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Abstract

We consider the problem of valuation of interest rate derivatives in the post-crisis
setup. We develop a multiple-curve model, set in the HJM framework and driven by
a Lévy process. We proceed with joint calibration to caps and swaptions of different
tenors, the calibration to caps guaranteeing that the model correctly captures volatil-
ity smile effects (in strike) and the calibration to at-the-money swaptions ensuring an
appropriate term structure of the volatility in the model. To account for counterparty
risk and funding issues, we use the calibrated multiple-curve model as an underlying
model for CVA computation. We follow a reduced-form methodology through which
the problem of pricing the counterparty risk and funding costs can be reduced to a
pre-default Markovian BSDE, or an equivalent semi-linear PDE. As an illustration we
study the case of a basis swap, for which we compute the counterparty risk and funding
adjustments.

Keywords: interest rate derivative, multiple-curve term structure model, Lévy process,
credit valuation adjustment (CVA), funding.

1 Introduction

As a consequence of the financial crisis, various new phenomena appeared in the fixed income
markets. A variety of spreads have developed, notably Libor-OIS swap spreads and basis
swap spreads, which has become known in the literature as a multiple-curve phenomenon
(see, among others, Kijima, Tanaka, and Wong (2009), Kenyon (2010), Henrard (2007,
2010), Bianchetti (2010), Mercurio (2010b, 2010a), Fujii, Shimada, and Takahashi (2011,
2010), Moreni and Pallavicini (2013a)).

In addition, counterparty risk and funding costs have become major issues in OTC
derivative transactions. To account for these, credit/debt valuation adjustments CVA/DVA
and different kinds of funding valuation adjustment have been introduced (see e.g. the
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papers by Prisco and Rosen (2005), Brigo and Pallavicini (2008), Brigo and Capponi
(2010), Burgard and Kjaer (2011a,2011b), Crépey (2012), Crépey, Gerboud, Grbac, and
Ngor (2013), Pallavicini, Perini, and Brigo (2011, 2012); see also the books by Gregory
(2012), Cesari, Aquilina, Charpillon, Filipovic, Lee, and Manda (2010), Brigo, Morini, and
Pallavicini (2013) and Crépey, Bielecki, and Brigo (2013)). All these issues are related
since the above-mentioned spreads are a consequence of banks’ increased credit riskiness
and funding costs (see e.g. Crépey and Douady (2013), Filipović and Trolle (2013) and
Crépey, Grbac, and Nguyen (2012) for an fuco-financial, econometrical and pricing per-
spective, respectively). We refer to an aggregate adjustment as a TVA, which stands for
total valuation adjustment. It should be emphasized that we use this terminology in the
paper and reserve the term CVA for a strict credit valuation adjustment. Note that in the
literature, the acronym CVA is often used also in a broader sense (which then corresponds
to our TVA). This is the reason why the name CVA was also preferred in the title and the
abstract of the paper, however in the rest of the paper we consistently use the terms TVA
and CVA in the sense explained above.

From a risk-management perspective, this new paradigm has created a need for in-
terest rate models which, on the one hand, are multiple-curve models consistent with the
reality of the post-crisis interest rate markets and, on the other hand, allow for practical
TVA computations (for which, in particular, a short rate process rt and a parsimonious
Markov structure are required). This double requirement puts a lot of constraints on the
model. A few suitable models which come to mind are the HJM multiple-curve model of
Fujii and Takahashi (2011) and the “parsimonious” (in reference to the above Markov con-
cern) models of Moreni and Pallavicini (2013a, 2013b). Moreni and Pallavicini (2013a) are
the first to apply the HJM reconstruction formula, normally used to compute zero coupon
bond prices, to define the FRA rates. Our model construction in this paper is similar in
spirit. However, none of the mentioned papers studies the application to TVA computation.

To optimally meet all the conditions discussed above, a powerful modeling ingredient
is the use of a more general class of driving processes, namely Lévy processes, as opposed
to Brownian drivers in the three mentioned papers. Specifically, in this paper, we devise a
Lévy HJM multiple-curve model driven by a two-dimensional NIG process, with a built-in
HJM fit to the initial Libor and OIS term structures and with a two-dimensional Markov
structure. Lévy drivers were already used with the same motivation in Crépey et al. (2012).
However, there the Libor rates were defined in terms of the so-called Libor bonds reflecting
the credit and liquidity risk of the Libor contributing banks. The main motivation was
to explain in an economically satisfying way the spreads between the OIS and the Libor
rates. But, since Libor bonds are not traded assets, we choose in this paper to follow an
approach similar to Mercurio (2010a) and model the Libor FRA rates (see definition (9)
below). The Libor FRA rates are directly observable up to the maturity of one year and for
longer maturities they can be bootstrapped from Libor swap rates. The model of Mercurio
(2010a) is developed in the standard Libor market model setup. This setup is less suited
for TVA computations, as it does not allow for low-dimensional Markovian representations
of the term structure of interest rates. In contrast, the HJM framework developed in the
present paper has this property. In particular, we can access the short rate process rt, which
is needed for discounting in TVA computations.

The paper is organized as follows. In Section 2, we present a Lévy HJM multiple-
curve model and provide pricing formulas for the most common interest rate derivatives
such as swaps and basis swaps, caplets and swaptions. Section 4 deals with the calibration
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of the model. The HJM framework yields an automatic fit to the initial Libor and OIS
term structures and the dynamic parameters of the model are calibrated to option prices.
We ensure joint calibration to caps and swaptions of different tenors, the calibration to
caps guaranteeing that the model correctly captures volatility smile effects (in strike) and
the calibration to at-the-money swaptions ensuring an appropriate term structure of the
volatility in the model. This is important in view of the targeted application to TVA
computations on multiple-curve products, which is the topic of Section 5, where we use the
calibrated multiple-curve model as an underlying model for TVA computation. We follow
the reduced-form methodology of Crépey (2012) (see also Pallavicini et al. (2012)) through
which counterparty risk and funding adjustments are obtained as the solution to a related
backward stochastic differential equation (BSDE). As an illustration we study the case of
a basis swap, for which we compute the counterparty risk and funding adjustments.

2 Multiple-curve model

The post-crisis interest rate models have to account for the various spreads observed in the
market, as discussed in the introduction. In particular, one needs to model not only the
FRA rates related to the Libor rates, which are the underlying rates for most interest rate
derivatives, but also the OIS rates implied by the overnight indexed swaps (OIS), which are
used for discounting. In this section we develop a Lévy multiple-curve model for the FRA
and the OIS rates, which is designed in the Heath–Jarrow–Morton (HJM) framework for
term structure modeling. Furthermore, we provide the corresponding pricing formulas for
the most common interest rate derivatives.

2.1 Driving process

We begin by introducing the class of driving processes that will be considered. Let a filtered
probability space (Ω,FT ,F, IP), where T is a finite time horizon and IP is a risk-neutral
pricing measure, be fixed. The filtration F = (Ft)t∈[0,T ] satisfies the usual conditions. The

driving process Y = (Yt)0≤t≤T is assumed to be an F-adapted, Rn-valued Lévy process. For
the definition and main properties of Lévy processes we refer the reader to Cont and Tankov
(2003) and Sato (1999). The characteristic function of Yt is given by the Lévy-Khintchine
formula, in which u denotes a row-vector in Rn:

IE[eiuYt ] = exp

(
t

(
iub− 1

2
ucu> +

∫
Rn

(
eiux − 1− iuh(x)

)
F (dx)

))
, (1)

where b ∈ Rn, c is a symmetric, nonnegative definite real-valued n-dimensional matrix and
F is a Lévy measure on Rn, i.e. F ({0}) = 0 and

∫
Rn(|x|2 ∧ 1)F (dx) < ∞. The function

h : Rn → Rn is a truncation function.
We assume that there exist constants K, ε > 0 such that∫

|x|>1
exp(ux)F (dx) <∞ , u ∈ [−(1 + ε)K, (1 + ε)K]n. (2)

It is well-known that condition (2) guarantees the existence of exponential moments of the
process Y : condition (2) holds if and only if IE[exp(uYt)] < ∞, for all 0 ≤ t ≤ T and
u ∈ [−(1 + ε)K, (1 + ε)K]n (cf. Theorem 25.3 in Sato (1999)). Moreover, (2) ensures that
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h(x) = x can be chosen as truncation function. Hence, Y is a special semimartingale, with
the canonical representation

Yt = bt+
√
cWt +

∫ t

0

∫
Rn
x(µ− ν)(ds, dx), t ∈ [0, T ], (3)

where µ is the random measure of the jumps of Y , ν is the IP-compensator of µ given by
ν(ds, dx) = F (dx)ds,

√
c is a measurable version of a square-root of the matrix c, and W is

a IP-standard Brownian motion.
The cumulant generating function associated with the Lévy process Y is denoted by

ψ. Then for any row-vector z ∈ Cn such that <z ∈ [−(1 + ε)K, (1 + ε)K]n, we have

ψ(z) = zb+
1

2
zcz> +

∫
Rn

(ezx − 1− zx)F (dx). (4)

Consequently, (1) is equivalently written as:

IE[eiuYt ] = exp (tψ(iu)) . (5)

2.2 Multiple-curve dynamics

In this section we present the multiple-curve model for the OIS bond prices and the FRA
rates. The dynamics of the OIS bond prices (Bt(T ))0≤t≤T are modeled in a HJM fashion
as follows (see e.g. Eberlein and Raible (1999)):

Bt(T ) =
B0(T )

B0(t)
exp

(∫ t

0
(A(s, t)−A(s, T ))ds+

∫ t

0
(Σ(s, t)− Σ(s, T ))dYs

)
, (6)

whereA(s, T ) and Σ(s, T ) are deterministic, real-valued functions defined on the set {(s, T ) ∈
[0, T ] × [0, T ] : 0 ≤ s ≤ T}, whose paths are continuously differentiable in the second vari-
able. We make a standing assumption that the volatility structure Σ(·, ·) is bounded such
that 0 ≤ Σi(s, T ) ≤ K

2 for every 0 ≤ s ≤ T ≤ T and i ∈ {1, 2, . . . , n}, where K is the
constant from (2). The initial term structure (B0(T ))0≤t≤T is assumed to be bounded.
Moreover, A(s, T ) = ψ(−Σ(s, T )), for every s ≤ T , which is a classical Lévy HJM drift
condition guaranteeing absence of arbitrage between OIS bonds. The OIS discount factor

process β = (βt)0≤t≤T defined by βt = exp
(
−
∫ t

0 rsds
)

, where r represents the short rate

process, can be written as

βt = B0(t) exp

(
−
∫ t

0
A(s, t)ds−

∫ t

0
Σ(s, t)dYs

)
(7)

and the connection between B(T ) and r is given by

Bt(T ) = B0(T ) exp

(∫ t

0
(rs −A(s, T ))ds−

∫ t

0
Σ(s, T )dYs

)
. (8)

Now we define the FRA rates Ft(T, S) and specify their dynamics. More precisely, we
introduce the following quantities:

Ft(T, S) = (S − T )IESt [LT (T, S)] , (9)
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where 0 ≤ t ≤ T ≤ S. Here LT (T, S) denotes a T -spot Libor rate fixed at time T for the
time interval [T, S] and IESt denotes the Ft-conditional expectation with respect to the S-
forward martingale measure IPS (see (10)), where F = (Ft) is the reference filtration. These
quantities are exactly (S − T )× Libor FRA rates, as defined in Mercurio (2010a). Defined
as IESt [LT (T, S)] in (9), FRA rates are by their very definition local martingales under S-
forward martingale measures, consistent with the model-free arbitrage formula (20) below
for the price of an interest rate swap. Note that modeling (S − T )× FRA rates instead of
the FRA rates themselves (“interest charge instead of interest rate”) gives rise to slightly
simpler formulas in our setup. From a practical point of view, modeling in terms of the
FRA rates yields very similar numerical results. By a slight abuse of terminology, we will
refer to Ft(T, S) as the FRA rate.

Note that the definition of Ft(T, S) implies the following two modeling requirements:

(i) Ft(T, S) ≥ 0, for every t

(ii) F·(T, S) is a IPS-martingale, where the IPS-forward martingale measure is character-
ized in terms of IP by the following density process:

dIPS

dIP

∣∣∣
Ft

=
βtBt(S)

B0(S)
, 0 ≤ t ≤ S. (10)

Both requirements are direct consequences of (9) if the Libor rate LT (T, S) is nonnegative,
which is implied by market observations.

We model Ft(T, S), for all t ≤ T ≤ S, as

Ft(T, S) = F0(T, S) exp

(∫ t

0
α(s, T, S)ds+

∫ t

0
ς(s, T, S)dYs

)
, (11)

where α(s, T, S) is a drift term and ς(s, T, S) a volatility structure. We assume that
α(s, T, S) and ς(s, T, S) are deterministic, real-valued functions defined on the set {(s, T, S) ∈
[0, T ] × [0, T ] × [0, T ] : 0 ≤ s ≤ T ≤ S} such that the above integrals are well-defined.
The volatility structure is assumed to be bounded, i.e. 0 ≤ ς i(s, T, S) ≤ K

2 , for every
0 ≤ s ≤ T ≤ S and i ∈ {1, . . . , n}. The initial term structure (F0(T, S))0≤T≤S≤T is also
bounded by assumption.

With this specification, requirement (i) is satisfied automatically and (ii) holds if the
following drift condition is satisfied

α(s, T, S) = −ς(s, T, S)bS − 1

2
ς(s, T, S) cς(s, T, S)>

−
∫
Rd

(
eς(s,T,S)x − 1− ς(s, T, S)x

)
FS(dx)

= −ψS(ς(s, T, S))

= ψ(−Σ(s, S))− ψ(ς(s, T, S)− Σ(s, S)) (12)

where (bS , c, FS) is the Lévy triplet and ψS is the cumulant generating function of Y
under the forward measure IPS . This result is well-known for Lévy driven term structure
models, compare for example Eberlein and Özkan (2005). The last equality follows from the
connection between the cumulant generating functions ψS and ψ of Y under the measures
IPS and IP which is given by

ψS(z) = ψ(z − Σ(s, S))− ψ(−Σ(s, S)) (13)



6

for z ∈ Rn such that the above expressions are well-defined. To prove this result, it suffices
to apply the definition of the cumulant generating function and equations (8) and (10).

Remark 2.1 Note that the following generalization of (11) can also be considered, which
produces an equally tractable model:

Ft(T, S) + ∆(T, S) = (F0(T, S) + ∆(T, S)) exp

(∫ t

0
α(s, T, S)ds+

∫ t

0
ς(s, T, S)dYs

)
,

where ∆(T, S) ∈ R, for T ≤ S, are constant shifts. This is known as a shifted model. The
use of shifts allows one to recover a single-curve model as a special case of the multiple-curve
model by setting ∆(T, S) = 1, for all T ≤ S, and ς(s, T, S) = Σ(s, S)−Σ(s, T ) in the above

specification. Then Ft(T, S) = Bt(T )
Bt(S)−1, which is the classical relation from the single-curve

model. Note, however, that in the shifted model the FRA rates can become negative with
positive probability. More generally, the shifts can also be used to increase the flexibility
of the model, which we found unnecessary in our case where sufficient flexibility is already
ensured by maturity-dependent volatility specification for the FRA rate (cf. Sections 2.3
and 4). For different kinds of shifts used in the multiple-curve term structure literature see
Mercurio (2010a) or Moreni and Pallavicini (2013a).

2.3 Lévy Hull-White specification

In the sequel we focus on the case where Y = (Y 1, Y 2) is a two-dimensional Lévy process.
The dependence between the two components can be modeled in an explicit way. For
example one can use a common factor specification starting from a three-dimensional Lévy
processes (Z1, Z2, Z3) with independent components and setting Y 1 := Z1 + Z3, Y 2 :=
Z2 + Z3, or Lévy copulas (see Kallsen and Tankov (2006)). In the numerical part of the
paper we find it sufficient to use a two-dimensional Lévy process, whose components Y i

are two independent NIG processes with cumulant generating function ψi of Y i given, for
i = 1, 2, by:

ψi(z) = −νi
(√

ν2
i − 2ziθi − z2

i σ
2
i − νi

)
, i = 1, 2, (14)

where νi, σi > 0 and θi ∈ R. We refer to the seminal paper by Barndorff-Nielsen (1997) for
details and properties of NIG processes.1

Next we specify the volatility structures. We choose the Vasicek volatility structures,
which is motivated by the desired Markovian representation mentioned in the introduction
and used in Subsection 3.4. More precisely, the volatility of Bt(T ) is given by

Σ(s, T ) =
(σ
a

(
1− e−a(T−s)

)
, 0
)

(15)

and the volatility of Ft(T, S) by

ς(s, T, S) =

(
σ

a
eas
(
e−aT − e−aS

)
,
σ∗(T, S)

a∗
ea
∗s
(
e−a

∗T − e−a∗S
))

, (16)

1The parametrization in equation (3.1) in Barndorff-Nielsen (1997) is recovered by setting µ = 0, α =

1
σ

√
θ2i
σ2
i

+ ν2i , β = θi
σ2
i

and δ = σ.
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where σ, σ∗(T, S) > 0 and a, a∗ 6= 0 are real constants. Note that σ∗(T, S) may depend on
T and S, see Remark 2.1.

Denote by ft(T ) = −∂T log(Bt(T )) the instantaneous continuously compounded for-
ward rate, so that rt = ft(t). Then the OIS bond price can be written as an exponentially-
affine function of the short rate r:

Bt(T ) = exp(m(t, T ) + n(t, T )rt), (17)

where

m(t, T ) = log

(
B0(T )

B0(t)

)
− n(t, T )

[
f0(t) + ψ1

(σ
a

(
e−at − 1

))]
−
∫ t

0

[
ψ1
(σ
a

(
e−a(T−s) − 1

))
− ψ1

(σ
a

(
e−a(t−s) − 1

))]
ds

and

n(t, T ) = −eat
∫ T

t
e−audu =

1

a

(
e−a(T−t) − 1

)
.

The dynamics of the short rate r is described by the following SDE

drt = a(ρ(t)− rt)dt+ σdY 1
t ,

i.e.

rt = e−at
(
r0 + a

∫ t

0
easρ(s)ds+ σ

∫ t

0
easdY 1

s

)
with

ρ(t) = f0(t) +
1

a

∂

∂t
f0(t) + ψ1

(σ
a

(
e−at − 1

))
− (ψ1)′

(σ
a

(
e−at − 1

)) σ
a
e−at. (18)

Note that this is a Lévy Hull–White extended Vasicek model for the short rate r (cf. Eberlein
and Raible (1999), equation (4.11), and Example 3.5 of Crépey et al. (2012)).

Furthermore, in a fashion similar to (17), the FRA rate given in (11) can be written
as the following exponentially-affine function of the short rate r and another factor process
which we denote by q:

Ft(T, S) = F0(T, S) exp

(∫ t

0
α(s, T, S)ds+

σ

a

(
e−aT − e−aS

) ∫ t

0
easdY 1

s

+
σ∗(T, S)

a∗

(
e−a

∗T − e−a∗S
)∫ t

0
ea
∗sdY 2

s

)
= exp (m(t, T, S) + n(t, T, S)rt + n∗(t, T, S)qt) , (19)

where

n(t, T, S) = n(t, T )− n(t, S)

n∗(t, T, S) =
σ∗(T, S)

a∗

(
e−a

∗(T−t) − e−a∗(S−t)
)

and

m(t, T, S) = log(F0(T, S)) +

∫ t

0
α(s, T, S)ds− n(t, T, S)

(
f0(t) + ψ1

(σ
a

(
e−at − 1

)))
.



8

The factor process q in (19) is defined by

qt = e−a
∗t

∫ t

0
ea
∗sdY 2

s ,

i.e. it satisfies the following SDE

dqt = −a∗qtdt+ dY 2
t , q0 = 0.

3 Pricing of interest rate derivatives

In this section we give an overview of the most common interest rate derivatives and pro-
vide pricing formulas in the Lévy multiple-curve model. Note that these are “clean prices”,
ignoring counterparty risk and assuming that funding is ensured at the OIS rate. Counter-
party risk and funding valuation adjustments are computed separately, as will be explained
in Section 5. The results of Subsections 3.1 and 3.2 below are valid for a general Lévy
multiple-curve model and in Subsection 3.3 the assumptions of Section 2.3 are imposed.

3.1 Interest rate derivatives with linear payoffs

For interest rate derivatives with linear payoffs the prices can be easily expressed in terms
of Ft(T, S), as we show below.

A fixed-for-floating interest rate swap is a financial contract between two parties
to exchange a stream of fixed interest payments for a stream of floating payments linked to
the Libor rates, based on a specified notional amount N . We assume, as standard, that the
Libor rate is set in advance and the payments are made in arrears. The swap is initiated
at time T0 ≥ 0. Denote by T1 < · · · < Tn, where T1 > T0, a collection of the payment dates
and by K the fixed rate. Then the time-t value of the swap, where t ≤ T0, for the receiver
of the floating rate is given by:

P swt = N
n∑
k=1

δk−1Bt(Tk)IE
Tk
t [LTk−1

(Tk−1, Tk)−K]

= N
n∑
k=1

Bt(Tk) (Ft(Tk−1, Tk)− δk−1K) , (20)

where IETk is the expectation with respect to the forward measure IPTk and δk−1 = Tk−Tk−1.
The swap rate Ksw

t is given by

Ksw
t =

∑n
k=1Bt(Tk)Ft(Tk−1, Tk)∑n

k=1 δk−1Bt(Tk)
. (21)

Remark 3.1 The Libor-OIS swap spread mentioned in the introduction is by definition
the difference between the swap rate (21) of the Libor-indexed interest rate swap and the
OIS rate, where the latter is given by the classical formula:

Kois
t =

Bt(T0)−Bt(Tn)∑n
k=1 δk−1Bt(Tk)

. (22)

See Filipović and Trolle (2013) for details. Thus, the Libor-OIS swap spread is given, for
0 ≤ t ≤ T0, by

Ksw
t −Kois

t =

∑n
k=1Bt(Tk)Ft(Tk−1, Tk)−Bt(T0) +Bt(Tn)∑n

k=1 δk−1Bt(Tk)
. (23)
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A basis swap is an interest rate swap, where two streams of floating payments linked
to the Libor rates of different tenors are exchanged. Both rates are set in advance and paid
in arrears. We consider a basis swap with two tenor structures denoted by T 1 = {T 1

0 <
. . . < T 1

n1
} and T 2 = {T 2

0 < . . . < T 2
n2
}, where T 1

0 = T 2
0 ≥ 0, T 1

n1
= T 2

n2
, and T 1 ⊂ T 2.

The notional amount is denoted by N and the swap is initiated at time T 1
0 , where the first

payments are due at T 1
1 and T 2

1 . The time-t value of the basis swap, for t ≤ T 1
0 , is given by:

P bswt = N

(
n1∑
i=1

δ1
i−1Bt(T

1
i )IE

T 1
i
t [LT 1

i−1
(T 1
i−1, T

1
i )]

−
n2∑
j=1

δ2
j−1Bt(T

2
j )IE

T 2
j

t [LT 2
j−1

(T 2
j−1, T

2
j )]

 . (24)

Thus,

P bswt = N

 n1∑
i=1

Bt(T
1
i )Ft(T

1
i−1, T

1
i )−

n2∑
j=1

Bt(T
2
j )Ft(T

2
j−1, T

2
j )

 . (25)

The value of the basis swap after the initiation, i.e. the value at time t, for T 1
0 ≤ t < T 1

n1
,

is given by

P bswt = N

(
Bt(T

1
it)FT 1

it−1
(T 1
it−1, T

1
it) +

n1∑
i=it+1

Bt(T
1
i )Ft(T

1
i−1, T

1
i ) (26)

−Bt(T 2
jt)FT 2

jt−1
(T 2
jt−1, T

2
jt)−

n2∑
j=jt+1

Bt(T
2
j )Ft(T

2
j−1, T

2
j )

 ,

where T 1
it

, respectively T 2
jt

, denotes the smallest T 1
i , respectively T 2

j , which is strictly greater
than t.

Note that a basis swap would have zero value (and zero TVA) at all times in the classical
single-curve setup (see Section 4.4 in Crépey et al. (2012)). However, in a multiple-curve
setup, the value of the basis swap at any time t is not zero and markets actually quote
positive basis swap spreads, which, when added to the smaller tenor leg, make the value of
the basis swap equal zero. More precisely, on the smaller tenor leg the floating interest rate
LT 2

j−1
(T 2
j−1, T

2
j ) at T 2

j is replaced by LT 2
j−1

(T 2
j−1, T

2
j ) +Kbsw

t , for every j = 1, . . . , n2, where

Kbsw
t is the fair basis swap spread given at time t by

Kbsw
t =

∑n1
i=1Bt(T

1
i )Ft(T

1
i−1, T

1
i )−

∑n2
j=1Bt(T

2
j )Ft(T

2
j−1, T

2
j )∑n2

j=1 δ
2
j−1Bt(T

2
j )

. (27)

3.2 Caplets

Let us now consider a caplet with strike K and maturity T on the spot Libor rate for the
period [T, T + δ], settled in arrears at time T + δ. Its time-t price, for t ≤ T , is given by

P cplt = δ Bt(T + δ)IET+δ
t

[
(LT (T, T + δ)−K)+]

= Bt(T + δ)IET+δ
t

[
(FT (T, T + δ)− δK)+] ,
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since
LT (T, T + δ) = IET+δ

T [LT (T, T + δ)] = δ−1FT (T, T + δ).

The value of the caplet at time t = 0 can be calculated using the Fourier transform method.
One has

P cpl0 = B0(T + δ)IET+δ
[(
eX −K

)+ ]
,

where K := δK and

X := logFT (T, T +δ) = logF0(T, T +δ)+

∫ T

0
α(s, T, T +δ)ds+

∫ T

0
ς(s, T, T +δ)dYs. (28)

The moment generating function of the random variable X under the measure IPT+δ is
given by

MT+δ
X (z) = IET+δ

[
ezX

]
= exp

(
z

(
logF0(T, T + δ) +

∫ T

0
α(s, T, T + δ)ds

))
× exp

(∫ T

0
ψT+δ(zς(s, T, T + δ))ds

)
= exp

(
z

(
logF0(T, T + δ) +

∫ T

0
α(s, T, T + δ)ds

))
(29)

× exp

(
−
∫ T

0
ψ(−Σ(s, T + δ))ds

)
× exp

(∫ T

0
ψ (zς(s, T, T + δ)− Σ(s, T + δ)) ds

)
,

for z ∈ R such that the above expectation exists and where ψ, resp. ψT+δ, is the cumulant
generating function of the process Y under the measure IP, resp. IPT+δ. The first equality
follows by Lemma 3.1 in Eberlein and Raible (1999) and the second one by equation (13).
The payoff function of the caplet

g(x) = (ex −K)+,

has the (generalized) Fourier transform

ĝ(z) =

∫
R
eizxg(x)dx =

K
1+iz

iz(1 + iz)
,

for z ∈ C such that =z > 1. Therefore, applying Theorem 2.2 in Eberlein, Glau, and
Papapantoleon (2010), we obtain the following result (cf. also Carr and Madan (1999)).

Proposition 3.2 Assume that there exists a positive constant K̃ < K
2 such that Σ(s, T ) ≤ K̃

and ς(s, T, S) ≤ K̃ componentwise and for all 0 ≤ s ≤ T ≤ S ≤ T . Let R ∈ (1, K−K̃
K̃

) be an
arbitrary real number. The price at time t = 0 of the caplet with strike K and maturity T
is given by

P cpl0 =
B0(T + δ)

2π

∫
R
ĝ(iR− v)MT+δ

X (R+ iv)dv

=
B0(T + δ)

2π

∫
R

K
1−iv−R

MT+δ
X (R+ iv)

(R+ iv)(R+ iv − 1)
dv, (30)



11

Proof. The result follows by Theorem 2.2 in Eberlein, Glau, and Papapantoleon (2010).

We only have to check that for R ∈ (1, K−K̃
K̃

) the moment generating function MT+δ
X (R+iv)

is finite. A simple algebraic manipulation shows that |Rς i(s, T, T + δ)− Σi(s, T + δ)| < K,
which ensures that the cumulant generating function appearing in (29) has finite value for
z = R+ iv. 2

Remark 3.3 Alternatively, under the assumptions of Section 2.3, we can express the time-0
value of the caplet in terms of the factor process (r, q) as

P cpl0 = B0(T + δ)IET+δ

[(
em(T,T,T+δ)+n(T,T,T+δ)rT+n∗(T,T,T+δ)qT −K

)+
]
,

where we have used (19).

3.3 Swaptions

In this section we consider a swaption, which is an option to enter an interest rate swap
with swap rate K and maturity Tn at a pre-specified date T = T0 ≥ 0. The underlying
swap is defined in Section 3 and we consider the notional amount N = 1. The value at time
t ≤ T of the swaption is given by

P swnt = Bt(T )
n∑
j=1

δj−1IETt
[
BT (Tj) (Ksw

T −K)+] ,
since the swaption can be seen as a sequence of fixed payments δj−1 (Ksw

T −K)+, j =
1, . . . , n, received at dates T1, . . . , Tn, where Ksw

T denotes the swap rate of the underlying
swap at time T . We have at time t = 0

P swn0 = B0(T )IET

 n∑
j=1

δj−1BT (Tj) (Ksw
T −K)+


= B0(T )IET

 n∑
j=1

BT (Tj)FT (Tj−1, Tj)−
n∑
j=1

δj−1BT (Tj)K

+ , (31)

which follows by (21).
We will work under the assumptions of Section 2.3. The driving process Y is a two-

dimensional Lévy process and we assume the Vasicek volatility structures:

Σ(t, T ) =
(σ
a

(
1− e−a(T−t)

)
, 0
)

ς(t, T, S) =

(
σ

a
eat
(
e−aT − e−aS

)
,
σ∗(T, S)

a∗
ea
∗t
(
e−a

∗T − e−a∗S
))

.

Recall from equations (6) and (11) that for each j, BT (Tj) is given by

BT (Tj) =
B0(Tj)

B0(T )
exp

(∫ T

0
(A(s, T )−A(s, Tj))ds+

∫ T

0
(Σ(s, T )− Σ(s, Tj))dYs

)
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and FT (Tj−1, Tj) is given by

FT (Tj−1, Tj) = F0(Tj−1, Tj) exp

(∫ T

0
α(T, Tj−1, Tj)ds+

∫ T

0
ς(T, Tj−1, Tj)dYs

)
.

Introducing an FT -measurable random vector

Z = (Z1, Z2) =

(∫ T

0
easdY 1

s ,

∫ T

0
ea
∗sdY 2

s

)
,

we obtain for each j

BT (Tj) = cj,0ec
j,1Z1

FT (Tj−1, Tj) = c̄j,0ec̄
jZ ,

where

cj,0 =
B0(Tj)

B0(T )
exp

(∫ T

0
(A(s, T )−A(s, Tj))ds

)
,

cj,1 =
σ

a

(
e−aTj − e−aT

)
,

c̄j,0 = F0(Tj−1, Tj) exp

(∫ T

0
α(T, Tj−1, Tj)ds

)
,

c̄j = (c̄j,1, c̄j,2) =

(
σ

a

(
e−aTj−1 − e−aTj

)
,
σ∗(Tj−1, Tj)

a∗

(
e−a

∗Tj−1 − e−a∗Tj
))

are deterministic constants. Therefore, (31) becomes

P swn0 = B0(T )IET

 n∑
j=1

cj,0ec
j,1Z1

c̄j,0ec̄
jZ −

n∑
j=1

cj,0δj−1Ke
cj,1Z1

+
= B0(T )IET

 n∑
j=1

aj,0ea
j,1Z1+aj,2Z2 −

n∑
j=1

bj,0eb
j,1Z1

+ , (32)

with aj,0 = cj,0c̄j,0, aj,1 = cj,1 + c̄j,1, aj,2 = c̄j,2, bj,0 = cj,0δj−1K and bj,1 = cj,1. One can
compute the above expectation applying the Fourier transform method, cf. Theorem 3.2 in
Eberlein, Glau, and Papapantoleon (2010). Note that the value of the expectation depends
only on the distribution of the random vector Z under the measure IPT . The moment
generating function MT

Z of Z under IPT is given by

MT
Z (z) = IET

[
ez1Z

1+z2Z2
]

= IET
[
e
∫ T
0 z1easdY 1

s +
∫ T
0 z2ea

∗sdY 2
s

]
= exp

(∫ T

0
ψT (z1e

as, z2e
a∗s)ds

)
= exp

(
−
∫ T

0
ψ
((σ

a
(e−a(T−s) − 1), 0

))
ds

)
× exp

(∫ T

0
ψ
(
z1e

as − σ

a
(1− e−a(T−s)), z2e

a∗s
)
ds

)
, (33)
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for any z ∈ R2 such that the expectation above is finite. The first equality follows again
from Lemma 3.1 in Eberlein and Raible (1999) and the second one by (13).

Letting

f(x) = f(x1, x2) :=

 n∑
j=1

aj,0ea
j,1x1+aj,2x2 −

n∑
j=1

bj,0eb
j,1x1

+

,

its (generalized) Fourier transform is given by

f̂(z) =

∫
R2

eizxf(x)dx, (34)

for a row vector z ∈ C2 such that the above integral is finite; see Remark 3.5 for more
details on the computation of f̂ . We obtain the following result:

Proposition 3.4 The time-0 price of the swaption is given by the following formula:

P swn0 =
B0(T )

(2π)2

∫
R2

MT
Z (R+ iu)f̂(iR− u)du, (35)

where the row vector R ∈ R2 is such that MT
Z (R + iu) exists and the function g(x) :=

e−Rxf(x) satisfies the prerequisites of Theorem 3.2 in Eberlein, Glau, and Papapantoleon
(2010).

Proof. Follows directly from Eberlein, Glau, and Papapantoleon (2010, Theorem 3.2)
applied to (32). 2

Remark 3.5 On the theoretical side, Proposition 3.4 is the swaption counterpart of Propo-
sition 3.2 for a caplet. However, as opposed to the caplet formula (30), which can be readily
implemented using one-dimensional FFT, the corresponding swaption formula (35) is not so
practical. First, the expression in (35) involves a numerical two-dimensional integration of
an integrand which is the product of two functions, MT

Z and the Fourier transform f̂ . Sec-
ond, computing MT

Z involves a one-dimensional integral of a smooth function requiring very

few function evaluations, while computing f̂ in (34) is more complicated since it involves
integrating an oscillating function in dimension two. Since f̂ itself is also highly oscillatory
we end up with a significant computational burden in solving the two-dimensional integral
in (35). However, swaptions can instead be efficiently valued numerically based on (32),
rewritten in the notation introduced above as:

P swn0 = B0(T )

 n∑
j=1

aj,0IET
[
ea
j,1Z1+aj,2Z2

1{f̃(Z)≥0}

]

−
n∑
j=1

bj,0IET
[
eb
j,1Z1

1{f̃(Z)≥0}

] . (36)

Here the function f̃ is given by

f̃(x1, x2) =
n∑
j=1

aj,0ea
j,1x1+aj,2x2 −

n∑
j=1

bj,0eb
j,1x1 .
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Using (33) the expectations in (36) can be calculated using the standard transform method-
ology of Duffie, Pan, and Singleton (2000) after having replaced f̃ with a linear approxima-
tion in the domain of integration {f̃ ≥ 0}. The construction of the linear approximation
is described in Singleton and Umantsev (2002) and it is known as the linear boundary ap-
proximation method. The approximation has a high degree of accuracy in our setup, as we
will see in Section 4.3.

Remark 3.6 Similarly to the caplet in Remark 3.3, the time-0 value of the swaption can
be expressed in terms of the factor process (r, q) as follows:

P swn0 = B0(T )IET

 n∑
j=1

em(T,Tj)+n(T,Tj)rT em(T,Tj−1,Tj)+n(T,Tj−1,Tj)rT+n∗(T,Tj−1,Tj)qT

−
n∑
j=1

δj−1Ke
m(T,Tj)+n(T,Tj)rT

+
= B0(T )IET

 n∑
j=1

αj,0eα
j,1rT+αj,2qT −

n∑
j=1

βj,0eβ
j,1rT

+ ,
where we have used (17) and (19). Here αj,0 = em(T,Tj)+m(T,Tj−1,Tj), αj,1 = n(T, Tj) +
n(T, Tj−1, Tj), α

j,2 = n∗(T, Tj−1, Tj), β
j,0 = em(T,Tj)δj−1K and βj,1 = n(T, Tj). One can

proceed as in Proposition 3.4 and obtain the Fourier pricing formula alternative to (35).
Again for the same reason as explained in Remark 3.5, the linear boundary approximation
method is preferred also in this case.

3.4 Markovian perspective

Recall that the previously described Lévy Hull-White model produces the following two-
dimensional factor process Xt = (rt, qt) driven by two (F,P)-Lévy processes Y 1 and Y 2:

drt = a(ρ(t)− rt)dt+ σdY 1
t , r0 = const.

dqt = −a∗qtdt+ dY 2
t , q0 = 0.

Under the assumptions of Section 2.3, the price Bt(T ) of the OIS bond (resp. the FRA
rate Ft(T, S)) can be written as an exponential-affine function of rt (resp. of rt and qt);
see equations (17) and (19). To obtain the clean prices Pt for interest rate derivatives with
linear payoffs, one simply has to insert the above representations for Bt(T ) and Ft(T, S) into
corresponding equations for each product. Consequently, all these prices can be represented
by explicit formulas of the form

Pt = P (t,Xt), t ∈ [0, T ], (37)

where P is a deterministic function and Xt is a relevant Markovian factor process. For
instance, in the case of the basis swap on which TVA computations will be performed in
Section 5, the equation (26) yields Xt = (rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ), where

r1
t = rTit−1 , q

1
t = qTit−1 , r

2
t = rTjt−1 , q

2
t = qTjt−1 , (38)

which is a six-dimensional Markovian factor process. The path-dependence which is reflected
by the last four factors in Xt is due to the fact that both legs of the basis swap deliver
payments in arrears.
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Remark 3.7 Since OIS rates are stochastic in reality, it is natural to have them stochastic
in the model. However, until today, there are no liquid OIS option data. Therefore, deter-
ministic OIS rates could also be considered without major inconsistency in the model since
the OIS volatility parameters cannot be identified from the market anyway; see Subsection
4.2 regarding the way we fix them in the numerical implementation. If further simplicity
is desired, deterministic OIS rates can be obtained by letting σ be zero in (15)-(16), which
results in a one-factor Markov multiple-curve model qt driven by Y 2 (note that Y 1 plays
no role when σ is zero). The computations of the next sections were done also for this
one-factor specification and we found very little difference in the results, except of course
for the short rate process in the upper graph of Figure 6, which in this case collapses to the
process mean function (black curve in this graph). In particular, this means that there is
little model risk of this kind in the TVA computations of Section 5.

4 Model calibration

Recalling that a TVA can be viewed as a long-term option on the underlying contract(s),
both smile and term structure volatility effects matter for TVA computations. Further-
more, calibration to instruments with different underlying tenors is necessary in view of
the multiple-curve feature. Among these, the 3m- and 6m-tenors underlie the most liquid
instruments. Therefore, in view of the targeted application to TVA computations, it is
important to achieve a joint calibration to caps and swaptions of 3m- and 6m-tenors, the
calibration to caps guaranteeing that the model correctly captures volatility smile effects
(in strike) and the calibration to at-the-money swaptions ensuring a correct term structure
of volatility in the model. In this section, we calibrate a two-dimensional Lévy model with
independent NIG components to EUR market Bloomberg data of January 4, 2011: Eonia,
3m-Euribor and 6m-Euribor initial term structures on the one hand, 3m- and 6m-tenor
caps and at-the-money swaptions on the other hand. In a first step, we calibrate the non-
maturity/tenor dependent parameters, as well as the values of σ∗(2.75, 3) and σ∗(2.5, 3), to
the corresponding 3m- and 6m-tenor caplets with settlement date 3 years. In a second step,
we use at-the-money swaptions on 3m- and 6m-tenor swaps either ending or starting at the
3 year maturity in order to identify remaining values σ∗(T, S) not identified by the caplet
calibration.

Note that market quotes typically reflect prices of fully collateralized transactions,
which can be considered as clean prices (see Sect. 3.3 in Crépey et al. (2013)). The clean
price of the previous sections is thus the relevant notion of valuation at the stage of model
calibration.

4.1 Initial term structures

The initial term structures of the Eonia, 3m-Euribor and 6m-Euribor markets (and therefore
also the initial values of 3m-6m basis swaps in view of (25)) are fitted automatically in our
HJM setup. More precisely, Bloomberg provides zero coupon discount bond price Bi

0(T )
and yield Ri0(T ) = − ln(Bi

0(T ))/T for any tenor i = d, 3m and 6m (“d” stands for “one
day”, in reference to the OIS market) and for any maturity T desired, constructed in a
manner described in Akkara (2012).

For the Eonia curve, we explicitly need the initial instantaneous forward rate curve
f0(T ) = ∂

∂T (TRd(T )) and its derivative ∂
∂T f0(T ) for insertion into ρ(·) in (18). These can

be recovered by fitting the data, using the least squares method, to the following Nelson-
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Figure 1: Initial term structures. Left: Zero coupon rates. Right: Discrete forward rates.

Siegel-Svensson parametrization (for i = d):

Ri0(T ) = βi0 + βi1

(
1− e−Tλi1
Tλi1

)
+ βi2

(
1− e−Tλi1
Tλi1

− e−Tλi1
)

+ βi3

(
1− e−Tλi2
Tλi2

− e−Tλi2
)
. (39)

For i = 3m and 6m, in principle we only need a term structure of the discrete FRA rates
δ−1
i F i0(T ), where by definition of Bloomberg’s “3m- and 6m-discount bonds”:

F i0(T ik) =
Bi

0(T ik−1)

Bi
0(T ik)

− 1. (40)

A common problem with a direct computation based on (40) is that a smooth Ri(T ) curve
does not necessarily result in a smooth FRA curve (see for example Hagan and West (2006)).
Thus, a procedure yielding regular FRA curves is preferred since it typically gives rise to a
more stable calibration. To bypass this problem, we also fit the 3m- and 6m-tenor curves
to a Nelson-Siegel-Svensson parametrizations of the form (39) before applying (40). The
results are plotted in Figure 1, which corresponds to the following parameters:

β0 β1 β2 β3 λi1 λi2
Eonia 1.042× 10−5 0.00319198 0.095675 0.02100 0.07264 0.08429

3m-Euribor 7.8542× 10−4 0.004575 0.2384 0.096819 0.0012073 0.10283
6m-Euribor 0.007656 6.4046× 10−5 0.04434 0.092094 0.006675 0.10531

4.2 Calibration to caps

Given the smoothed initial interest rate term structures, we then fix the following parameters
in (14)–(16):

σ = 0.005, a = 0.5, ν1 = 1.0, θ1 = 0, σ1 = 1, a∗ = 0.05, σ2 = 1.0. (41)

Indeed, since there are no liquid option data on the OIS market, the first five parameters
cannot be determined from the market (see Remark 3.7), while a∗ and σ2 are not identifiable
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Figure 2: Market versus calibrated caplet implied volatilities.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.38

0.4

0.42

0.44

0.46

0.48

0.5
 Caplet Implied Volatility, Settlement = 3y

Strike

Im
pl

ie
d 

V
ol

at
ili

ty

 

 

Market 6m Tenor
Model 3m Tenor
Model 6m Tenor
Model 3m Tenor

in a model with varying σ∗(T, S). Note that the above parameters yield an implied volatility
of 23% for the at-the-money-caplet written on the OIS discrete forward rate ( 1

B2.5(3)−1)/0.5.
This implied volatility corresponds roughly to the implied volatility of the 3-year Euribor
caplet, pre-2007, when the OIS discrete forward rate levels were within a few basis points
of the Euribor rate.

It remains to calibrate the residual parameters of the model to Euribor option data.
Bloomberg provides quotes for caps, but it is more convenient to calibrate to caplets, which
contain information concerning a single maturity. We therefore convert cap data to caplet
data using the bootstrapping procedure described in Levin (2012). The following parameters
are then obtained by least squares calibration to caplet market implied volatilities, using
Proposition 3.2 with the cumulant generating functions (14) for the embedded caplet pricing
task in our model:

ν2 = 0.6502, θ2 = −0.2643, σ∗(2.75, 3) = 1.9813, σ∗(2.5, 3) = 0.9158.

As can be seen in Figure 2, except for the most extreme strikes, the two-dimensional Lévy
model shows a very good fit to the 3m- and 6m-tenor caplet implied volatilities.

4.3 Calibration to swaptions

We proceed using the parameters found in the previous subsection and calibrate the re-
maining volatility parameters σ∗(T, S) from a subset of 3m- and 6m-tenor at-the-money
swaptions, using the linear boundary approximation method described in Remark 3.5 for
pricing the swaptions.

We first consider 3y×∆ at-the-money swaptions with ∆ = 1y, 2y,. . . , 10y, 12y, 15y
(these are available written on both 3m- and 6m-Euribor). We find the corresponding
σ∗(T, S)-parameters sequentially, starting with the 3y×1y swaption written on 6m-rates
which contains two floating payments L3(3, 3.5) and L3.5(3.5, 4). We assume σ∗(3, 3.5) =
σ∗(3.5, 4) and this common value is then calibrated to the at-the-money volatility of the
3y×1y swaption. Next, to calibrate to the 3y×2y swaption, we use the value of σ∗(3, 3.5)
already determined and calibrate σ∗(4, 4.5) and σ∗(4.5, 5) by again assuming them equal.
We continue in this manner up to the 3y×15y swaption. This gives us the values of σ∗(T, T+
0.5) for T =3y, 3.5y,. . . , 17.5y. For swaptions written on 3m-rates, we have four payments
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per year, hence four free parameters to determine for each swaption. We reduce this to one
parameter by assuming σ∗(T, T + 0.25) = σ∗(T + 0.25, T + 0.5) = σ∗(T + 0.5, T + 0.75) =
σ∗(T + 0.75, T + 1) for each T =3y, 4y,. . . , 17y. The parameters are then determined
sequentially, analogously to the 6m-case.

Finally, we determine the parameters σ∗(T, T + δ), where T < 3y and δ = 3m or 6m.
For the 3m-market, we determine these from T×1y swaptions, where T = 3m, 6m, 9m,
1y, 2y; the 6m-parameters are determined from T×1y swaptions where T =6m, 1y, 2y. In
both cases we use a sequential approach analogous to the one already used and described
above. The calibrated values of σ∗(T, S) are plotted in Figure 3 and the market and model
implied volatilities of the 3y×∆ swaptions can be seen in the left panel of Figure 4. For
completeness, we also show the resulting swaption implied smile of 3y×15y swaptions in
the right panel (note these are “repriced” implied volatilities, there are no market quotes
to compare with them). Figure 5 further shows that the linear boundary approximation
method we use for swaption valuation is sufficiently accurate, comparing with reference
implied volatilities obtained by Monte Carlo simulation using n = 103 time steps and
m = 5 × 106 paths (denoted MC in Figure 5). The graphs of Figure 5 demonstrate the
accuracy of the approximation, even for a long swap maturity (up to 15 years), where
similar approximations sometimes have poorer performance (see e.g. Schrager and Pelsser
(2006)). Other numerical experiments (not shown) verify that the approximation works
equally well for other model parameters and swaption strikes, maturities and swap lengths.
Note that the computation time for estimating each expectation in the formula (36) after

Figure 3: Calibrated values of σ∗(T, S)
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applying the linear boundary approximation (see Remark 3.5) is roughly the one needed for
valuing a caplet, which could be time-consuming. However, since we basically calibrate one
σ∗(T, S) parameter per swaption, our swaption calibration is quite fast. Moreover, several
optimizations in the swaption pricing scheme could also be considered.

5 Counterparty risk and funding adjustments

In this section we consider the computation of counterparty risk and funding adjustments
to the above multi-curve “clean” prices.
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Figure 4: Model swaption implied volatility. Left: Implied volatility of at-the-money swap-
tions with maturity of 3 years and varying swap lengths compared to market data. 3m
and 6m refer to the tenor of the floating Libor rate of the underlying swap. Right: Implied
volatility of a 3y×15y swaption with varying strikes.
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Figure 5: Errors due to the approximation in (36) calculated with calibrated parameters.
Left: Implied volatility error in basis points of at-the-money swaptions with varying swap
lengths. The error is calculated as 104× (MC impld vol - linear boundary approx impld
vol). 3m and 6m refer to the tenor. Right: Implied volatility error for a 3y×15y swaption
with varying strikes.
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5.1 TVA equations

Different interdependent valuation adjustments can be computed on top of the clean price
P in order to account for (possibly bilateral) counterparty risk and funding constraints:
credit/debt valuation adjustment CVA/DVA and liquidity funding valuation adjustment
LVA, as well as replacement cost RC, with TVA for total valuation adjustment in aggregate,
i.e.

TVA = CVA + DVA + LVA + RC. (42)

Each of these dependent terms has received a lot of attention in the recent literature. We
refer to sections 1-3 of Crépey et al. (2013) and the references therein for details. Here we
only recall that the TVA can be viewed as the price of an option on the “clean” value of
the contract P (for a basis swap considered here see (25) and (26)), at the first-to-default
time τ of a party. This option also pays dividends, which correspond to the funding benefit
(in excess over the OIS rate rt). More specifically, the TVA equation reads as the following
backward stochastic differential equation (BSDE) under the risk-neutral measure P:

Θt = IEt

(∫ T

t
gs(Θs)ds

)
, t ∈ [0, T ], (43)

where Θt, Pt and gt represent the TVA process, the clean price process and the counterparty
risk and funding coefficient, respectively. The overall (selling) price of the contract for the
bank (cost of the corresponding hedge, including the counterparty risk and funding features)
is

Π = P −Θ. (44)

The coefficient gt in (43) is given, for every real ϑ (representing the TVA Θt that one is
looking for in the probabilistic interpretation), by:

gt(ϑ) + rtϑ =−γct (1− ρct)(Qt − Γt)
−︸ ︷︷ ︸

CVA coeff.

+ γbt (1− ρbt)(Qt − Γt)
+︸ ︷︷ ︸

DVA coeff.

+ btΓ
+
t − b̄tΓ

−
t + λt(Pt − ϑ− Γt)

+ − λ̃t(Pt − ϑ− Γt)
−︸ ︷︷ ︸

LVA coeff.

+ γt (Pt − ϑ−Qt)︸ ︷︷ ︸
RC coeff.

,

(45)

where:

• γbt , γct and γt are the default intensities of the bank, of its counterparty and their
first-to-default intensity (in models where the bank and the counterparty can default
together, γt can be less than γbt + γct ),

• ρbt and ρct are the recovery rates of the bank and the counterparty to each other,

• Qt is the value of the contract according to the scheme used by the liquidator in case
t = τ < T , e.g. Qt = Pt (used henceforth unless otherwise stated) or Qt = Pt −Θt,
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• Γt = Γ+
t − Γ−t , where Γ+

t (resp. Γ−t ) is the value of the collateral posted by the
bank to the counterparty (resp. by the counterparty to the bank), e.g. Γt = 0 (used
henceforth unless otherwise stated) or Γt = Qt,

• bt and b̄t are the spreads over the short rate rt for the remuneration of the collateral
Γ+
t and Γ−t posted by the bank and the counterparty to each other,

• λt (resp. λ̃t) is the liquidity funding spread over the short rate rt corresponding to
the remuneration of the external funding loan (resp. debt) of the bank. By liquidity
funding spreads we mean that these are free from credit risk, i.e.

λ̃t = λ̄t − γbt (1− rb), (46)

where λ̄t is the funding borrowing spread (all inclusive) of the bank and rb stands for
a recovery rate of the bank to its unsecured funder. In the case of λt there is no credit
risk involved anyway since the funder of the bank is assumed risk-free.

The dataQt,Γt, bt and b̄t are specified in a so-called Credit Support Annex (CSA) contracted
between the two parties, where the motivation of the CSA is to mitigate counterparty risk.

Remark 5.1 The above presentation corresponds to a pre-default reduced-form modeling
approach, under the immersion hypothesis between the reference filtration F and a full model
filtration G, which is given as F progressively enlarged by the default times of the parties.
From the financial point of view, the immersion hypothesis is a “moderate dependence”
assumption between the counterparty risk and the underlying contract exposure, financially
acceptable in the case of counterparty risk on interest rate derivatives. For more details the
reader is referred to Remark 2.1 in Crépey (2012). Note that we write F̃ and F there instead
of, respectively, F and G here. Since, in the present paper, we only work with pre-default
values, we likewise denote here by IEt, Θt and gt what is denoted by ĨEt, Θ̃t and g̃t there.

In the numerical implementation which follows we set the above parameters equal to
the following constants:

γb = 5%, γc = 7%, γ = 10%

ρb = ρc = 40%

b = b̄ = λ = λ̃ = 1.5%.

In view of the Markovian perspective of Subsection 3.4, observe that gt(ϑ) = ĝ(t,Xt, ϑ), for
a suitable function ĝ. Thus, (43) is rewritten as the following TVA Markovian BSDE under
P:

Θ(t,Xt) =IEt

(∫ T

t
ĝ(s,Xs,Θ(s,Xs))ds

)
, t ∈ [0, T ]. (47)

Note that due to the specific choice of numerical parameters λ = λ̃ above, the coefficients
of the (Pt − ϑ − Γt)

±-terms coincide in (45), so that this is the case of a “linear TVA”
where the coefficient g depends linearly on ϑ. This will allow us to validate the results of
the numerical BSDE scheme (48) for (47) by a standard Monte Carlo procedure.
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5.2 Numerical results

We illustrate numerically the above methodology on a basis swap, a new product that
appeared in the markets due to the multi-curve discrepancy (as recalled after (26) a basis
swap would have zero value and TVA at all times in a classical single-curve setup). We
consider a basis swap with notional N = 100 and maturity T = 10y, in the calibrated model
of Section 4. The pricing formula (25) yields the time-0 value of the basis swap equal to
1e23, which is the difference between a 6m-leg worth 28e89 and a 3m-leg worth 27e65.
The corresponding time-0 basis swap spread (cf. (27)) is Kbsw

0 = 14bps.
We study the computation of the TVA for the bank having sold this basis swap to its

counterparty, i.e. one short basis swap position for the bank. The first step (“forwardation”)
is to simulate, forward in time by an Euler scheme, a stochastic grid with n (fixed to
100 throughout) uniform time steps and m (set equal to 104 or 105 below) scenarios for
the processes rt and qt and for the corresponding values Pt of the basis swap, based on
Pt = P (t,Xt), with Xt = (rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ) (cf. (38)). The results are plotted in Figure 6.

The second step is to compute the TVA process, backward in time, by nonlinear regression
on the time-space grid generated in the first step. We thus approximate Θt(ω) in (47) by
Θ̂j
i on the corresponding time-space grid, where the time-index i runs from 1 to n and the

space-index j runs from 1 to m. Denoting by Θ̂i = (Θ̂j
i )1≤j≤m the vector of TVA values

on the space grid at time i, we have Θ̂n = 0 and then, for every i = n − 1, · · · , 0 and
j = 1, · · · ,m

Θ̂j
i = Êji

(
Θ̂i+1 + ĝi+1

(
X̂i+1, Θ̂i+1

)
h
)
, (48)

for the time-step h = T
n = 0.1y. We use a d-nearest neighbor average non-parametric

regression estimate (see e.g. Hastie, Tibshirani, and Friedman (2009)), with d = 1 which was
found the most efficient. This means that a conditional expectation of the form E(Y |X = x)
is estimated by an empirical average of the three realizations of Y associated with the three
realizations of X closest to x in the Euclidean norm.

Note that in view of (37) and (38), in the present case of a basis swap, this regression
must in principle be performed against the “full” Markovian vector factor process Xt =
(rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ), where the last four components reflect the path-dependence of payments

in arrears. However, as already noted in the single-curve setup of Crépey et al. (2013), these
extra factors have a limited impact in practice. To illustrate this, Figure 7 shows the TVA
processes obtained by regression for m = 104 (top) and 105 (bottom) against rt and qt
only (left) and against the whole vector Xt (right). Note that one should really target
m = 104 because in the industry practice one typically cannot afford much more on such
applications, where not a single basis swap, but the whole OTC derivative book of the bank
has to be dealt with. Table 1 displays the time-0 value Θ0 of the TVA, CVA, DVA, LVA
and RC, where the last four are obtained by plugging for ϑ in the respective term of (45)
the TVA process Θt computed in the first place (see Subsect. 5.2 in Crépey et al. (2013)
for the details of this procedure). The sum of the CVA, DVA, LVA and RC, which in theory
sum up to the TVA, is shown in column 8. Therefore, columns 3, 8 and 9 yield three
different estimates for the time-0 TVA. Table 2 displays the relative differences between
these estimates, as well as the Monte Carlo confidence interval in a comparable scale in the
last column. The nonlinear regression TVA estimates (time-0 TVA computed by regression
or repriced as the sum of its four components) are all outside the corresponding Monte Carlo
confidence intervals, but this is not surprising since these estimates entail a space-regression
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Figure 6: Clean valuation of the basis swap. Top panels: Processes rt and qt. Bottom panel:
Clean price process Pt = P (t,Xt) of the basis swap where Xt = (rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ). Each

panel shows twenty paths simulated with n = 100 time points, along with the process mean
and 2.5 / 97.5-percentiles computed as function of time over m = 104 simulated paths.
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Figure 7: TVA process Θt of the basis swap. All graphs show twenty paths of the TVA
process at n = 100 time points, along with the process mean and 2.5 / 97.5-percentiles as a
function of time. Top graphs: m = 104 simulated paths. Bottom graphs: m = 105 simulated
paths. Left graphs: “Reduced” regression against (rt, qt). Right graphs: “Full” regression
against Xt = (rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ).
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bias when compared with a standard Monte Carlo estimate. Note that of course the latter
is no longer available in nonlinear cases.

The expected exposure profiles (see Crépey et al. (2013) for the details about such
representations) corresponding to the TVA decompositions of columns 4 to 7 in Table 1
are shown in Figure 8 for the regression against (r, q) with m = 104 paths. We only show
the results in this case since the profiles in all the other three cases of Table 1 are visually
indistinguishable from the former.

m Regr regr TVA CVA DVA LVA RC Sum MC TVA

104 r,q -0.3026 -0.3442 9.75E-04 -0.1011 0.1423 -0.302
-0,2996

PD -0.3027 -0.3442 9.75E-04 -0.1011 0.1421 -0.3022

105 r,q -0.3035 -0.3447 8.66E-04 -0.1013 0.1426 -0.3026
-0,3001

PD -0.3034 -0.3447 8.66E-04 -0.1013 0.1425 -0.3026

Table 1: Time-0 TVA and its decomposition (all in e) computed by regression for m = 104

or 105 against rt and qt only (rows “r,q”) or against the whole vector Xt accounting for
path-dependence due to the payments in arrears (rows “PD”). Column 3: Time-0 regressed
TVA. Columns 4 to 7: TVA decomposition into time-0 CVA, DVA, LVA and RC repriced
individually by plugging Θt for ϑ in the respective term of (45). Column 8: Sum of the
four components. Column 9: Monte Carlo TVA.

m Regr Sum/TVA TVA/MC Sum/MC CI//|MC|

104 r,q -0.20% 1,00% 0.80%
0.367%

PD -0.17% 1.03% 0.87%

105 r,q -0.30% 1.13% 0.83%
0.117%

PD -0.26% 1.10% 0.83%

Table 2: Time-0 TVA relative errors corresponding to the results of Table 1. “A/B” rep-

resents the relative difference (A−B)
B . “CI//|MC|” in the last column refers to the half-size

of the 95%-Monte Carlo confidence interval divided by the absolute value of the standard
Monte Carlo estimate of the time-0 TVA.

Finally, to provide an insight about the TVA under alternative CSA specifications, we
repeat the above numerical implementation in each of the following five cases, with λ̄ set
equal to 4.5% everywhere (and the other parameters as before):

1. (rb, ρb, ρc) = (100, 40, 40)%, Q = P, Γ = 0
2 (rb, ρb, ρc) = (100, 40, 40)%, Q = P, Γ = Q = P
3. (rb, ρb, ρc) = (40, 40, 40)%, Q = P, Γ = 0
4. (rb, ρb, ρc) = (100, 100, 40)%, Q = P, Γ = 0
5. (rb, ρb, ρc) = (100, 100, 40)%, Q = Π, Γ = 0.

(49)

Note that in case 3, we have by (46):

λ̃ = 4.5%− 0.6× 0.5× 10% = 1.5% = λ,

so this is the linear TVA case considered above. Table 3 shows an analog of the first row
of Table 1 (time-0 TVA and its decomposition for m = 104 and regression against (r, q))
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Figure 8: Expected exposures of the TVA components of the basis swap. Top panels: CVA
(left) and DVA (right) exposures. Bottom panels: LVA (left) and RC (right) exposures.

in each of the five cases. Moving from case 1 to 2, there are no CVA and DVA anymore
and the dominant effect is the cancelation of the previously highly negative, costly CVA,
resulting in a higher TVA, hence a lower (selling) price for the bank. Moving from 1 to 3,
a funding benefit at own default is acknowledged by the bank, resulting in a higher TVA,
hence a lower selling price for the bank. Moving from 1 to 4, the beneficial DVA at own
default is ignored by the bank, being considered as fake benefit, which results in a lower
TVA, but negligibly so, since the DVA was very small anyway. The related LVA numbers
are very close (both equal to −0.2784 at the four-digit accuracy of the table) because the
parameter ρb, which changes between these two cases, has no direct impact on the LVA and
the indirect impact through the change of the TVA in the second row of (45) is limited (as
the parameters λ and λ̃ are not so large). Finally, 5 represents a (slightly artificial) case of
a bank in a “dominant” position, able to enforce the value of the contract Π from its own
perspective (see (44)) for the CSA close-out valuation process Q. Hence, a zero RC for the
bank follows in this case.

Conclusion

In this paper the valuation of interest rate derivatives in the post-crisis setup is studied. To
this end, a multiple-curve model, which takes into account the spreads that have emerged
since the crisis (notably Libor-OIS swap spreads and basis swap spreads), is developed.
Counterparty risk and funding adjustments are modeled on the top of a clean multiple-curve
price. The main contributions of this work are, on the one hand, a parsimonious Markovian
multiple-curve model jointly calibrated to caplets and swaptions and, on the other hand,
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Case regr TVA CVA DVA LVA RC Sum Sum/TVA

1 -0.4198 -0.3442 9.75E-04 -0.2784 0.2026 -0.4191 -0.17%

2 -0.0796 0 0 -0.1168 0.0374 -0.0794 -0.25%

3 -0.3026 -0.3442 9.75E-04 -0.1011 0.1423 -0.302 -0.20%

4 -0.4202 -0.3442 0 -0.2784 0.2028 -0.4198 -0.10%

5 -0.5122 -0.2477 0 -0.264 0 -0.5117 -0.10%

Table 3: Time-0 TVA and its decomposition (all in e) computed by regression for m =
104 against rt and qt. Column 2: Time-0 regressed TVA Θ0. Columns 3 to 6: TVA
decomposition into time-0 CVA, DVA, LVA and RC repriced individually by plugging Θt

for ϑ in the respective term of (45). Column 7: Sum of the four components. Column 8:
Relative difference between columns 7 and 2.

BSDE-based numerical computations of counterparty risk and funding adjustments, as well
as the interpretation and comments of the numerical results.
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Crépey, S., T. R. Bielecki, and D. Brigo (2013). Counterparty Risk and Funding. Taylor
& Francis. In preparation.
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cesses. Mathematical Finance 9, 31–53.
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