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ABSTRACT

The ongoing concern about systemic risk since the outburst of the
global financial crisis has highlighted the need for risk measures
at the level of sets of interconnected financial components, such
as portfolios, institutions or members of clearing houses. The two
main issues in systemic risk measurement are the computation of
an overall reserve level and its allocation to the different compo-
nents according to their systemic relevance. We develop here a
pragmatic approach to systemic risk measurement and allocation
based on multivariate shortfall risk measures, where acceptable al-
locations are first computed and then aggregated so as to minimize
costs. We analyze the sensitivity of the risk allocations to various
factors and highlight its relevance as an indicator of systemic risk.
In particular, we study the interplay between the loss function and
the dependence structure of the components, that provides valu-
able insights into the properties of good loss functions. Moreover,
we provide numerical schemes to assess the risk allocation in high
dimensions.

KEYWORDS: Systemic risk, risk allocation, multivariate shortfall
risk, sensitivities, numerical methods.
AMSCLASSIFICATION: 91G, 91B30, 91G60

AUTHORS INFO
a Université d’Evry, 23 Boulevard de France, 91037 Evry, France
b School of Mathematical Sciences & Shanghai Advanced Institute
for Finance (CAFR/CMAR), Shanghai Jiao Tong University, 211
West Huaihai Road, Shanghai, P.R. 200030 China
c Institute of Mathematics, Technical University Berlin, Straße des
17. Juni 136, 10623 Berlin, Germany
1 yannick.armenti@gmail.com
2 stephane.crepey@univ-evry.fr
3 sdrapeau@saif.sjtu.edu.cn
4 papapan@math.tu-berlin.de

∗ Financial support from the EIF grant “Collateral management in
centrally cleared trading”, from the Chair “Markets in Transition”,
Fédération Bancaire Française, and from the ANR 11-LABX-0019.
† Financial support from LCH.Clearnet Paris.
‡ Financial support from the EIF grant “Post-crisis models for in-
terest rate markets”.
§ Financial support from the DAAD PROCOPE project “Financial
markets in transition: mathematical models and challenges”.
¶ Financial support from the National Science Foundation of
China, “Research Fund for International Young Scientists”, Grant
number 11550110184.

PAPER INFO
ArXiv ePrint: 1507.05351

1. Introduction

The ongoing concern about systemic risk since the onset of the global financial crisis has prompted
intensive research on the design and properties of multivariate risk measures. In this paper, we study
the risk assessment for financial systems with interconnected risky components, focusing on two major
aspects, namely:

• The quantification of a monetary risk measure corresponding to an overall reserve of liquidity such
that the whole system can overcome unexpected stress or default scenarios;

• The allocation of this overall amount between the different risk components in a way that reflects
the systemic risk of each one.

Our goal is fourfold. First, designing a theoretically sound but numerically tractable class of systemic risk
measures. Second, assessing the impact of the dependence structure of the system on the risk allocation.
Third, studying the sensitivity of this allocation with respect to exogenous shocks. Finally, developing
and testing efficient numerical schemes for the computation of the risk allocation.
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Review of the Literature: Monetary risk measures have been the subject of intensive research since the
seminal paper of Artzner et al. [4], which was further extended by Föllmer and Schied [19] and Frittelli
and Rosazza Gianin [20], among others. The corresponding risk measures, including conditional value-
at-risk by Artzner et al. [4], shortfall risk measures by Föllmer and Schied [19] or optimized certainty
equivalents by Ben-Tal and Teboulle [5], can be applied in a multivariate framework that models the
dependence of several financial risk components. Multivariate market data-based risk measures include
the marginal expected shortfall of Acharya et al. [1], the systemic risk measure of Acharya et al. [2]
and Brownlees and Engle [7], the delta conditional value-at-risk of Adrian and Brunnermeier [3] or the
contagion index of Cont et al. [12]. In parallel, theoretical economical and mathematical considerations
have led to multivalued and set-valued risk measures, in static or even dynamic setup; see for instance
Cascos and Molchanov [9], Hamel et al. [23] and Jouini et al. [24].

More recently, the risk management of financial institutions raised concerns about the allocation of
the overall risk among the different components of a financial system. A bank, for instance, for real
time monitoring purposes, wants to channel to each trading desk a cost reflecting its responsibility in the
overall capital requirement of the bank. A central clearing counterparty — CCP for short, also known
as a clearing house — is interested in quantifying the size of the so-called default fund and allocating it
in a meaningful way among the different clearing members. On a macroeconomic level, regulators are
considering to require from financial institutions an amount of capital reflecting their systemic relevance.
The aforementioned approaches can only address the allocation problem indirectly, through the sensitivity
of the risk measure with respect to the different risk components. For instance, the so-called Euler rule
allocates the total amount of risk according to the marginal impact of each risk factor. However, a practical
limitation of the Euler rule is that it is based on Gâteaux derivatives. In addition, the Euler risk allocation
does not add up to the total risk, unless the univariate risk measure that is used in the first place is sub-
additive. In other words, the Euler rule does not automatically fulfill the so-called full allocation property.

In a recent work, Brunnemeier and Cheridito [8] address systematically the question of allocation of
systemic risk with regard to certain economic properties:

• Full allocation: the sum of the components of the risk allocation is equal to the overall risk measure;

• Riskless allocation: if a risk factor is riskless, the corresponding component of the risk allocation
is equal to it;

• Causal responsibility: any system component bears the entire additional costs of any additional risk
that it takes.

More specifically, Brunnemeier and Cheridito [8] propose a framework where an overall capital require-
ment is first determined by utility indifference principles and then allocated according to a rule such that
the above three properties are fulfilled, at least at a first order level of approximation. In fact, as far as de-
pendence is concerned, whether the last two properties should hold is debatable. One may argue that each
component in the system is not only responsible for its own risk taking but also for its relative exposure
to other components. This is also what comes out from the present study, see Section 4.3.

Contribution and Outline of the Paper: Our approach addresses simultaneously the design of an
overall risk measure regarding a financial system of interconnected components and the allocation of this
risk measure among the different risk components; the emphasis lies on risk allocation. In contrast to
[8, 10], we first allocate the monetary risk among the different risk components and then aggregate and
minimizes the risk allocations in order to obtain the overall capital requirement. In two recent papers,
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Feinstein et al. [17] and Biagini et al. [6] develop approaches in a similar spirit, covering allocation first
followed by aggregation, in general frameworks with different aggregation procedures. They focus on the
resulting risk measure, conducting systematic studies of their properties in terms of set valued functions,
diversification and monotonicity, among others. Sharing with these references the “allocate first, then
aggregate” perspective, our approach is restricted to a systemic extension of shortfall risk measures,
see [19], based on multivariate loss functions. However, in contrast to the aforementioned references,
we focus on the resulting risk allocation in terms of existence, uniqueness, sensitivities and numerical
computation. In our view, the systemic risk is the risk that stems specifically from the intrinsic dependence
structure of an interconnected system of risk components. In this perspective, the risk allocation and
its properties provide a “cartography” of the systemic risk, see Section 6.2 for a numerical illustration
thereof. It turns out that special care has to be given to the specifications of the loss function in order
to stress the systemic risk. In [6], by allowing random allocations, the impact of the interdependence
structure can be observed in the future. Such random allocations may be interesting in view of a posterior
management of default allocations. By contrast, our deterministic allocation is sensitive to the dependence
of the system already at the moment of the quantification, as suited for the vast majority of applications. In
this sense, to the best of our knowledge, this paper is the first in the literature to make use of loss functions
that emphasize the dependence structure of the system, see Section 4 and see a contrario Proposition 3.10.
In addition, we present numerical schemes for the computation of multivariate shortfall risk measures and
their risk allocations, with either Monte Carlo simulations or Fourier transform methods along the lines of
the univariate case of Drapeau et al. [14], possibly combined with a Chebyshev polynomial interpolation,
a method recently applied to option pricing in Gaß et al. [21].

The paper is organized as follows: Section 2 introduces the class of systemic loss functions, acceptance
sets and risk measures that we use in this work. Section 3 establishes the existence and uniqueness of a
risk allocation. Section 4 focuses on sensitivities. In Section 5, the algorithmic aspects of the problem are
discussed and in Section 6, numerical results are presented. Appendices A and B gather classical facts
from convex optimization and results on multivariate Orlicz spaces. Appendix C provides more details
on the Fourier and Chebyshev schemes.

1.1. Basic Notation

Let xk denote the generic coordinate of a vector x ∈ Rd. By > we denote the lattice order on Rd, that
is, x > y if and only if xk ≥ yk for every 1 ≤ k ≤ d. We denote by ‖·‖ the Euclidean norm and by
±,∧,∨, |·| the lattice operations on Rd. For x, y ∈ Rd, we write x > y for xk > yk componentwise,
x · y =

∑
xkyk, xy = (x1y1, . . . , xdyd) and x/y = (x1/y1, . . . , xd/yd).

Let (Ω,F , P ) denote an atomless probability space, where P represents the objective probability mea-
sure, with related expectation denoted by E. We denote by L0(Rd) the space of F-measurable d-variate
random variables on this space. The space L0(Rd) inherits the lattice structure of Rd, hence we can use
the above notation in a P -almost sure sense. For instance, for X,Y ∈ L0(Rd), we say that X > Y or
X > Y if P [X > Y ] = 1 or P [X > Y ] = 1, respectively. Since we mainly deal with multivariate func-
tions or random variables, to simplify notation we drop the reference to Rd in L0(Rd), writing simply L0

unless a particular dimension is meant, mainly for L0(R) in the case of univariate random variables.
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2. Systemic Risk Measures

Let X = (X1, . . . , Xd) ∈ L0 be a random vector of financial losses, that is, negative values of Xk

represent actual profits. We want to determine an overall monetary measureR(X) of the risk ofX as well
as a sound risk allocation RAk(X), k = 1, . . . , d, of R(X) among the d risk components. We consider
a flexible class of risk measures defined by means of loss functions and sets of acceptable monetary
allocations. This class allows us to discuss in detail the properties of the resulting risk allocation as an
indicator of systemic risk. Inspired by the shortfall risk measure introduced in [19] in the univariate case,
we start with a loss function ` defined on Rd, used to measure the expected loss E[`(X)] of the financial
loss vector X .

Definition 2.1. A function ` : Rd → (−∞,∞] is called a loss function if

(A1) ` is increasing, that is, `(x) ≥ `(y) if x > y;

(A2) ` is convex, lower semi-continuous and finite on some neighborhood of 0;

(A3) `(0) = 0 and `(x) ≥
∑
xk on Rd.

A risk neutral assessment of the losses corresponds to E[
∑
Xk] =

∑
E[Xk]. Thus, (A3) expresses a

form of risk aversion, whereby the loss function puts more weight on high losses than a risk neutral
evaluation. As for (A1) and (A2), they express the respective normative facts about risk that “the more
losses, the riskier” and “diversification should not increase risk”; see Drapeau and Kupper [13] for related
discussions.

Remark 2.2. The considered risk components are often of the same type — banks, members of a clearing
house or trading desks within a trading floor. In that case, the loss function should not discriminate some
components against others. In other words, the loss function should be invariant under permutation of its
variables. �

Example 2.3. Let h : R → (−∞,∞] be a one-dimensional loss function, that is, a convex, increasing,
lower semi-continuous function such that h(0) = 0 and h(x) ≥ x for every x ∈ R. Classical examples
of loss functions1 are

h(x) = βx+, β > 1, h(x) = x+ (x+)2/2 or h(x) = ex − 1.

Using these as building blocks, we obtain the following classes of multivariate loss functions, which will
be used for illustrative purposes in the discussion of systemic risk, see Section 3.

(C1) `(x) = h(
∑
xk);

(C2) `(x) =
∑
h(xk);

(C3) `(x) = αh(
∑
xk) + (1− α)

∑
h(xk), where 0 ≤ α ≤ 1.

Moreover, in the numerical part we consider the following specific loss function:

(C4) `(x) =
∑
xk + 1

2

∑
(x+
k )2 + α

∑
j<k x

+
j x

+
k , where 0 ≤ α ≤ 1,2

1The second one, related to mean-variance penalization of the losses, is smoother than the first one, whilst being less explosive
than the third one, hence yielding a good compromise for optimization routines.

2 This is a loss function since 1
2

∑
(x+k )

2 + α
∑
j<k x

+
j x

+
k = 1−α

2

∑
(x+k )

2 + α
2
(
∑
x+k )

2,
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which is neither of the form (C1) nor (C2). Note that each of these loss functions are permutation invari-
ant, see Remark 2.2 for the economical motivation. ♦

Integrability and topological reasons lead us to consider loss vectors in the following multivariate
Orlicz heart:

Mθ =
{
X ∈ L0 : E [θ (λX)] <∞ for all λ ∈ R+

}
,

where θ(x) = `(|x|), x ∈ Rd; see Appendix B.

Definition 2.4. A monetary allocation m ∈ Rd is acceptable for X at the loss level c > 0 if

E [` (X −m)] ≤ c.

We denote by
A(X) :=

{
m ∈ Rd : E [` (X −m)] ≤ c

}
the corresponding set of acceptable monetary allocations.

Example 2.5. In a centrally cleared trading setup, each clearing member k is required to post a default
fund contribution mk in order to make the risk of the clearing house acceptable with respect to a risk
measure accounting for extreme and systemic risk. The default fund is a pooled resource of the clearing
house, in the sense that the default fund contribution of a given member can be used by the clearing house
not only in case the liquidation of this member requires it, but also in case the liquidation of another
member requires it. For the determination of the default fund contributions, the methodology of this
paper can be applied, to the vector X defined as the vector of stressed losses-and-profits of the clearing
members. According to the findings of Section 3 and 4, a “systemic” loss function such as (C3) or (C4)
with α > 0 would be consistent with the purpose of the default fund. ♦

The next proposition gathers the main properties of the sets of acceptable monetary allocations. The
convexity property in (i) means that a diversification between two acceptable monetary allocations re-
mains acceptable. If a monetary allocation is acceptable, then any greater amount of money should also
be acceptable, which is the monotonicity property in (i). As for (ii), it says that, if the losses X are less
than Y almost surely, then any monetary allocation that is acceptable for Y is also forX . Next, (iii) means
that a convex combination of allocations acceptable in two markets is still acceptable in the diversified
market. In particular, the acceptability concept pushes towards a greater diversification among the differ-
ent risk components. Finally, (iv) means that acceptable positions translate with cash in the sense of scalar
monetary risk measures à la [4, 19, 20]. As an immediate consequence of these properties, X 7→ A(X)

defines a monetary set-valued risk measure in the sense of Hamel et al. [23], that is, a set-valued map A
from Mθ into the set of monotone, closed and convex subsets of Rd.

Proposition 2.6. For X,Y in Mθ, it holds:

(i) A(X) is convex, monotone and closed;

(ii) A(X) ⊇ A(Y ) whenever X 6 Y ;

(iii) A(αX + (1− α)Y ) ⊇ αA(X) + (1− α)A(Y ), for any α ∈ (0, 1);

(iv) A(X +m) = A(X) +m, for any m ∈ Rd;

(v) ∅ 6= A(X) 6= Rd.
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Proof. Since ` is convex, increasing and lower semi-continuous, it follows that (m,X) 7→ E[`(X −m)]

is convex and lower semi-continuous, decreasing in m and increasing in X . This implies the properties
(i) through (iii) by Definition 2.4 of A(X). Regarding (iv), a change of variables yields

A(X +m) =
{
n ∈ Rd : E [` (X +m− n) ≤ c]

}
=
{
n+m ∈ Rd : E [` (X − n)] ≤ c

}
= A(X) +m.

As for (v), on the one hand, `(X −m) ↘ `(−∞) ≤ `(0) = 0 < c as m → ∞ component-wise. Since
X ∈ Mθ it follows that `(X) ∈ L1, thus monotone convergence yields E[`(X −m)] ↘ `(−∞) < c

and in turn the existence of m ∈ Rd such that E[`(X −m)] ≤ c, showing that A(X) 6= ∅. On the other
hand, ` being increasing and such that `(x) ≥

∑
xk, it implies that `(X −m) ≥

∑
Xk −

∑
mk ↗∞

as m→ −∞, component-wise. Hence, monotone convergence yields E[`(X −m)]↗∞ > c, therefore
there exists m ∈ Rd such that E[`(X −m)] > c, that is, m 6∈ A(X). �

Figure 1 shows sets of acceptable monetary allocations for a bivariate normal distribution with varying
correlation coefficient. The location and shape of these sets change with the correlation: the higher the
correlation, the more costly the acceptable monetary allocations, as expected in terms of systemic risk.
As discussed in Sections 3 and 4, this systemic feature is not always immediate, and depends on the
specification of the loss function. Indeed, the present plot stems from a loss function that emphasises the
interdependence structure of the risk components, see Section 4.2.

Figure 1: Acceptance sets A(X) corresponding to the case study of Section 4.2 for different correlations.

Given an acceptable monetary allocation m ∈ A(X), its aggregated liquidity cost is
∑
mk. The

smaller the cost, the better, which motivates the following.

Definition 2.7. The multivariate shortfall risk of X ∈Mθ is

R(X) := inf
{∑

mk : m ∈ A(X)
}

= inf
{∑

mk : E [` (X −m)] ≤ c
}
.
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Example 2.8. Following up on the central clearing house Example 2.5, any acceptable allocation m ∈
A(X) yields a corresponding value for the default fund. Clearing houses are in competition with each
other, hence they are looking for the cheapest acceptable allocation to require from their members. ♦

When d = 1, the above definition corresponds exactly to the shortfall risk measure in [19], of which this
paper can be viewed as a multivariate extension. Our next result, which uses the concepts and notation
of Appendix B, shows that all the classical properties of the shortfall risk measure, including its dual
representation, can be extended to the multivariate case.

Theorem 2.9. The function

R(X) = inf
{∑

mk : m ∈ A(X)
}
, X ∈Mθ,

is real valued, convex, monotone and translation invariant.3 In particular, it is continuous and sub-
differentiable. Moreover, it admits the dual representation

R(X) = max
Q∈Qθ∗

{EQ [X]− α(Q)} , X ∈Mθ, (2.1)

whereQθ∗ is the set of measuresQ on the product space Ω×{1, . . . , d} with density Y in Lθ
∗

normalized
to d, in the sense that E[1 · dQ/dP ] = d, and where the penalty function is given by

α(Q) = inf
λ>0

1

λ

(
c+ E

[
`∗
(
λ
dQ

dP

)])
, Q ∈ Qθ

∗
. (2.2)

Remark 2.10. This robust representation can also be inferred from the general results of [16]. However,
for the sake of completeness and since the multivariate shortfall risk measure is closely related to a
multidimensional version of the optimized certainty equivalent, we give a self contained proof tailored to
this particular context. �

Proof. By Proposition 2.6 (v), we have A(X) 6= ∅ and in turn R(X) < ∞. If R(X) = −∞ for some
X ∈ Mθ, then there exists a sequence (mn) ⊆ A(X) such that

∑
mn
k → −∞, in contradiction with

∞ > c ≥ E[`(X − mn)] ≥ E[
∑
Xk] −

∑
mn
k . Hence, R(X) > −∞. Monotonicity, convexity and

translation invariance readily follow from Proposition 2.6 (ii), (iii) and (iv), respectively. In particular, R
is a convex, real-valued and increasing functional on the Banach lattice Mθ. Hence, by Cheridito and Li
[11, Theorem 4.1], R is continuous and sub-differentiable. Therefore, the results recalled in Appendix B
and the Fenchel-Moreau theorem imply

R(X) = sup
Y ∈Lθ∗

{E [X · Y ]−R∗(Y )} = max
Y ∈Lθ∗

{E [X · Y ]−R∗(Y )} , (2.3)

where
R∗(Y ) = sup

X∈Mθ

{E [X · Y ]−R(X)} , Y ∈ Lθ
∗
.

By the bipolar theorem, for Y 6> 0, there exists K ∈ Mθ, K > 0 with E[Y · K] < −ε < 0 for some
ε > 0. By monotonicity of R, it follows that R(−λK) ≤ R(0) <∞ for every λ > 0. Hence

R∗(Y ) = sup
X∈Mθ

{E [Y ·X]−R(X)} ≥ sup
λ>0
{−λE[Y ·K]−R(−λK)} ≥ sup

λ
λε−R(0) =∞,

3In the sense that R(X +m) = R(X) +
∑
mk .
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showing that the supremum and maximum in (2.3) can be attained on the set of those Y ∈ Lθ such that
Y ≥ 0. Furthermore, by translation invariance, setting X = (r, . . . , r) for r ∈ R, it follows that

R∗(Y ) ≥ rE [1 · Y ]−R(0)− rd = r (E [1 · Y ]− d)−R(0),

where the right hand side can be made arbitrarily large whenever E [1 · Y ] 6= d. In order to obtain a more
explicit expression of the penalty function α(Q) := R∗(dQ/dP ) = R∗(Y ), we set

L(m,λ,X) =
∑

mk + λE [` (X −m)− c]

S(λ,X) = inf
m∈Rd

L(m,λ,X) = inf
m∈Rd

{∑
mk + λE [` (X −m)− c]

}
.

The functional X 7→ S(λ,X) is a multivariate version of the so called optimized certainty equivalent,
see [5]. Clearly,

R(X) = inf
m∈Rd

sup
λ>0

L(m,λ,X) ≥ sup
λ>0

inf
m∈Rd

L(m,λ,X) = sup
λ>0

S(λ,X).

Since A(X) is nonempty and monotone, there exists m ∈ Int(A(X)), that is, the so called Slater con-
dition is fulfilled. As a consequence of Rockafellar [26, Theorem 28.2], there is no duality gap. Namely,
R(X) = supλ>0 S(λ,X). Via the first part of the proof, an easy multivariate adaptation of [5, 14] yields

S(λ,X) = sup
Q∈Qθ∗

{
EQ [X]− E

[
(`λ)

∗
(
dQ

dP

)]}
,

where `λ(m) = λ(`(m) − c), hence (`λ)∗(m∗) = λ(c + `∗(m∗/λ)). Combining this with R(X) =

supλ>0 S(λ,X), the dual representation (2.2) follows. �

Remark 2.11. Let us emphasize the dependence on c by writing Sc(λ, L) = infm{
∑
mk + λE[`(X −

m)− c]}. The proof of Theorem 2.9 shows that

R(X) = sup
λ>0

Sc(λ,X) ≥ Sc(1, X) = S0(1, X)− c = inf
m

{∑
mk + E [` (X −m)]

}
− c.

Note that S0(1, X) is a multivariate version of the so-called optimized certainty equivalent in [5], which,
depending on the specification of the loss function, covers popular risk measures such as the conditional
Value-at-Risk and the entropic risk measure, see [5, 14]. Hence this relation shows that R is more con-
servative than its optimized certainty equivalent counterpart, modulo the constant c. In the particular case
corresponding to CV@Rβ , that is, when `(x) = (

∑
xk)+/β, β ∈ (0, 1), it follows that

R(X) ≥ CV@Rβ

(∑
Xk

)
− c. �

3. Risk Allocation

We have established in Theorem 2.9 that the infimum over all allocations m ∈ Rd used for defining
R(X) is real valued and has the desired properties of a risk measure. Beyond the question of the overall
liquidity reserve, the allocation of this amount between the different risk components is key for systemic
risk purposes. Hence, existence and uniqueness of a risk allocation are crucial questions.
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Definition 3.1. A risk allocation is an acceptable monetary allocation m ∈ A(X) such that R(X) =∑
mk. When a risk allocation is uniquely determined, we denote it by RA(X).

Remark 3.2. By definition, if a risk allocation exists, then the full allocation property automatically holds;
see also Section 4.3. �

In contrast to the univariate case, where the unique risk allocation is given by m = R(X), existence
and uniqueness are no longer straightforward in the multivariate case. The following example shows that
existence may fail.

Example 3.3. Consider the loss function

`(x, y) =

{
x+ y + (x+ y)+/(1− y), y < 1

∞, otherwise.

For c = 1, it follows that

A(0) =

{
m ∈ R2 : m2 > −1 and 1 ≥ −m1 −m2 +

(−m1 −m2)+

1 +m2

}
.

Computations yield

R(0) = inf
m2>−1

{
m2 −

m2
2 + 3m2 + 1

m2 + 2

}
= inf
m2>−1

−m2 + 1

m2 + 2
= −1.

However, the infimum is not attained. ♦

Our next result introduces mathematically and economically sound conditions towards the existence
and uniqueness of a risk allocation. A zero-sum allocation is a monetary allocation u ∈ Rd such that∑
uk = 0. Note that, for any zero-sum allocation u,

`(0) = 0 =
∑

uk ≤ `(u).

Definition 3.4. We call a loss function ` unbiased if, for every zero-sum allocation u, `(ru) = 0 for any
r > 0 implies that `(−ru) = 0 for any r > 0.

Remark 3.5. Note that any permutation invariant loss function is unbiased, in particular those of Example
2.3. By contrast, the loss function used in Example 3.3 is biased. In fact, taking the zero-sum allocation
u = (1,−1) yields `(r,−r) = 0 for every r ≥ 0. However, `(−r, r) =∞ as soon as r ≥ 1. �

Theorem 3.6. If ` is an unbiased loss function, then, for every X ∈Mθ, risk allocations m∗ exist. They
are characterized by the first order conditions

1 ∈ λ∗E [∇` (X −m∗)] and E [` (X −m∗)] = c, (3.1)

where λ∗ is a Lagrange multiplier. In particular, when ` has no zero-sum direction of recession4 except
0, the set of the solutions (m∗, λ∗) to the first order conditions (3.1) is bounded.

If ` is strictly convex outside Rd− along zero-sums allocations,5 then the risk allocation is unique.
4We refer the reader to Appendix A regarding the notions and properties of recession cones and functions. In particular, if ` has

no zero-sum direction of recession except 0, then ` is an unbiased loss function.
5That is, for x, y ∈ Rd such that x − y is a zero-sum allocation and `(αx + (1 − α)y) = α`(x) + (1 − α)`(y) for every
0 ≤ α ≤ 1, it follows that {αx+ (1− α)y : 0 ≤ α ≤ 1} ⊆ Rd−.
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Proof. Given a set C ⊆ Rd, we define m 7→ δ(m,C) as 0 if m ∈ C and ∞ otherwise. The func-
tion f(m) =

∑
mk + δ(m,A(X)) is increasing, convex, lower semi-continuous, proper and such that

R(X) = inf{f(m) : m ∈ Rd}. Hence, by [26, Theorem 27.1 (b)], in order to prove the existence of a
risk allocation, it suffices to show that f is constant along its directions of recession. By Theorem A.1,
this is equivalent to showing that u ∈ 0+f implies (−u) ∈ 0+f where 0+f is the recession cone of f ,
see Appendix A for the exact definition. Let γ ∈ R be such that B := {x ∈ Rd : f(x) ≤ γ} 6= ∅, so that
0+B = 0+f , by Theorem A.1. By means of Theorem 2.9, R(X) > −∞. Fix b ∈ B. Hence, u ∈ 0+B if
and only if

−∞ < R(X) ≤
∑

bk + r
∑

uk ≤ γ <∞ and b+ ru ∈ A(X)

for every r ≥ 0. As a consequence, u ∈ 0+B if and only if u ∈ Z ∩ 0+A(X), where Z denotes the set
of zero-sum allocations in Rd. This reduces the proof of existence to showing that if u ∈ Z ∩ 0+A(X),
then (−u) ∈ 0+A(X). Since A(X) is a non-empty lower level set of m 7→ g(m) = E[`(X − m)],
Theorem A.1 implies that u ∈ 0+A(X) if and only if 0 ≥ (g0+)(u). As b is in A(X), therefore in
dom(g), Theorem A.1 yields

(g0+)(u) = sup
r>0

E

[
`(X − b− ru)− `(X − b)

r

]
= E

[
sup
r>0

`(X − b− ru)− `(X − b)
r

]
= (`0)+(−u),

(3.2)

for any u ∈ Rd, where the second equality follows by means of the monotone convergence theorem. It
follows that u ∈ 0+A(X) if and only if 0 ≥ (`0+)(−u). Hence, if u ∈ Z ∩ 0+A(X), then, on the one
hand, 0 ≥ (`0+)(−u) = supr `(−ru)/r, by Theorem A.1. But, on the other hand, u ∈ Z implies that
`(−ru)/r ≥ −r

∑
uk/r = 0. In conclusion, if u ∈ Z ∩ 0+A(X), then `(−ru) = 0, for every r ≥ 0,

which in turn yields that `(ru) = 0, since ` is unbiased. In particular, 0 = (`0)+(u) = (g0)+(−u), by
(3.2) applied to −u. Hence, −u ∈ 0+A(X), which proves the existence of a risk allocation m∗.

Since E[`(X−m)]− c < 0 for some m large enough, the Slater condition for the convex optimization
problemR(X) = infm f(m) is fulfilled. Hence, according to [26, Theorems 28.1, 28.2 and 28.3], optimal
solutions m∗ are characterized by (3.1).

In the case where ` has no zero-sum direction of recession except 0, it follows from the previous
computations that 0+f = Z ∩0+A(X) = Z ∩0+g = Z ∩ (−0+`) = {0}. Hence, by [26, Theorem 27.1,
(d)], the set of risk allocations is non-empty and bounded.

Finally, let m 6= n be two risk allocations. It follows that αm + (1 − α)n is a risk allocation as
well for every α ∈ [0, 1]. Furthermore, (m − n) is a zero sum allocation. By convexity, it follows that
c = E[`(X−αm− (1−α)n)] ≤ αE[`(X−m)]+(1−α)E[`(X−n)] = c for every 0 ≤ α ≤ 1, which
shows that α`(X−m)+(1−α)`(X−n) = `(X−αm−(1−α)n) P -almost surely for every 0 ≤ α ≤ 1.
Since ` is strictly convex along zero-sum allocations outside Rd−, it follows that {X−αm−(1−α)n : 0 ≤
α ≤ 1} ⊆ Rd−. In particular X−m 6 0, which implies E[`(X−m)] ≤ `(0) = 0 < c, a contradiction.�

Corollary 3.7. Let ` be an unbiased loss function, strictly convex outside Rd−. It holds

RA(X + r) = RA(X) + r for every X ∈Mθ and r ∈ Rd.

Proof. From Theorem 3.6, the assumptions on ` ensure the existence and uniqueness of a risk allocation
uniquely characterized, together with the Lagrange multiplier, by the first order conditions. Let m =
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RA(X + r), for which there exists a unique λ such that

λE [∇` (X + r −m)] = 1 and E [` (X + r −m)] = c.

Hence, n = m− r and λ satisfy the first order conditions

λE [∇` (X − n)] = 1 and E [` (X − n)] = c,

which by uniqueness shows that n = RA(X) = m− r = RA(X + r)− r. �

Remark 3.8. In general, the positivity of the risk allocation is not required. If positivity or any other
convex constraint is imposed, for instance by regulators, it can easily be embedded in our setup. In case
of positivity, this would modify the definition of R(X) into

R(X) = inf
{∑

mk : E [`(X −m)] ≤ c and mk ≥ 0 for every k
}
,

with accordingly modified first order conditions. �

The question of existence and uniqueness of a risk allocation having been addressed, the following
example shows the economic importance of the uniqueness.

Example 3.9. Any loss function of class (C1), that is, `(x) = h(
∑
xk), is permutation invariant and

therefore unbiased, see Remark 3.5. Thus, a risk allocation m∗ ∈ A(X) exists by means of Theorem
3.6. However, for any zero-sum allocation u, we have R(X) =

∑
m∗k + uk =

∑
m∗k and E[h(

∑
Xk −

(m∗k + uk))] = E[h(
∑
Xk −m∗k)] ≤ c, so that m∗ + u is another risk allocation.

Economically, this is not a sound situation. Indeed, suppose that we have two banks as risk components
and we require from them 110 M e and 500 M e, respectively, as risk allocation. In such a case, we
could equally well require 610 M e from the first bank and nothing from the second. Such arbitrariness
is unlikely to be accepted by any economic agent. ♦

Example 3.9 shows that loss functions of the class (C1) are economically unsuitable, by lack of unique-
ness of a risk allocation. By contrast, for loss functions of class (C2), that is, `(x) =

∑
h(xk), the fol-

lowing proposition shows that, while there exists a unique risk allocation under very mild conditions, the
risk allocation only depends on the marginal distributions of the loss vector X = (X1, . . . , Xd). In other
words, the risk measure and the risk allocation do not account for the dependence structure of the risk
components. This makes the loss functions of class (C2) equally unsuitable from a systemic risk point of
view.

Proposition 3.10. Let `(x) :=
∑
hk(xk) for univariate loss functions hk : R → (−∞,∞] strictly

convex on R+, k = 1, . . . , d. For every X ∈ Mθ, there exists a unique optimal risk allocation RA(X)

and we have RA(X) = RA(Y ), for every Y ∈ Mθ such that Yk has the same distribution as Xk,

k = 1, . . . , d.

Proof. Let x, y be such that αx+(1−α)y 6∈ Rd− for every α ∈ (0, 1). It follows that `(αx+(1−α)y) =∑
hk(αxk + (1 − α)yk) <

∑
αhk(xk) + (1 − α)hk(yk) = α`(x) + (1 − α)`(y). The loss function

` is furthermore unbiased. Indeed, for every zero-sum allocation u, assuming without loss of generality
u1 > 0, it follows that

`0+(u) ≥ lim
r→∞

h1(ru1)/r +
∑
k≥2

hk(ruk)/r ≥ lim
r→∞

h1(ru1)/r +
∑
k≥2

uk =∞

11



since h1 is strictly convex and h1(t) ≥ t. Hence, ` has no zero-sum direction of recession other than 0.
The strict convexity of hk yields, according to Theorem 3.6, the existence of a unique risk allocation for
every X ∈Mθ. The first order conditions (3.1) are written as

1 ∈ λE [∂hk(Xk −mk)] , k = 1, . . . , d, and
∑

E [hk (Xk −mk)] = c,

which only depend on the marginal distributions of X . �

4. Systemic Sensitivity of Shortfall Risk and its Allocation

The previous results emphasize the importance of using a loss function that adequately captures the
systemic risk inherent to the system. This motivates the study of the sensitivity of shortfall risk and its
allocation so as to identify the systemic features of a loss function.

Definition 4.1. The marginal risk contribution of Y ∈ Mθ to X ∈ Mθ is defined as the sensitivity of
the risk of X with respect to the impact of Y , that is

R(X;Y ) := lim sup
t↘0

R(X + tY )−R(X)

t
.

In the case whereR(X+ tY ) admits a unique risk allocationRA(X+ tY ) for every t, the risk allocation
marginals of the risk of X with respect to the impact of Y are given by

RAk(X;Y ) = lim sup
t↘0

RAk(X + tY )−RAk(X)

t
, k = 1, . . . , d.

Theorem 2.9 and its proof show that the determination of the risk measure R(X) reduces to the saddle
point problem

R(X) = min
m

max
λ>0

L(m,λ,X) = max
λ>0

min
m

L(m,λ,X).

Using [26], the “argminmax” set of saddle points (m∗, λ∗) is a product set that we denote by B(X) ×
C(X).

Theorem 4.2. Assuming that ` has no zero-sum direction of recession, then

R(X;Y ) = min
m∈B(X)

max
λ∈C(X)

λE [Y · ∇` (X −m)] .

Supposing further that ` is twice differentiable and that (m,λ) ∈ B(X)× C(X) is such that

M =

[
λE
[
∇2`(X −m)

]
−1/λ

1 0

]
is non-singular, then

• there exists t0 > 0 such that B(X + tY )× C(X + tY ) is a singleton, for every 0 ≤ t ≤ t0;

• the corresponding unique saddle point (mt, λt) = (RA(X+tY ), λt) is differentiable as a function
of t and we have [

RA(X;Y )

λ(X;Y )

]
= M−1V,

where λ(X;Y ) = lim supt↘0(λt − λ0)/t and

V =

[
λE
[
∇2`(X −m)Y

]
R(X;Y )

]
.
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Proof. Let L(m,λ, t) =
∑
mk + λE[`(X + tY −m)− c]. Theorem 2.9 yields

R(X + tY ) = min
m

max
λ

L(m,λ, t) = max
λ

min
m

L(m,λ, t) = L(mt, λt, t),

for every selection (mt, λt) ∈ B(X + tY )× C(t+ tY ).
Regarding the first assertion of the theorem, since ` has no zero-sum direction of recession other than

0, it follows from Theorem 3.6 that B(X)×C(X) is non empty and bounded. Hence, the assumptions of
Golshtein’s Theorem on the perturbation of saddle values, see Rockafellar and Wets [27, Theorem 11.52],
are satisfied and the first assertion follows.

As for the second assertion, the assumptions of Fiacco and McCormick [18, Theorem 6, pp. 34–45]
are fulfilled. The Jacobian of the vector [

∇mL(m,λ, 0)

λE [` (X −m)− c]

]
that is used to specify the first order conditions is given by the matrix M . Hence, the second assertion
follows from [18, Theorem 6, pp. 34–35]. �

4.1. Sensitivity with Respect to an Exogenous Shock

We want to study the impact of an additional loss on the first risk components in a bivariate framework.
To this end we consider the loss function

`(x1, x2) =
(x+

1 )2 + (x+
2 )2

2
+ αx+

1 x
+
2 + x1 + x2, 0 ≤ α ≤ 1,

which gives rise to a unique risk allocation by virtue of Theorem 3.6; this allocation is denoted by
(m1,m2) = (RA1(X), RA2(X)). The first order conditions (3.1) yield

1

λ
− 1 = E

[
(X1 −m1)+

]
+ αE

[
(X2 −m2)+1{X1≥m1}

]
,

1

λ
− 1 = E

[
(X2 −m2)+

]
+ αE

[
(X1 −m1)+1{X2≥m2}

]
,

c =
1

2
E
[
((X1 −m1)+)2 + ((X2 −m2)+)2

]
+ αE

[
(X1 −m1)+(X2 −m2)+

]
+ E[X1] + E[X2]−m1 −m2.

These conditions show that the first component m1 of the risk allocation primarily depends

• first, on the loss X1 in excess above the liquidity requirement m1 itself, via the term

E
[
(X1 −m1)+

]
;

• second, weighted by α, on the loss X2 in excess over the liquidity requirement m2, conditioned on
the fact that the loss of X1 also exceeds its own liquidity requirement m1, via the term

αE
[
(X2 −m2)+1{X1≥m1}

]
,

which clearly involves the dependence structure between X1 and X2.

Let then Y = (Y1, 0) be an exogenous shock impacting the first risk component.
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4.1.1. Marginal Risk Contribution

According to Theorem 4.2, we have

R(X;Y ) = λE [Y1] + λE
[
Y1 (X1 −m1)

+
]

+ αλE
[
Y1 (X2 −m2)

+
1{X1≥m1}

]
.

This equation shows that the impact of Y1 on the first risk component X1 decomposes into three parts in
the marginal risk contribution R(X;Y ):

• an impact of Y1 on the whole system via the term E[Y1];

• an impact of Y1 related to the concerned risk component, that is, conditioned on the fact that X1

exceeds its own liquidity requirement, via the term E[Y1 (X1 −m1)
+

];

• a systemic impact of Y1 onto the dependent risk component, that is, conditioned on the fact that both
components exceed their respective liquidity requirements, via the termαE[Y1 (X2 −m2)

+
1{X1≥m1}].

The last effect takes into account the dependence structure of the system, provided α is strictly positive.
In particular, if α is non-zero, then the systemic risk impact increases with the “loss dependence” between
X1 and X2.

4.1.2. Risk Allocation Sensitivity

We write p = P [X1 ≥ m1], q = P [X2 ≥ m2] and r = P [X1 ≥ m1;X2 ≥ m2]. In the notation of
Theorem 4.2, we have:

M =

 λp λαr −1/λ

λαr λq −1/λ

1 1 0

 and V =

 λE [Y1|X1 ≥ m1] p

λαE [Y1|X1 ≥ m1;X2 ≥ m2] r

R(X;Y )

 ,
which by Theorem 4.2 yields

RA1(X;Y ) =
(q − αr)R(X;Y ) + E [Y1|X1 ≥ m1] p− αE

[
Y1

∣∣X1 ≥ m1;X2 ≥ m2

]
r

p+ q − 2αr
,

RA2(X;Y ) =
(p− αr)R(X;Y )− E [Y1|X1 ≥ m1] p+ αE

[
Y1

∣∣X1 ≥ m1;X2 ≥ m2

]
r

p+ q − 2αr
,

consistent with the general identity RA1(X;Y ) +RA2(X;Y ) = R(X;Y ). Observe that

• the first risk component, impacted by the exogenous effect, is taking away from the second com-
ponent the non-correlated share of additional risk E[Y1|X1 ≥ m1]p;

• in the presence of the systemic weight α > 0, the first risk component offloads a share of its
additional liquidity requirement to the second component according to αE[Y1|X1 ≥ m1;X2 ≥
m2]r.

4.2. Sensitivity with Respect to the Interdependence Structure

In the following example, we analyse the sensitivity of the risk allocation with respect to the interdepen-
dence structure in a bivariate Gaussian setup. To this end, we consider the following loss function

`(x1, x2) =
1

1 + α

[
1

2
e2x1 +

1

2
e2x2 + αex1ex2

]
− 1.
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Let X = (X1, X2) be a normally distributed random vector with zero mean and covariance matrix

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

We denote

sk := E
[
e2Xk

]
= e2σ2

k , k = 1, 2 and r := E
[
eX1eX2

]
= e

1
2 (σ2

1+σ2
2+2ρσ1σ2).

The first order conditions yield

1/λ =
α

1 + α
re−m1e−m2 +

1

1 + α
s1e
−2m1 ,

1/λ =
α

1 + α
re−m1e−m2 +

1

1 + α
s2e
−2m2 ,

c̃ := c+ 1 =
α

1 + α
re−m1e−m2 +

1

2(1 + α)

(
s1e
−2m1 + s2e

−2m2
)
,

with solution

RA1(X) = σ2
1 +

1

2
ln
(

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
)
− 1

2
ln (c̃(1 + α)),

RA2(X) = σ2
2 +

1

2
ln
(

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
)
− 1

2
ln (c̃(1 + α)),

R(X) = σ2
1 + σ2

2 + ln
(

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
)
− ln (c̃(1 + α)).

These equations show that the risk allocations are disentangled into the respective individual contributions
σ2
i , i = 1, 2, and a systemic risk contribution

SRC =
1

2
ln
(

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
)
− 1

2
ln (c̃(1 + α)) , (4.1)

which depends on the correlation parameter ρ and on the systemic weight α of the loss function. Figure
2 shows the value of this systemic risk contribution as a function of ρ and σ1.

We obtain the following sensitivities of the systemic risk contribution

∂SRC

∂σ1
=
α (ρσ2 − σ1)

2

eρσ1σ2− 1
2 (σ2

1+σ2
2)

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
,

∂SRC

∂σ2
=
α (ρσ1 − σ2)

2

eρσ1σ2− 1
2 (σ2

1+σ2
2)

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
,

∂SRC

∂ρ
=
ασ1σ2

2

eρσ1σ2− 1
2 (σ2

1+σ2
2)

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
.

In particular, the systemic risk contribution is

• increasing with respect to the correlation ρ;

• decreasing with respect to σ1 if the correlation is negative;

• increasing up to ρσ2 and then decreasing with respect to σ1 if the correlation is positive.
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Figure 2: Systemic risk contribution (4.1) as a function of σ1 for different values of the correlation ρ in
the case where α = 1 and c = 1.

4.3. Riskless Allocation, Causal Responsibility and Additivity

We conclude this section regarding risk allocation and its sensitivity by a discussion of their properties in
light of the following economic features of risk allocations introduced in [8].

(FA) Full Allocation:
∑
RAk(X) = R(X);

(RA) Riskless Allocation: RAk(X) = Xk if Xk is deterministic;

(CR) Causal Responsibility: R(X + ∆Xk)−R(X) = RAk(X + ∆Xk)−RAk(X), where ∆Xk is a
loss increment of the k-th risk component;

As mentioned before, per design, shortfall risk allocations always satisfy the full allocation property
(FA). As visible from the above case studies, riskless allocation (RA) and causal responsibility (CR) are
not satisfied in general. In fact, from a systemic risk point of view, we think that (RA) and (CR) are not
desirable properties. Indeed, both imply that risk taking, or non-taking, should only impact the concerned
risk component. However, the risk components are interdependent and any move in one of them bears
consequences to the rest of the system. The search for an optimal allocation is a non-cooperative game
between the different system components, each of them respectively looking for its own minimal risk
allocation while impacting the others by doing so. In other words, everyone is responsible for its own risk
but also for its relative exposure with respect to the others. The sensitivity analysis of this section shows
that external shocks are primarily born by the risk component that is hit. Then a correction appears and a
fraction of the shock is offloaded to the other risk components according to their relative exposure to the
concerned component.
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5. Numerical Schemes

The aim of this section is to present and compare numerical schemes for the computation of multivariate
shortfall risk measures and the corresponding risk allocations. They are provided, according to Theorem
3.6, by the following system of equations:

1 ∈ λ∗E[∇`(X −m∗)] and E[`(X −m∗)] = c,

where the random variableX , the loss function ` and the threshold level c are given. This can be viewed as
a deterministic optimization problem, as soon as the expectations have been computed by some numerical
scheme. In the sequel, we will compare three schemes for this computation: the Fourier transform method,
the Monte Carlo method and the Chebyshev interpolation method. We will focus on the loss function
(C4) in order to be able to make explicit computations and compare numerical results. However, we want
to point out that these methods are general, apply to any (unbiased) loss function and are well-suited
for high-dimensional problems. Indeed, in the next section we will discuss a 10- and a 30-dimensional
example.

We consider the loss function (C4) of Example 2.3, that is,

`(x) =

d∑
k=1

xk +
1

2

d∑
k=1

(x+
k )2 + α

∑
1≤j<k≤d

x+
j x

+
k , (5.1)

for α = 0 or 1, whose partial derivative with respect to xk equals:

∂k`(x) = 1 + x+
k + α

d∑
j=1,j 6=k

x+
j 1{xk≥0}.

Let us define the following functions:

ek(m) = E[(Xk −m)] hjk(m,n) = E
[
(Xj −m)+(Xk − n)+

]
fk(m) = E

[
(Xk −m)+

]
ljk(m,n) = E

[
(Xj −m)+1{Xk≥n}

]
. (5.2)

gk(m) = E
[(

(Xk −m)+
)2]

According to Theorem 3.6, the risk allocation is determined by the first order conditions (3.1), which read
in this case: 

λfk(mk) + αλ

d∑
j=1,j 6=k

ljk(mj ,mk) = 1− λ, for k = 1, . . . , d;

d∑
k=1

{
ek(mk) +

1

2
gk(mk)

}
+ α

∑
1≤j<k≤d

hjk(mj ,mk) = c.

(5.3)

In order to solve this optimization problem, we will rely on standard packages for root-finding algorithms
and combine them with the different methods for computing the expectations. There are two major chal-
lenges here: On the one hand, the number of bivariate expectations to be evaluated increases quadratically
with the dimension d of the system. On the other hand, the number of steps needed to ensure the conver-
gence to the root increases linearly with the dimension d of the system; for instance, the Broyden method
requires 2d-steps to convergence quadratically, see Gay [22].6

Below we provide a brief overview of the numerical methods for the computation of the expectations,
while more details are postponed for Appendix C.

6Under some regularity conditions, the Broyden method yields a convergence
∥∥m∗ −m2d+n

∥∥
2
≤ γ ‖m∗ −mn‖22, where n

denotes the current step in the algorithm.
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Fourier transform method: Assuming that the moment generating functions MXk , MXk,Xj , for all
1 ≤ k, j ≤ d, are available, Fourier methods allow us to exactly compute the functions e, f, g, h, l in
(5.2). In particular, we have the following result:

Proposition 5.1. Let X ∈Mθ and assume that the following conditions hold:

I ′k =
{
η ∈ R+ : MXk(η) <∞ and MXk(η + i·) ∈ L1

}
6= ∅,

I ′j,k =
{
η ∈ R2

+ : MXk,Xj (η) <∞ and MXk,Xj (η + i·) ∈ L1
}
6= ∅,

(5.4)

for all 1 ≤ k, j ≤ d. Then, the functions fk, gk, hjk, ljk admit the following representations:

fk(m) = − 1

2π

∫
R

e(iuk−ηk)mMXk(ηk − iuk)

(uk + iηk)2
duk,

gk(m) =
1

π

∫
R

e(iuk−ηk)mMXk(ηk − iuk)

i(uk + iηk)3
duk,

hjk(m,n) =
1

(2π)2

∫
R2

e〈iu−η,(m,n)T〉 MXj ,Xk(η − iu)

(uj + iηj)2(uk + iηk)2
dujduk,

ljk(m,n) =
1

(2π)2

∫
R2

e〈iu−η,(m,n)T〉 MXj ,Xk(η − iu)

(uj + iηj)2(iuk − ηk)
dujduk.

(5.5)

Here ηk ∈ I ′k and η = (ηj , ηk) ∈ I ′j,k, for all 1 ≤ j, k ≤ d.

Remark 5.2. Assuming that the moment generating function of X is known in an (open) set, then we can
easily compute the expectations of its marginals Xk by differentiation. Thus, we will not further discuss
the computation of ek(m) in (5.2). �

See Appendix C.1 for more details and the proof of this result. The main advantage of this method
is that it is theoretically possible to compute the value of the integrals at any level of precision, while
the basic computational time is roughly doubled for every additional digit of accuracy. Moreover, it is
very efficient for several applications in mathematical finance, for instance model calibration. However,
as shown in Table 1, this method suffers from several drawbacks in the present context. The basic compu-
tational time for four digits of accuracy varies from one to over thirty seconds. This depends on the values
of m,n and on the dampening factor η. In addition, it may happen that for given m,n, several different
values of the dampening factor η have to be tried at random before the integral converges in the first place.
Taking the large number of double integrals to be computed into account, see Table 2, the computational
time can become prohibitively long.

Monte Carlo method: We can also use Monte Carlo simulations for the estimation of the functions
e, f, g, h, l in (5.2). Indeed, let (Xi)1≤i≤M be M independent realizations of the random vector X =

(X1, . . . , Xd), then the estimators for ek and hjk are provided by

IMC
M [ek](m) =

1

M

M∑
i=1

(Xi
k −m) and IMC

M [hjk](m,n) =
1

M

M∑
i=1

(Xi
k −m)+(Xi

j − n)+,

while the estimators for f, g anf l are analogous. An important observation here is that we can generate
and store all M realizations in advance, and then use them for the estimation of the functions e, f, g, h, l
for different m’s and n’s in every step of the root-finding procedure.
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The main advantage of Monte Carlo relative to Fourier methods is that a wider variety of models
can be considered; think, for example, of models with copulas or of random variables with Pareto type
distributions. The main disadvantage is the slow statistical convergence of the scheme: For an additional
digit of accuracy, one hundred times more samples are required. In our context, though, a four digit
accuracy is reasonable. In addition, the time to generate, once and for all, the samples, as well as to
compute the Monte Carlo averages, is very fast, see Table 1, and is independent of the value of m and n.

Fourier Monte Carlo

m = n = 1 m = n = −10 Generation of M
∑
M

Computational Time 1190 ms 27150 ms 138 ms 45 ms

Table 1: Computation of hjk for a bivariate Gaussian distribution with zero mean, σ1 = σ2 = 1 and
ρ = 0.8. Accuracy 10−4 for Fourier andM = 106 samples for Monte Carlo. The result of 27150
milliseconds includes two non-convergent trials of η = (ηj , ηk) before converging.

The expectations in every step of the root-finding routine can be computed either directly using Fourier
or Monte Carlo methods, or in combination with the following interpolation scheme.

Chebyshev interpolation method: A numerical scheme to approximate the functions e, f, g, h, l in
(5.2) that might be more amenable to root-finding routines is the Chebyshev interpolation method, re-
cently applied to option pricing by Gaß et al. [21]. This method can be summarized as follows: Suppose
you want to evaluate quickly a function F (m), of one or several variables, for a large number of m’s.
The first step of the Chebyshev method is to evaluate the function F (m) on a given set of nodes mi,
1 ≤ i ≤ N . These evaluations can be computed by e.g. Fourier or Monte Carlo schemes, are independent
of each other and can thus be realized in parallel. The next step, in order to compute F (m) for an m
outside the nodes mi, is to perform a polynomial interpolation of the F (mi)’s using the Chebyshev co-
efficients. In other words, the Chebyshev method provides a polynomial approximation F̂ (m) of F (m).
As an example, having evaluated f(mi) at the Chebyshev nodes mi for 0 ≤ i ≤ N , the approximation
of the function f using the Chebyshev method reads

IN [fk](m) =

N∑
i=0

ciTi(m),

where

ci =
21{i>0}

N + 1

N∑
r=0

fk(mr) cos

(
iπ

2r + 1

2N + 1

)
and Ti(m) = cos(i arccos(m)).

See Appendix C.2 for more details and formulas in the two-dimensional case. One drawback of the
method tough, is that the mi lie in bounded intervals for which a good initial guess is not trivial.

The Chebyshev method can be combined with a root-finding algorithm for solving the equationF (m) =

c as follows: Compute first F (mi) on the Chebyshev nodes mi. At eact step of the root-finding proce-
dure approximate F (m) with F̂ (m), and proceed iteratively. If the computation of F (m) is expensive in
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computational time, then also the iterative computation is also very costly7. On the contrary, the Cheby-
shev method offers a very fast and accurate approximation of F—the convergence is (sub)exponential in
the number of nodes m—while the computationally most expensive part can be performed outside the
root-finding loop.

In the subsequent discussion and the following chapter with numerical results, we will use the following
shorthand notation:

• CTP: Computational time for the preprocessing (i.e. before the root-finding starts);
• CTR: Computational time of the root finding method;
• CT: Computational time in total;
• MC: Monte Carlo scheme;
• F: Fourier scheme;
• Cheby: Chebyshev scheme;
• d: Number of risk components in the system;
• N : Number of nodes for the Chebyshev scheme;
• I(d): Number of iterations for the root-finding method;
• M : Number of samples for the Monte Carlo scheme.

Discussion: We want now to compare the computational cost for the Fourier and Monte Carlo methods,
with or without the use of Chebychev interpolation. Whether it is advantageous to use the Chebyshev
interpolation or not, is a matter of two competing factors that affect the computational time: On the
one hand, the number of iterations I(d) needed to find the root of the system, which is as mentioned
beforehand roughly of order d, and on the other hand, the size of the grid N2 used in the Chebyshev
interpolation. Table 2 summarizes the computational burden for the Fourier and Monte Carlo methods,
with and without the use of Chebyshev interpolation as a function of I(d) and N , in the case where
α = 1.8

This table reveals that, rather counterintuitively, the Monte Carlo schemes are better than the Fourier
schemes in the range of our accuracy requirements, since they require the least amount of work during
each step of the root-finding procedure or for the pre-processing computations in the Chebyshev method.
Only when the dimension is low, less than three, and the accuracy requirement is high can the Fourier
methods be faster. Next, the choice between Chebyshev or not is a matter of comparison between I(d) and
N2. In high dimensions, when I(d) dominates N2, with I(d) being in principle of order d and N usually
between 10 and 20, then the Chebyshev method is less costly. Furthermore, the Chebyshev method can
intensively benefit from parallel computing as the pre-processing step is not sequential.

6. Numerical Results

In this section, we present computational results based on the different numerical schemes discussed in the
previous section for the loss function (5.1). The implementation was done on standard desktop computers
in the Python programming language, mainly based on the numpy and scipy packages. In particular, all
resolutions of system (5.3) were realized using the fsolve function of the scipy.optimize package. As for

7We make use of the SciPy fsolve which is a wrapper of MINPACK’s hybrd and hybrj algorithms. Quoting MINPACK’s offi-
cial documentation, “Unless FCN [the system of functions] can be evaluated quickly, the timing of HYBRJ1 will be strongly
influenced by the time spent in FCN.”

8In the case where α = 0 there are no bivariate integrals to be computed and all the schemes are very fast, with advantage for
Fourier together with Chebyshev.
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Method Computational Costs

Pre-Processing Root Finding

w/o Chebyshev
Fourier - O

(
I(d)d2 ×

∫∫ )
MC (*) - O

(
I(d)d2 ×

∑
M

)
w/ Chebyshev

Fourier O
(
N2d2 ×

∫∫ )
O
(
I(d)× F̂

)
MC (*) O

(
N2d2 ×

∑
M

)
Table 2: Comparison of the computational work of the numerical schemes in leading terms, as a func-

tion of the number of iterations I(d) for the root finding and of the number of nodes N in the
Chebyshev method in the case where α 6= 0. The (*) for the Monte Carlo methods means that,
even though the generation of samples takes time, see Table 1, as it is done once and for all, it
is negligible with respect to the other computational times. The symbols

∫∫
and

∑
M denote the

computational time for a Fourier double integral and a Monte Carlo average over M samples,
respectively.

the distribution of X , we mainly use Gaussian distributions with mean vector µ and variance-covariance
matrix Σ. In the bi- and tri-variate cases the variance-covariance matrix is parameterized by a single
correlation factor ρ and the variances σ2

k of Xk for all k. In other words, Σij = ρσiσj for i 6= j. In this
case, using the notation of (5.2), the functions fk and gk have the following analytical forms

fk(x) = E
[
(Xk − x)

+
]

=
σk√
2π

exp

(
− x2

2σ2
k

)
− xΦ

(
− x

σk

)
gk(x) = E

[[
(Xk − x)

+
]2]

=
(
x2 + σ2

k

)
Φ

(
− x

σk

)
− xσk√

2π
exp

(
− x2

2σ2
k

)
.

6.1. Bivariate case

We suppose that d = 2 and consider a bivariate Gaussian distribution with zero mean, σ1 = σ2 = 1

and correlation ρ in {−0.9,−0.5,−0.2, 0, 0.2, 0.5, 0.9}. Without systemic risk weight, that is, setting
α = 0 in the loss function (5.1), the results do not depend on the correlation value. See Table 3. Since
σ1 = σ2 = 1, the allocation is symmetric. Hence, we only provide the first component of m∗. Table 3
shows that the analytical scheme is naturally the fastest. However, Fourier combined with Chebychev with
15 nodes provides an accuracy of 10−3 with a total computational time slightly less than pure Fourier.
Indeed, since there are no bivariate integrals for α = 0, there are 15 times 6 univariate integrals to compute
for the Chebychev preprocessing, whereas Fourier needs 64 times 6 univariate integrals.

Table 4 shows the same results for different levels of correlation with the systemic factor in the case
where α = 1. As expected, the values of the risk allocation are increasing in ρ. For α = 1, the presence
of bivariate integrals makes the Fourier methods, with or without Chebyshev, considerably less efficient
than the pure Monte Carlo method. However, since we are in low dimension, the pure Fourier method is
more efficient than coupled with Chebyshev with 10 nodes. Indeed, d is definitely smaller than N in that
case, therefore, requiring more computations of bivariate integrals in the preprocessing than during the
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Scheme m∗1 I(2) CTP CTR CT

Analytical -0.173 59 0.00 s 0.06 s 0.06 s
Fourier -0.173 64 0.00 s 1.03 s 1.03 s
Fourier + Chebychev 3 nodes -0.140 84 0.14 s 0.08 s 0.22 s
Fourier + Chebychev 5 nodes -0.158 66 0.24 s 0.07 s 0.31 s
Fourier + Chebychev 10 nodes -0.163 56 0.40 s 0.09 s 0.49 s
Fourier + Chebychev 15 nodes -0.173 49 0.57 s 0.09 s 0.66 s
Monte Carlo 1 Mio -0.174 5 0.19 s 9.38 s 9.57 s
Monte Carlo 10 Mio -0.173 5 1.74 s 73.3 s 75.04 s

Table 3: Bivariate case without systemic weight, that is, for α = 0.

Fourier Fourier + Chebychev 10 nodes Monte Carlo 2 Mio

ρ m∗1 I(2) CTP CTR CT m∗1 I(2) CTP CTR CT m∗1 I(2) CTP CTR CT

−0.9 -0.167 140 0.00 s 898.26 s 898.26 s -0.151 59 2552.94 s 0.70 s 2553.64 s -0.168 86 0.35 s 80.29 s 80.64 s
−0.5 -0.143 66 0.00 s 259.48 s 259.48 s -0.131 60 1926.83 s 0.73 s 1927.56 s -0.144 82 0.35 s 71.65 s 72.00 s
−0.2 -0.120 93 0.00 s 410.01 s 410.01 s -0.113 84 1590.02 s 0.91 s 1590.93 s -0.121 86 0.34 s 75.60 s 75.94 s

0 -0.103 72 0.00 s 250.33 s 250.33 s -0.098 76 1635.34 s 0.79 s 1636.13 s -0.103 75 0.46 s 66.83 s 67.29 s
0.2 -0.086 94 0.00 s 342.27 s 342.27 s -0.082 94 1751.79 s 1.28 s 1753.07 s -0.085 73 0.39 s 64.38 s 64.77 s
0.5 -0.057 124 0.00 s 559.06 s 559.06 s -0.055 73 2154.19 s 0,74 s 2154.93 s -0.057 103 0.36 s 90.55 s 90.91 s
0.9 -0.013 44 0.00 s 932.66 s 932.66 s -0.013 84 2162.33 s 0,54 s 2162.87 s -0.013 96 0.41 s 85.27 s 85.68 s

Table 4: Bivariate case with systemic weight, that is, for α = 1.

iterations of the root finding.

6.2. Trivariate Case

In this section, we illustrate the systemic contribution of the loss function with three risk components and
study the impact of the interdependence of two components with respect to the third one. We start with a
Gaussian vector with the following variance-covariance matrix

Σ =

 0.5 0.5ρ 0

0.5ρ 0.5 0

0 0 0.6

 ,
for different correlations ρ ∈ {−0.9,−0.5,−0.2, 0, 0.2, 0.5, 0.9}. Here the third risk component has a
higher marginal risk than the first two so that, in the absence of systemic component, it should contribute
most to the overall risk. When α = 0, this is indeed the case. The result is independent of the correlation
and is typically overall lower, charging the risk component with the highest variance more than the other
two, as shown in Table 5.

However, with systemic risk weights, the contribution of the first two overcomes the third one for high
correlation, as shown in Table 6. These results illustrate that the systemic risk weights corrects the risk
allocation as the correlation between the first two risk components increases. Without Chebychev method,
the Monte Carlo scheme in this trivariate case is radically faster than Fourier, from 10 times up to 40 times
more efficient.
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m∗1 = m∗2 m∗3 R(X) I(3) CTP CTR CT

-0.166 ≤ 0.120 -0.212 148 0 s 8.05 s 8.05 s

Table 5: Trivariate case without systemic weight, that is α = 0. Computed by Fourier.

Fourier Method Monte Carlo 2 Mio

ρ m∗1 = m∗2 m∗3 R(X) I(3) CTP CTR CT m∗1 = m∗2 m∗3 R(X) I(3) CTP CTR CT

−0.9 -0.189 ≤ 0.096 -0.282 157 0 s 2154.30 s 2154.30 s -0.188 ≤ 0.096 -0.281 98 0.43 s 156.62 s 157.05 s
−0.5 -0.135 ≤ 0.017 -0.253 131 0 s 2286.76 s 2286.76 s -0.135 ≤ 0.018 -0.252 123 0.35 s 216.27 s 216.62 s
−0.2 -0.099 ≤ -0.030 -0.229 80 0 s 4711.94 s 4711.94 s -0.100 ≤ -0.030 -0.230 97 0.36 s 154.86 s 155.22 s

0 -0.076 ≤ -0.059 -0.212 9 0 s 3062.09 s 3062.09 s -0.078 ≤ -0.059 -0.215 89 0.37 s 140.80 s 141.17 s
0.2 -0.054 ≤ -0.087 -0.194 155 0 s 2277.04 s 2277.04 s -0.054 ≤ -0.087 -0.194 107 0.37 s 175.17 s 175.54 s
0.5 -0.020 ≥ -0.125 -0.165 35 0 s 4678.19 s 4678.19 s -0.022 ≥ -0.124 -0.168 139 0.34 s 217.90 s 218.24 s
0.9 0.026 ≥ -0.173 -0.122 202 0 s 6000.57 s 6000.57 s 0.026 ≥ -0.173 -0.122 103 0.34 s 164.17 s 164.51 s

Table 6: Trivariate case with systemic weight, that is α = 1. Computed by Fourier.

6.3. Higher Dimensions

We performed the computations in a 10- as well as in a 30-variate case. In the 10-variate case without
systemic weight, that is for α = 0, we used the Fourier and Monte Carlo schemes, see Table 7. Since there
is no systemic risk weight involved, the Fourier scheme outperforms slightly the Monte Carlo method.
In the case with systemic weight, that is for α = 1, we used the Monte Carlo scheme without and with

Scheme m∗1 m∗2 m∗3 m∗4 m∗5 m∗6 m∗7 m∗8 m∗9 m∗10 R(X) l(10) CTP CTR CT

F 0.408 0.295 -0.049 -0.341 1.352 -0.193 -0.037 0.214 0.130 -0.047 1.733 1245 0 s 71.80 s 71.80 s
MC 1 Mio 0.410 0.298 -0.049 -0.345 1.344 -0.192 -0.034 0.214 0.131 -0.045 1.733 180 0.77 s 138.59 s 139.36 s
MC 10 Mio 0.410 0.295 -0.050 -0.344 1.348 -0.193 -0.034 0.213 0.132 -0.045 1.733 165 1.57 s 220.41 s 221.98 s

Table 7: 10-variate case without systemic weight, that is, for α = 0.

Chebyshev, the Fourier scheme being too slow to run in a reasonable amount of time, see Table 8. The
pure Monte Carlo scheme requires 236 steps times 55 sample summations for a total of 12980 sample
summations, whereas the Monte Carlo together with Chebyshev with 15 nodes needed in preprocessing
152 times 55 sample summations for a total of 12375 sample summations, resulting in a roughly similar
total computational time.

Scheme m∗1 m∗2 m∗3 m∗4 m∗5 m∗6 m∗7 m∗8 m∗9 m∗10 R(X) l(10) CTP CTR CT

MC 2 Mio 0.344 0.254 0.260 0.113 1.324 0.180 0.430 0.703 0.584 0.448 4.639 236 1.58 s 6976.70 s 6978.28 s
MC 2 Mio + Cheby 10 0.182 0.106 0.272 0.211 1.188 0.198 0.529 0.776 0.596 0.477 4.536 120 3533.13 s 51.47 s 3584.60 s
MC 2 Mio + Cheby 15 0.373 0.297 0.310 0.213 1.298 0.251 0.432 0.690 0.583 0.447 4.896 158 6183.01 s 82.02 s 6265.03 s
MC 2 Mio + Cheby 20 0.312 0.229 0.266 0.179 1.315 0.193 0.439 0.698 0.572 0.430 4.632 127 6689.62 s 164.19 s 6853.81 s

Table 8: 10-variate case with systemic weight, that is, for α = 1.

In the 30-variate case with systemic weight, that is for α = 1, the Monte Carlo with 106 samples
did not deliver a result in a reasonable amount of time – we stopped after more than three days. Using
however Monte Carlo with 2× 106 samples together with Chebyshev yields the computational results in
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Table 9. Note moreover that the preprocessing in the Chebyshev case could be considerably reduced by
making use of parallel processing.

Scheme l(10) CTP CTR CT

MC 2 Mio + Cheby 15 for α = 0 216 1.87 s 439.15 s 441.02 s
MC 2 Mio + Cheby 15 for α = 1 465 21925.33 s 3035.83 s 25426.16 s

Table 9: 30-variate case without and with systemic weight, that is, for α = 0, 1.

Figures 3 and 4 show the variance-covariance matrix and the resulting risk allocation in the 10- and 30-
variate case, respectively. The plots show that the risk allocation depends not only on the variance of the
different risk components, but also, in the case where α = 1, on the corresponding dependence stucture
(in this case, the column of covariances). For instance, compare components 2 and 3 in the 10-variate
case in Figure 3. In the first case we observe that when α = 0, component 2 contributes more than 3,
and conversely when α = 1. The reason is that even if component 2 has a slightly higher variance, unlike
member 3, it is negatively correlated with component 5 which has the highest variance, and thus is the
most ‘dangerous’ from the systemic point of view. Hence, component 3 is more exposed than 2 in case
of a systemic event. The same pattern can be observed between components 28 and 29 in the 30-variate
case in Figure 4.

Figure 3: Plot showing the variance-covariance matrix together with the respective allocation in the 10-
variate case for α = 0, 1.
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Figure 4: Plot showing the variance-covariance matrix together with the respective allocation in the 30-
variate case for α = 0, 1.

A. Some Classical Facts in Convex Optimization

For an extended real valued function f on a locally convex topological vector space X , its convex conju-
gate is defined as

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} , x∗ ∈ X∗,

where X∗ is the topological dual of X . The Fenchel–Moreau theorem states that if f is lower semi-
continuous, convex and proper, then so is f∗, and it holds

f(x) = f∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f∗(x∗)} , x ∈ X.

Following Rockafellar [26], for any non-empty set C ⊆ Rd, we define its recession cone

0+C :=
{
y ∈ Rd : x+ λy ∈ C for every x ∈ C and λ ∈ R+

}
.

By [26, Theorem 8.3], if C is non-empty, closed and convex, then

0+C =
{
y ∈ Rd : there exists x ∈ C such that x+ λy ∈ C for every λ ∈ R+

}
. (A.1)
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By [26, Theorem 8.4], a non-empty, closed and convex set C is compact if and only if 0+C = {0}.
Given a proper, convex and lower semi-continuous function f on Rd, we call y ∈ Rd a direction of

recession of f if there exists x ∈ dom(f) such that the map λ 7→ f(x + λy) is decreasing on R+. We
denote by f0+ the recession function of f , that is, the function with epigraph given as the recession cone
of the epigraph of f , and we call

0+f :=
{
y ∈ Rd : (f0+)(y) ≤ 0

}
the recession cone of f . The following theorem gathers results from [26, Theorems 8.5, 8.6, 8.7 and
Corollaries pp. 66–70].

Theorem A.1. Let f be a proper, closed and convex function on Rd.

1. Given x, y in Rd, if lim infλ→∞ f(x+ λy) <∞, then λ 7→ f(x+ λy) is decreasing.

2. All the non-empty level sets B := {x ∈ Rd : f(x) ≤ γ} 6= ∅ of f have the same recession cone,
namely the recession cone of f . That is:

0+f = 0+B, for every γ ∈ R such that B 6= ∅.

3. f0+ is a positively homogeneous, proper, closed and convex function, such that

(f0+)(y) = sup
λ>0

f(x+ λy)− f(x)

λ
= lim
λ→∞

f(x+ λy)− f(x)

λ
, y ∈ Rd,

for every x ∈ dom(f).

4. There exists x ∈ dom(f) such that the map λ 7→ f(x + λy) is decreasing on R+, that is, y is a
direction of recession of f , if and only if this map is decreasing for every x ∈ dom(f), which in
turn is equivalent to (f0+)(y) ≤ 0.

5. The map λ 7→ f(x+ λy) is constant on R+ for every x ∈ dom(f) if and only if (f0+)(y) ≤ 0 and
(f0+)(−y) ≤ 0.

B. Multivariate Orlicz Spaces

In this appendix we briefly sketch how the classical theory of univariate Orlicz spaces carries over to the
d-variate case without any significant change. We follow the lecture notes by Léonard [25], only providing
the proofs that differ structurally from the univariate case.

A function θ : Rd → [0,∞] is called a Young function if it is

• convex and lower semi-continuous;

• such that θ(x) = θ(|x|) and θ(0) = 0;

• non trivial, that is, dom(θ) contains a neighborhood of 0 and θ(x) ≥ a ‖x‖ − b for some a > 0.

In particular, θ achieves its minimum at 0 and is increasing on Rd+. It is said to be finite if dom(θ) = Rd

and strict if limx→∞ θ(x)/ ‖x‖ =∞.

Lemma B.1. The function θ is Young if and only if θ∗ is Young. Furthermore, θ is strict if and only if θ∗

is strict if and only if θ and θ∗ are both finite.
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Proof. This follows by application of the Fenchel-Moreau theorem and from the relation x · y ≤ θ(x) +

θ∗(y). �

For X ∈ L0, the Luxembourg norm of X is given as

‖X‖θ = inf {λ ∈ R : λ > 0 and E [θ (X/λ)] ≤ 1} ,

where inf ∅ =∞. The Orlicz space and heart are respectively defined as

Lθ :=
{
X ∈ L0 : ‖X‖θ <∞

}
=
{
X ∈ L0 : E [θ (X/λ)] <∞ for some λ ∈ R, λ > 0

}
Mθ :=

{
X ∈ L0 : E [θ (X/λ)] <∞ for all λ ∈ R, λ > 0

}
.

Lemma B.2. 1. We have ‖X‖θ = 0 if and only if X = 0.

2. If 0 < ‖X‖θ < ∞, then E[θ(X/ ‖X‖θ)] ≤ 1. In particular, B := {X : ‖X‖θ ≤ 1} =

{X : E[θ(X)] ≤ 1}.

3. The gauge ‖·‖θ is a norm both on the Orlicz space Lθ and on the Orlicz heart Mθ.

4. The following Hölder Inequality holds:

E [|X · Y |] ≤ ‖X‖θ ‖Y ‖θ∗ .

5. Lθ is continuously embedded into L1, the space of integrable random variables on Ω× {1, . . . , d}
for the product measure P ⊗ Unif{1,...,d}.

9

6. The normed spaces (Lθ, ‖·‖θ) and (Mθ, ‖·‖θ) are Banach spaces.

Proof. These results can be established along the same lines as in the univariate case [See 25, Lemmas
1.8 and 1.10 and Propositions 1.11, 1.14, 1.15 and 1.18], using the Fenchel-Moreau Theorem in Rd+. �

Theorem B.3. If θ is finite, then the topological dual of Mθ is Lθ
∗
.

Proof. Again, the proof follows the univariate case [see 25, Proposition 1.20, Theorem 2.2 and Lemmas
2.4 and 2.5]. �

C. Numerical Methods

C.1. Fourier Transform

Let ` be a loss function and denote by `η the dampened loss function, defined by `η(x) := e−〈η,x〉`(x), for
η ∈ Rd. Moreover, let ̂̀denote the Fourier transform of the function `, that is, ̂̀(u) =

∫
Rd e

i〈u,x〉`(x)dx,
and letMX denote the (extended) moment generating function of the random variableX , that is,MX(u) =

E[e〈u,X〉], for suitable u ∈ Cd. Let L1, respectively L1
bc, denote the set of measurable functions on Rd

which are integrable, respectively bounded, continuous and integrable, with respect to the Lebesgue mea-
sure. We also denote by =(z) the imaginary part of the complex number z.

9The case where Lθ = L1 corresponds to θ(x) =
∑
|xk|.
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Consider the following sets:

I :=
{
η ∈ Rd : MX(η) <∞

}
, I ′ :=

{
η ∈ Rd : MX(η) <∞ and MX(η + i·) ∈ L1

}
,

J :=
{
η ∈ Rd : `η ∈ L1

bc and ̂̀η ∈ L1
}
, J ′ :=

{
η ∈ Rd : `η ∈ L1

}
.

Assuming that I ∩ J 6= ∅ or I ′ ∩ J ′ 6= ∅ and using Eberlein et al. [15, Theorems 2.2 and 3.2], we have
that

E
[
`(X −m)

]
=

1

(2π)d

∫
Rd

e〈iu−η,m〉MX(η − iu)̂̀(u+ iη)du, (C.1)

where η ∈ I ∩ J or η ∈ I ′ ∩ J ′.

Proof (of Proposition 5.1). Starting from (5.2), we define the functions

`1(xk) = x+
k , `2(xk) = (x+

k )2, `3(xj , xk) = x+
j 1{xk≥0} `4(xj , xk) = x+

j x
+
k ,

whose Fourier transforms are provided by

̂̀
1(zk) = − 1

z2
k

, for zk ∈ C with =(zk) > 0; (C.2)

̂̀
2(zk) =

2

iz3
k

, for zk ∈ C with =(zk) > 0; (C.3)

̂̀
3(zj , zk) =

1

izkz2
j

, for zj , zk ∈ C with =(zj),=(zk) > 0; (C.4)

̂̀
4(zj , zk) =

1

z2
j z

2
k

, for zj , zk ∈ C with =(zj),=(zk) > 0. (C.5)

The result now follows by combining (C.1) with (5.4) and (C.2)–(C.5), and observing that the analogue
of assumption I ′ ∩ J ′ 6= ∅ is satisfied in each case due to (5.4) and (C.2)–(C.5). �

C.2. Chebyshev Interpolation

We can use the Chebyshev interpolation method in order to compute values of fk(m), gk(m), hjk(m,n)

and ljk(m,n) for a large number of m’s and n’s, as follows:

Step 1: Select upper and lower bounds for the parameter m, that is, m ∈ [m,m], and rescale this by a
linear interpolation such that m ∈ [−1, 1]. Then, compute the Chebyshev nodes via

mi = cos

(
π

2i+ 1

2N + 1

)
, i = 1, . . . , N, (C.6)

where N denotes the degree of the Chebyshev interpolation. Next, compute the values fk(mi) and
gk(mi), at each node i ∈ {1, . . . , N} and for each risk factor k ∈ {1, . . . , d}, and store them. This
operation can be performed in parallel both in the nodes i and in the factors k.

Step 2: Compute approximate values of fk(m) and gk(m) for some arbitrary m ∈ [−1, 1], or m ∈
[m,m], using the Chebyshev interpolation:

IN [fk](m) =

N∑
i=0

ciTi(m),

28



with weights

ci =
21{i>0}

N + 1

N∑
r=0

fk(mr) cos

(
iπ

2r + 1

2N + 1

)
, 0 ≤ i ≤ N,

and basis functions

Ti(m) = cos(i arccos(m)), 0 ≤ i ≤ N.

The interpolation function IN [gk] for gk is defined analogously.

Step 3: In case of the bivariate functions hjk(m,n) and ljk(m,n), the Chebyshev interpolation takes the
following form:

IN̄ [hjk](m,n) =

N1∑
i1=0

N2∑
i2=0

ci1,i2Ti1,i2(m,n),

where N̄ = (N1, N2), with weights

ci1,i2 =

2∏
j=1

21{ij>0}

Nj + 1

N1∑
r1=0

N2∑
r2=0

hjk(mr1 , nr2)

2∏
k=1

cos

(
ikπ

2rk + 1

2Nk + 1

)
,

for all 0 ≤ i1 ≤ N1, 0 ≤ i2 ≤ N2, and basis functions

Ti1,i2(m,n) = Ti1(m)Ti2(n).

Here, the Chebyshev nodes mi1 , ni2 are selected according to (C.6) for each of them, while the values of
hjk(mi1 , ni2) are computed over the tensorized parameter space (i1, i2) ∈ {1, . . . , N1} × {1, . . . , N2}.
The interpolation function IN̄ [ljk] for ljk is defined analogously.
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