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Abstract

In this paper, we prove that the conditional dependence structure of default times
in the Markov model of [4] belongs to the class of Marshall-Olkin copulas. This allows
us to derive a factor representation in terms of “common-shocks”, the latter beeing
able to trigger simultaneous defaults in some pre-specified groups of obligors. This
representation depends on the current default state of the credit portfolio so that fast
convolution pricing schemes can be exploited for pricing and hedging credit portfolio
derivatives. As emphasized in [4], the innovative breakthrough of this dynamic bottom-
up model is a suitable decoupling property between the dependence structure and the
default marginals as in [10] (like in static copula models but here in a full-flesh dynamic
“Markov copula” model). Given the fast deterministic pricing schemes of the present
paper, the model can then be jointly calibrated to single-name and portfolio data in
two steps, as opposed to a global joint optimization procedures involving all the model
parameters at the same time which would be untractable numerically. We illustrate this
numerically by results of calibration against market data from CDO tranches as well as
individual CDS spreads. We also discuss hedging sensitivities computed in the models
thus calibrated.
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1 Introduction

In [4] we introduced a Markov copula model of default times providing a decoupling be-
tween the single-name marginals and the dependence structure of the default times. In this
sense, this model solves the portfolio credit risk top-down bottom-up puzzle [8]. For earlier
partial progress in this direction, see [11, 12, 14] and the discussion in [4]. This paper is
the applicative companion to [4] (see also [3] for a short announcing version of both papers
and [5] for further features of the model).

The paper is organized as follows. In Section 2 we provide an “executive summary”
of the dynamic model of [4] in the form of an equivalent common-shock representation.
In terms of common-shock representation, we mean that each individual default process
can be represented by Cox processes likely to trigger defaults simultaneously in some pre-
specifed group of obligors. In Section 3 we use the resulting representation to derive fast
deterministic pricing algorithms. As emphasized in [4], the innovative breakthrough of the
model is a suitable decoupling property between the dependence structure and the indi-
vidual names [10], like in static copula models but here in a full-flesh dynamic “Markov
copula” model. Given the fast deterministic pricing schemes of this paper, the model can
then be jointly calibrated to single-name and portfolio data in two steps, as opposed to a
global joint optimization procedures involving all the model parameters at the same time
which would be untractable numerically. In particular, this model allows one to address in
a dynamic and theoretically consistent way the issues of hedging basket credit derivatives
by individual names, whilst preserving the static common factor tractability. To illustrate
these features, Section 4 presents numerical results of calibration against market data from
CDO tranches as well as individual CDS spreads and Section 5 discusses hedging sensitiv-
ities computed in the models thus calibrated. Note that this model can be applied well
the space of consistent valuation and hedging of CDSs and CDOs. In particular it is used
in [2, 9, 13] (see also [6]) for valuation and hedging of counterparty risk on credit derivatives.

In the rest of the paper we consider a risk neutral pricing model (Ω,F ,P), for a filtration
F = (Ft)t∈[0,T ] which will be specified below and where T ≥ 0 is a fixed time horizon. We
denote Nn = {1, . . . , n} and let Nn denote the set of all subsets of Nn where n represents
the number of obligors in the underlying credit portfolio.

2 Model of Default Times

In the Markov copula common shocks model, defaults are the consequence of some “shocks”
associated with groups of obligors. We define the following pre-specified set of groups

Y = {{1}, . . . , {n}, I1, . . . , Im},

where I1, . . . , Im are subsets of {1, . . . , n}, and each group Ij contains at least two obligors or
more. The shocks are divided in two categories: the “idiosyncratic” shocks associated with
singletons {1}, . . . , {n} can only trigger the default of name 1, . . . , n individually, while the
“systemic” shocks associated with multi-name groups I1, . . . , Im may simultaneously trigger
the default of all names in these groups. Note that several groups Ij may contain a given
name i, so that only the shock occurring first effectively triggers the default of that name.
As a result, when a shock associated with a specific group occurs at time t, it only triggers
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the default of names that are still alive in that group at time t. In the following, the elements
Y of Y will be used to designate shocks and we let I = (Il)1≤l≤m denote the pre-specified
set of multi-name groups of obligors. Shock intensities λY (t,Xt) will be specified later in
terms of a Markovian factor process Xt. Letting ΛYt =

∫ t
0 λY (s,Xs)ds, we define

τ̂Y = inf{t > 0; ΛYt > EY }, (1)

where the random variables EY are i.i.d. and exponentially distributed with parameter 1.
For every obligor i we let

τi = min
{Y ∈Y; i∈Y }

τ̂Y , (2)

which defines the default time of obligor i in the common shocks model. The model filtration
is given as F = X∨H, the filtration generated by the factor process X and the point process
H = (H i)1≤i≤n with H i

t = 1τi≤t.
This model can be viewed as a doubly stochastic (via the stochastic intensities ΛY ) and

dynamized (via the introduction of the filtration F) generalization of the Marshall-Olkin
model [18]. The purpose of the factor process X is to more realistically model diffusive
randomness of credit spreads. Note that in [4], we present the model the reverse way round,
i.e. we first construct a suitable Markov process (Xt,Ht) and then define the τi as the jump
times of the H i.

The set of obligors alive (resp. in default) at time t is denoted by Jt = suppc(Ht) (resp.
Ht = supp(Ht)). For every Y ∈ Y and every set of nonnegative constants t, t1, . . . , tn, we
define

θYt = max
i∈Y ∩Jt

ti

(with the convention that max ∅ = −∞). Note that Y ∩ Jt in θYt represents the set of
survivors in Y at time t. We also write

ΛYs,t =

∫ t

s
λY (s,XY

s )ds, λit =
∑

{Y ∈Y; i∈Y }

λY (t,Xt). (3)

The following result (see [3, 4]) is key in the model.

Proposition 2.1 For any fixed nonnegative constants t, t1, . . . , tn, we have:

P (τ1 > t1, . . . , τn > tn | Ft) = 1{ti<τi , i∈It}E

{
exp

(
−
∑
Y ∈Y

ΛY
t,t∨θYt

) ∣∣∣Xt

}
. (4)

In particular, for every obligor i and ti ≥ t,

P(τi > ti | Ft) = 1{τi>t}E
{

exp
(
−
∫ ti

t
λisds

)
|Xt

}
. (5)

In Section 4, we will see that thanks to formula (4) (resp. (5) and under an additional
affine structure postulated below on each individual pre-default intensity process λit), effi-
cient convolution recursion procedures (resp. affine methodologies) are available for pricing
multi-name credit derivatives like CDO tranches (resp. single-name credit derivatives like
CDSs), conditionally on any given state of the dynamic model (Xt,Ht). The model can
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then be calibrated in two steps: individual λi-parameters are first calibrated to individual
CDSs and the model dependence λI -parameters are then calibrated to CDO tranches (as
opposed to a global joint optimization procedures involving all the model parameters at the
same time, which would be untractable numerically). But first, as announced above, in or-
der to ensure the Markov consistency and Markov copula feature of the setup (see [10]), we
assume further that every individual process λi is an affine process (in particular, a Markov
process), as in either specification below. Consequently the conditioning with respect to
Xt can be replaced by a conditioning with respect to λit in (5), hence exponential-affine
methodogies for computing (5) follow.

Example 2.2 (i) (Deterministic group intensities). The idiosyncratic intensities λ{i}(t,Xt)
are affine, and the systemic intensities λY (t,Xt) are deterministic functions of time, i.e. the
functions λY (t,x) do not depend on x, for Y ∈ Y that are not singletons.
(ii) (Extended CIR intensities). Xt = (XY

t )Y ∈Y and for every Y ∈ Y, λY (t,Xt) = XY
t ,

where XY
t is an extended CIR process

dXY
t = a(bY (t)−XY

t )dt+ c
√
XY
t dW

Y
t , (6)

for nonnegative constants a, c (independent of Y ) and a nonnegative function bY (t), and
where the W Y are independent standard Brownian motions.

In the second specification, affinity of λi (which is trivial in the first specification) arises
from the fact that the SDE for the factors XY have the same coefficients except for the

bY (t). Thus, Xi :=
∑

{Y ∈Y; i∈Y }

XY satisfies the following extended CIR SDE:

dXi
t = a(bi(t)−Xi

t)dt+ c
√
Xi
tdW

i
t , (7)

for the function bi(t) =
∑

{Y ∈Y; i∈Y }

bY (t) and the Brownian motion

dW i
t =

∑
i∈Y

√
XY
t√∑

i∈Y X
Y
t

dW Y
t .

3 Fast Deterministic Pricing Schemes

3.1 Common Shocks Model Interpretation

In view of formula (4), conditionally on any given state (x,k) of (X,H) at time t, it is
possible to define a “conditional common shock model” of default times of the surviving
names at time t, such that the law of the default times in the conditional common shock
model is the same as the corresponding conditional distribution in the original model. This
representation will be used in the next section for deriving fast exact convolution recursion
procedures for pricing portfolio loss derivatives.

We thus introduce a family of common shocks copula models, parameterized by the
current time t. For every Y ∈ Y, we define

τY (t) = inf{θ > t; ΛYθ > ΛYt + EY },
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where the random variables EY are i.i.d. and exponentially distributed with parameter 1.
For every obligor i we let

τi(t) = min
{Y ∈Y; i∈Y }

τY (t) , (8)

which defines the default time of obligor i in the common shocks copula model starting at
time t. We also introduce the indicator processes HY

θ (t) = 1{τY (t)≤θ} and H i
θ(t) = 1{τi(t)≤θ},

for every shock Y , obligor i and time horizon θ ≥ t. Let Z ∈ Nn denote a set of obligors,
meant in the probabilistic interpretation to represent the set Jt of survived obligors in the
original model at time t. We now prove that on {Jt = Z}, the conditional law of (τi)i∈J
given Ft in the original model, is equal to the conditional law of (τi(t))i∈Z given Xt in
the common shocks framework starting at time t. Let also Nθ =

∑
1≤i≤nH

i
θ denote the

cumulative number of defaulted obligors in the original model up to time θ. Let Nθ(t, Z) =
n − |Z| +

∑
i∈Z H

i
θ(t), denote the cumulative number of defaulted obligors in the time-t

common shocks framework up to time θ where |Z| is the cardinality of the set Z.

Proposition 3.1 Let Z ∈ Nn denote an arbitrary subset of obligors and let t ≥ 0. Then,
(i) for every t1, . . . , tn ≥ t, one has

1{Jt=Z}P
(
τi > ti, i ∈ Jt

∣∣Ft) = 1{Jt=Z}P
(
τi(t) > ti, i ∈ Z

∣∣∣Xt

)
. (9)

(ii) for every θ ≥ t, one has that for every k = n− |Z|, . . . , n,

1{Jt=Z}P
(
Nθ = k

∣∣Ft) = 1{Jt=Z}P
(
Nθ(t, Z) = k

∣∣∣Xt

)
.

Proof. Part (ii) readily follows from part (i), that we now show. Let, for every obligor i,
t̃i = 1i∈Jtti. Note that one has, for Y ∈ Y

max
i∈Y ∩Jt

t̃i = max
i∈Y ∩Jt

ti = θYt .

Thus, by application of formula (4) to the sequence of times (t̃i)1≤i≤n, it comes,

1{Jt=Z}P
(
τi > ti, i ∈ Jt

∣∣Ft)
= 1{Jt=Z}P

((
τi > ti, i ∈ Z

)
,
(
τi > 0, i ∈ Zc

) ∣∣Ft)
= 1{Jt=Z}E

{
exp

(
−
∑
Y ∈Y

ΛY
t,θYt

) ∣∣∣Xt

}

which on {Jt = Z} coincides with the expression

E

{
exp

(
−
∑
Y ∈Y

ΛYt,maxi∈Y ∩Z ti

) ∣∣∣Xt

}

deduced from (4) for P(τi(t) > ti, i ∈ Z
∣∣∣Xt). 2
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3.2 Recursive Convolutive Pricing Schemes

In this subsection we use the conditional common shock model representation to derive fast
convolution recursion algorithms for computing the conditional portfolio loss distribution.
In the case where the recovery rate is the same for all names, i.e., Ri = R, i = 1, . . . , n, the
price process for a CDO tranche [a, b] is determined by the probabilities P [Nθ = k | Ft] for
k = |Ht|, . . . , n and θ ≥ t ≥ 0. But we know from Proposition 3.1(ii) that

P [Nθ = k | Ft] = P [Nθ(t, Z) = k |Xt]

on the event {Jt = Z}, so we will focus on computation of the latter probabilities, which
are derived in formula (11) below.

We henceforth assume a nested structure of the sets Ij given by

I1 ⊂ . . . ⊂ Im. (10)

This structure implies that if all obligors in group Ik have defaulted, then all obligors
in group I1, . . . , Ik−1 have also defaulted. As we shall detail in Remark 3.3, the nested
structure (10) yields a particularly tractable expression for the portfolio loss distribution.
This nested structure also makes sense financially with regards to the hierarchical structure
of risks which is reflected in standard CDO tranches.

Remark 3.2 A dynamic group structure would be preferable from a financial point of view.
In the same vein one could deplore the absence of direct contagion effects in this model (it
only has joint defaults). However it should be stressed that we are building a pricing model,
not an econometric model; the applications we have in mind are hedging CDO tranches by
individual names (see Section 5), as well as valuation and hedging of counterparty risk on
credit portfolios (see [7]). In these regards, efficient pricing (at any future point in time,
not only at time 0 [7]) and Greeking procedures, as well as efficient joint calibration to CDS
and CDO data (see Section 4), are the main issues, and these are already quite difficult to
achieve simultaneously in a single model.

Denoting conventionally I0 = ∅ and HI0
θ (t) = 1, then in view of (10), the events

Ωj
θ(t) := {HIj

θ (t) = 1, H
Ij+1

θ (t) = 0, . . . ,HIm
θ (t) = 0}, 0 ≤ j ≤ m

form a partition of Ω. Hence, we have

P(Nθ(t, Z) = k |Xt) =
∑

0≤j≤m
P
(
Nθ(t, Z) = k |Ωj

θ(t),Xt

)
P
(
Ωj
θ(t) |Xt

)
(11)

where, by construction of the HI
θ (t) and independence of the λI(t,X

I
t ) we have

P
(
Ωj
θ(t) |Xt

)
=
(

1− E
(
e−Λ

Ij
t,θ |XIj

t

)) ∏
j+1≤l≤m

E
(
e−Λ

Il
t,θ |XIl

t

)
(12)

which in our model can be computed very quickly (actually, semi-explicitly in either of the
specifications of Example (2.2)). We now turn to the computation of the term

P
(
Nθ(t, Z) = k |Ωj

θ(t),Xt

)
(13)
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appearing in (11). Recall first that Nθ(t, Z) = n− |Z|+
∑

i∈Z H
i
θ(t) with |Z| denoting the

cardinality of Z. We know that for every group j = 1, . . . ,m, given Ωj
θ(t), the marginal

default indicators H i
θ(t) for i ∈ Z are such that:

H i
θ(t) =

{
1, i ∈ Ij ,
H
{i}
θ (t), else.

(14)

Hence, the H i
θ(t) are conditionally independent given Ωj

θ(t). Finally, conditionally on

(Ωj
θ(t),Xt) the random vector Hθ(t) = (H i

θ(t))i∈Nn is a vector of independent Bernoulli

random variables with parameter p = (pi,jθ (t))i∈Nn , where

pi,jθ (t) =

{
1, i ∈ Ij ,
1− E

{
exp

(
− Λ

{i}
t,θ

)
|X{i}t

}
, else

(15)

The conditional probability (13) can therefore be computed by a standard convolution
recursive procedure (see, for instance, Andersen and Sidenius [1]).

Remark 3.3 The linear number of terms in the sum of (11) is due to the nested structure
of the groups Ij in (11). Note that a convolution recursion procedure is possible for an
arbitrary structuring of the groups Ij . However, a general structuring of the m groups Ij
would imply 2m terms instead of m in the sum of (11), which in practice would only work
for very few groups m. The nested structure (11) of the Ij , or equivalently, the tranched
structure of the Ij \ Ij−1, is also quite natural from the point of view of application to CDO
tranches.

4 Model Calibration

In this section we briefly discuss the calibration of the model and some few numerical results
connected to the loss-distributions. Subsection 4.1 outlines the calibration methodology
with piecewise constant default intensities and constant recoveries (for a calibration with
stochastic intensities and/or random recoveries see in [5]). Then Subsection 4.2 presents
the numerical calibration of the Markov copula model against market data. We also study
the implied loss-distributions in our fitted model for the case with constant recoveries.

4.1 Calibration Methodology

In this subsection we discuss one of the calibration methodologies that will be used when fit-
ting the Markov copula model against CDO tranches on the iTraxx Europe and CDX.NA.IG
series in Subsection 4.2. This first calibration methodology will use piecewise constant de-
fault intensities and constant recoveries in the convolution pricing algorithm of Subsection
3.

The first step is to calibrate the single-name CDS for every obligor. Given the T -year
market CDS spread S∗i for obligor we want to find the individual default parameters for
obligor i so that P i0(S∗i ) = 0, so

S∗i =
(1−Ri)P (τi < T )

h
∑

0<tj≤T P (τi > tj)
(16)
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where we used the facts that interest rate is zero and that the recovery Ri is constant.
Hence, the first step is to extract the implied hazard function Γ∗i (t) = − lnP (τi > T ) from
the CDS curve of every obligor i by using a standard bootstrapping procedure based on
(16).

Given the marginal hazard functions, the law of the total number of defaults at a fixed
horizon is a function of the joint default intensity functions λI(t), as described by the recur-
sive algorithm of Subsection 3. The second step is therefore to calibrate the common-shock
intensities λI(t) so that the model CDO tranche spreads coincide with the corresponding
market spreads. This is done by using the recursive algorithm of Subsection 3, for λI(t)s
parameterized as non-negative and piecewise constant functions of time. Moreover, in view
of the definition of λit in (3), for every obligor i and at each time t we impose the constraint∑

I∈I; i∈I
λI(t) ≤ λ∗i (t) (17)

where λ∗i :=
dΓ∗i
dt denotes the hazard rate (or hazard intensity) of name i. For constant joint

default intensities λI(t) = λI the constraints (17) reduce to∑
I3i

λI ≤ λi := inf
t∈[0,T ]

λ∗i (t) for every obligor i.

Given the nested structure of the groups Ij-s specified in (10), this is equivalent to

m∑
j=l

λIj ≤ λIl := min
i∈Il\Il−1

λi for every group l. (18)

Furthermore, for piecewise constant common shock intensities on a time grid (Tk), the
condition (18) extends to the following constraint

m∑
j=l

λkIj ≤ λ
k
Il

:= min
i∈Il\Il−1

λki for every l, k where λki := inf
t∈[Tk−1,Tk]

λ∗i (t). (19)

We remark that insisting on calibrating all CDS names in the portfolio, including the safest
ones, implies via (18) or (19) a very constrained region for the common shock parameters.
This region can be expanded by relaxing the system of constraints for the joint default
intensities, by excluding the safest CDSs from the calibration.

In this paper we will use a time grid consisting of two maturities T1 and T2. Hence,
the single-name CDSs constituting the entities in the credit portfolio are bootstrapped
from their market spreads for T = T1 and T = T2. This is done by using piecewise constant
individual default intensity λi-s on the time intervals [0, T1] and [T1, T2].

Before we leave this subsection, we give some few more details on the calibration of
the common shock intensities for the m groups in the second calibration step. From now on
we assume that the joint default intensities {λIj (t)}mj=1 are piecewise constant functions of

time, so that λIj (t) = λ
(1)
Ij

for t ∈ [0, T1] and λIj (t) = λ
(2)
Ij

for t ∈ [T1, T2] and for every group

j. Next, the joint default intensities λ = (λ
(k)
Ij

)j,k = {λ(k)
Ij

: j = 1, . . . ,m and k = 1, 2} are

then calibrated so that the five-year model spread Sal,bl(λ) =: Sl(λ) will coincide with the
corresponding market spread S∗l for each tranche l. To be more specific, the parameters
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λ = (λ
(k)
Ij

)j,k are obtained according to

λ = argmin
λ̂

∑
l

(
Sl(λ̂)− S∗l

S∗l

)2

(20)

under the constraints that all elements in λ are nonnegative and that λ satisfies the in-
equalities (19) for every group Il and in each time interval [Tk−1, Tk] where T0 = 0. In Sl(λ̂)

we have emphasized that the model spread for tranche l is a function of λ = (λ
(k)
Ij

)j,k but
we suppressed the dependence in other parameters like interest rate, payment frequency or
λi, i = 1, . . . , n.

4.2 Calibration Results

In all the numerical calibrations below we use an interest rate of 3%, the payments in the
premium leg are quarterly and the integral in the default leg is discretized on a quarterly
mesh. The constant recoveries for all obligors are set equal to 40%. We use Matlab in our
numerical calculations and the related objective function is minimized under the suitable
constraints by using the built in optimization routine fmincon (e.g. in the setup of Sub-
section 4.1, minimizing the criterion (20) under the constraints given by equations on the
form (19)).

In this subsection we calibrate our model against CDO tranches on the iTraxx Europe
and CDX.NA.IG series with maturity of five years. We use the calibration methodologies
described in Subsection 4.1.
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Figure 1: The 3 and 5-year market CDS spreads for the 125 obligors used in the single-name
bootstrapping, for the two portfolios CDX.NA.IG sampled on December 17, 2007 and the
iTraxx Europe series sampled on March 31, 2008. The CDS spreads are sorted in decreasing
order.
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Hence, the 125 single-name CDSs constituting the entities in these series are boot-
strapped from their market spreads for T1 = 3 and T2 = 5 using piecewise constant indi-
vidual default intensities on the time intervals [0, 3] and [3, 5]. Figure 1 displays the 3 and
5-year market CDS spreads for the 125 obligors used in the single-name bootstrapping, for
the two portfolios CDX.NA.IG sampled on December 17, 2007 and the iTraxx Europe series
sampled on March 31, 2008. The CDS spreads are sorted in decreasing order.

Table 1: CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31,
2008. The market and model spreads and the corresponding absolute errors, both in bp
and in percent of the market spread. The [0, 3] spread is quoted in %. All maturities are
for five years.

CDX 2007-12-17

Tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]

Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 48.07 254.0 124.0 61.00 38.94

Absolute error in bp 0.010 0.000 0.000 0.000 2.061
Relative error in % 0.0001 0.000 0.000 0.000 5.027

iTraxx Europe 2008-03-31

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Market spread 40.15 479.5 309.5 215.1 109.4
Model spread 41.68 429.7 309.4 215.1 103.7

Absolute error in bp 153.1 49.81 0.0441 0.0331 5.711
Relative error in % 3.812 10.39 0.0142 0.0154 5.218

When calibrating the joint default intensities λ = (λ
(k)
Ij

)j,k for the CDX.NA.IG Se-

ries 9, December 17, 2007 we used 5 groups I1, I2, . . . , I5 where Ij = {1, . . . , ij} for ij =
6, 19, 25, 61, 125. Recall that we label the obligors by decreasing level of riskiness. We use
the average over 3-year and 5-year CDS spreads as a measure of riskiness. Consequently,
obligor 1 has the highest average CDS spread while company 125 has the lowest average
CDS spread. Moreover, the obligors in the set I5 \ I4 consisting of the 64 safest companies
are assumed to never default individually, and the corresponding CDSs are excluded from
the calibration, which in turn relaxes the constraints for λ in (19). Hence, the obligors
in I5 \ I4 can only bankrupt due to a simultaneous default of the companies in the group
I5 = {1, . . . , 125}, i.e., in an Armageddon event. With this structure the calibration against
the December 17, 2007 data-set is very good as can be seen in Table 1. By using stochastic
recoveries specified as in [5] one can get a perfect fit of the same data-set, see in [5]. The
calibrated common shock intensities λ for the 5 groups in the December 17, 2007 data-set
are displayed in the left subplot of Figure 2.

The calibration of the joint default intensities λ = (λ
(k)
Ij

)j,k for the data sampled
at March 31, 2008 is more demanding. This time we use 18 groups I1, I2, . . . , I18 where
Ij = {1, . . . , ij} for ij = 1, 2, . . . , 11, 13, 14, 15, 19, 25, 79, 125. In order to improve the fit, as
in the 2007-case, we relax the constraints for λ in (19) by excluding from the calibration
the CDSs corresponding to the obligors in I18 \ I17. Hence, we assume that the obligors in
I18 \ I17 never default individually, but can only bankrupt due to an simultaneous default
of all companies in the group I18 = {1, . . . , 125}. In this setting, the calibration of the 2008
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data-set with constant recoveries yields an acceptable fit except for the [3, 6] tranche, as
can be seen in Table 1. However, by including stochastic recoveries specified as in [5] the fit
can be substantially improved, see in [5]. Furthermore, the more groups added the better
the fit, which explain why we use as many as 18 groups (this holds both for constant and
stochastic recoveries). The calibrated common shock intensities λ for the 18 groups in the
March 2008 data-set are displayed in the right subplot of Figure 2.
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Figure 2: The calibrated common shock intensities (λ
(k)
Ij

)j,k for the two portfolios

CDX.NA.IG sampled on December 17, 2007 (left) and the iTraxx Europe series sampled on
March 31, 2008 (right).

Let us finally discuss the choice of the groupings I1 ⊂ I2 ⊂ . . . ⊂ Im in our calibrations.
First, for the CDX.NA.IG Series 9, December 17, 2007 data set, we used m = 5 groups with
as always im = n. For j = 1, 2 and 4 the choice of ij corresponds to the number of defaults
needed for the loss process with constant recovery of 40% to reach the j-th attachment
points. Hence, ij · 1−R

n with R = 40% and n = 125 then approximates the attachment
points 3%, 10%, 30% which explains the choice i1 = 6, i2 = 19, i4 = 61. The choice of
i3 = 25 implies a loss of 12% and gave a better fit than choosing i3 to exactly match 15%.
Finally, no group was chosen to match the attachment point of 7% since this made the
calibration worse off for all groupings we tried. With the above grouping structure we got
almost perfect fits in the constant recovery case as was seen in Table 1 (and a perfect fit
with stochastic recovery, see in [5]). Unfortunately, using the same technique on the market
CDO data from the iTraxx Europe series sampled on March 31, 2008 was not enough to
achieve good calibrations. Instead more groups had to be added and we tried different
groupings which led to the optimal choice rendering the calibration in Table 1. To this end,
it is of interest to study the sensitivity of the calibrations with respect to the choice of the
groupings on the form I1 ⊂ I2 ⊂ . . . ⊂ Im where Ij = {1, . . . , ij} for ij ∈ {1, 2, . . . ,m} and
i1 < . . . < im = 125 on the March 31, 2008, data set. Three such groupings are displayed in
Table 2 and the corresponding calibration results on the 2008 data set is showed in Table
3.
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Table 2: Three different groupings (denoted A,B and C) consisting of m = 7, 9, 13 groups
having the structure I1 ⊂ I2 ⊂ . . . ⊂ Im where Ij = {1, . . . , ij} for ij ∈ {1, 2, . . . ,m} and
i1 < . . . < im = 125.

Three different groupings

ij i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13

Grouping A 6 14 15 19 25 79 125
Grouping B 2 4 6 14 15 19 25 79 125
Grouping C 2 4 6 8 9 10 11 14 15 19 25 79 125

Table 3: The relative calibration error in percent of the market spread, for the three
different groupings A, B and C in Table 2, when calibrated against CDO tranche on iTraxx
Europe Series 9, March 31, 2008 (see also in Table 1).

Relative calibration error in % (constant recovery)

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Error for grouping A 6.875 18.33 0.0606 0.0235 4.8411
Error for grouping B 6.622 16.05 0.0499 0.0206 5.5676
Error for grouping C 4.107 11.76 0.0458 0.0319 3.3076

From Table 3 we see that the relative calibration error in percent of the market spread
decreased monotonically for the first three thranches as the number of groups increased.
The rest of the parameters in the calibration where the same as in the optimal calibration
in Table 1.

Finally, we remark that the two optimal groupings used in Table 1 in the two different
data sets CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31,
2008 differ quite a lot. However, the CDX.NA.IG Series is composed by North American
obligors while the iTraxx Europe Series is formed by European companies. Thus, there is no
model risk or inconsistency created by using different groupings for these two different data
sets, coming from two disjoint markets. If on the other hand the same series is calibrated
and assessed (e.g. for hedging) at different time points in a short time span, it is of course
desirable to use the same grouping in order to avoid model risk.

4.2.1 The Implied Loss Distribution

After the fit of the model against market spreads we can use the calibrated portfolio param-

eters λ = (λ
(k)
Ij

)j,k together with the calibrated individual default intensities, to study the
credit-loss distribution in the portfolio. In this paper we only focus on some few examples
derived from the loss distribution with constant recoveries evaluated at T = 5 years.
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Figure 3: The implied distribution P [N5 = k] on {0, 1, . . . , `} where ` = 125 (left) and
` = 35 (right) when the model is calibrated against CDX.NA.IG Series 9, December 17,
2007 and iTraxx Europe Series 9, March 31, 2008.

The allowance of joint defaults of the obligors in the groups Ij together with the
restriction of the most safest obligors not being able to default individually, will lead to some
interesting effects of the loss distribution, as can be seen in Figures 3 and 4. For example,
we clearly see that the support of the loss-distributions will in practice be limited to a rather
compact set. To be more specific, the graphs in Figure 3 indicate that P [N5 = k] roughly
has support on the set {1, . . . , 35} ∪ {61} ∪ {125} for the 2007 case and on {1, . . . , 40} ∪
{79}∪{125} for the 2008 data-set. This becomes even more clear in a log-loss distribution,
as is seen in Figure 4.
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and ` = 35 (right) when the model is calibrated against CDX.NA.IG Series 9, December
17, 2007 and iTraxx Europe Series 9, March 31, 2008.
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From the left graph in Figure 4 we see that the default-distribution is nonzero on
{36, . . . , 61} in the 2007-case and nonzero on {41, . . . , 79} for the 2008-sample, but the
actual size of the loss-probabilities are in the range 10−10 to 10−70. Such low values will
obviously be treated as zero in any practically relevant computation. Furthermore, the
reasons for the empty gap in the left graph in Figure 4 on the interval {62, . . . , 124} for the
2007-case is due to the fact that we forced the obligors in the set I5 \ I4 to never default
individually, but only due to an simultaneous common shock default of the companies in the
group I5 = {1, . . . , 125}. This Armageddon event is displayed as an isolated nonzero ‘dot’
at default nr 125 in the left graph of Figure 4. The gap on {80, . . . , 124} in the 2008 case is
explained similarly due to our assumption on the companies in the set I19 \ I18. Also note
that the two ‘dots’ at default nr 125 in the left subplot of Figure 4 are manifested as spikes
in the left graph displayed in Figure 3. The shape of the multimodal loss distributions
presented in Figure 3 and Figure 4 are typical for models allowing simultaneous defaults,
see for example Figure 2, page 59 in [12] and Figure 2, page 710 in [14].

5 Min-Variance Hedging

In this section we present some numerical results illustrating performance of the min-
variance hedging strategies given in Proposition 3.2 of [4]. This will be done in the setup
of the calibrated model of Subsection 4.1 (model calibrated with constant recoveries to the
CDX.NA.IG Series 9 data set of December 17, 2007).

The aim of this subsection is to analyze the composition of the hedging portfolio at
time t = 0 (the calibration date) when standardized CDO tranches are hedged with a group
of d single-name CDSs, which are included in the underlying CDS index. Since no spread
factor X is used in the model, Proposition 3.2 of [4] then implies that the min-variance
hedging ratios at time t = 0 is given by ζva(0,H0) = (u,v)(v,v)−1(0,H0) where

(u,v) =
∑
Y ∈Y

λY (0)∆uY (∆vY )T and (v,v) =
∑
Y ∈Y

λY (0)∆vY (∆vY )T.

Hence, computing the min-variance hedging ratios involves a summation of the “jump differ-
entials” λY (0)∆uY (∆vY )T and λY (0)∆vY (∆vY )T over all possible triggering events Y ∈ Y
where Y = {{1}, . . . , {n}, I1, . . . , Im}.

In the calibration of the CDX.NA.IG Series 9, we usedm = 5 groups I1, I2, . . . , I5 where
Ij = {1, . . . , ij} for ij = 6, 19, 25, 61, 125 and the obligors have been labeled by decreasing
level of riskiness. At the calibration date t = 0 associated with December 17, 2007, no name
has defaulted in CDX Series 9 so we set H0 = 0. In our empirical framework, the intensities
λY (0), Y ∈ Y are computed from the constant default intensities λi that fit market spreads
of 3-year maturity CDSs and from the 3-year horizon joint default intensities λIj calibrated
to CDO tranche quotes. The terms ∆uY (0,H0) and ∆vY (0,H0) corresponds to the change
in value of the tranche and the single-name CDSs, at the arrival of the triggering event
affecting all names in group Y . Recall that the cumulative change in value of the tranche
is equal to

∆uY (0,H0) = La,b(H
Y
0 )− La,b(H0) + u(0,HY

0 )− u(0,H0)

where HY
0 is the vector of {0, 1}n such that only the components i ∈ Y are equal to one.

Hence, the tranche sensitivity ∆uY (0,H0) includes both the protection payment on the
tranche associated with the default of group Y and the change in the ex-dividend price
u of the tranche. Note that the price sensitivity is obtained by computing the change in
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the present value of the default leg and the premium leg. The latter quantity involves the
contractual spread that defines cash-flows on the premium leg. As for CDX.NA.IG Series
9, the contractual spreads were equal to 500 bps, 130 bps, 45 bps, 25 bps and 15 bps for
the tranches [0-3%], [3-7%], [7-10%], [10-15%] and [15-30%]. We use the common-shock
interpretation to compute u(0,HY

0 ) and u(0,H0) with the convolution recursion pricing
scheme detailed in Subsection 3. More precisely, using the same notation as in Subsection 3,
the CDO tranche price u(0,HY

0 ) (resp. u(0,H0)) is computed using the recursion procedure
with Z = Nn \ Y (resp. Z = Nn). We let i1, . . . id be the CDSs used in the min-variance
hedging and assume that they all are initiated at time t = 0. Hence, the market value at
t = 0 for these CDSs are zero. As a result, when group Y defaults simultaneously, the change
in value ∆vY (0,H0) for buy-protection positions on these CDSs is only due to protection
payment associated with names in group Y . Hence, for one unit of nominal exposure on
hedging CDSs, the corresponding vector of sensitivities is equal to ∆vY (0,H0) = ((1 −
R)1i1∈Y , . . . , (1−R)1id∈Y )T where the recovery rate R is assumed to be constant and equal
to 40%.
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Figure 5: Min-variance hedging strategies associated with the d riskiest CDSs, d = 3, 4, 5, 6
for one unit of nominal exposure of different CDO tranches in a model calibrated to market
spreads of CDX.NA.IG Series 9 on December 17, 2007.
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Table 4: The names and CDS spreads (in bp) of the six riskiest obligors used in the hedging
strategy displayed by Figure 5.

Company (Ticker) CCR-HomeLoans RDN LEN SFI PHM CTX

3-year CDS spread 1190 723 624 414 404 393

Figure 5 displays the nominal exposure for the d most riskiest CDSs when hedging
one unit of nominal exposure in a CDO by using the min-variance hedging strategy in
Proposition 3.2 of [4]. We use d = 3, 4, 5 and d = 6 in our computations. Furthermore,
Table 4 displays the names and sizes of the 3-year CDS spreads used in the hedging strategy.
Each plot in Figure 5 should be interpreted as follows: in every pair (x, y) the x-component
represents the size of the 3-year CDS spread at the hedging time t = 0 while the y-component
is the corresponding nominal CDS-exposure computed via Proposition 3.2 of [4] using the d
riskiest CDSs. The graphs are ordered from top to bottom, where the top panel corresponds
to hedging with the d = 3 riskiest CDS and the bottom panel corresponds to hedging with
the d = 6 riskiest names. Note that the x-axes are displayed from the riskiest obligor to the
safest. Thus, hedge-sizes y for riskier CDSs are aligned to the left in each plot while y-values
for safer CDSs are consequently displayed more to the right. In doing this, going from the
top to the bottom panel consists in observing the effect of including new safer names from
the right part of the graphs. We have connected the pairs (x, y) with lines forming graphs
that visualizes possible trends of the min-variance hedging strategies for the d most riskiest
CDSs.

For example, when the three riskiest names are used for hedging (top panel), we observe
that the amount of nominal exposure in hedging instruments decreases with the degree of
subordination, i.e., the [0-3%] equity tranche requires more nominal exposure in CDSs than
the upper tranches. Note moreover that the min-variance hedging portfolio contains more
CDSs on names with lower spreads. When lower-spread CDSs are added in the portfolio,
the picture remains almost the same for the 3 riskiest names. For the remaining safer
names however, the picture depends on the characteristics of the tranche. For the [0-3%]
equity tranche, the quantity of the remaining CDSs required for hedging sharply decrease as
additional safer names are added. One possible explanation is that adding too many names
in the hedging strategy will be useless when hedging the equity tranche. This is intuitively
clear since one expects that the most riskiest obligors will default first and consequently
reduce the equity tranche substantially, explaining the higher hedge-ratios for riskier names,
while it is less likely that the more safer names will default first and thus incur losses on
the first tranche which explains the lower hedge ratios for the safer names. We observe
the opposite trend for the senior (safer) tranches: adding new (safer) names in the hedging
portfolio seems to be useful for “non equity” tranches since the nominal exposure required
for these names increases when they are successively added.

Figure 6 and 7 display min-variance hedging strategies when hedging a standard
tranche with the 61 riskiest names, i.e., all names excepted names in group I5 \I4. Contrary
to Figure 5, these graphs allow to visualize the effect of the “grouping structure” on the
composition of the hedging portfolio. In this respect, we use different marker styles in order
to distinguish names in the different disjoint groups I1, I2\I1, I3\I2, I4\I3. As one can see,
the min-variance hedging strategies are quite different among tranches. Moreover, whereas
nominal exposures required for hedging are clearly monotone for names belonging to the
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same disjoint group, this tendency is broken when we consider names in different groups.
This suggests that the grouping structure has a substantial impact on the distribution of
names in the hedging portfolio. For the equity tranche, we observe in Figure 5 that less
safer-names are required for hedging. This feature is retained in Figure 6 when we look at
names in specific disjoint groups. Indeed, names in a given disjoint group are affected by
the same common-shocks which in turn affect the equity tranche with the same severity.
The only effect that may explain differences in nominal exposure among names in the same
disjoint group is spontaneous defaults: names with wider spreads are more likely to default
first, then we need them in greater quantity for hedging than names with tighter spreads.
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Figure 6: Min-variance hedging strategies when hedging one unit of nominal exposure in
the [0-3%] equity tranche (top) and the [3-7%] mezzanine tranche (bottom) using the d
riskiest CDSs, d = 61 (all names excepted names in group I5 \ I4) for one unit of nominal
exposure.

Note that nominal exposure in hedging CDS even becomes negative for names within
groups I2 \ I1 and I4 \ I3 when spreads are low. However, in Figure 6 we observe that,
for the equity tranche, some of the riskiest names in I4 \ I3 are more useful in the hedging
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Figure 7: Min-variance hedging strategies when hedging one unit of nominal exposure in
the [7-10%] tranche (top), the [10-15%] tranche (middle) and the [15-30%] tranche (bottom)
with the d riskiest CDSs, d = 61 (all names excepted names in group I5 \ I4).
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than some of the safest names in group I1, which may sound strange at a first glance, given
that the credit spread of the latter is much larger than the credit spread of the former.
Recall that the equity tranche triggers protection payments corresponding to the few first
defaults, if these occur before maturity. Even if names in group I4\I3 have a very low default
probability, the fact that they can affect the tranche at the arrival of common-shocks I4 or
I5 makes these names appealing for hedging because they are less costly (they require less
premium payments) than names in I1.

Figure 6 suggests that names with the lowest spreads should be ineffective to hedge
the [0-3%] and the [3-7%] tranches. As can be seen in Figure 7, this is the contrary for the
other tranches, i.e., the amount of low-spread names in the hedging portfolio increases as
the tranche becomes less and less risky. For the [15-30%] super-senior tranche, we can see
on the lowest graph of Figure 7 that the safer a name is, the larger the quantity which is
required for hedging. Furthermore, Figure 7 also shows that in a consistent dynamic model
of portfolio credit risk calibrated to a real data set, the [15-30%] super-senior tranche has
significant (in fact, most of its) sensitivity to very safe names with spreads less than a few
dozens of bp-s. For this tranche it is actually likely that one could improve the hedge by
inclusion of even safer names to the set of hedging instruments, provided these additional
names could also be calibrated to. Recall that on the data of CDX.NA.IG Series 9 on
December 17, 2007, we calibrated our model to the 64 safest names in the portfolio.
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[13] Crépey, S. and Rahal, A.: Simulation/Regression Pricing Schemes for CVA Com-
putations on CDO Tranches (submitted).

[14] Elouerkhaoui, Y.: Pricing and Hedging in a Dynamic Credit Model. International
Journal of Theoretical and Applied Finance, Vol. 10, Issue 4, 703–731, 2007.

[15] Iscoe, I., Jackson, K., Kreinin, A. and Ma, X.: On Exponential Approxima-
tion to the Hockey Stick Function. Working Paper, Department of Computer Science,
University of Toronto, 2010.

[16] Iscoe, I., Jackson, K., Kreinin, A. and Ma, X.: Pricing correlation-dependent
derivatives based on exponential approximations to the hockey stick function. Forth-
coming in Journal of Computational Finance.

[17] Beylkin, G. and Monzon, L. On approximation of functions by exponential sums,
Applied and Computational Harmonic Analysis, 19 (1): 17-48, 2005.

[18] Marshall, A. & Olkin, I.: A multivariate exponential distribution, J. Amer.
Statist. Assoc., 2, 84-98, 1967.

[19] Patton, A.: Modelling Time-varying exchange rate dependence using the conditional
copula, Working Paper 2001-09, University of California, San Diego, 2001.


	Introduction
	Model of Default Times
	Fast Deterministic Pricing Schemes
	Common Shocks Model Interpretation 
	Recursive Convolutive Pricing Schemes

	Model Calibration
	Calibration Methodology
	Calibration Results
	The Implied Loss Distribution


	Min-Variance Hedging

