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In [2], we introduce a common shock model of portfolio credit risk where one can build a con-
sistent picture of bottom up defaults that are also manageable in a top down aggregate loss space.
In this sense this model solves the bottom-up top-down puzzle [4], which the CDO industry had
been trying to do for a long time and basically failed. Then the CDO market died and the problem
remained standing.

In our model, defaults are the consequence of some “shocks” associated with groups of obligors.
We define the following pre-specified set of groups

Y = {{1}, . . . , {n}, I1, . . . , Im},

where I1, . . . , Im are subsets of N = {1, . . . , n}, and each group Ij contains at least two obligors or
more. The shocks are divided in two categories: the “idiosyncratic” shocks associated with singletons
{1}, . . . , {n} can only trigger the default of name 1, . . . , n individually, while the “systemic” shocks
associated with multi-name groups I1, . . . , Im may simultaneously trigger the default of all names
in these groups. Note that several groups Ij may contain a given name i, so that only the shock
occurring first effectively triggers the default of that name. As a result, when a shock associated
with a specific group occurs at time t, it only triggers the default of names that are still alive
in that group at time t. In the following, the elements Y of Y will be used to designate shocks
and we let I = (Il)1≤l≤m denote the pre-specified set of multi-name groups of obligors. Shock
intensities λY (t,Xt) will be specified later in terms of a Markovian factor process Xt. Letting

ΛYt =
∫ t
0
λY (s,Xs)ds, we define

τY = inf{t > 0; ΛYt > EY }, (1)

where the random variables EY are i.i.d. and exponentially distributed with parameter 1. For every
obligor i we let

τi = min
{Y ∈Y; i∈Y }

τY , (2)

which defines the default time of obligor i in the common shocks model. The model filtration is given
as F = X∨H, the filtration generated by the factor process X and the point process H = (Hi)1≤i≤n
with Hi

t = 1τi≤t.
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This model can be viewed as a doubly stochastic (via the stochastic intensities ΛY ) and dy-
namized (via the introduction of the filtration F) generalization of the Marshall-Olkin model [8].
The purpose of the factor process X is to more realistically model diffusive randomness of credit
spreads. Figure 1 shows one possible defaults path in our model with n = 5 and

Y = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.

The inner oval shows which common-shock happened and caused the observed default scenarios at
successive default times. At the first instant, default of name 2 is observed as the consequence of
the idiosyncratic shock {2}. At the second instant, names 4 and 5 have defaulted simultaneously
as a consequence of the systemic shock {4, 5}. At the fourth instant, the systemic shock {2, 3, 4}
triggers the default of name 3 alone as name 2 and 4 have already defaulted. At the fifth instant,
default of name 1 alone is observed as the consequence of the systemic shock {1, 2}.

Figure 1: One possible defaults path in a model with n = 5 and Y =
{{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.

Table 1 summarizes the calibration results obtained with this model (using piecewise-constant
intensities), for two different quotation dates and two different CDS indices under the constraint
that the model perfectly reproduces each individual CDS curve of the corresponding index at these
two dates. Even better fits can be obtained by resorting to random recoveries specifications (see
[3]). The calibrated model can then be used for any bottom-up dynamical portfolio credit purpose,
in particular, valuation and hedging of counterparty risk on credit derivatives (see [1]).

In this regard, first note that by using suitable stochastic specifications of the shock intensities,
the model can generate very significant levels of CDS implied volatilities (see the left panel of Figure
2). The right panel of Figure 2 shows the value of the CVA on a payer CDS in the common
shock model, with a stochastic default intensity thus specified, as a function of a Gaussian copula
correlation % between the counterparty (protection seller with credit spread κ2) and the reference firm
of the CDS (with credit spread κ1 = 84 basis points). Observe that the CVA increases monotonically
in %, including at the highest values of the latter, whereas comonotonic pathologies would alter this
monotonicity in simplistic models of counterparty credit risk—at least in the case κ2 = 50bps <
84bps = κ1 (blue curve on the figure) for which, in a comotonic model at high %, the reference would
always default before the counterparty, hence it would be a zero CVA.

Finally Table 2 shows the CVA on stylized [0−5]%, [5−35]% and [35−100]% CDO tranches in
a common shock model of 100 obligors, including the counterparty of the CDO, without (“naked”)
and with “continuous” collateralization (collateral continuously updated to track at every time the
left-limit of the mark-to-market of the CDO tranche, the most extreme case of collateralization with
the left-limit reflecting an “infinitesimal” cure period). As clear from the table, collateralization has
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Table 1: CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31, 2008. The
market and model spreads and the corresponding absolute errors, both in bp and in percent of the
market spread. The [0, 3] spread is quoted in %. All maturities are for five years.

CDX 2007-12-17
CDO tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]
Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 48.07 254.0 124.0 61.00 38.94

Absolute error in bp 0.010 0.000 0.000 0.000 2.061
Relative error in % 0.0001 0.000 0.000 0.000 5.027

iTraxx Europe 2008-03-3
CDO tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]
Market spread 40.15 479.5 309.5 215.1 109.4
Model spread 41.68 429.7 309.4 215.1 103.7

Absolute error in bp 153.1 49.81 0.0441 0.0331 5.711
Relative error in % 3.812 10.39 0.0142 0.0154 5.218

Figure 2: Left : Implied volatility of a CDS option on an individual name with respect to the volatility
ν of the driving noise of the default intensity (see [5]). Right : Time-0 CVA on a CDS with respect
to the Gaussian correlation % between the counterparty (protection seller) and the reference firm in
a common shock model of the two names (see [6]).
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little impact in this case, particularly on the senior tranches, which conveys the important message
that due to wrong-way risk (represented in this model by the possibility of joint defaults which are
“missed” by the collateral due to the cure period), counterparty risk on credit derivatives may be
scarcely collateralizable.

Naked Collateralized
Tranche 0-5 5-35 35+ 0-5 5-35 35+

CVA 4.78 2.96 2.44 3.41 2.73 2.26

Table 2: Naked versus collateralized CVA (see [7]).
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