
CALIBRATION OF THE LOCAL VOLATILITY IN A GENERALIZED
BLACK–SCHOLES MODEL USING TIKHONOV REGULARIZATION

S. CRÉPEY∗

Abstract. Following an approach introduced by Lagnado and Osher (1997), we study Tikhonov
regularization applied to an inverse problem important in mathematical finance, that of calibrating,
in a generalized Black–Scholes model, a local volatility function from observed vanilla option prices.

We first establish W 1,2
p estimates for the Black–Scholes and Dupire equations with measurable

ingredients. Applying general results available in the theory of Tikhonov regularization for ill-posed
nonlinear inverse problems, we then prove the stability of this approach, its convergence towards a
minimum norm solution of the calibration problem (which we assume to exist), and discuss conver-
gence rates issues.
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1. Introduction. A quantity of fundamental importance to the trading of op-
tions on a stock S, is the stochastic component in the evolution of the stock price,
the so-called volatility. Obtaining estimates for the volatility is a major challenge for
market finance. Unlike historical estimates of the volatility, based upon observations
of the time-series of the stock price, calibration estimates rely upon the anticipations
of the trading agents reflected in the prices of the traded option products derived from
S. We consider in this article Tikhonov regularization applied to a widely studied in-
verse problem in mathematical finance, that of calibrating a local volatility function
from a given set of option prices, in a generalized Black–Scholes model.

This calibration problem has received intensive study in the last ten years, see
for instance [19, 17, 18, 36, 1, 11, 8, 35, 2, 29, 24, 7, 14, 15, 4] and references therein.
Notable approaches include entropy regularization (Avellaneda et al [2]) or parametrix
expansion (Bouchouev and Isakov [8]). In this paper, we shall focus upon the Tikhonov
regularization method, following an approach introduced by Lagnado and Osher [29].
Jackson, Süli and Howison [24] have devised an implementation of this method with
splines. Bodurtha and Jermakyan use linearization [7]. However, while most previous
approaches adopt a numerical and empirical point of view, our aim is to establish a
rigorous theoretical ground for this inverse problem, in a Partial Differential Equation
framework.

Work corresponding to a first stage of this research has been published in my PhD
Thesis [14, Part IV] (in French), while a preliminary version of this article has been
published as a CMAP Internal Research Report [15]. A further article will address
an implementation of the method in a trinomial tree (explicit finite differences) set-
ting, and report numerical experiments illustrating the stability of the local volatility
function thus calibrated [16].

2. Preliminaries. In this section, we will give an informal presentation of the
calibration problem and of the Tikhonov rwe shall ation method, provide an overview
of the paper and define the main notations and general assumptions.

2.1. Generalized Black–Scholes model. In market finance, a European call
(respectively put) option with maturity date T and exercise price K, on an underlying
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asset S, denotes a right to buy (respectively sell), at price K, a unit of S at time T .
Let us then consider a theoretical financial market, with two traded assets: cash, with
constant interest-rate r, and a risky stock, with diffusion price process

dSt = St(ρ(t, St)dt+ σ(t, St)dWt) , t > t0 ; St0 = S0 .

Here W means a standard Brownian motion. Moreover, the stock is assumed to yield
a continuously compounded dividend at constant rate q. Suppose finally, that the
market is liquid, non arbitrable, and perfect. These assumptions mean, respectively,
that first, there are always buyers and sellers, second, there can be no opportunity
that a riskless investment can earn more than the interest-rate of the economy r, and
third, there are no restrictions of any kind on the sales, neither transaction costs.
Under these assumptions the market is complete. This means that any option can be
duplicated by a portfolio of cash and stock. Moreover, a European call/put on S has
a theoretical fair price within the model, that we shall denote by Π+/−

T,K (t0, S0; r, q, a),
where a ≡ σ2/2, and

Π+/−
T,K (t0, S0; r, q, a) = e−r(T−t0)Et0,S0

P (ST −K)+/− .(2.1)

Here P denotes the so-called risk-neutral probability, under which

dSt = St((r − q)dt+ σ(t, St)dWt) , t > t0 ; St0 = S0 .(2.2)

Alternatively to the probabilistic representation (2.1), the prices Π+/− can be given as
the solution to a differential equation. One can use either the Black–Scholes backward
parabolic equation, in the variables (t0, S0), which is{

−∂tΠ− (r − q)S∂SΠ− a(t, S)S2∂2
S2Π + rΠ = 0, t < T

Π|T ≡ (S −K)+/− ,
(2.3)

or the Dupire forward parabolic equation, in the variables (T,K), given by{
∂T Π− (q − r)K∂KΠ− a(T,K)K2∂2

K2Π + qΠ = 0, T > t0
Π|t0 ≡ (S0 −K)+/− .

(2.4)

We will show in lemma 4.1 and theorem 4.3 that equations (2.1) or (2.3)–(2.4) hold
for an arbitrary measurable, positively bounded local volatility function a. However,
let us give a less formal insight by recalling the Black–Scholes seminal analysis [6],
valid in the special case where the volatility depends on time alone. We consider a
self-financing portfolio, short one option and long ∂SΠ shares of the underlying stock.
The value V of the risky component of the portfolio then evolves as

dVt = −dΠ(t, St) + ∂SΠ(dSt + qStdt)
= −(∂tΠ− qS∂SΠ + aS2∂2

S2Π)dt ,

from Itô’s lemma. Since V has a deterministic rate of return, absence of opportunity
of arbitrage implies that this rate equals the riskless interest-rate r. Otherwise said,

−∂tΠ + qS∂SΠ− aS2∂2
S2Π = r(−Π + S∂SΠ) ,

whence (2.3). As for (2.1), it can be viewed as the Feynman–Kac representation for
the solution of (2.3). Notice that this analysis does not rely on the specific character
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of the payoff of the call or put option. However, the oposite is true for (2.4). It is
indeed, as noticed by Dupire [19], a Fokker–Planck equation integrated twice with
respect to the space variable K, using moreover the formal identity

∂2
K2(S0 −K)+/− ≡ δS0(K) ,

where δS0 denotes the Dirac mass at S0.

2.2. Direct and inverse problems. In the special case where the volatility,
a ≡ σ2/2, is a constant, or a function of time alone, explicit formulas for the prices
Π+/− are known (see Black and Scholes [6] or Merton [32]). But in the case of a general
local volatility function a(t, S), one must turn to finite differences or a Monte-Carlo
procedure based upon equations (2.3)–(2.4) or (2.1). Moreover, observation teaches
that no constant or merely time dependent local volatility function is consistent with
most sets of market quotes. This phenomenon is known by market practitioners as
the smile of implied volatility.

However, in practice it is not the local volatility that is known, but the prices
themselves. In fact the local volatility is the only quantity in (2.1) or (2.3)–(2.4) which
cannot be obtained from the market. Indeed r and q, as well as, to some extent, Π,
can all be retrieved from market-quoted quantities. Consequently, one usually wishes
to solve the inverse problem, that of finding a(t, S) such that the theoretical prices
given by (2.1) or (2.3)–(2.4) match the observed option prices. We thus use liquid
quotations of actively traded options, which are usually referred to as vanilla options,
as a way to extract information about the future behavior of the underlying asset.
The calibrated local volatility function is then used by risk managers or traders to
value risk exposure, or price exotic (non vanilla) options and calculate hedge ratios
consistently with the market.

This is the problem we shall be concerned with here. In particular, there are
two cases which are commonly considered in the literature, and we shall treat both
in parallel. In the first one, this matching is required to occur on the actual, hence
finite, set of pairs (T,K) with observed prices. In the second case, the matching is
required to occur over all (T,K) such that T ≥ t0, K > 0. This makes sense, for
example, if the actual set of observed prices has been interpolated. To distinguish
between these two cases, we shall refer to the the first as the discrete, and the second
as the continuous, calibration problem.

2.3. The Tikhonov regularization method. Both the discrete and continu-
ous calibration problems are ill-posed. This is the case in the continuous calibration
problem because the solution depends in an unstable way upon the data, and in the
discrete calibration problem because the full surface a(t, S) is simply underdetermined
by the discrete data. It is then necessary to introduce stabilizing procedures in the
reconstruction method for the local volatility function. One of these is known as the
Tikhonov regularization method [39, 21]. The idea is to tackle the calibration problem
as a minimization problem, where the cost criterion to be minimized is

Jα (a) ≡ d (Π (a) , π)2 + αρ (a, a0)
2
.

Here d (Π (a) , π) denotes a distance between the model prices Π (a) and the observed
prices π, α is the regularization parameter, and ρ is a penalty designed to keep a close
to the prior a0, which reflects a priori information about a. Following Lagnado and
Osher [29], we shall choose ρ (a, a0)

2 ≡ ‖a− a0‖2H1 , where

‖u‖2H1 ≡
∫ ∫

u2 + ‖∇u‖2,
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which is the H1-(squared) norm of u with logarithmic variables t, y = ln(S).

2.4. Overview. We first study, in an appropriate functional analysis setting,
Black–Scholes and Dupire linear parabolic equations with measurable ingredients (§3
and 4). These are linear uni-dimensional equations in nondivergence form, with pos-
itively bounded dominant coefficients. We thus extend well known results when the
dominant coefficient a is a constant, or a regular function. Mixing the probabilistic
pointwise and Lp estimates of Krylov [26] with the analytic W 1,2

p estimates of Fabes
and Stroock and Varadhan [38], we obtain W 1,2

p estimates for the equations with
source terms. Using the theory of Lp-viscosity solutions [10, 13], we then show that
our equations admit unique solutions, for which we provide a probabilistic represen-
tation (theorems 4.2 and 4.3).

Proposition 5.1 sums up the main properties of the pricing functional Π useful for
the study of the calibration problems, namely: compactness, twice Gateaux differen-
tiability and stability with respect to perturbations of parameters. We can then apply
the general theory of Tikhonov regularization for ill-posed nonlinear inverse problems
[21, 22, 27, 33, 34], both to the continuous and discrete calibration problems. We
thus prove the stability of the method for arbitrary values of the regularization pa-
rameter (§5). Assuming the existence of a solution of the calibration problem, we
prove the convergence of the method towards an a0-minimum norm solution when
the regularization parameter tends to 0, and we exhibit conditions sufficient to ensure
convergence rates in O(

√
δ), where δ is the data noise (§6).

2.5. Main notations and general assumptions. To avoid too many repe-
titions, we define now a set of notations and related general assumptions, that will
be assumed to hold throughout the paper. When stronger assumptions are required,
they will be stated explicitely in the body of the paper.

General notation.
x ∧ y, x ∨ y: min(x, y), max(x, y).
x+, x−: max(x, 0), max(−x, 0).
C, C ′, ... C ≡ Cρ (ρ1, . . . , ρn): Constants C, C ′, ... depending upon nothing but the

parameters ρ, ρ1, . . . , ρn.

One should be aware that these constants may vary with the context. We will also
use the notation “≡” for “denotes”, or “equals identically” (that is, equality between
functions), according to the context.

Mathematical finance.
S, y = ln(S): Lognormal underlying diffusion, in financial and logarithmic variables.
q, r ∈ [0, R]: Dividend yield attached to S, short rate of the economy.
a ≡ σ2/2, a0: local volatility function, prior a0 on a.
a, a, â: Bounds on a0 and a such that 0 < a < a, â ≡ (a+ a)/2.
p ≡ p(a, a): A real in ]2, 3[ depending upon a and a; see theorem 4.2.
W : Standard Brownian motion.
Q =]t, T [×R: A plane strip on which a is defined, in logarithmic variables.
(t0, y0), (T, k): Points in Q, with t0 ≤ T.
y0, k: Bounds on |y0|, |k|.
Qt0 , Q

T : Q ∩ {t > t0}, Q ∩ {t < T}.
Qt0 , Q

T
: closures of Qt0 , Q

T .
Π+/−

T,K (t0, S0; r, q, a), Π+/−
T,k (t0, y0; r, q, a): The price, in a generalized Black–Scholes

model, for a European call/put option with maturity T and exercise price
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K = ek, at the current phase t0, S0 = ey0 , in financial and logarithmic vari-
ables.

γt0,y0(t, y; r, q, a): Transition probability density discounted at rate r (that is, e−r(t−t0)×
the density), for the underlying diffusion in logarithmic variable y.

BS
+/−
QT (k; r, q, a), BS′QT (r, q, a; Γ), DUP+/−

Qt0
(y0; r, q, a): Black–Scholes call/put equa-

tion on QT , Black–Scholes derived equation with source term Γ, Dupire
call/put equation on Qt0 ; see §3.2.

To alleviate notations, r, q, a will sometimes be abbreviated to a; Π+/−
T,K (t0, S0; a)

or Π+/−
T,k (t0, y0; a), to Π+/−; BS+/−

QT (k; a), BS′QT (a; Γ), DUP+/−
Qt0

(y0; a) and γt0,y0(t, y; a),

to BS+/−, BS′, DUP+/− and γ, respectively.
In the case of the call option, we shall sometimes drop the + superscript. For

instance, by default, Π will refer to Π+.

Functional analysis.
Ω: Regular by parts, open plane area.
p, θ: Real p ∈]2,+∞[, θ ≡ 1− 2/p > 0.
Lp(Ω),Lp,loc(Ω), H1(Ω), H2(Ω), W 1

p (Ω), W 1,2
p (Ω), W 1,2

p,loc(Ω), C0
θ (Ω), D(Ω): Sobolev

spaces on Ω; see §3.1
Γ: Element of Lp(Q).
MQ(a, a): Set of real measurable functions on Q with bounds a and a.
a0 +H1

Q(a, a): Set of functions in a0 +H1(Q) with bounds a and a.
h, h′: Elements of H1(Q).
E →: Convergence in the topology of the space E .
‖X‖, ‖X‖E : Euclidean norm of X, norm of X in the surrounding normed space E .
〈X,Y 〉, 〈X,Y 〉E : Inner product of X and Y in the surrounding Euclidean space,

Hilbert space E .
dΠ(a).h: Derivative in the direction h of the functional Π, at the local volatility

function a.
dΠ(a)?: Adjoint operator of h 7→ dΠ(a).h; see §6.2.
∇J(a): Gateaux derivative of the cost criterion J at the local volatility function a.

For instance, if J denotes a cost criterion on a Hilbert space E , then in our
notations:

〈∇J(a) , h〉E = dJ(a).h , h ∈ E .

In the same way, the general assumptions we have made above on a and a0 can
be stated as

a0, a ∈MQ(a, a) .

Finally, we shall refer to the statements in remark 3.5 and lemma 4.1.3, as sym-
metry and parity, respectively.

3. Strong solutions of parabolic problems.

3.1. Functional spaces and Sobolev embeddings. Let us first introduce
some Hilbert and Banach spaces, which we shall use as spaces of local volatility
functions and solutions of Black–Scholes and Dupire equations.

Given the open plane area Ω, we shall denote by D(Ω) the space of traces on Ω
of regular functions with compact support in the plane. We will use the usual Hilbert
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spaces H2(Ω) ⊂ H1(Ω) ⊂ L2(Ω), and the Banach spaces C0
θ (Ω), Lp(Ω), W 1

p (Ω),
W 1,2

p (Ω), where

‖u‖C0
θ(Ω) = sup

(t,y)∈Ω

|u| + sup
(t,y) 6=(t′,y′)∈Ω

|u(t, y)− u(t′, y′)|
|t− t′|θ + |y − y′|θ

;

‖u‖W 1
p (Ω) = ‖u‖Lp(Ω) + ‖∂tu‖Lp(Ω) + ‖∂yu‖Lp(Ω);

‖u‖W 1,2
p (Ω) = ‖u‖Lp(Ω) + ‖∂tu‖Lp(Ω) + ‖∂yu‖Lp(Ω) + ‖∂2

y2u‖Lp(Ω) .

Finally, we shall denote by W 1,2
p,loc(Ω) the localized Fréchet space of functions which

belong to W 1,2
p (Ω′) for every regular open bounded subset Ω′ with Ω

′ ⊂ Ω.
Now we have the following Sobolev embeddings, for which the reader is referred

for instance to Larrouturou and Lions [30]:
1. For Ω bounded or half-plane,

W 1
p (Ω) ↪→ C0

θ (Ω) .(3.1)

This embedding notably implies the existence of a unique continuous extension up to
the boundary for the strong solutions introduced at definition 3.1.1 below.

2. For Ω bounded,

H1(Ω) ↪→ Lp(Ω) .(3.2)

This embedding, called the Rellich–Kondrakov embedding, is compact, which means
that it maps weakly convergent sequences into strongly convergent ones.

Let us now present the definitions of a solution of a Partial Differential Equation
that we shall need. For more about these definitions, the reader is referred to La-
dyzhenskaya et al [28], Crandall et al [13], Wang [40], Caffarelli et al [10] and Crandall
et al [12].

Definition 3.1. Let there be a linear parabolic equation on Ω, with measurable
ingredients and a continuous boundary condition on ∂pΩ, the parabolic boundary of
Ω.

1. We call a function a strong solution in Lp(Ω), or a Lp(Ω)-solution, if it is
a function in W 1,2

p (Ω), that satisfies the boundary condition, and solves the equation
almost everywhere. We also use this definition with W 1,2

p,loc(Ω) to define an Lp,loc(Ω)-
solution.

2. We call a function a Lp,loc(Ω)-viscosity solution, if it is a continuous function
on Ω, that satisfies the boundary condition, and solves the equation in the viscosity
meaning for test functions in W 1,2

p,loc(Ω).
The relations between these definitions of a solution are as follows (see Crandall

et al [13]):
1. A Lp,loc(Ω)-solution is a Lp,loc(Ω)-viscosity solution.
2. Conversely, a Lp,loc(Ω)-viscosity solution that belongs toW 1,2

p,loc(Ω) is a Lp,loc(Ω)-
solution.

The following theorem gathers the main properties of the Sobolev spaces on plane
strips that we shall need.

Theorem 3.2.
1. H1(Q) is continuously embedded in Lp(Q);
2. D(Q) is dense in Lp(Q), H1(Q), H2(Q);
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3. The application

D(Q)×D(Q) 3 (u, v) 7→ (u|∂Q, ∂nv) ∈ L2(∂Q)2 ,

where ∂nv denotes the normal derivative, admits a unique linear continuous extension,
called trace, from H1(Q)×H2(Q) to L2(∂Q)2.

4. The set of traces on ∂Q of functions of H1(Q)×H2(Q) forms a dense subset
of L2(∂Q)2, and we have the so-called generalized Green formula, for every (u, v) ∈
H1(Q)×H2(Q):

−
∫ ∫

Q

u (∆v) =
∫ ∫

Q

〈∇u,∇v〉 −
∫

∂Q

u ∂nv .

Proof. These properties result from the analogous properties well known on open
half-planes (see for instance Larrouturou and P.L. Lions [30], Bensoussan and J.L. Li-
ons [3]). For the details, the reader is referred to Crépey [14, theorem F.1] and the
proof given therein.

In the upcoming proofs, we shall often be able to proceed by density thanks to
the following lemma.

Lemma 3.3. There exists Lipschitzian functions an ∈ MQ(a, a) (n ∈ N?), such
that an converges to a in Lp,loc(Q) when n→ +∞.

Proof. This follows from standard mollification with compact support, applied to
a prolongated by zero outside Q (see for instance Brézis [9]).

3.2. Black–Scholes, Dupire and derived equations. Let us now introduce
the main equations in this work.

Definition 3.4.
1. We define the Black–Scholes call/put equation, BS+/−

QT (k; r, q, a), with back-

ward logarithmic variables (t, y) ∈ QT
, parameterized by (T, k), as{

−∂tΠ− (r − q − a(t, y)) ∂yΠ− a(t, y)∂2
y2Π + rΠ = 0 on QT ,

Π|T = (ey − ek)+/− .

We also define the Black–Scholes derived equation with source term Γ, BS′QT (r, q, a; Γ),
as {

−∂t(δΠ)− (r − q − a(t, y)) ∂y(δΠ)− a(t, y)∂2
y2(δΠ) + rΠ = Γ on QT ,

δΠ|T ≡ 0 .

2. We define the Dupire call/put equation, DUP+/−
Qt0

(y0; r, q, a), with forward
logarithmic variables (T, k), at the current phase (t0, y0), as{

∂T ΠT,k − (q − r − a(T, k))∂kΠT,k − a(T, k)∂2
k2ΠT,k + qΠT,k = 0 on Qt0 ,

Π|t0 ≡ (ey0 − ek)+/− .

3. Finally, we define the diffusion underlying the previous problems, with loga-
rithmic variables, as

dyt = (r − q − σ(t, yt)2

2
) dt+ σ(t, yt) dWt , yt0 = y0 .(3.3)
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Remark 3.5 (Symmetry). Changing moreover the direction of time T , via τ ≡
T + t0 − T , φ̌(τ, k) ≡ φ(T, k) for any function φ, then DUP

+/−
Qt0

(y0; r, q, a) becomes

BS
−/+
Qt0

(y0; q, r, ǎ).
Lemma 3.6.

1. (Black–Scholes and Dupire equations) Equations BS+/− have at most one
Lp,loc(QT )-solution Π such that |Π| ≤ K ∨ S.

2. (Derived equations) For any Lp(QT )-solution δΠ of BS′, we have:

‖δΠ‖C0
θ(Q

T
)
≤ C ′ ‖δΠ‖W 1,2

p (QT ) ,(3.4)

where C ′ ≡ C ′p. Moreover, δΠ is also the unique Lp,loc(QT )-solution of BS′ which
converges to 0 when |y| → +∞, uniformly with t.

Proof.
1. Given two such solutions Π and Π′, let us define δΠ ≡ e−2y+ρt(Π−Π′), where

ρ = r + 2a. By linearity, δΠ is a Lp,loc(QT )-solution of{
−∂tδΠ− (r − q + 3a) ∂yδΠ− a∂2

y2δΠ + (2q + 2a− 2a)δΠ = 0
δΠ|T ≡ 0 .

(3.5)

Moreover, let us fix ε > 0. One can choose Yε ≥ 1/ε such that for |y| ≥ Yε, we have
|δΠ(t, y)| ≤ 2e−2y+ρt(K ∨ ey) ≤ ε, uniformly with t ∈ [t, T ]. Then, |δΠ| ≤ ε on
QT ∩{|y| ≤ Yε}, by the maximum principle in Crandall et al [13, proposition 2.6]. So
δΠ ≡ 0 on QT , by passage to the limit when ε→ 0.

2. By the same maximum principle as above, we have uniqueness in the class of
Lp,loc(QT )-solutions of BS′ which converge to 0 when |y| → +∞, uniformly with t.
Now, let us be given a Lp(QT )-solution δΠ of BS′. Since the solution δΠ is continuous
on Q

T
and vanishes at T , it may be identified with an element of W 1

p (Ω), where
Ω ≡]t,+∞[×R, by extension with 0 on the right of T . Estimate (3.4) then follows
from the Sobolev embedding (3.1), on the half-plane Ω. Finally, δΠ ∈ C0

θ (Q
T
)∩Lp(QT )

converges to 0 when |y| → +∞, uniformly with t.

4. Existence, uniqueness, and probabilistic representation of solutions.

4.1. Diffusion. The following lemma links the price of a European call/put with
the discounted expectation of the corresponding payoff, in a generalized Black–Scholes
model.

Lemma 4.1.
1. The diffusion equation (2.2) has a unique weak solution on ]t0, T [:

St = S0 e
(r−q)(t−t0) exp

(∫ t

t0

σ(s, Ss)dWs −
1
2

∫ t

t0

σ2(s, Ss)ds
)
, t ∈]t0, T [

where the last exponential is a martingale, under the risk-neutral probability P . In
particular,

Et0,S0
P St = S0e

(r−q)(t−t0) , t ∈]t0, T [ .(4.1)

2. The price Π+/− equals the payoff expectation of the call/put at T , discounted
at rate r:

Π+/− = e−r(T−t0)Et0,S0
P (ST −K)+/−
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under the risk-neutral probability P . In particular, 0 ≤ Π ≤ S0.
3. Denoting Π+ −Π− by δΠ, we have

δΠ ≡ S0e
−q(T−t0) −Ke−r(T−t0) .

This relation, known as call/put parity, notably implies that ∂2
S2δΠ, ∂2

K2δΠ, (∂2
y2 −

∂y)δΠ and (∂2
k2 − ∂k)δΠ, all vanish identically.

Proof.
1. See for instance Strook and Varadhan [38, exercise 7.3.3] and Karatzas and

Shreve [25, problem 5.6.15 and corollary 3.5.13].
2. and 3. The expression for Π+/− then follows from Karatzas and Shreve [25,

§5.8.A]. Using this expression, the bounds on Π and the call/put parity proceed from
(4.1).

4.2. Derived hedge equations with source terms. The following theorem
and the estimate (4.3) therein, are the cornerstones of this article. The difficulty
comes from the lack of regularity of the local volatility function a, that is merely
required to be measurable and positively bounded. But this turns out to be sufficient,
in the present uni-dimensional linear framework. Recall that Γ denotes an element of
Lp(Q).

Theorem 4.2. There exists p ≡ p(a, a) ∈]2, 3[, such that if p ∈]2, p[, then, when
(t, y) varies within Q

T
,

δΠ(t, y) = Et,y
P

∫ T

s=t

e−r(s−t)Γ(s, ys) ds(4.2)

is the only Lp(QT )-solution, or Lp,loc(QT )-solution converging to 0 when |y| → +∞,
uniformly with t, of BS′QT (a; Γ).

Moreover,

‖δΠ‖C0
θ(Q

T
)
≤ C ′ ‖δΠ‖W 1,2

p (QT ) ≤ C ′C ‖Γ‖Lp(QT ) ,(4.3)

where C ′ ≡ C ′p is as in (3.4), and C ≡ Cp(t, T ;R, a, a).
Proof. For the moment, p ∈]2,+∞[. We first show that for ϕ ∈W 1,2

p (QT ),

‖ϕ‖W 0,1
p (QT ) ≤ Cp ‖ϕ‖1/2

W 0,2
p (QT )

‖ϕ‖1/2

Lp(QT )
.(4.4)

Inequality (4.4) can be more readily seen on the following equivalent norms:

‖ϕ‖p

W̃ 0,j
p (QT )

≡
∑
k≤j

‖∂k
ykϕ‖p

Lp(QT )
, 0 ≤ j ≤ 2 .

Indeed, by integration over time of a classic Sobolev inequality (see for instance Ben-
soussan and J.L. Lions [3, Chapter 2, equation (5.8)]):

‖ϕ‖p

W̃ 0,1
p (QT )

=
∫ T

t=t

‖ϕ(t, ·)‖p

W̃ 1
p (R)

dt

≤ Cp
p

∫ T

t=t

‖ϕ(t, ·)‖p/2

W̃ 2
p (R)

‖ϕ(t, ·)‖p/2
Lp(R) dt
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≤ Cp
p

(∫ T

t=t

‖ϕ(t, ·)‖p

W̃ 2
p (R)

dt

)1/2 (∫ T

t=t

‖ϕ(t, ·)‖p
Lp(R) dt

)1/2

= Cp
p ‖ϕ‖

p/2

W̃ 0,2
p (QT )

‖ϕ‖p/2

Lp(QT )
,

by the Cauchy–Schwarz inequality. This shows (4.4), which in turn implies

‖ϕ‖W 0,1
p (QT ) ≤ rCp‖ϕ‖W 0,2

p (QT ) + Cp(r)‖ϕ‖Lp(QT )(4.5)

for every fixed r > 0, provided Cp(r) ≤ Cp/4r.

On the other hand, since (3.3) admits a unique weak solution (see lemma 4.1.1),
then from Krylov [26, proof of theorem 2.4.5.a and theorem 2.4.1]

Et,y
P

∫ T

t

e−r(s−t)|Γ(s, ys)| ds ≤ C ‖Γ‖Lp(QT ) ,(4.6)

where C ≡ Cp(t, T,R, a, a).
We now assume that ϕ is a Lp(QT )-solution of BS′QT (a; Γ). For ε > 0, let τε

denote the exit time of QT ∩{|y| ≤ 1/ε} for the y-process (3.3). It can be shown that
(4.6) implies the following probabilistic representation:

Et,y
P e−r(τε−t)ϕ(τε, yτε

)− ϕ(t, y) = − Et,y
P

∫ τε

s=t

e−r(s−t)Γ(s, ys) ds .(4.7)

This has been shown by Bensoussan and J.L. Lions [3, Chapter 2, §8.3] in a variational
context. We do not reproduce the proof here, though it proceeds in a similar fashion,
using regularization and classic Itô’s formula.

When ε → 0, τε almost surely converges to T. Moreover, ϕ is bounded and
continuous. Estimate (4.6) then implies, through dominated convergence on the left
hand side and right hand side of (4.7),

ϕ(t, y) = Et,y
P

∫ T

s=t

e−r(s−t)Γ(s, ys) ds.(4.8)

Then, from Krylov [26, theorem 2.4.5.a]:

‖ϕ‖Lp(QT ) ≤ C ‖Γ‖Lp(QT ) ,(4.9)

where C ≡ Cp(t, T,R, a, a). The probabilistic representation (4.8), for any a priori
Lp(QT )-solution ϕ of BS′QT (a; Γ), also shows the consistency of such a priori solutions
across various values of p > 2.

Moreover, by linearity, such an a priori solution ϕ is the Lp(QT )-solution of the
equation −∂tϕ− â∂2

y2ϕ = Γ̂, where

Γ̂ = Γ− rϕ+ (r − q − a(t, y))∂yϕ+ (a− â)∂2
y2ϕ ,

with homogeneous terminal condition. Therefore, following Stroock–Varadhan [38,
exercise 7.3.3 and p.211], we have the following estimate:

‖∂2
y2ϕ‖Lp(QT ) ≤ Cp(â)(4.10)

×
(
‖Γ‖Lp(QT ) +R‖ϕ‖Lp(QT ) + (R+ a)‖∂yϕ‖Lp(QT ) +

1
2
(a− a)‖∂2

y2ϕ‖Lp(QT )

)
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where Cp(â) is a log-convex, hence continuous, function of 1/p, also defined at p = 2,
such that

Cp=2(â) =
1
â
<

2
a
.

Therefore one can choose p ≡ p(a, a) ∈]2, 3[ such that Cp(â) ≤ 2
â if p ∈]2, p[. Estimate

(4.3), at least with T instead of T in C, then results from (4.10), (4.5), (4.9) and
(3.4). We will refer to the estimate (4.3) with T instead of T in C, as the temporary
version of estimate (4.3).

The existence of a Lp(QT )-solution ϕ of BS′QT (a; Γ) in the special case where

Γ ∈ D(Q
T
) follows by density using lemma 3.3 as follows. Define p′ ≡ (2 + p)/2.

Following Fabes [23], BS′QT (an; Γ) admits a Lp(QT ) ∩ Lp′(QT )-solution ϕn. By
the temporary version of estimate (4.3), and successive extractions, one can find a
subsequence ϕn′ that converges to a limit ϕ, weakly in W 1,2

p (QT ) or W 1,2
p′ (QT ) and

locally uniformly on Q
T
. By W 1,2

p (QT )-weak passage to the limit, ϕ inherits the
temporary version of estimate (4.3). Then ϕ is a Lp(QT )-solution of BS′QT (a; Γ),
by lemma A.1. The general case where Γ ∈ Lp(QT ) straightaway follows by density
using theorem 3.2.2.

Let us now consider the solution ϕ̃ of BS′Q(a; Γ̃), where Γ̃ ≡ Γ/0 on the left/right
of T . By linearity and uniqueness of solutions of BS′, ϕ̃ vanishes on QT , and ϕ̃ is equal
to ϕ on QT . Therefore, the estimate (4.3) for ϕ on QT results from the temporary
version of estimate (4.3) for ϕ̃ on Q.

4.3. Homogeneous valuation equations. The following theorem is formally
well known. When the local volatility function a is Hölderian (with logarithmic vari-
ables), it has indeed been justified by many authors. For instance, Dupire [19] or
Bouchouev and Isakov [8] use Partial Differential Equation arguments involving fun-
damental solutions. Alternatively, El Karoui [20] or Crépey [14, §4.1, Part IV] use
probabilistic arguments involving local time. We also refer the reader to Crépey [14,
§4.1, Part IV] or Berestycki, Busca and Florent [4] for results in the case where a is
uniformly continuous. Here, we prove the more general case where a ∈ MQ(a, a).
This is indeed the case that will be relevant for the study of the calibration problems.

Theorem 4.3. Assume p ∈]2, p[. Then:
1. The call price

Q
T 3 (t, y) 7→ ΠT,k(t, y; a),

is the unique Lp,loc(QT )-solution between 0 and S, of BSQT (k; a). Moreover, it is
convex and nondecreasing with respect to S, nondecreasing with the local volatility,
and it converges to 0 when S → 0, uniformly with t.

2. The call price

Qt0 3 (T, k) 7→ ΠT,k(t0, y0; a),

is the unique Lp,loc(Qt0)-solution between 0 and S0, of DUPQt0
(y0; a). Moreover, it

is convex and nonincreasing with respect to K, nondecreasing with the local volatility,
and it converges to 0 when K → +∞, uniformly with T . Finally, for almost every
t > t0, the y-process (3.3) admits a transition probability density between t0 and t.
Discounting this density at rate r, it becomes

γt0,y0(t, y; a) ≡ e−y(∂2
y2 − ∂y)Πt,y(t0, y0; a) .(4.11)
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Proof. We proceed by density from the known case of a Lipschitzian function an

approximating a as in lemma 3.3. Denoting (p + p)/2 by p′, let Π̂, respectively Πn,
be the strong solution in Lp,loc(QT ) ∩ Lp′,loc(QT ) between 0 and S, of BSQT (k; â),
respectively BSQT (k; an).

Since 2 < p < p′ < p < 3, it is well known that

(∂2
y2 − ∂y)Π̂ ∈ Lp(QT ) ∩ Lp′(QT )

(see for instance Crépey [14, remark 4.1, Part IV]). Therefore, using theorem 4.2, there
exists a Lp(QT )∩Lp′(QT )-solution δΠ of BS′QT (a; Γ), where Γ ≡ (a− â)(∂2

y2 − ∂y)Π̂.
By linearity, Π ≡ Π̂ + δΠ is then a strong solution in Lp,loc(QT ) ∩ Lp′,loc(QT ) of
BSQT (k; a). Moreover,

(∂2
y2 − ∂y)Π ≡ (∂2

y2 − ∂y)Π̂ + (∂2
y2 − ∂y)δΠ ∈ Lp(QT ) ∩ Lp′(QT ) .

Denote Πn − Π̂ by δnΠ. By linearity, symmetry, parity, and the results of the
theorem in the Lipschitzian case, δnΠ converges to 0 when |y| → +∞, uniformly with
t, and δnΠ is a strong solution in Lp,loc(QT ) ∩ Lp′,loc(QT ) of BS′QT (an; Γn), where
Γn ≡ (an − â)(∂2

y2 − ∂y)Π̂. Therefore, by theorem 4.2, δnΠ is the strong solution in
Lp(QT )∩Lp′(QT ) of BS′QT (an; Γn). So Πn −Π = δnΠ− δΠ is the strong solution in
Lp(QT ) ∩ Lp′(QT ) of BS′QT (an; Γ′n), where

Γ′n ≡ Γn − Γ + (an − a)(∂2
y2 − ∂y)δΠ = (an − a)(∂2

y2 − ∂y)Π.

Furthermore, Γ′n converges to 0 in Lp(QT ) when n→ +∞. Indeed, having fixed
ε > 0, let us choose a subset Qε ≡ QT ∩{|y| ≤ Yε} such that ‖(∂2

y2−∂y)Π‖Lp(Qc
ε) ≤ ε,

where Qc
ε ≡ QT \Qε. By Hölder’s inequality, it follows thanks to lemma 3.3 that

‖Γ′n‖
p
Lp(QT )

≤ (‖(∂2
y2 − ∂y)Π‖p

Lp′ (QT )
+ (a− a)p)εp,

for n large enough.
Using estimate (4.3) applied to Πn − Π, Π then inherits the bounds on Πn.

So BS+
QT (k; a) admits a Lp,loc(QT )-solution Π+ ≡ Π between 0 and S. Similarly,

BS−
QT (k; a) admits a Lp,loc(QT )-solution Π− between 0 and K. We also have sym-

metric solutions Π+/−
T,k for DUP+/−

Qt0
(y0; a). Moreover, Π+/− ≡ Π+/−

T,k , by passage to
the limits in the analogous identities at fixed n. Furthermore, by lemma 3.6.1, these
solutions Π+/− and Π+/−

T,k are the only ones between the required bounds.
The probabilistic representation for Π− then results from a generalized integrated

Itô’s formula, as in the proof of theorem 4.2. Since Π+/− is the limit of the Π+/−
n , the

probabilistic representation for Π+ then follows from those for Π− and Π+/−
n , using

also the call/put parity at a and an.
Π+/− and Π+/−

T,k then inherit the monotonicity and convexity properties valid at
fixed n, by passage to the limit locally uniform over (t, y) and (T, k), respectively.
The asymptotic results follow from those, already known, at constant volatility a or
a, and from the monotonicity with respect to a.

Finally, by standard arguments developed for instance in Stroock and Varadhan
[38, proof of theorem 9.1.9, p. 224], estimate (4.3), or merely (4.6), valid for all
Γ ∈ Lp(QT ), enforces the existence of a transition probability density between t0 and
t for the process y, for almost every t > t0.



TIKHONOV REGULARIZED CALIBRATION 13

Then, by general arguments set out for instance in Crépey [14, §4.1, Part IV],
independent of the Lipschitzian assumption on a therein, the discounted density for
the process S is ∂2

S2Πt,S(t0, S0; a), whence, after change of variables, the expression
for γ.

The following proposition gathers a few consequences of the previous results that
will be useful in the following study of the calibration problems. The proposition is
stated for Π ≡ Π+. The analogous statements for Π ≡ Π− follow by parity. We
then also have the symmetric statements in the variables (T, k). Recall that h and h′

denote elements of H1(Q).
Proposition 4.4. Assume p ∈]2, p[.

1. Then

‖(∂2
y2 − ∂y)Π‖Lp(QT ) ≤ Cp ,(4.12)

where Cp ≡ Cp(t, T , k;R, a, a).
2. The price Π is locally θ-Hölderian, jointly with respect to (t0, y0), (T, k), uni-

formly with q, r ∈ [0, R], a ∈MQ(a, a).
3. Further define p′ = (2 + p)/2, p′′ = (2 + p′)/2, and Γ ≡ h(∂2

y2 − ∂y)Π. Then

‖Γ‖Lp′ (QT ) ≤ C ′p′ ‖h‖H1(Q) ,

where C ′p′ ≡ C ′p′(t, T , k;R, a, a). Let then dΠ, or dΠT,k(·; a).h, be the Lp′(QT )-solution
of BS′QT (a; Γ). Furthermore, let Γ′ and dΠ′ be defined as Γ and dΠ with h′ instead
of h, and

dΓ ≡ h′(∂2
y2 − ∂y)dΠ + h(∂2

y2 − ∂y)dΠ′ .

Then

‖dΓ‖Lp′′ (QT ) ≤ C ′′p′′ ‖h‖H1(Q) ‖h′‖H1(Q) ,

where C ′′p′′ ≡ C ′′p′′(t, T , k;R, a, a). We shall then denote by d2Π, or d2ΠT,k(·; a).(h, h′),
the Lp′′(QT )-solution of BS′QT (a; dΓ).

4. We have:

‖dΠ‖C0
θ(Q

T
)
≤ C ′ ‖dΠ‖W 1,2

p (QT ) ≤ C ′C ‖h‖H1(Q)

‖d2Π‖C0
θ(Q

T
)
≤C ′ ‖d2Π‖W 1,2

p (QT ) ≤ C ′C ‖h‖H1(Q)‖h′‖H1(Q) ,

where C ′ ≡ C ′p is as in (3.4), and C ≡ Cp(t, T , k;R, a, a). Moreover, if a + h ∈
MQ(a, a), let us define, for ε ∈]0, 1[:

ε−1δεΠ ≡ ε−1[ΠT,k(·; a+ εh)−ΠT,k(·; a)]
ε−1δεdΠ ≡ ε−1[dΠT,k(·; a+ εh).h′ − dΠT,k(·; a).h′] .

When ε→ 0, ε−1δεΠ and ε−1δεdΠ converge in C0
θ (Q

T
)∩W 1,2

p (QT ) respectively to dΠ
and d2Π.

5. Assume furthermore that a, and for n ∈ N?, an, belong to a0 + H1
Q(a, a),

where an − a converges to 0 weakly in H1(Q) when n→ +∞. Then Πn ≡ ΠT,k(·; an)
converges to Π ≡ ΠT,k(·; a) in C0

θ (Q
T
) ∩W 1,2

p (QT ).
Notice that dΠ and d2Π in this proposition are well defined, by theorem 4.2.
Proof. The proof is deferred to Appendix B.



14 S. CRÉPEY

5. Stability.

5.1. The ill-posed calibration problems. Let us now give a rigorous state-
ment of the calibration problems. From now on, we assume p ∈]2, p[, and we shall

denote by
◦
W

1,2

p (Qt0) the set of functions in W 1,2
p (Qt0) that vanish at time t0. We

also fix a finite subset F ⊂ Qt0 with |F| = M ∈ N?. Then we define the following
nonlinear pricing functional :

a0 +H1
Q(a, a) 3 a Π7−→ Π (a) ∈ Π0+

◦
W

1,2

p (Qt0) ,

where Π0, respectively Π(a), denotes the Lp,loc(Qt0)-solution between 0 and S0 of
DUPQt0

(y0; a0), respectively DUPQt0
(y0; a). Recall that a0 ∈ MQ(a, a) denotes the

prior on a.
Proposition 5.1. The pricing functional Π and the restriction Π|F are well

defined, on the closed convex subset a0 +H1
Q(a, a) of a0 +H1(Q). Moreover:

1. (Compactness) Π and Π|F map weakly convergent sequences into strongly
convergent ones.

2. (Differentiability) Π and Π|F are twice Gateaux differentiable.
3. (Perturbations of the operator) Π|F has θ-Hölderian dependence with respect

to (t0, y0) and F .
Proof. By theorems 4.2 and 4.3, Π and Π|F are well defined. Now, points 1, 2

and 3 respectively follow from the results symmetric to proposition 4.4.5, 4.4.4 and
4.4.2 in the variables (T, k) .

Definition 5.2. By the continuous calibration problem with data

Π̃ ∈ Π0+
◦
W

1,2

p (Qt0) ,

respectively the discrete calibration problem with data π ∈ RM , we shall mean, finding
an a ∈ a0 +H1

Q(a, a), such that:

Π̃T,k = ΠT,k(t0, y0; a) , (T, k) ∈ Qt0

respectively

πT,k = ΠT,k(t0, y0; a) , (T, k) ∈ F .

Data for which this is possible will be said to be calibrateable.
Remark 5.3. To fix notations, we thus consider the calibration problems with

European call option prices. However, by symmetry and parity, all the results below
extend straightaway to the following situations:

1. (Continuous problem) Calibration from European put option prices.
2. (Discrete problem) Calibration from European call and put option prices.

A nonlinear inverse problem is said to be ill-posed at any data set around which the
direct operator (here, the pricing functional Π or Π|F ) is not continuously invertible.

Theorem 5.4. For every continuous function a ∈ a0 +H1
Q(a, a), the continuous

calibration problem is ill-posed at Π̃ ≡ Π(a), and the discrete calibration problem is
ill-posed at π ≡ Π|F (a).

Proof. See Appendix C.
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5.2. Stabilization by Tikhonov regularization. The best known stabiliza-
tion method, for ill-posed nonlinear inverse problems, is Tikhonov regularization [39,
21], which we now consider. The properties of the nonlinear pricing functional Π,
summed up at proposition 5.1, will allow us to apply the general theory surveyed, for
instance, in Engl et al [21, Chapter 10].

In practice, market prices π are defined as bid-ask spreads. Moreover, Π̃ depends
on an interpolation procedure. Therefore, the actual set of observed prices, or input
data for the calibration, πδ or Π̃δ, is only known up to some noise δ. Moreover, any
numerical procedure used to tackle the discrete calibration problem, entails some
computational burden η. Furthermore, the local volatility function is calibrated at
the current phase (t0, y0) and set F , for later use at the perturbed phase (tµ0 , y

µ
0 ) and

set Fµ. The Tikhonov regularization method allows one to overcome such data noise,
computational burden and perturbations of the operator.

Definition 5.5. (Continuous problem) By an α-solution of the continuous cali-
bration problem with prior a0 and noisy data

Π̃δ ∈ Π0+
◦
W

1,2

p (Qt0) ,

we shall mean, in a0 +H1
Q(a, a), any aδ

α such that for every a:

Jδ
α

(
aδ

α

)
≤ Jδ

α (a)

where

2Jδ
α (a) ≡

∥∥∥Π (t0, y0, a)− Π̃δ
∥∥∥2

W 1,2
p (Qt0 )

+ α ‖a− a0‖2H1(Q) .

(Discrete problem) By an α-solution of the discrete calibration problem with prior
a0, noisy data πδ ∈ RM , perturbed parameters (tµ0 , y

µ
0 ) ∈ Q, Fµ ⊂ Qtµ

0
with |Fµ| = M ,

and computational burden η ≥ 0, we shall mean, in a0 + H1
Q(a, a), any aδ,µ,η

α such
that for every a:

Jδ,µ
α

(
aδ,µ,η

α

)
≤ Jδ,µ

α (a) + η

where

2Jδ,µ
α (a) ≡

∥∥Π|Fµ
(tµ0 , y

µ
0 , a)− πδ

∥∥2

RM + α ‖a− a0‖2H1(Q) .

Such α-solutions do exist, because of proposition 5.1.1. We shall not address in
this paper the problem of the uniqueness of the unregularized calibration problems,
or of the regularized problems for arbitrary values of the regularization parameter
α. However, at least for the discrete problem, one has the following result when
α tends to +∞. The intuition behind this result is that when α tends to +∞, the
regularization term becomes dominant and enforces the convexity of the cost criterion
as a whole.

Theorem 5.6. There exists C ≡ (1 + πδ)MCp(t, y0, T , k;R, a, a), such that the
cost criterion J ≡ Jδ,µ

α is C-strongly convex on a0 + H1
Q(a, a), for every α ≥ 2C.

Here, y0 and k denote bounds on |yµ
0 | and |k| for (T, k) ∈ Fµ.

Jδ,µ
α then admits a unique minimum, that depends continuously upon (tµ0 , y

µ
0 ), Fµ

and πδ. Otherwise said, the minimization problem of Jδ,µ
α is well posed in the sense

of Hadamard.
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Proof. By the chain rule, we have:

d2J(a).(h, h′) ≡ α〈h, h′〉H1(Q)

+
∑

(T,k)∈Fµ

dΠT,k(tµ0 , y
µ
0 ; a).h dΠT,k(tµ0 , y

µ
0 ; a).h′

+
∑

(T,k)∈Fµ

(
ΠT,k(tµ0 , y

µ
0 ; a)− πδ

)
d2ΠT,k(tµ0 , y

µ
0 ; a).(h, h′) .

For a, b ∈ a0+H1
Q(a, a), and ε ∈]0, 1[, let us define aε ≡ (1−ε)a+εb, Jε ≡ J(aε). Using

proposition 4.4.4 and the bound eyµ
0 on |Π|, it follows, denoting by ′ the derivative

with respect to ε:

〈∇J(b)−∇J(a), b− a〉H1(Q) = J ′1 − J ′0 =
∫ 1

0

J ′′ε dε

=
∫ 1

0

d2J(aε).(b− a, b− a) ≥ (α− (1 + eyµ
0 + πδ)MC) ‖b− a‖2H1(Q) ,

where C ≡ Cp(t, T , k;R, a, a).
Moreover, Tikhonov regularized solutions of the calibration problems at arbitrary

level α > 0 are stable, in the following meaning.
Theorem 5.7. (Stability, continuous problem) Assume Π̃δn → Π̃δ when n →

+∞. Then any sequence of α-solutions aδn
α admits a subsequence which converges

towards an α-solution aδ
α.

(Stability, discrete problem) Assume

πδn , (tµn

0 , yµn

0 ) , Fµn
, ηn −→ πδ , (tµ0 , y

µ
0 ) , Fµ , η ≡ 0

when n → +∞. Then any sequence of α-solutions aδn,µn,ηn
α admits a subsequence

which converges towards an α-solution aδ,µ,η≡0
α .

Notice that this convergence is strong in H1(Q).
Proof. Using proposition 5.1.1, this results directly from theorem 2.1 in Engl et al

[22], supplemented by remark 3.4 in Binder et al [5], for the continuous problem. For
the discrete problem, the proof is an immediate adaptation of the one in [22, theorem
2.1], using propositions 5.1.1 and 5.1.3.

6. Convergence and convergence rates.

6.1. Convergence. We are going to see that the Tikhonov regularization method
behaves as an approximating scheme for the pseudo-inverse of Π or Π|F . By pseudo-
inverse, we mean the operator that maps calibrateable data Π̃ or π, to an element a
which minimizes ‖a− a0‖ over the set of all pre-images of Π̃ or π through Π or Π|F .

Definition 6.1 (a0-MNS). Given calibrateable data, we shall call an a0-minimal
norm solution (a0-MNS) of the calibration problem, any solution a that minimizes
‖a− a0‖ over the set of all solutions.

Such an a0–MNS a exists, for all calibrateable data. But it may be nonunique,
since the pricing functional Π is nonlinear.

Theorem 6.2. (Convergence, continuous problem) Given calibrateable data Π̃,
suppose that ∥∥∥Π̃− Π̃δn

∥∥∥
W 1,2

p (Qt0 )
≤ δn for n ∈ N

αn , δ2n/αn −→ 0 when → +∞.
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Then any sequence aδn
αn

admits a subsequence which converges towards an a0-MNS a.
Moreover, aδn

αn
→ a, if a is the unique a0-MNS of the calibration problem at Π̃.

(Convergence, discrete problem) Given calibrateable data π, suppose that∥∥π − πδn
∥∥

RM ≤ δn, |t0 − tµn

0 | ∨ |y0 − yµn

0 | ∨ ‖F − Fµn
‖ ≤ µn for n ∈ N

αn, δ2n/αn, µ2θ
n /αn, ηn/αn −→ 0 when n→ +∞.

Then any sequence aδn,µn,ηn
αn

admits a subsequence which converges towards an a0-
MNS a. Moreover, aδn,µn,ηn

αn
→ a, if a is the unique a0-MNS of the calibration problem

at π.
Proof. Using proposition 5.1.1, this follows directly from theorem 2.3 in Engl et

al [22], supplemented by remark 3.4 in Binder et al [5], for the continuous problem.
For the discrete problem, it results for instance from Kunisch and Geymayer [27,
proposition 1], using propositions 5.1.1 and 5.1.3.

Following Engl et al [21, proposition 3.11 and remark 3.12], there can be, for the
convergence of such regularized schemes towards solutions of ill-posed inverse prob-
lems, no uniform rate over all calibrateable data. In fact, this presents a generic
character for any method of resolution, Tikhonov or otherwise. It is therefore impor-
tant to be able to specialize subsets of a0 + H1

Q(a, a), on which such uniform rates
may be exhibited.

6.2. Convergence rates. We first have the following abstract statement. Let
dΠ|F (a)? and dΠ(a)? denote the adjoints of the operators dΠ|F (a) and dΠ(a), respec-
tively. That is to say, by definition:

〈h , dΠ|F (a)?λ〉H1(Q) =
∑

(T,k)∈F

λT,kdΠT,k(a).h ; (h, λ) ∈ H1(Q)× RM

respectively

〈h , dΠ(a)?λ〉H1(Q) = 〈dΠ(a).h , λ〉W 1,2
p (Qt0 ),W 1,2

ρ (Qt0 ) ; (h, λ) ∈ H1(Q)×W 1,2
ρ (Qt0)

where p−1 + ρ−1 = 1, and where the last bracket denotes the duality bracket between
λ and dΠ(a).h.

Theorem 6.3. (Convergence rates, continuous problem) There exists Cp ≡
Cp(t, y0, T ;R, a, a), such that for every a0-MNS a of the calibration problem at Π̃
with

a− a0 = dΠ(a)?λ(6.1)

for some ‖λ‖W 1,2
ρ (Qt0 ) ≤ Cp, then

‖aδ
α − a‖H1(Q) = O(δ

1
2 ),

whenever ∥∥∥Π̃− Π̃δ
∥∥∥

W 1,2
p (Qt0 )

≤ δ , α ∼ δ .

(Convergence rates, discrete problem) There exists Cp ≡ Cp(t, y0, T ;R, a, a), such
that for every a0-MNS a of the calibration problem at π with

a− a0 = dΠ|F (t0, y0; a)?λ(6.2)
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for some ‖λ‖RM ≤ Cp/
√
M , then

‖aδ,µ,η
α − a‖H1(Q) = O(δ

1
2 + µ

θ
2 ),

whenever∥∥π − πδ
∥∥

RM ≤ δ , |t0− tµ0 |∨ |y0−y
µ
0 |∨‖F − Fµ‖ ≤ µ , α ∼ δ ∨ µθ , η = O

(
δ2
)
.

Therefore a is the only a0-MNS satisfying condition (6.1) or (6.2).
Proof. (Continuous problem) Using propositions 5.1.1 and 5.1.2, this follows from

Engl et al [21, theorem 10.4 and remark 10.5], by noticing that the proof therein readily
extends from their Hilbert → Hilbert to our Hilbert → reflexive Banach setting, by
reading duality brackets instead of inner products.

(Discrete problem) Using proposition 5.1, this follows from Kunisch and Gey-
mayer [27, theorem 2 and remark iv p. 86].

Remark 6.4. Kunisch and Geymayer [27, theorem 2] assume that a belongs to
the interior of a0+H1

Q(a, a). However, this cannot be realized in our case. Indeed, a0+
H1

Q(a, a) has empty interior. But this assumption is not used as long as discretization
of the source space is not dealt with.

Except in the trivial case where a ≡ a0, conditions (6.1)–(6.2) may seem rather
abstract. Whether there is a neighborhood around a0 such that they are satisfied, is
an open question. However, in the case where a is uniformly continuous with respect
to its space variable y, one can derive a more explicit formulation of (6.2). In the
following, let ∇̃ΠT,k, not to be mistaken with the Gateaux derivative of Π in H1(Q),
denote the following function on Q, parameterized by (t0, y0, T, k) and a :

∇̃ΠT,k(t, y) ≡ 1{t0<t<T}e
−y(∂2

y2 − ∂y)Πt,y(t0, y0; a)(∂2
y2 − ∂y)ΠT,k(t, y; a) .

Lemma 6.5. For (T, k) ∈ F ,

dΠT,k(t0, y0; a) . h =
∫ ∫

Q

∇̃ΠT,k h .

Proof. Indeed, this is just the probabilistic representation (4.2) for dΠ, given the
expression for γ in theorem 4.3.2 and the Lp-estimate on Γ in proposition 4.4.3.

Theorem 6.6. Let a ∈ a0 +H1
Q(a, a) be uniformly continuous with respect to its

space variable y. Then:
1. ∇̃ΠT,k ∈ L2(Q), for (T, k) ∈ F .
2. Λ ≡ dΠ|F (a)?λ is the unique solution in H2(Q) of the following problem:{

Λ−∆Λ =
∑

(T,k)∈F λT,k∇̃ΠT,k , Q-a.e.
∂nΛ = 0 , ∂Q-a.e.

(6.3)

3. Condition (6.2) means that (6.3) holds with Λ ≡ a− a0, for some

‖λ‖RM ≤ Cp(t, y0, T ;R, a, a)/
√
M.

Notice that by theorem 3.2.3, the normal derivative ∂nΛ ∈ L2(∂Q) is well defined,
for Λ ∈ H2(Q).

Proof.
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1. According to proposition 4.4.3,

(∂2
y2 − ∂y)ΠT,k(t, y; a) ∈ Lp(]

t0 + T

2
, T [×R).

On the other hand, we have by Stroock–Varadhan [38, theorem 9.1.9, equation (1.35)]:

e−y(∂2
y2 − ∂y)Πt,y(t0, y0; a) = γt0,y0 (t, y; a) ∈ Lq(]

t0 + T

2
, T [×R),

for every 1 ≤ q < +∞. More precisely,

‖γt0,y0(·; a)‖Lq(]
t0+T

2 ,T [×R)
≤ Cω

q (t, T ,R, a, a) ,

where ω denotes a modulus of continuity of a with respect to y. Hence ∇̃ΠT,k ∈
L2(] t0+T

2 , T [×R), by Hölder’s inequality. By symmetry and parity, we can conclude
that ∇̃ΠT,k ∈ L2(Q).

2. Therefore, using lemma 6.5, the adjunction relations for Λ can be written as

〈Λ , h〉H1(Q) =
∑

(T,k)∈F

λT,k 〈∇̃ΠT,k, h〉L2(Q) , h ∈ H1(Q) .(6.4)

It is then known that the adjoint Λ ∈ H1(Q) belongs in fact to H2(Q) — see for
instance Bensoussan–J.L. Lions [3, theorem 5.10, Chapter 2 and the footnote on page
96]. We can then apply the generalized Green formula to identity (6.4) and conclude
in a classic way, using theorem 3.2.4; see for example Larrouturou–P.L. Lions [30, p.
150, step 6, Interpretation of the variational formulation].

3. Immediate from 2.

Remark 6.7.
1. The condition in theorem 6.6.3, that ensures a convergence rate in O(δ

1
2 +µ

θ
2 ),

is very severe, since its implies that (Id−∆).(a−a0) belongs to the ≤M -dimensional
subspace of L2(Q) spanned by the ∇̃ΠT,k, (T, k) ∈ F , for sufficiently small coefficients
λT,k. Notice also that the severity of this condition tends to relax when M increases.

2. This condition is both a closedness and smoothness condition of a with re-
spect to a0, which says that, as already noted elsewhere, “Tikhonov regularization
can only resolve smooth details fast” [37, p. 611]. Indeed, one then has the following
H2(Q)-estimate from regularity theory for elliptic equations (method of tangential
translations, see for instance Brézis [9, p.181 and 184])

‖a− a0‖H2(Q) ≤
√
M Cω

p (t, y0, T ;R, a, a) ‖λ‖RM

where ω denotes a modulus of continuity of a with respect to y.
3. At least in the Hilbert → Hilbert setting of the discrete problem, there exist

conditions stronger than (6.2) ensuring better convergence rates, typically in O(δ
2
3 ),

see for instance [33, 34, 21]. But these conditions require that a be interior to the
domain of definition of the direct operator — see for instance Neubauer [33, equa-
tion (2.5)]. As already observed above, this cannot be realized in our case. Indeed,
H1

Q(a, a) has empty interior. Nonetheless, the reader is referred to Neubauer and
Scherzer [37, §3] for a special case in which an O(δ

2
3 ) convergence rate is proved,

although the domain of definition of the direct operator has empty interior.
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7. Conclusion. Having establishedW 1,2
p estimates for Black–Scholes and Dupire

equations with measurable ingredients, we have shown that the problem of inverting
observed vanilla option prices into a local volatility function, in a generalized Black–
Scholes model, fits into the frame of the Tikhonov regularization method. Moreover,
this holds true both when the option prices form a continuum, and when they con-
sist of a finite set. We were then able to derive results for stability, convergence
and convergence rates for this method. Discretization and effective implementation,
as well as numerical results, are left for later publication [16]. In addition, further
work will bear on an extension of the numerical implementation to the problem of
calibration from American option prices. With respect to this, an open question is
whether the theoretical results obtained in the present article relating to calibration
from European option prices, in a generalized Black–Scholes model, may be extended
to calibration from American option prices. Another more incidental open question,
is whether the continuity assumption is necessary in theorem 6.6.

Appendix A. A technical lemma. The following lemma justifies the passage
to the limit at the end of the proof of theorem 4.2. Although it is an adaptation of
theorem 3.8 in Caffarelli et al [10], using also theorem 2.8 in Crandall et al [13], we
give the proof in detail for completeness. The notations are the same as above.

Lemma A.1. Let us be given Γ ∈ D(Q
T
), and 2 < p′ < p. For n ∈ N, let ϕn

be a Lp′,loc(QT )-solution of BS′QT (an; Γ), where an is a Lipschitzian approximation
of a as in lemma 3.3. Assume the existence of a function ϕ ∈ W 1,2

p,loc(Q
T ) such that

ϕn → ϕ when n→ +∞, locally uniformly on Q
T
. Then ϕ is a Lp,loc(QT )-solution of

BS′QT (a; Γ).
Proof. The proof proceeds by contradiction. Assume that ϕ is, say, no Lp,loc(QT )-

viscosity subsolution of BS′QT (a; Γ). Therefore, there exist open nonempty bounded
intervals I and J , a rectangle Q′ = I ×J ⊆ QT centered at a point (t0, y0) ∈ QT , and
a test function ψ ∈W 1,2

p (Q′), such that:

− ∂tψ − (r − q − a(t, y)) ∂yψ − a(t, y)∂2
y2ψ + rϕ > Γ + ε on Q′(A.1)

(ϕ− ψ)(t0, y0) = 0, ϕ− ψ < −δ on ∂pQ
′ .(A.2)

Moreover, due to the Hölderian character of ϕ and ψ through the Sobolev embedding
(3.1) on Q′, one can assume:

ϕ− ψ < −δ
2

on ∂pQ
′′(A.3)

for some subrectangle Q′′ with the same properties as Q′, and Q
′′ ⊂ Q′.

We are going to construct a sequence of functions ψn (hence, ψ+ψn) ∈W 1,2
p′,loc(Q

′),
such that

ψn → 0 in L∞(Q′′) as n→∞(A.4)

and for n large enough

−∂t(ψ + ψn) − (r − q − an(t, y)) ∂y(ψ + ψn)− an(t, y)∂2
y2(ψ + ψn) + rϕn

≥ Γ + ε on Q′′.
(A.5)

Then by (A.2), (A.3), (A.4), and the assumed local uniform convergence of ϕn to ϕ,
ϕn−(ψ+ψn) will be larger at (t0, y0) than anywhere else on ∂pQ

′′, for n large enough.
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In view of (A.5), this contradicts the assumption that ϕn is a Lp′,loc(QT )-viscosity
solution of BS′QT (an; Γ).

To construct ψn, notice that by (A.1), we have onQ′, for ψn arbitrary inW 1,2
p′,loc(Q

′):

−∂t(ψ + ψn)− (r − q − an(t, y)) ∂y(ψ + ψn)− an(t, y)∂2
y2(ψ + ψn) + rϕn − Γ

≥ ε+ (a− an)(∂2
y2 − ∂y)ψ − r(ϕ− ϕn)

− ∂tψn − (r − q − an(t, y)) ∂yψn − an(t, y)∂2
y2ψn

≥ ε+ Γn − ∂tψn − (R+ a) |∂yψn| − a
(
∂2

y2ψn

)+

+ a
(
∂2

y2ψn

)−
where

Γn ≡ (a− an)(∂2
y2 − ∂y)ψ − r(ϕ− ϕn) → 0 in Lp′(Q′) as n→∞.

Now, choose ψn to be, by theorem 2.8 in Crandall et al [13], the Lp′,loc(Q′)-solution
of the following problem:{

∂tψn + (R+ a) |∂yψn|+ a
(
∂2

y2ψn

)+ − a
(
∂2

y2ψn

)−
= Γn on Q′

ψn = 0 on ∂pQ
′ ,

with estimate:

‖ψn‖W 1,2
p′ (Q′′) ≤ C ‖Γn‖Lp′ (Q′) ,

C ≡ Cp′(R, a, a,Q′, Q′′) independent of n. Considering the Sobolev embedding (3.1)
on Q′′, this furnishes the desired sequence ψn.

Appendix B. Proof of proposition 4.4.
1. By theorem 4.3.1, Let us consider Π, respectively Π̂, the Lp,loc(QT )-solution

between 0 and S of BSQT (k; a), respectively BSQT (k; â). Then by linearity, symme-
try, parity and the asymptotic results in theorem 4.3.1, δΠ ≡ Π − Π̂ converges to 0
when |y| → +∞, uniformly with t, and δΠ is a Lp,loc(QT )-solution of BS′QT (a; Γ),
where Γ ≡ (a− â)(∂2

y2 − ∂y)Π̂. Now, it is well known that

‖(∂2
y2 − ∂y)Π̂‖Lp(QT ) ≤ Cp(t, T , k,R, a, a)

(see for instance Crépey [14, remark 4.1, Part IV]). Hence (4.12), via (4.3).
2. Let us be given (t0, y0), (t′0, y

′
0), (T, k), (T

′, k′) ∈ Q, where t0 ≤ t′0; |y0|, |y′0| ≤
y0; |k|, |k′| ≤ k; 0 < ε ≤ T − t0, T

′ − t′0. Define Π, Π̂, δΠ as above. Then using the
estimates (4.3), (4.12) and the results symmetric in the variables (T, k), and using
also well known results related to Π̂ which is explicitely given by the Black–Scholes
formula, it follows:

|ΠT,k(t0, y0)−ΠT ′,k′(t′0, y
′
0)|

≤ |ΠT,k(t0, y0)−ΠT ′,k′(t0, y0)|+ |ΠT ′,k′(t0, y0)−ΠT ′,k′(t′0, y
′
0)|

≤ |δΠT,k(t0, y0)− δΠT ′,k′(t0, y0)|+ |Π̂T,k(t0, y0)− Π̂T ′,k′(t0, y0)|
+ |δΠT ′,k′(t0, y0)− δΠT ′,k′(t′0, y

′
0)|+ |Π̂T ′,k′(t0, y0)− Π̂T ′,k′(t′0, y

′
0)|

≤ ‖δΠ.(t0, y0)‖C0
θ(Qt0

)

(
|T − T ′|θ + |k − k′|θ

)
+ Cε

p(t, y0, T , k;R, a, a) (|T − T ′|+ |k − k′|)

+ ‖δΠT ′,k′(·)‖
C0

θ(Q
T ′

)

(
|t0 − t′0|θ + |y0 − y′0|θ

)
+ Cε

p(t, y0, T , k;R, a, a) (|t0 − t′0|+ |y0 − y′0|)

≤ C ′p(Cp(t, y0, T ;R, a, a) ∨ Cp(t, T , k;R, a, a))
(
|T − T ′|θ + |k − k′|θ + |t0 − t′0|θ + |y0 − y′0|θ

)
+ Cε

p(t, y0, T , k;R, a, a) (|T − T ′|+ |k − k′|+ |t0 − t′0|+ |y0 − y′0|) .
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3. Using (4.12), we obtain if p′−1 = p−1 + ρ−1, by Hölder’s inequality

‖h(∂2
y2 − ∂y)Π‖Lp′ (QT ) ≤ ‖h‖Lρ(QT ) ‖(∂2

y2 − ∂y)Π‖Lp(QT )

≤ C ′p′ ‖h‖H1(Q) ,

through the Sobolev embedding in theorem 3.2.1. Using estimates (4.12) for Π and
(4.3) for dΠ and dΠ′, we obtain similarly:

‖dΓ‖Lp′′ (QT ) ≤ ‖h′(∂2
y2 − ∂y)dΠ‖Lp′′ (QT ) + ‖h(∂2

y2 − ∂y)dΠ′‖Lp′′ (QT )

≤ ‖h′‖Lν(QT ) ‖(∂2
y2 − ∂y)dΠ‖Lp′ (QT )

+ ‖h‖Lν(QT ) ‖(∂2
y2 − ∂y)dΠ′‖Lp′ (QT )

≤ C ′′p′′ ‖h‖H1(Q) ‖h′‖H1(Q) .

4. The estimates for dΠ and d2Π result from point 3 and theorem 4.2. Let us
additionally suppose that a + h ∈ MQ(a, a). By linearity as above, ε−1δεΠ is the
Lp(QT )-solution of BS′QT (a + εh; Γ), and ε−1δεΠ converges in C0

θ (Q
T
) ∩W 1,2

p (QT ),
when ε → 0, towards the solution dΠ of BS′QT (a; Γ). Similarly, ε−1δεdΠ is the
Lp(QT )-solution of BS′QT (a+ εh; dΓε), where

dΓε ≡ h(∂2
y2 − ∂y)dΠT,k(·; a).h′

+ h′(∂2
y2 − ∂y)

[
ε−1(ΠT,k(·; a+ εh)−ΠT,k(·; a))

]
.

Now, dΓε converges in Lp(QT ) to dΓ when ε → 0. Therefore, ε−1δεdΠ converges in
C0

θ (Q
T
) ∩W 1,2

p (QT ) to d2Π when ε→ 0.
5. Having fixed ε > 0, and 2 < p < p′ < p, define ρ such that p−1 = p′

−1 +
ρ−1. By (4.12), we can choose a subset Qε ≡ QT ∩ {|y| ≤ Yε} such that ‖(∂2

y2 −
∂y)Π‖Lp(Qc

ε) ≤ ε, where Qc
ε ≡ QT \Qε. By the assumed weak convergence of an − a

to 0, and the Sobolev compact embedding (3.2), an − a converges to 0 in Lρ(Qε).
Denoting Γ′n ≡ (an − a)(∂2

y2 − ∂y)Π, it follows, in the same manner as in the proof
of theorem 4.3, that Γ′n converges to 0 in Lp(QT ). The Lp(QT )-solution Πn − Π of
BS′QT (an; Γ′n) then converges to 0 in C0

θ (Q
T
)∩W 1,2

p (QT ) when n→ +∞, by theorem
4.2.

Appendix C. Proof of theorem 5.4.
We are going to construct, for n ∈ N?, an ∈ a0+H1

Q(a, a) which takes values in the
vicinity of a, such that, when n→ +∞, an−a converges to 0 weakly in H1(Q). Hence,
by proposition 5.1.1, Π.(t0, y0; an)−Π.(t0, y0; a) converges to 0 in C0

θ (Qt0)∩W
1,2
p (Qt0).

But no subsequence of an − a will converge to 0 strongly in H1(Qt0). Therefore Π or
Π|F cannot be continuously invertible around Π̃ = Π(a) or π = Π|F (a).

Since a < a, and because a is continuous, there exists on open subset R ⊂ Qt0 on
which a+ ε ≤ a or a+ ε ≤ a, for some well chosen ε > 0. Let us assume for instance
that a+ ε ≤ a on a rectangle R =]t1, t2[×]0, ε[, as well as on the union T of the two
equilateral triangles adjacent to the time boundaries of R, with R∪ T ⊂ Qt0 . Let us
define an − a = un to be the continuous function on Q, such that:

1. On R, un is a continuous function of the space variable y alone, that vanishes
at both sides of the space interval ]0, ε[, and oscillates between the values 0 and 1/2n
inbetween. More precisely, ∂yun = −1 or +1 according to whether E{2ny/ε} is odd
or even.
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2. On the left and right of R, un decreases to 0 at unit speed with respect to
the time variable, then vanishes identically.

3. Outside R∪ T , un vanishes identically.
Therefore, un vanishes identically outside R, except on a set of measure tending to 0
as n→∞. Moreover, for every n, we have on Q:

0 ≤ un ≤ ε/2n ≤ ε , |∂tun| ≤ 1 , |∂yun| ≤ 1 .

So, by construction, un = an − a ∈ H1(Q), and

an = (an − a) + (a− a0) + a0 ∈ a0 +H1
Q(a, a) .

Moreover, for n ∈ N?, |∂yun| ≡ 1 on R, so that no subsequence of un can converge
to 0 strongly in H1(Qt0). But un converges to 0 weakly in H1(Q). Indeed, for any
regular test function ψ(t, y), let us define φ(y) =

∫ t2
t=t1

∂yψ dt. Then

∫ ∫
R

(∂yun) (∂yψ) dydt =
∫ ε

y=0

(∂yun)φ(y) dy = −
∫ ε

y=0

unφ
′(y) dy ,

by integration by parts. Since |un| ≤ ε/2n, this converges to 0 when n → ∞. The
rest of the verification is straightforward.
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[12] M. Crandall, H. Ishii and P.-L. Lions. User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1, pp. 1–67.

[13] M.G. Crandall, M. Kocan and A. Swiech. Lp-theory for fully nonlinear parabolic equa-
tions, CPDE, 25 (2000), 11 and 12, pp. 1997–2053.
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[15] S. Crépey. Tikhonov regularization and calibration of a local volatility in finance — Sta-
bility, convergence and convergence rates issues, CMAP Internal Research Report no474
(CMAP-Ecole Polytechnique, 91128 Palaiseau Cedex, France), February 2002.
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