posed over the domain J0, Nτ δK, which corresponds to the union of the
three subdomains in Figure 3.1, with respective dividend and funding data abbreviated
as (D, g), (0, g) and (0, 0). But since data (0, 0) simply means, in terms of pricing,
taking conditional expectation of the terminal condition discounted at the risk-free
rate, the proposition that follows shows that the BSDE (3.3) can be reformulated as
the BSDE (3.4) on the smaller time interval J0, Nτ ?K � J0, Nτ δK, modulo a modified
terminal condition Nξ at Nτ ? instead of ξ at Nτ δ.

τ δc

τc

τb

τ δb

(0, g)

(D, g)

(0, 0)3

Fig. 3.1 Representation of the data of the TVA problem in a (t, ω) state space representation, focusing
on the default and liquidation times and ignoring T to alleviate the picture, i.e., “for T D 1”. The data
in parentheses refer to the effective dividends and funding costs of the bank depending on the time t and
scenario ω.

Proposition 3.5 Let there be givenG semimartingales5 and2 such that2 D Q�5
on J0, Nτ δK. The process 5 is a risky price of the contract for the bank if and only if
2 D 1fτ<T g Nξ on K Nτ ?, Nτ δK and 2 satisfies the following (G,Q) “exact TVA BSDE”
on J0, Nτ ?K:

2 Nτ ? D 1fτ<T g
( Nξτ ? � (Qτb� � Cτb� �2τb�)

C1fτ ?Dτbg3
)

and

dµt VD d2t C ft (2t )dt is a (G,Q) local martingale on J0, Nτ ?K. (3.4)

Proof As explained before the proposition, (3.3) is equivalent to 2 D 1fτ<T g Nξ on
J Nτ , Nτ δK and (3.4) on J0, NτK. ut

Remark 3.6 This equivalence holds up to the value of2 at τ ? if τ ? D τb < T, with a
windfall funding benefit at default (Qτb��Cτb��2τb�)

C31fτDτb<T g considered as
a dividend at the intermediate time τb in (3.3) and as part of the valuation adjustment
at the terminal time τb D τ ? in (3.4). Since the bank only risk manages 2 before τb,
this difference is immaterial in practice.

Because the cure period δ is only a few days, the quantitative impact on the TVA
2 of the coefficient g on the time interval J Nτ , Nτ ?K can only be very limited. Hence, for
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simplicity, we work henceforth with the following “full TVA BSDE”:

2 Nτ D 1fτ<T g
( Nξτ � (Pτb� � Cτb� �2τb�)

C1fτDτbg3
)

and
dµt VD d2t C ft (2t )dt is a (G,Q) local martingale on J0, NτK. (3.5)

This equation is obtained by replacing g and 3 by 0 on the time interval J Nτ , Nτ ?K in
the exact TVA BSDE (3.4), which means replacing (0, g) by (0, 0) and3 by 0 in the
upper right subdomain in Figure 3.1. Indeed, proceeding in this way, the argument
already used for deriving Proposition 3.5 shows that the time interval on which the
TVA needs be computed can be reduced further, from J0, Nτ δK initially to J0, Nτ ?K as
done in Proposition 3.5 regarding the exact TVA BSDE, to even J0, NτK now for the
appropriately modified terminal condition regarding the full TVA BSDE (3.5), with
all data set to zero outside J0, NτK. Reformulating the problem on the smaller domain
J0, NτK makes it simpler in view of the reduced-form analysis of Sect. 4, because τ , as
opposed to τ ?, has an intensity.

4 Reduced TVA BSDE

Even if a bit simpler than (3.4), (3.5) is still a nonstandard BSDE. In this section we
reduce the (G,Q) BSDE (3.5) to the BSDE (4.3) with a null terminal condition at
the fixed time horizon T , stated with respect to a smaller filtration F and a possibly
changed probability measure P.

By Corollary 3.23 2) in He et al. [20], for any Gτ -measurable random variable κ,
there exists a G predictable process κ̂ such that

1fτ<1gETκjGτ�U D 1fτ<1gκ̂τ .

If κ is integrable, then the time integral γt κ̂t dt exists (and is independent of the choice
of a version of κ̂) and

κt d Jt C γt κ̂t dt (4.1)

is a (G,Q) local martingale onRC(cf. Corollary 5.31 1) in He et al. [20]). In particular
let ξ̂ be a G predictable process such that, on fτ <1g,

ξ̂τ D E( Nξτ jGτ�) D E(β�1
τ βτCδξ jGτ�).

For t 2 J0, NτK and ϑ 2 R, we write

f̂t (ϑ) D ft (ϑ)C γt ξ̂t � (Pt � Ct � ϑ)Cγ b
t 3� γtϑ

D γt ξ̂t C gt (Pt � ϑ)� (Pt � Ct � ϑ)Cγ b
t 3� (rt C γt )ϑ.

(4.2)

For any left-limited process Y, we denote by Y τ� D JY C (1 � J )Y� the process Y
stopped at (τ�). Let S denote the Azéma supermartingale of τ, i.e., the process such
that St D Q(τ > t jFt ), t � 0. Conditions of the following kind are studied at the
theoretical level in Crépey and Song (2015a, 2015b).
Condition (B). F is a subfiltration of G satisfying the usual conditions such that

any G predictable process U admits an F predictable reduction, i.e., an F predictable
process, denoted by U 0, that coincides with U on K0, τK.
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Remark 4.1 If ST > 0 holds almost surely, then any inequality between two G pre-
dictable processes on K0, τK implies the same inequality between their F predictable
reductions on (0, T U (see Song [25, Lemma 6.1]); In particular (see also Crépey and
Song [13, Lemma A.1]), the process U 0 is uniquely determined on (0, T U.

Condition (C). There exist:

(C.1) A subfiltration F of G satisfying the usual conditions such that F semimartin-
gales stopped at τ are G semimartingales;

(C.2) A probability measure P equivalent to Q on FT such that (F,P) local martin-
gales stopped at (τ�) are (G,Q) local martingales on T0, T U;

(C.3) AnF progressive reduction f̃t (ϑ) of f̂t (ϑ), i.e., anR(F)
B(R) function f̃t (ϑ)
such that

∫ �
0 f̂t (ϑ)dt D ∫ �

0 f̃t (ϑ)dt on J0, NτK.

The condition (C) is much more versatile than a standard immersion reduced-form
intensity model of credit risk, where P has to be taken equal to Q and where the full
model filtration G has to be taken as the reference filtration F progressively enlarged
by τ (see Bielecki et al. [4]). In particular, even for P D Q, the conditions (C.1-2-3) do
not exclude a jump of an F adapted càdlàg process at time τ . This happens for instance
with a nonvanishing “gap dividend”1τ D Dτ � Dτ� at time τ in the DMO model of
Sect. 7. By contrast, a jump of an F adapted càdlàg process at time τ cannot happen
in a basic reduced-form credit risk setup (see Crépey et al. [10, Lemma 13.7.3(ii)]).

The result that follows can also be retrieved from Crépey and Song [12], but in
a much more abstract setup there, mainly motivated by the converse to this result.
Hence, we provide a self-contained proof, valid under the “minimal condition” (C).

Theorem 4.2 Under the condition (C), assume that an (F,P) semimartingale 2̃ sat-
isfies the following “reduced TVA BSDE” on T0, T U:

2̃T D 0 and

dµ̃t VD d2̃t C f̃t (2̃t )dt is an (F,P) local martingale on T0, T U. (4.3)

Let 2 D 2̃ on J0, NτJ and 2 Nτ D 1fτ<T g( Nξτ � (Pτ� �Cτ� � 2̃τ�)C1fτDτbg3). Then
2 is a (G,Q) semimartingale satisfying the full TVA BSDE (3.5) on J0, NτK and we
have, for t 2 J0, NτK,

dµt D dµ̃τ�t � ( Nξτ � (Pτ� � Cτ� � 2̃τ�)C1fτDτbg3� 2̃τ�
)
d Jt

� ((̂ξt � 2̃t )γt � (Pt � Ct � 2̃t )
Cγ b

t 3
)
dt.

(4.4)

Proof By definition of 2 here, a (G,Q) semimartingale by (C.1), we have, for
t 2 J0, NτK:

d2t D d(Jt2̃t )�
( Nξτ � (Pτ� � Cτ� � 2̃τ�)C1fτDτbg3

)
d Jt

D d2̃τ�t C 2̃τ� d Jt �
( Nξτ � (Pτ� � Cτ� � 2̃τ�)C1fτDτbg3

)
d Jt .
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Then by (4.3), for t 2 J0, NτK:

�d2t D f̃t (2̃t )dt � dµ̃τ�t C ( Nξτ � (Pτ� � Cτ� � 2̃τ�)C1fτDτbg3� 2̃τ�
)
d Jt

D ft (2t )dt � dµ̃τ�t C ( Nξτ � (Pτ� � Cτ� � 2̃τ�)C1fτDτbg3� 2̃τ�
)
d Jt

C ((̂ξt � 2̃t )γt � (Pt � Ct �2t )
Cγ b

t 3
)
dt,

by (C.3). By (C.2), µ̃τ�t is a (G,Q) local martingale, as is also on J0, NτK( Nξτ � (Pτ� � Cτ� � 2̃τ�)C1fτDτbg3� 2̃τ�
)
d Jt

C ((̂ξt � 2̃t )γt � (Pt � Ct �2t )
Cγ b

t 3
)
dt

(cf. (4.1)). This yields the decomposition (4.4) of dµt VD d2t C ft (2t )dt , which
implies the martingale condition in (3.5), where the terminal condition holds by defi-
nition of 2 Nτ in the theorem. ut

5 Well-posedness of the TVA BSDEs

In applications, we need to specify the close-out cashflow χ , hence the counterparty
risk exposure ξ D Qτ δ � χ, and the funding coefficient gt (π). Let V denote the
variation margin process, where V � 0 (resp. � 0) means collateral posted by the
counterparty and received by the bank (resp. posted by the bank and received by the
counterparty). Let processes I c � 0 and I b � 0 represent the initial margin posted by
the counterparty and the negative of the initial margin posted by the bank. Let

Cc D V C I c and Cb D V C I b,

which correspond to the total collateral guarantee for the bank and the negative of the
total collateral guarantee for the counterparty. We assume that all the margin processes
are stopped at τ. The bank’s close-out cashflow χ is derived from the liquidation debts
of the counterparty to the bank and vice versa, respectively modelled at time τ δ as

εc D (Qτ δ � Cc
τ )

C, εb D (Qτ δ � Cb
τ )

�.

Note that εc � εb � 0, by nonnegativity of I c and (�I b). The close-out cashflow is
modelled as

χ D


Cc
τ C Rcεc if εc > 0 and τc � τ δb ,

Cb
τ � Rbεb if εb > 0 and τb � τ δc ,

Qτ δ otherwise.

Here Rc and Rb stand for constant recovery rates of the counterparty to the bank
and vice versa. The ensuing counterparty risk exposure of the bank results from the
left-hand side in (3.2) as

ξ D Qτ δ � χ D 1fτc�τ
δ
b g
(1 � Rc)εc � 1fτb�τ δc g

(1 � Rb)εb. (5.1)

We assume that the posted collateral is remunerated at a rate (rt C ct ) and that
the bank can invest cash at a rate (rt C λt ) and obtain unsecured funding at a rate
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(rt C Nλt ), for G predictable processes c, λ, Nλ (and also r, noting that predictability is
not a true restriction with respect to progressive measurability for all these processes
that are time integrated). Assuming all the margins re-hypothecable, i.e., reusable by
the receiving party, then the collateral funded by the bank is (�C), where

C D Cb C I c D V C I c C I b.

This results in the following dt-funding cost of the bank, for t < Nτ ?:
Jt (rt C ct )Ct︸ ︷︷ ︸

remuneration of the collateral

C (rt C Nλt ) (�Wt � Ct )
C � (rt C λt ) (�Wt � Ct )

�︸ ︷︷ ︸
funding costs / benefits

,

which is of the form (2.2) with in particular, for t < τ,

gt (π) D ct Ct C Nλt (π � Ct )
C � λt (π � Ct )

� . (5.2)

If part of the collateral is segregated (as opposed to re-hypothecable), then the detail
changes slightly, but the overall structure (2.2) of the funding costs is still valid.
Assuming henceforth (5.2), f̂t (ϑ) in (4.2) is such that, on J0, NτK,

f̂t (ϑ)C (rt C γt )ϑ D γt ξ̂t C ct Ct C Nλt (Pt � Ct � ϑ)C

� λt (Pt � Ct � ϑ)� � (Pt � Ct � ϑ)Cγ b
t 3

D γt ξ̂t︸︷︷︸
cdvat

C ct Ct C λ̃t (Pt � Ct � ϑ)C � λt (Pt � Ct � ϑ)�︸ ︷︷ ︸
f vat (ϑ)

,
(5.3)

where λ̃t D Nλt � γ b
t 3 can be interpreted as a liquidity borrowing spread of the bank,

net of its credit spread to its funder. From the perspective of the bank, the term γt ξ̂t
represents the counterparty risk component of f̂t (ϑ), whereas the remaining terms are
the risky funding components. The positive (resp. negative) components of f̂t (ϑ) can
be considered as deal adverse (resp. deal friendly) as they increase (resp. decrease)
the TVA 2 of the bank. Depending on the sign of 5 D Q � 2, a “less positive” 5
is interpreted as a lower buyer price by the bank and a “more negative”5 as a higher
seller price by the bank.

Note that the DVA cashflow 1fτb�τ δc g
(1� Rb)εb in (5.1) and the “DVA2” cashflow

(2.3) are benefits of the bank at its own default. The materiality of such windfall
benefits has been the topic of intense debates among the quant and academic finance
communities (see e.g. Hull and White [21]).

On J0, NτK, we have

f̂t (ϑ) D γt ξ̂t C ct Ct C λ̃t (Pt � Ct � ϑ)C � λt (Pt � Ct � ϑ)� � (rt C γt )ϑ

D γt ξ̂t C ct Ct C Nλt (Pt � Ct � ϑ)C � λt (Pt � Ct � ϑ)�

� γt (Pt � Ct )C (γt � γ b
t 3) (Pt � Ct � ϑ)C � γt (Pt � Ct � ϑ)� � rtϑ.

(5.4)

Assuming the condition (B) and ST > 0 almost surely, we may and do henceforth
choose for f̃t (ϑ) the process obtained from f̂t (ϑ)by replacing each process U involved
in (5.4) by its F predictable reduction U 0 or, in the case of U D P or C , by (P�)0 and
(C�)

0. We write kUkp
H̃p

D ẼT∫ T
0 U p

t dtU (p > 0), where Ẽ means P expectation.
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The boundedness assumption on P and C in the following result is far from
minimal, but it holds in the case of vanilla credit derivatives such as CDS contracts
and CDO tranches considered later in the paper.

Theorem 5.1 Under the condition (B), assuming ST > 0 almost surely, λ0, Nλ0 and r 0

bounded from below on T0, T U, (P�)0 and (C�)
0 bounded on T0, T U and c0, λ0, Nλ0, r 0,

γ 0 in H̃2, then the reduced BSDE (4.3) (with f̃ as specified above) is well posed in H̃2,
where well-posedness includes existence, uniqueness, comparison and the standard a
priori bound and error BSDE estimates. The H̃2 solution 2̃ to (4.3) satisfies

2̃t D Ẽ
[∫ T

t
f̃s(2̃s)ds

∣∣∣Ft

]
, t 2 T0, T U. (5.5)

Proof Assuming λ0, Nλ0 and r 0 bounded from below, it follows from (5.4) (where
γt � γ b

t 3 � 0) and from the remark 4.1 that f̃t (ϑ) satisfies the so-called monotonicity
condition (

f̃t (ϑ)� f̃t (ϑ
0)
)
(ϑ � ϑ 0) � C(ϑ � ϑ 0)2

on (0, T U, for some constant C . Moreover, we have

j f̃ (ϑ)� f̃ (0)j � (jNλ0j C jλ0j C jr 0j C γ 0)jϑ j.

Hence, having assumed (P�)0, (C�)
0 bounded and c0,λ0, Nλ0, r 0, γ 0 in H̃2, the following

integrability conditions hold:

sup
jϑ j� Nϑ

j f̃�(ϑ)� f̃�(0)j 2 H̃1 ( Nϑ > 0), f̃�(0) 2 H̃2.

Therefore, by application of the results of Kruse and Popier [24, Sect. 4], the reduced
BSDE (4.3) with coefficient f̃t (ϑ) is well posed in H̃2,where well-posedness includes
existence, uniqueness, comparison and the standard BSDE bound and error estimates.
The identity (5.5) is the usual integral representation for an H̃2 solution 2̃ to the
reduced BSDE (4.3). ut

Under the conditions (C), (B) (which can be viewed as a reinforcement of (C.1) and
(C.3)) and ST > 0 almost surely, the results of Crépey and Song [12] show that the
reduced BSDE does not only imply the full BSDE (cf. Theorem 4.2 above), but is in
fact equivalent to it. Theorem 5.1 establishes the well-posedness of the reduced BSDE
(4.3) (under a typical specification of the data). Hence, the full BSDE (3.5) is well
posed too.

6 Marked default times setup

From a practical point of view, Theorems 4.2 and 5.1 allow modelling a TVA process
as a solution to the “simple”, reduced TVA BSDE (4.3). A residual issue is the spec-
ification of a concrete but general enough framework where cdva D γ ξ̂ in (5.3) can
be computed in practice. Toward this aim, this section implements the reduced-form
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approach of the previous sections, based on a default time τ obtained as a G stopping
time with a mark. The mark allows conveying some additional information about the
default, such as wrong-way and gap risk features that would be out-of-reach in the
basic immersion setup of Crépey [9].

We assume in the sequel that τ is endowed with a mark e in a finite set E , i.e.,

τ D min
e2E

τe, (6.1)

where the τe are G stopping times avoiding each other. We suppose that each time τe
has a (G,Q) intensity γ e

t and that

Gτ D Gτ� _ σ(ι), (6.2)

in which ι D argmine2Eτe is the identity of the mark of τ .

Remark 6.1 The assumption of a finite set E in (6.1) ensures tractability of the setup,
while offering a sufficiently large playground for applications, as the second part of
the paper demonstrates. This finiteness assumption could be removed at the cost of
considering an integral instead of a sum over E in (6.3) and similar expressions later
in the paper.

We denote by E the powerset of E and by � the Lebesgue measure on RC.

Lemma 6.2 Assuming a marked stopping time τ as above, then for anyGτ -measurable
random variable κ, there exists a P(G)
 E-measurable function κ̃ D κ̃e

t such that

1fτDτegκ D 1fτDτegκ̃
e
τ , e 2 E .

For any such function κ̃ , a Q � � a.e. version of γ κ̂ is given by J�
∑

E γ
eκ̃e. In

particular, the intensity of τ satisfies γ D J�
∑

e2E γ
e, Q� � a.e., and we have

cdva D J�
∑
e2E

γ e ξ̃ e, Q� � a.e., (6.3)

for any P(G) 
 E-measurable function ξ̃ D ξ̃ e
t , which exists, such that, for each

e 2 E,

Nξτ D ξ̃ e
τ on the event fτ D τeg. (6.4)

Proof The existence of the processes κ̃e(π) follows from (6.2). By G predictability
of these processes, the κ̃e

τ are Gτ� locally integrable. Then, on fτ <1g,

ETκjGτ�U D ET∑e2E 1fτDτ egκ̃
e
τ jGτ�U D

∑
e2E κ̃

e
τET1fτDτ egjGτ�U.

Let qe
t denote a P(G)
 E-measurable function, which exists by Corollary 3.23 2) in

He et al. [20], such that qe
τ1fτ<1g D ET1fτDτ egjGτ�U1fτ<1g (e 2 E). For bounded

Z 2 P(G), we compute ETZτ1fτDτ e<1gU in two ways:

ETZτ1fτDτ e<1gU D ETZτqe
τ1fτ<1gU D E

[ ∫ 1

0
Zsqe

s γsds
]
,
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and

ETZτ1fτDτ e<1gU D ETZτ e1fτDτ e<1gU

D ETZτ e1fτ e�τ<1gU D E
[ ∫ 1

0
Zs1fs�τ gγ

e
s ds

]
.

Hence, Q almost surely, qe
t γt D 1ft�τ gγ

e
t holds � almost everywhere, so that

QTqe
τγτ 6D γ e

τ , τ <1U D ET1fqe
τ γτ 6Dγ

e
τ , τ<1gU D E

[ ∫ 1

0
1fqe

t γt 6Dγ
e
t g
γt dt

]
D 0.

Therefore, on fτ <1g,

γτ κ̂τ D γτETκjGτ�U D
∑
e2E

κ̃e
τ γτqe

τ D
∑
e2E

κ̃e
τ γ

e
τ .

This implies that

γ κ̂ D J�
∑

E

γ eκ̃e, Q� �-a.e.

In particular, (6.3) follows by definition (5.3) of cdva. ut

We now provide a concrete specification ensuring (6.2), in the case where G is
the progressive enlargement of a reference filtration F by n random times η1, . . . , ηn
that avoid each other. Let the η(i) be the increasing ordering of the ηi , with also
η(0) D 0 and η(nC1) D 1. The optional splitting formula of Song [26] states that,
for any G optional process Y , there exist O(F) 
 B(T0,1Un)-measurable functions
Y (0), Y (1), . . . , Y (n) such that

Y D
n∑

iD0

Y (i)(η1 - η(i), . . . , ηn - η(i))1Tη(i),η(iC1)), (6.5)

where a - b denotes a if a � b and1 if a > b, for a, b 2 T0,1U. This formula holds,
in particular, in any recursively immersed or multivariate density model of default
times. By a recursively immersed model of default times, we mean a model where a
reference filtration is successively progressively enlarged by random times, such that
each successive enlargement has the immersion property. By a multivariate density
model, we mean a model with a conditional density of the default times given some
reference market filtration.

Lemma 6.3 Assuming the optional splitting formula in force, e.g. in any recursively
immersed or multivariate density model of default times, let η D η1 ^ η2. If the ηi
avoid each other and that η avoids F stopping times, then

Gη D Gη� _ σ(fη D η1g, fη D η2g).
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Proof Let N D f1,2, 3, . . . , ng. By the optional splitting formula (6.5), for any G
optional process Y and i 2 N , we have

Yη1fηDη(i)g D Y (i)η (η1 - η, . . . , ηn - η)1fηDη(i)g

D
∑

I�N IjI jDi�1

Y (i)η (η1 - η, η2 - η, . . . , ηn - η)1f8 j2I,η j<ηg1f8 j2NnI,η�η j g

D
2∑

kD1

1fηDηk g

∑
I�N IjI jDi�1

Y (i,I,k)η (ηI η j , j 2 I )1f8 j2I,η j<ηg1f8 j2NnI,η�η j g,

where Y (i,I,k)t (ω, yI y j , j 2 I ) is O(F) 
 B(T0,1U) 
 B(T0,1Ui�1)-measurable.
Moreover, as η avoidsF stopping times, He et al. [20, Theorem 3.20] and the monotone
class theorem imply that Y (i,I,k)η (ηI η j , j 2 I ) is Gη�-measurable. So, on each event
fη D ηkg, Yη1fηDη(i)g is Gη�-measurable. As Gη is generated by the set of all the Yη
for all G optional processes Y , this proves the result. ut

6.1 No cure period

If δ D 0, then the expression for ξ in (5.1) reduces to

ξ D 1fτDτcg(1 � Rc)(Pτ C1τ � Cc
τ )

C � 1fτDτbg(1 � Rb)(Pτ C1τ � Cb
τ )

�,

where1τ D Dτ � Dτ�. Moreover, for every process U D P, (D� D�), Cc and Cb,
there exists by (6.2) a P(G) 
 E-measurable function Ũ D Ũ e

t such that Uτ D Ũ e
τ

holds on the event fτ D τeg, for each e 2 E . In the present case where δ D 0, the
process 1 only matters through 1τ , which is equal to (Dτ � Dτ�). Accordingly, to
alleviate the notation, in the case of U D (D � D�), we rewrite Ũ e

t D 1̃e
t . We also

rewrite (C̃c)e as C̃c,e and (C̃b)e as C̃b,e.
Consistent with (6.1), let us assume τb D mine2Eb τe and τc D mine2Ec τe, where

E D Eb [ Ec (not necessarily a disjoint union, as will be exploited in Sect. 7).
We may then take in (6.4) (where Nξ D ξ when δ D 0)

ξ̃ e
t D 1e2Ec (1 � Rc)(P̃e

t C 1̃e
t � C̃c,e

t )C

� 1fe2Ebg(1 � Rb)(P̃e
t C 1̃e

t � C̃b,e
t )�,

(6.6)

so that by (6.3), we have on J0, NτK:

cdvat D (1 � Rc)
∑
e2Ec

γ e
t (P̃

e
t C 1̃e

t � C̃c,e
t )C

� (1 � Rb)
∑
e2Eb

γ e
t (P̃

e
t C 1̃e

t � C̃b,e
t )�,

where the two terms are interpreted as a CVA and a DVA coefficient.
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Hence, in the no cure period δ D 0 case, (5.3) is rewritten, on J0, NτK, as

f̂t (ϑ)C (rt C γt )ϑ D (1 � Rc)
∑
e2Ec

γ e
t (P̃

e
t C 1̃e

t � C̃c,e
t )C

︸ ︷︷ ︸
cvat

� (1 � Rb)
∑
e2Eb

γ e
t (P̃

e
t C 1̃e

t � C̃b,e
t )�

︸ ︷︷ ︸
dvat

C ct Ct C λ̃t (Pt � Ct � ϑ)C � λt (Pt � Ct � ϑ)�︸ ︷︷ ︸
f vat (ϑ)

,

(6.7)

where we set λ̃t D Nλt �3
∑

e2Eb
γ e

t .

Part II

Credit derivatives TVA modelling

In the second part of the paper, we apply the above approach to counterparty risk
on credit derivatives traded between the bank and the counterparty respectively la-
beled as �1 and 0, i.e., for τb D τ�1 and τc D τ0, and referencing names in
N D f�1, 0, 1, . . . , ng, for some nonnegative integer n.

Specifically, we will consider CDO tranches with upfront payment and CDS con-
tracts corresponding to the respective dividend processes of the form, for 0 � t � T V

Dt D
((
(1 � R)

∑
j2N

1ft�τ j g � (n C 2)a
)C ^ (n C 2)(b � a)

)
Nom

Di
t D

(
(1 � Ri )1ft�τi g � (t ^ τi )Si

)
Nomi ,

(6.8)

for CDO tranches attachment and detachment points a � b in T0, 100U%, CDS con-
tractual spreads Si , recoveries R and Ri and nominals Nom and Nomi .

Our study will be conducted in the dynamic Marshall-Olkin (DMO) copula or
common-shock model of Bielecki et al. [3]). As we shall see in detail, in the ensuing
DMO model of TVA on credit derivatives, gap risk is already present for δ D 0,
instantaneously realized in the joint default dividend1τ D Dτ � Dτ� (cf. Figure 9.2
and the surrounding comments below). Hence in this model it is enough to consider
δ D 0, which we assume in the sequel.

By contrast, for counterparty risk on other kinds of derivatives, once a position is
fully collateralized in terms of variation margins, then, for δ D 0, the continuously
variation-margined TVA is equal to zero and gap risk only appears with a positive cure
period δ > 0. The reader is referred to Armenti and Crépey [1, Sect. 8.5], where an
impact in

p
δ is observed in the context of counterparty risk on interest rate derivatives.

Here is a summary list of notations introduced in the second part of the paper.
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Y Family of “shocks”, i.e., subsets Y � N D f�1, 0, 1, . . . , ng of names likely to
default together.

ηY , γ
Y , BY Shock time ηY with intensity γ Y deterministic or driven by an indepen-

dent Brownian motion BY .
Yb D fY 2 YI �1 2 Y g,Yc D fY 2 YI 0 2 Y g,Y� D Yb [ Yc,Y� D Y n Y� The sub-

sets of the shocks triggering the default of the bank, of the counterparty, of at least
one of them, of none of them.

τi D minfY2YIi2Y g ηY , τb D τ�1 D minY2Yb ηY , τc D τ0 D minY2Yc ηY Default time
of name i in the DMO model, of the bank (i.e., name -1), of the counterparty
(i.e., name 0).

γ Y
t , HY

t D 1fηY�tg DMO Markov primitives.
X t D (0t ,Ht ) where 0 D (γ Y )Y2Y , H D (HY )Y2Y Full DMO model Markov fac-

tor process.
X̃ t D (0t , H̃t ) where 0 D (γ Y )Y2Y , H̃ D (1Y2Y�

HY )Y2Y . Reduced DMO model fac-
tor process.

Any function involving discrete arguments is viewed as continuous with respect
to these, in reference to the discrete topology. When a process ft can be represented
in terms of a function of some factor process X, we write f (t, X t ), i.e., the function
is denoted by the same letter as the process.

7 Common-shock TVA model

7.1 Dynamic Marshall-Olkin model of default times

We define a familyY of “shocks”, i.e., subsets Y of N , usually consisting of the single-
tons f�1g, f0g, f1g, . . . , fng and of a few “common shocks” representing simultaneous
defaults. The shock intensities are given in the form of extended CIR processes as, for
every Y 2 Y,

dγ Y
t D a

(
bY (t)� γ Y

t
)
dt C c

√
γ Y

t d BY
t , (7.1)

for nonnegative constants a and c, continuous functions bY (t) and independent Brown-
ian motions BY in their joint completed filtration B D (Bt )t�0, under the risk-neutral
measure Q. In fact, one could use in (7.1) any independent and square integrable
Markov processes γ Y � 0 provided Ee�

∫ t
0 γ

Y
s ds can be computed efficiently, which

is required for calibration purposes. The case of deterministic intensities γ Y
t D bY (t)

is treated in a similar fashion.
The shock random times and their indicator processes are defined by

ηY D inf
{

t > 0I
∫ t

0
γ Y

s ds > εY

}
and HY

t D 1fηY�tg, Y 2 Y, (7.2)

where the εY are i.i.d. standard exponential random variables. In particular, the random
times ηY avoid each other. The full model filtration G is given as B progressively
enlarged by the random times ηY , Y 2 Y. Let MY denote the compensated martingale
d MY

t D d HY � (1 � HY
t )γ

Y
t dt, Y 2 Y.
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Theorem 7.1 The dynamic Marshall-Olkin or common-shock model is a recursively
immersed model of default times. For t � 0, we have

Gt D Bt _
∨

Y2Y

(
σ(ηY ^ t) _ σ(fηY > tg)). (7.3)

The BY and the MY , Y 2 Y , have the (G,Q) martingale representation property.

Proof We prove the martingale representation property and (7.3) by induction as
follows. We write G D GY . If Y is a singleton (case of a Cox time in view of
(7.2)), then the immersion of B into GY implies the results, by the optional splitting
formula (6.5) for (7.3) and by Jeanblanc and Song [22, Theorem 6.4] for the martingale
representation property. Moreover, if Z is obtained by addition of a new Z � N to
Y , then the independence of the εY implies that ηZ is a Cox time with intensity
with respect to GY , hence immersion of GY into GZ follows (this is the recursively
immersed feature stated in the lemma) and the results for GZ are implied likewise
from those, if assumed, for GY . ut

See also Crépey et al. [10, Chapters 8–10] regarding the Markov copula proper-
ties of the full DMO model factor process X D (0,H), where 0 D (γ Y )Y2Y ,
H D (HY )Y2Y .

The empirical study reported in Crépey et al. [10, Sect. 8.4.3] shows that the DMO
model is efficiently calibratable to CDS and CDO market data, including at the peak
of the 2007–2008 credit crisis.

7.2 TVA model

Defining τi D minfY2YIi2Y g ηY , i 2 N , a DMO model can be used as a marked
stopping times credit derivatives TVA model, with

Eb D Yb VD fY 2 YI �1 2 Y g, Ec D Yc VD fY 2 YI 0 2 Y g, E D Y� VD Yb [Yc

Hence

τb D τ�1 D min
Y2Yb

ηY , τc D τ0 D min
Y2Yc

ηY

and τ D minY2Y�
ηY , with intensity

γ D J�
∑

Y2Y�

γ Y
(7.4)

of τ. The results of Crépey et al. [10, Corollary 8.3.1] show that for any portfolio of
vanilla credit derivatives on names in N , i.e., CDO tranches and CDS contracts as of
(6.8), the (trade-additive) risk-free price P of the portfolio is of the form

Pt D P(t,0t ,Ht ), (7.5)

for some explicit continuous function P.
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We assume that for every process U D P, (D � D�), Cc and Cb, there exists a
continuous function Ũ D ŨY (t, 
 ,k) such that

Uτ D ŨY (τ,0τ ,Hτ�) holds on fτ D ηY g, Y 2 Y�. (7.6)

To alleviate the notation we sometimes write Ũ Y
τ instead of ŨY (τ,0τ ,Hτ�) and we

rewrite (C̃c)Y as C̃c,Y , (C̃c)Y as C̃c
Y , etc.. Moreover in the case of U D D � D� , Ũ

is rewritten as 1̃.
In the case of vanilla credit derivatives on names in N , the condition (7.6) always

holds regarding U D P , by (7.5) and the following trivial identity:

P(τ,0τ ,Hτ ) D P(τ,0τ ,HY
τ�) on fτ D ηY g,

where kY denotes the vector obtained from a vector k 2 f0, 1gY by replacing the
component with index Y by 1. In view of (6.8), the condition (7.6) also holds for
U D D � D�. As will be illustrated numerically in Figure 9.2, the corresponding
Ũ Y D 1̃Y convey the gap risk effect in the DMO model. The conditions (7.6) on
U D Cc and Cb may be satisfied or not depending on the margin scheme.

In view of (6.6), the coefficient ξ̃ (in the present no cure period case where δ D 0)
is given as

ξ̃Y
t D 1Y2Yc (1 � Rc)(P̃Y

t C 1̃Y
t � C̃c,Y

t )C

� 1Y2Yb (1 � Rb)(P̃Y
t C 1̃Y

t � C̃b,Y
t )�, Y 2 Y�.

The coefficient f̂t (ϑ) in (6.7) is given, on J0, NτK, by

f̂t (ϑ)C (rt C γt )ϑ D (1 � Rc)
∑

Y2Yc

γ Y
t (P̃

Y
t C 1̃Y

t � C̃c,Y
t )C

� (1 � Rb)
∑

Y2Yb

γ Y
t (P̃

Y
t C 1̃Y

t � C̃b,Y
t )�

C ct Ct C λ̃t (Pt � Ct � ϑ)C � λt (Pt � Ct � ϑ)� ,

(7.7)

where λ̃t D Nλt �3
∑

Y2Yb
γ Y

t .

Let Y� D Y nY� and let X̃ t D (0t , H̃t ),where H̃ D (1Y2Y�
HY )Y2Y .We assume

that the processes r, c, λ, Nλ, P and C are given before τ as continuous functions of
(t, X̃ t ). Regarding P , the identity (7.5) shows that this property always holds in the
case of vanilla credit derivatives on names in N . Note that, in view of the second
identity in (7.4), this property is also verified by the process γ .

Theorem 7.2 The condition (C) holds, for:

(DMO.1) A reference filtration F D (Ft ) in (C.1) given as B progressively enlarged
by the ηY , Y 2 Y�, which satisfies

Ft D Bt _
∨

Y2Y�

(
σ(ηY ^ t) _ σ(fηY > tg)), t � 0I (7.8)
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(DMO.2) The probability measure P D Q in (C.2), where the BY , Y 2 Y, and the
MY , Y 2 Y�, have the (F,P D Q) martingale representation property;

(DMO.3) A Markov specification f̃t (ϑ) D f̃ (t, X̃ t , ϑ) of (C.3), for the (F,P D Q)
jump diffusion X̃ t D (0t , H̃t ) and the function f̃ D f̃ (t, x̃, ϑ) given, for any
x̃ D (t, 
 , k̃) with 
 D (γY )Y2Y 2 RY

C and k̃ D (kY )Y2Y 2 f0, 1gY such that
kY D 0 if Y 2 Y�, by:

f̃ (t, x̃, ϑ)C (r(t, x̃)C γ (t, x̃)
)
ϑ

D (1 � Rc)
∑

Y2Yc

γY (P̃Y C 1̃Y � C̃c
Y )

C(t, x̃)

� (1 � Rb)
∑

Y2Yb

γY (P̃Y C 1̃Y � C̃b
Y )

�(t, x̃)

C (cC C λ̃(P � ϑ � C)C � λ(P � ϑ � C)�
)
(t, x̃),

(7.9)

where γ (t, x̃) D∑
Y2Y�

γY , λ̃ D Nλ�3∑Y2Yb
γY .

In addition, (F,P D Q) local martingales do not jump at τ , τ avoids F stopping
times, the condition (B) is satisfied and the Azéma supermartingale S of τ is given,
for t 2 T0, T U, by

St D e�
∑

Y2Y�

∫ t
0 γ

Y
s ds > 0. (7.10)

In particular, the DMO model is a marked default times setup satisfying (6.2), where
the full and reduced BSDEs are equivalent.

Proof (DMO.1) and (DMO.2) can be addressed as the analogous statements in The-
orem 7.1. (DMO.3) follows by inspection from (7.7).

By virtue of (7.8) in (DMO.1) and by the independence assumptions in the con-
struction of the DMO model, we have

St D Q(τ > t jFt ) D Q
(
τ > t

∣∣∣ Bt _
∨

Y2Y�

(
σ(ηY ^ t) _ σ(fηY > tg)))

D Q
(
ηY > t, Y 2 Y�

∣∣∣ Bt _
∨

Y2Y�

(
σ(ηY ^ t) _ σ(fηY > tg)))

D Q(ηY > t, Y 2 Y� j Bt ) D
∏

Y2Y�

Q(ηY > t j Bt ) D e�
∑

Y2Y�

∫ t
0 γ

Y
s ds .

(DMO.1-2-3) obviously imply (C.1) and (C.3). Each (F,Q)martingale in (DMO.2),
stopped at (τ�) or, equivalently by avoidance between the times ηY , stopped at τ , is
a (G,Q) local martingale. Hence, (DMO.2) implies (C.2) via the (F,Q) martingale
representation property that is included in (DMO.2). This proves that the condition (C)
holds with F as of (7.8), P D Q and f̃t D f̃ (t, X̃ t ) (cf. (7.9)). The (F,Q) martingale
representation property in (DMO.2) also shows that (F,Q) local martingales don’t
jump at τ .

By He et al. [20, Theorem 5.27 1)] applied to the indicator process 1fτDνg, where
ν is an arbitrary F predictable stopping time, we have Q(τ D ν) D 0 as soon as the
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(F,Q) drift of S is continuous, as it is in the DMO model in view of the formula
(7.10) for S. Besides, by the (F,Q) martingale representation property in (DMO.2),
the (F,Q) compensated martingale of the default indicator process of an F totally
inaccessible stopping time ν only jumps at the ηY , Y 2 Y�. Hence it cannot jump at
τ, i.e., Q(τ D ν) D 0. We conclude that τ avoids all F stopping times.

To check the condition (B), by the monotone class theorem, we only need consider
the elementary G predictable processes of the form U D ν f ((ηY ^ s)Y2Y�

)1(s,tU, for
anFs-measurable random variableν and a Borel function f . SinceU1K0,τK D ν f (s, . . . , s)1(s,tU1K0,τK,

we may take U 0 D ν f (s, . . . , s)1(s,tU in the condition (B).
The statements in the last line of the theorem follow from the other results by

Lemma 6.3 and in view of the explanations given in the last paragraph of Sect. 5. ut

Corollary 7.3 In the DMO model, we have γ 0 D γ (�, X̃ �) D
∑

Y2Y�
γ Y 2 H̃2.

Assuming all the other conditions in Theorem 5.1 and without cure period, so for
δ D 0 and f̃ D f̃ (t, 
 , k̃, ϑ) as of (7.9), the corresponding reduced TVA BSDE (4.3)
admits a unique square integrable solution 2̃t D 2̃(t, X̃ t ),where the function 2̃(t, x̃)
is a continuous viscosity solution to the corresponding semilinear PIDE1. A solution
2 to the full TVA BSDE (3.5) is obtained by setting 2 D 2̃ on J0, NτJ and

2 Nτ D 1fτ<T g
(̃
ξ ı
τ � (Pτ� � Cτ� � 2̃τ�)C1f�12ıg3

)
,

where ı 2 Y� is the identity of the shock triggering the first default of a party. The
(G,Q) local martingale component µ of 2 satisfies, for t 2 J0, NτK:

dµt D dµ̃t �
(̃
ξ ı
τ � 2̃τ� � (Pτ� � Cτ� � 2̃τ�)C1f�12ıg3

)
d Jt

�
( ∑

Y2Y�

(̃ξY
t � 2̃t )γ

Y
t � (Pt � Ct � 2̃t )

C3
∑

Y2Yb

γ Y
t

)
dt.

Proof In view of Theorem 7.2, Theorems 4.2 and 5.1 apply. They directly yield most
of the stated results. Since the well-posedness result for the reduced TVA BSDE in
Theorem 5.1 includes the BSDE comparison property and the usual a priori bound
and error BSDE estimates, the representation of the solution 2̃� to the reduced DMO
TVA BSDE in terms of a continuous viscosity solution to the corresponding semilinear
PIDE (with continuous coefficients) follows from standard arguments (see e.g. Delong
[15] or Crépey [8, Chapter 13]). ut

8 Conditions of numerical experiments

8.1 FT numerical scheme

Due to risky funding, the TVA equations are Lipschitz BSDEs. In the case of credit
derivatives, they are also very high-dimensional. Hence, all numerical schemes relying
on dynamic programming, such as purely backward deterministic PIDE schemes, but

1 Not written as not used in the paper.
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also forward/backward simulation/regression BSDE schemes, are ruled out by the
curse of dimensionality. For n greater than a few units, the only feasible DMO TVA
numerical schemes are purely forward simulation schemes. In this paper we proceed
by Monte Carlo estimation of successive orders of the linear BSDE expansion of Fujii
and Takahashi [17], dubbed “‘FT scheme” henceforth.

The FT scheme is based on an expansion of the solution to a BSDE as a series of
solutions to linear BSDEs, where the next BSDE in the series uses the solution to the
previous one as input data. Consider, for ε > 0 V

2̃εT D 0 and dµ̃εt VD d2̃εt � ε f̃ (t, X̃ t , 2̃
ε
t )dt is an(F,P) local martingale on T0, T U

2̃εt D 2̃
(0)
t C ε2̃(1)t C ε22̃

(2)
t C ε32̃

(3)
t C � � �

f̃ (t, X̃ t , 2̃
ε
t ) D f̃ (t, X̃ t , 2̃

0
t )

C (ε2̃(1) C ε22̃(2) C ε32̃(3) C � � � )∂ϑ f̃ (t, X̃ t , 2̃
(0)
t )C � � �

Then, formally: 2̃ D 2̃εD1 D 2̃(0) C 2̃(1) C 2̃(2) C 2̃(3) C � � � . The convergence of
this expansion is studied in a diffusive setup in Takahashi and Yamada [27] and Gobet
and Pagliarani [19]. Collecting all terms in εi , i D 0, . . . , 3, we obtain 2̃(0) D 0 and

2̃
(1)
t D Ẽ

[ ∫ T

t
f̃
(
s, X̃s, 2̃

(0)
s D 0

)
ds
∣∣∣∣Ft

]
,

2̃
(2)
t D Ẽ

[ ∫ T

t
∂ϑ f̃

(
s, X̃s, 2̃

(0)
s D 0

)
2̃(1)s ds

∣∣∣∣Ft

]
,

2̃
(3)
t D Ẽ

[ ∫ T

t
∂ϑ f̃

(
s, X̃s, 2̃

(0)
s D 0

)
2̃(2)s ds

∣∣∣∣Ft

]
.

(8.1)

The first two lines correspond to the identities (2.19) and (2.22) in Fujii and Takahashi
[17, arXiv version]. Compared with the third line, the complete third order term com-
prises another component based on ∂2

ϑ2 f̃ . In our case, ∂2
ϑ2 f̃ involves a Dirac measure

via the terms (Pt �Ct �ϑ)� in f vat (ϑ) (cf. (5.3)), so that we truncate the expansion
to the term 2̃

(3)
t as above (see Gobet and Pagliarani [19] for more about this).

Moreover, we use the interacting particles implementation of these formulas pro-
vided in Fujii and Takahashi [18]. Namely, we randomize, based on independent
exponential draws ε j with parameters µ j , each time integral that intervenes in (8.1)
either explicitly or implicitly through the terms 2̃(1)s and 2̃(2)s . We then obtain from
(8.1) by repeated applications of the tower rule :

2̃
(1)
0 D Ẽ

[
1ε1<T

eµ1ε1

µ1
f̃
(
ε1, X̃ε1 , 0

)]
,

2̃
(2)
0 D Ẽ

[
1ε1Cε2<T

eµ1ε1Cµ2ε2

µ1µ2
∂ϑ f̃

(
ε1, X̃ε1 , 0

)
f̃
(
ε1 C ε2, X̃ε1Cε2 , 0

)]
,

2̃
(3)
0 D Ẽ

[
1ε1Cε2Cε3<T

eµ1ε1Cµ2ε2Cµ3ε3

µ1µ2µ3

� ∂ϑ f̃
(
ε1, X̃ε1 , 0

)
∂ϑ f̃

(
ε1 C ε2, X̃ε1Cε2 , 0

)
f̃
(
ε1 C ε2 C ε3, X̃ε1Cε2Cε3 , 0

)]
.

(8.2)
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8.2 Numerical data

We set3 D 0, which allows validating the results of the FT scheme (8.2) by a Monte
Carlo estimate based on the full BSDE (3.5). In fact, further setting Rb D 1 and
c D λ D 0, we have the following linear approximation formula for the time-0 value
of the solution to the full TVA BSDE (in the present setup where δ D 0):

20 � E
[
1fτ<T gβτ ξ C

∫ Nτ

t
βs gs(Ps)ds

]
D E

[
1fτDτc<T gβτ (1 � Rc)(Pτ C1τ � Cτ )C C

∫ Nτ

t
βs Nλs (Ps � Cs)

C ds
]
.

(8.3)

For Nλ D 0, equality holds in the first line and a Monte Carlo loop based on (8.3)
yields an unbiased estimate for 20 D 2̃0, alternative to a Monte Carlo estimate for
2̃
(1)
0 C 2̃(2)0 C 2̃(3)0 as of (8.2). For Nλ 6D 0, (8.3) is only a linear approximation to20.

Unless stated otherwise, the following numerical values are used:

r D 0, Rc D 40%, δ D 0, V D I c

Nλ D 100 bp D 0.01, µ j D
2
T
, m D 104,

where m is the number of runs that are used in all the Monte Carlo estimates.
We consider a DMO model with constant shock intensities and n D 120 credit

names (unless stated otherwise). Note that the dependence between names is all in
the common shocks in this model. The stochasticity of the intensities is not crucial
for the gap risk feature that we want to investigate here. Using deterministic (constant
in this case) intensities allows speeding up the simulations. We take individual shock
intensities γ fig D 10�4 � (100 C i), which increases from 101 bp to 220 bp as i
increases from 1 to 120. We consider four nested groups of joint defaults, respectively
consisting of the riskiest 3%, 9%, 21% and 100% (i.e., all) names, with respective
shock intensities of 20, 10, 6.67 and 5 bp. The counterparty (resp. the bank) is taken
as the eleventh (resp. tenth) safest name in the portfolio.

In this model, we consider three CDO tranches of maturity T D 2 years with
upfront payment: an equity tranche, a mezzanine tranche and a senior tranche, cor-
responding to the respective pairs (a, b) in (6.8) given as (0%, 3%), (3%, 14%) and
(14%, 100%). The recovery R and the nominal Nom of all the tranches are taken as
40% and 100, respectively.

9 Numerical results

9.1 Gap risk

Figure 9.1 shows the TVA values obtained by FT schemes of order 1 to 3, for different
levels of nonlinearity (unsecured borrowing spread Nλ). The values of the risk-free
prices P0 of the equity, mezzanine and senior tranche are 229.65, 5.68 and 2.99.
In view of these, the TVA numbers of Figure 9.1 are very high, especially for the
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higher tranches, considerably greater for instance in relative terms than the interest
rate derivatives TVA numbers obtained in Crépey et al. [11].
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Fig. 9.1 TVA on CDO tranches with 120 underlying names computed by FT scheme of order 1 to 3, for
different levels of nonlinearity (unsecured borrowing spread Nλ). Left: Equity tranche. Middle: Mezzanine
tranche. Right: Senior Tranche.

Figure 9.2 shows the analog of Figure 9.1 using flawed simulations where we
replace P̃e

t C 1̃e
t by Pt� in the DMO coefficient f̃ of (7.9), removing the gap risk

feature of the DMO model. Going from left to right and from top to bottom among
these TVA curves, i.e., from the equity tranche to the senior tranche and from higher to
smaller funding costs, the corresponding fake TVA numbers are 10% to one hundred
times smaller than the “true” TVA numbers of Figure 9.1. We conclude that joint
defaults are the main DMO CVA contributor, especially for higher tranches. Gap risk
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Fig. 9.2 Analog of Figure 9.1 in a fake DMO model without gap risk.

is already present for δ D 0 in the DMO model, instantaneously realized in the joint
default dividend1τ D Dτ � Dτ�. This is also consistent with the findings in Bo and
Capponi [6, Figure 1].
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9.2 Performance analysis of the FT scheme

Depending on Nλ increasing from 0 to 300 bp (Nλ D 0 is a linear TVA case with higher
order FT terms all equal to 0), the second (resp. third) FT term in (8.2) never exceeds in
each case more than 5% of the first (resp. second) FT term in Figure 9.1. We conclude
that the first FT term can be used as a first order linear estimate of the TVA, with a
nonlinear correction given by the second FT term.

In Figure 9.3, which is computed for the mezzanine tranche, the left graph shows
that the % relative standard errors (% rel. SE) of the different orders of the FT scheme
do not explode with the dimension n. The middle graph, produced with n D 120,
shows that these errors do not explode with the level of nonlinearity Nλ. Consistent
with the fact that the successive FT terms are computed by standard Monte Carlo
loops, the computation times are essentially linear in n, as visible in the right graph.
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Fig. 9.3 Successive orders of the FT scheme for the mezzanine tranche of the middle panel of Figure 9.1.
Left: The % relative standard errors do not explode with the number of names (Nλ D 100 bp). Middle:
The % relative standard errors do not explode with the level of nonlinearity represented by the unsecured
borrowing spread Nλ (n D 120). Right: The computation times are linear in the number of names (Nλ D 100
bp).

Table 9.1 compared with Figures 9.1 and 9.3 shows that on top of being biased
(depending on Nλ, equal to 100 bp in Table 9.1), a Monte Carlo estimate based on the
linear approximation formula (8.3) has a much larger variance, especially for higher
tranches. In fact, for higher tranches, nonzero payoffs become quite rare events, so
that exploiting the knowledge of the intensities in an FT scheme greatly improves
the variance with respect to a Monte Carlo estimate based on (8.3). In addition, the

Tranche TVA Rel. SE 95% CI
Eq. 5.00 7.43% [4.63 , 5.37]

Mezz. 2.05 63.25% [0.75 , 3.34]
Sen. 1.67 64.59 % [0.59 , 2.75]

Tranche TVA Rel. SE 95% CI
Eq. 4.94 2.40% [4.82 , 5.06]

Mezz. 2.14 19.60% [1.72 , 2.55]
Sen. 1.74 20.02% [1.39 , 2.09]

Table 9.1 Linearized DMO TVA on CDO tranches computed by Monte Carlo based on (8.3) (Nλ D 100 bp).
Left: m D 104. Right: m D 105.
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simulations for (8.3) take considerably more time, due to the discretisation of the time
integral (or, if the latter was computed by randomization, then this would increase the
variance even further).

9.3 Impact of the margins

We now consider the continuous variation-margining case where Vτ D Pτ�, as op-
posed to V D 0 above. The left-limit in time in Pτ� accounts for an “(at least)
infinitesimal delay” in the implementation of the margin calls, which in practice are
performed according to some discrete-time schedule.

Even in this continuous variation-margining case and for δ D 0, we have

Qτ δ � Cc
τ D (Pτ δ � Pτ�)C1τ δ � I c

τ D (Pτ � Pτ�)C1τ � I c
τ ,

where we already saw the importance of the gap term 1τ D Dτ � Dτ� (the term
Pτ � Pτ� matters little in the DMO model). Accordingly, observe from Table 9.2 that
the ensuing TVA numbers are still important relatively to the corresponding values of
P0, especially for higher tranches (and again, the FT scheme performs much better
than the biased Monte Carlo based on (8.3)). By comparison with Table 9.1, we see that
it is only for the equity tranche that the TVA is substantially reduced by the variation
margins. The TVA of higher tranches, essentially due to the common shocks, cannot
be mitigated by variation margining.

Tranche TVA Rel. SE 95% CI
Eq. 0.99 5.02% [0.96 , 0.99]

Mezz. 2.12 4.94% [2.09 , 2.15]
Sen. 1.76 4.94% [1.74 , 1.79]

Tranche TVA Rel. err. 95% CI
Eq. 1.02 17.02% [0.84 , 1.19]

Mezz. 1.95 66.51% [0.65 , 3.24]
Sen. 1.62 66.64% [0.54 , 2.70]

Table 9.2 TVA computations in the continuous variation-margining case
Vτ D Pτ� (Nλ D 100 bp,m D 104). Left: FT scheme based on (8.2). Right : Monte Carlo based on
the formula (8.3).

This motivates the need for initial margins I c. But the left panel of Table 9.3 shows
that the amount of initial margins I c, assumed a constant proportional to 20, that is
required to balance the DMO gap term 1τ D Dτ � Dτ�, is huge, especially for the
higher tranches. This is consistent with the extreme tail event feature of the CVA on
senior protection CDO tranches. As seen above, most of the CVA comes from the few
joint default scenarios giving rise to the joint default dividend 1τ D Dτ � Dτ�. To
compete with these, initial margins must be of the same level of magnitude, i.e., very
large, and this at every point in time of every possible scenario, as DMO default times
are totally inaccessible. Such levels of initial margins would represent a huge funding
charge for the counterparty. About the difficulty of mitigating joint to default risk by
collateralization, see also Bo and Capponi [6, last paragraph of Sect. 3.1].
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Tranche/I c 20 1020 10220 10320 10420

Eq. 0.97 0.85 0.16 0.00 0.00
Mezz. 2.12 2.11 1.99 0.87 0.00
Sen. 1.77 1.76 1.66 0.73 0.00

Table 9.3 Values of 20 computed by FT scheme for different levels of initial margin I c posted by the
counterparty (Vτ D Pτ�).
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